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A novel deep learning model 
for a computed tomography 
diagnosis of coronary plaque 
erosion
Sangjoon Park 1,7, Haruhito Yuki 2,7, Takayuki Niida 2, Keishi Suzuki 2, Daisuke Kinoshita 2, 
Iris McNulty 2, Alexander Broersen 3, Jouke Dijkstra 3, Hang Lee 4, Tsunekazu Kakuta 5, 
Jong Chul Ye 1,6* & Ik‑Kyung Jang 2*

Patients with acute coronary syndromes caused by plaque erosion might be managed conservatively 
without stenting. Currently, the diagnosis of plaque erosion requires an invasive imaging procedure. 
We sought to develop a deep learning (DL) model that enables an accurate diagnosis of plaque erosion 
using coronary computed tomography angiography (CTA). A total of 532 CTA scans from 395 patients 
were used to develop a DL model: 426 CTA scans from 316 patients for training and internal validation, 
and 106 separate scans from 79 patients for validation. Momentum Distillation-enhanced Composite 
Transformer Attention (MD-CTA), a novel DL model that can effectively process the entire set of CTA 
scans to diagnose plaque erosion, was developed. The novel DL model, compared to the convolution 
neural network, showed significantly improved AUC (0.899 [0.841–0.957] vs. 0.724 [0.622–0.826]), 
sensitivity (87.1 [70.2–96.4] vs. 71.0 [52.0–85.8]), and specificity (85.3 [75.3–92.4] vs. 68.0 [56.2–
78.3]), respectively, for the patient‑level prediction. Similar results were obtained at the slice‑level 
prediction AUC (0.897 [0.890–0.904] vs. 0.757 [0.744–0.770]), sensitivity (82.2 [79.8–84.3] vs. 68.9 
[66.2–71.6]), and specificity (80.1 [79.1–81.0] vs. 67.3 [66.3–68.4]), respectively. This newly developed 
DL model enables an accurate CT diagnosis of plaque erosion, which might enable cardiologists to 
provide tailored therapy without invasive procedures.

Clinical Trial Registration: http:// www. clini caltr ials. gov, NCT04523194.

Abbreviations
ACS  Acute coronary syndromes
AUC   Area under the receiver-operating characteristic curve
CI  Confidence interval
CNN  Convolutional neural network
CTA   Computed tomography angiography
DL  Deep learning
NSTE-ACS  Non-ST-segment elevation acute coronary syndromes
NSTEMI  Non-ST-segment elevation myocardial infarction
OCT  Optical coherence tomography
PCI  Percutaneous coronary intervention
SAP  Stable angina pectoris
UAP  Unstable angina pectoris
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Acute coronary syndromes (ACS) are the most common cause of death  worldwide1. Previous reports have 
revealed that plaque rupture was the underlying mechanism in the majority of cases. However, an alternative 
pathology, plaque erosion, has been gaining attention as recent in vivo studies demonstrated that erosion is 
responsible for 25–60% of  cases2,3. In current clinical practice, ACS patients are uniformly treated with stenting 
regardless of the underlying  pathology4. Although not recommended by the current guidelines, recent studies 
reported that conservative management without coronary stenting might be an option for ACS patients caused 
by plaque  erosion5.

Currently, a diagnosis of plaque erosion can only be made by intracoronary optical coherence tomography 
(OCT), which requires an invasive procedure and expertise in image interpretation. The use of coronary com-
puted tomography angiography (CTA) has been increasing exponentially over the last several years. Several 
studies investigated specific features of plaque erosion on CTA 6–8. However, due to limited resolution, coronary 
CTA lacks the ability to make an accurate diagnosis of plaque erosion in which structural changes are subtle.

In recent years, deep learning (DL) has been applied to various medical fields, including medical imaging. 
Recent works have reported the DL application on automated coronary CTA analyses ranging from segmentation 
to classification, but the targets for identification were confined to easily discernible findings such as  stenosis9 or 
 calcification10, and the diagnosis of challenging entities such as plaque erosion has never been reported. Moreover, 
explicitly training the model for diagnosis of plaque erosion has never been possible, as the number of patients 
who underwent coronary CTA paired with concurrent OCT was limited.

We aimed to develop a DL model to make an accurate diagnosis of plaque erosion non-invasively with 
coronary CTA. To achieve this aim, we devised the “Momentum Distillation-enhanced Composite Transformer 
Attention (MD-CTA)” model that can incorporate the information from the entire scans, emulating the reading 
process of the human experts who look at the slices back-and-forth to make an accurate diagnosis and utilizing 
the modality-specific self-supervised learning strategy to enhance the performance.

Methods
Study population
Patients with ACS (non-ST-segment elevation myocardial infarction [NSTEMI] or unstable angina pectoris 
[UAP]) or stable angina pectoris (SAP) who underwent both coronary CTA and OCT prior to percutaneous 
coronary intervention (PCI) were included from the database, “Massachusetts General Hospital (Massachu-
setts, USA) and Tsuchiura Kyodo General Hospital (TKGH) (Ibaraki, Japan) Coronary Imaging Collaboration” 
(NCT04523194). NSTEMI and UAP were diagnosed using American Heart Association /American College of 
Cardiology  guidelines11. NSTEMI was defined as ischemic symptoms in the absence of ST-segment elevation 
on the electrocardiogram with elevated cardiac biomarkers. UAP was defined as having newly developed or 
accelerating ischemic symptoms on exertion or rest angina within 2 weeks without biomarker release. SAP 
was defined as chest pain on exertion without changes in frequency, intensity, and duration of symptoms in 
the previous 4 weeks and/or a positive stress test. The culprit lesion was defined as the site of PCI, the tightest 
lesion, or the lesion with evidence of recent plaque disruption on coronary angiogram. In cases of multivessel 
PCI, the lesions with the highest degree of stenosis as assessed on angiogram were chosen as the culprit lesion, 
and all the culprit lesions were confirmed by OCT. A total of 596 patients (ACS: 300, SAP: 296) who presented 
between January 2011 and September 2022 were included. Among ACS patients, 14 patients were excluded 
for calcified plaque, 1 for spontaneous coronary artery dissection, 2 for coronary spasm, and 1 for myocardial 
infarction with non-obstructive coronary artery. In addition, 15 patients were excluded for poor image quality, 
2 for in-stent restenosis, 2 for no OCT images before PCI, 5 for culprit lesions located in the left main, 1 for 
culprit lesion located in the diagonal branch, and 1 for staged PCI. Among SAP patients, 139 patients who had 
vessel segments greater than 10 mm in length with no plaque as assessed by angiography and CTA imaging were 
included in the non-erosion group. Thus, 256 ACS (113 with plaque erosion, 143 with plaque rupture) and 139 
SAP patients were included in the final analysis (Supplementary Fig. S1A). The Massachusetts General Hospital 
and TKGH Coronary Imaging Collaboration study was approved by the Institutional Review Boards at Massa-
chusetts General Hospital and Tsuchiura Kyodo General Hospital. Written informed consent for enrollment in 
the TKGH’s institutional database for potential future investigations was provided by all participants. The study 
protocol conforms to the ethical guidelines of the Declaration of Helsinki.

Coronary CTA acquisition and analysis
Coronary CTA image acquisition was performed using a 320-slice CT scanner (Aquilion ONE; Canon Medical 
Systems Corporation, Otawara, Tochigi, Japan) in accordance with the Society of Cardiovascular Computed 
Tomography  guidelines12. Oral and/or intravenous beta-blockers were administered if a patient’s resting heart 
rate was > 65 bpm. Sublingual nitroglycerin (0.3 or 0.6 mg) was administered immediately before CT scanning. 
Coronary CTA images were acquired with the following scan protocol: tube voltage of 120 kVp, tube current of 50 
to 750 mA, the gantry rotation speed of 350 ms per rotation, and field matrix of 512 × 512, and scan slice thickness 
of 0.5 mm. Acquisition of CT data and the electrocardiography (ECG) trace were automatically started as soon 
as the signal density level in the ascending aorta reached a predefined threshold of 150 Hounsfield units. Images 
were acquired after a bolus injection of 30 to 60 mL of contrast media (iopamidol, 370 mg iodine/mL, Bayer 
Yakuhin, Ltd., Osaka, Japan) at a rate of 3 to 6 mL/s, using prospective ECG-triggering or retrospective ECG-
gating with automatic tube current modulation. All scans were performed during a single breath-hold. Images 
were reconstructed at a window centered at 75% of the R-R interval to coincide with left ventricular diastasis. All 
intervals between CTA slices were 0.25 mm. The coronary CTA datasets were analyzed on a cardiac workstation 
with dedicated analysis software (Qangio CT RE 3.1, Medis, Leiden, the Netherlands), as previously  reported13. 
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Analysis began with the automatic detection of the coronary arteries followed by the segmentation of luminal and 
outer vessel boundaries. If needed, manual adjustments of the vessel centerline and boundaries were performed.

OCT analysis
OCT examination was performed using either a frequency-domain (C7/C8, OCT Intravascular Imaging System, 
St. Jude Medical, St. Paul, Minnesota) or a time-domain (M2/M3 Cardiology Imaging Systems, LightLab Imaging 
Inc., Westford, Massachusetts) OCT system. The images were analyzed by three independent investigators who 
were blinded to patients’ data, using an offline review workstation (St. Jude Medical). Qualitative and quantita-
tive analyses were performed using previously established  criteria14 by independent investigators blinded to the 
clinical, angiographic, and laboratory data.

Cross‑correlation with CTA and OCT images
As previously reported, the matching of OCT and CTA images was performed using an offline algorithm 
(Matcher version 2.1 Leiden, the Netherlands)15. In the first step, the OCT images were mapped onto the CT 
image along the vessel centerline using anatomical landmarks. In the second step, the individual OCT images 
were translated and rotated to fit best on the CT image, using the vessel center and landmarks for orientation. The 
algorithm also corrected for deviations in the OCT pullback speed by using interpolation between landmarks.

Among 256 ACS patients, the diagnosis of plaque erosion (n = 113) or rupture (n = 143) on OCT was used as 
the ground truth and the site on the CTA image that matched the culprit plaque on the OCT image was deter-
mined to be the culprit lesion. In addition, 276 CTA scans without plaques detected by OCT and/or angiography 
and CTA images were chosen as the scans with no plaque. Thus, a total of 532 CTA scans were included in the 
final analysis (113 CTA scans with plaque erosion, 143 with plaque rupture, and 276 scans with no plaque [Sup-
plementary Fig. S1B]).

For the development and validation of the deep learning model, CTA images in digital imaging and com-
munications in medicine (DICOM) format and their corresponding labels were transferred to the Bio-Imaging, 
Signal Processing, and Learning laboratory at the Korea Advanced Institute of Science and Technology after 
anonymization.

Among 395 patients (532 CTA scans), the data were divided into non-overlapping patient subsets, training 
and cross-validation datasets containing 316 patients (426 CTA scans) for model development and tuning, and 
the test set containing 79 patients (106 CTA scans) for final performance evaluation (Supplementary Methods 
and Supplementary Figs. S1C and S2) The disease prevalence of the non-plaque erosion class is 33.3% in the 
training set and 37.3% in the test set.

Development and evaluation of the deep learning algorithm
As we aimed to develop a DL model that can discriminate between plaque erosion and other entities, we divided 
labels into two classes: plaque erosion and non-plaque erosion. In the non-plaque erosion class, plaque rupture, 
as well as the other images without significant lesions were included.

To make an accurate diagnosis, we had to take the entire collection of CTA images into consideration. Thus, 
we designed a vision transformer (ViT)-based model tailored to the data structure of CTA, dubbed the MD-
CTA model. Unlike most contemporary medical AI models that lack the ability to incorporate the information 
of the entire volume, we utilized the transformer model (16) tailored for sequential data structure. Specifically, 
we simultaneously optimized the spatial transformer that extracts the information within a single slice and the 
sequence transformer that incorporates the extracted information of all slices to produce the final outcome. 
We trained the model using both the slice-level and patient-level annotations to enable the model to learn the 
location of the lesion of interest as well as the label classes. We also implemented the standard convolutional 
neural network (CNN) based model for comparison with the same design and settings as the proposed DL 
model (Supplementary Methods, Supplementary Table S1, and Supplementary Figs. S3, S4). We performed the 
internal five-fold cross-validation to get the best hyperparameter as well as evaluate the model performance. The 
model is visualized via the attention weights of the spatial and sequence transformers (Supplementary Methods).

A reader study was performed to evaluate the clinical utility of the DL model as an assisting tool as well as 
to compare the performances with experienced cardiologists. The definition of the experienced cardiologist is 
provided in Supplementary Methods. In the first round, the performance of the DL model for the test set was 
compared with that of experienced cardiologists. Then, in the second round, the prediction results by the DL 
model along with the corresponding CTA scans were provided to the readers to evaluate whether the diagnostic 
performances were improved with the model’s assistance (Supplementary Methods).

Statistical analysis
Categorical data are presented as counts and percentages, and are compared using the chi-squared test or Fisher 
exact test, as appropriate. Continuous variables have been shown as mean ± SD or median (25th to 75th per-
centiles), as appropriate, depending on the normality of distribution. Per-lesion data were analyzed using the 
generalized estimating equations with a logit link for the binary variables to consider the potential clustering of 
multiple plaques in a single patient. Between-group differences in continuous variables were compared using the 
Student t-test or Mann–Whitney U test, as appropriate. A P value < 0.05 was considered statistically significant.

The model performance was evaluated with the area under the receiver-operating-characteristic curves 
(AUC), and the sensitivities, specificities, accuracy, positive predictive values (PPVs), and negative predictive 
values (NPVs) were calculated for the detailed analysis. To estimate the false alarms by the model, the false-
positive rate (FPR) and false-negative rate (FNR) were calculated. The 95% confidence intervals (Cis) were calcu-
lated by DeLong’s method for AUC, and “exact” Clopper-Pearson confidence intervals for sensitivity, specificity, 
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accuracy, and false estimates. Likewise, the standard logit confidence intervals were used to estimate the 95% 
Cis of the predictive values.

All analyses were performed with SPSS 28.0 (version 28.0 for Windows; SPSS, Inc., Chicago, Illinois) and 
Python Scikit-learn package (Python version 3.8, Scikit-learn version 1.1.2, http:// scikit- learn. org/).

Results
Study population
For model development and internal validation, we used a total of 532 CTA scans from 395 patients. Patients 
were randomly divided into non-overlapping subsets, training and cross-validation datasets for model develop-
ment and tuning (426 scans from 316 patients), and the test set for final performance evaluation (containing 106 
scans from 79 patients) (Supplementary Fig. S1C).

Detailed patient characteristics are summarized in Table 1. Other than a higher prevalence of diabetes mel-
litus in the training dataset than in the test dataset (109 [34.5%] vs. 18 [22.8%], p = 0.018), no differences were 
observed in patient characteristics, medications, and laboratory data between the two datasets. The subset of 
patients with ACS showed the same pattern (Diabetes: 78 [38.6%] vs. 11 [20.4%], p = 0.013) (Supplementary 
Table S2). When the location of the culprit lesion and underlying pathology were compared between training 
and test datasets, no significant difference was found between the two groups (Table 2). Among patients with 
ACS, there were no significant differences in qualitative and quantitative OCT analyses between training and 
test datasets (Supplementary Table S2). In addition, when minimum lumen area measured by OCT and area 
stenosis measured by CTA were calculated in patients with plaque erosion or rupture, there were no significant 
differences between the two groups (Supplementary Table S3).

Table 1.  Patient characteristics in the training versus test datasets. Values are mean ± SD, n (%), or median 
(25th-75th percentile). ACE-I angiotensin-converting enzyme inhibitor, ARB angiotensin II receptor blocker, 
CABG coronary artery bypass graft, DAPT dual anti-platelet therapy, eGFR estimated glomerular filtration 
rate, HbA1c hemoglobin A1c, HDL high-density lipoprotein, LDL low-density lipoprotein, MI myocardial 
infarction, NSTE-ACS non-ST-segment elevation acute coronary syndromes, NSTEMI non-ST-segment 
elevation myocardial infarction, PCI percutaneous coronary intervention: SAP stable angina pectoris, UAP 
unstable angina pectoris, WBC white blood cell.

Variables

Overall patients (n = 395) P value

Training dataset (n = 316, 80.0%) Test dataset (n = 79, 20.0%)

Age (years) 66.5 (58.3–74.0) 68.5 (59.0–76.0) 0.893

Male 257 (81.3) 66 (83.5) 0.648

Hypertension 188 (59.5) 48 (60.8) 0.690

Dyslipidemia 135 (42.7) 40 (50.6) 0.371

Diabetes mellitus 109 (34.5) 18 (22.8) 0.018

Current smoking 93 (29.4) 24 (30.4) 0.951

Renal insufficiency 102 (32.3) 22 (27.8) 0.448

Ejection fraction (%) 63 (56–67) 64 (55–68) 0.618

NSTE-ACS
NSTEMI 161 (50.9) 37 (46.8) 0.513

UAP 41 (13.0) 17 (21.5) 0.055

SAP 114 (36.1) 25 (31.6) 0.461

Previous MI 40 (12.7) 6 (7.6) 0.210

Previous PCI 49 (15.5) 10 (12.7) 0.519

Previous CABG 4 (1.3) 0 (0.0) 0.315

Medication on admission

 Aspirin 85 (26.9) 22 (27.8) 0.609

 DAPT 60 (19.0) 16 (20.3) 0.782

 ACE-I/ARB 100 (31.6) 33 (41.8) 0.160

 Statin 111 (35.1) 25 (31.6) 0.348

 Β-blocker 130 (41.1) 35 (44.3) 0.902

Laboratory data

 WBC (count/µL) 6660 (5380–8738) 6965 (5565–8735) 0.901

 Triglycerides (mg/dL) 114 (82–183) 124 (84–197) 0.399

 Total cholesterol (mg/dL) 185 ± 2.6 192 ± 5.7 0.450

 LDL cholesterol (mg/dL) 111 (88–137) 117 (92–138) 0.671

 HDL cholesterol (mg/dL) 46 (40–56) 46 (41–56) 0.944

 HbA1c (%) 5.9 (5.5–6.8) 5.9 (5.5–6.6) 0.355

 eGFR (mL/min/1.73m2) 72.9 (61.2–83.3) 72.5 (62.9–84.4) 0.212

http://scikit-learn.org/
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Diagnostic performances of the deep learning model
Patient-level prediction performances for plaque erosion are shown in Fig. 1A,B and Table 3. In the five-fold 
cross-validation, the MD-CTA model showed diagnostic performance with an AUC of 0.901 (0.873–0.930), 
sensitivity of 81.2 (72.8–88.0), and specificity of 86.6 (82.4–90.2), all of which were significantly higher than those 
of the CNN model with an AUC of 0.621 (0.567–0.675), sensitivity of 59.8 (50.1–69.0), and specificity of 60.2 
(54.5–65.7). Similarly, in the test set validation, the AUC, sensitivity, and specificity of the DL model were 0.899 

Table 2.  Coronary CTA scan lesion characteristics in the training versus test datasets. Values are n (%). CTA  
computed tomography angiography, LAD left anterior descending artery, LCX left circumflex artery, RCA  right 
coronary artery.

Variables

Overall CTA scans (n = 532)

P valueCTA scans in training dataset (n = 426, 80.1%) CTA scans in test dataset (n = 106, 19.9%)

Lesion location

 RCA 135 (31.7) 37 (34.9)

0.762 LAD 184 (43.2) 43 (40.6)

 LCX 107 (25.1) 26 (24.5)

Pathology

 Plaque erosion 90 (21.1) 23 (21.7) 0.904

 Plaque rupture 112 (26.3) 31 (29.2) 0.577

 No plaque 224 (52.6) 52 (49.1) 0.598

Figure 1.  Diagnostic accuracy of the deep learning (DL) models for patient-level (A,B) and slice-level (C,D) 
predictions. Diagnostic performance of the deep learning models at the patient level in the five-fold cross-
validation (A), in the test set validation (B), and at the slice level in the five-fold cross-validation (C), in the 
test set validation (D). AUC  area under the curve, CNN convolutional neural network, MD-CTA  momentum 
distillation-enhanced composite transformer attention.
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(0.841–0.957), 87.1 (70.2–96.4), and 85.3 (75.3–92.4), respectively, higher than those of 0.724 (0.622–0.826), 71.0 
(52.0–85.8), and 68.0 (56.2–78.3) of the CNN model. In both five-fold cross-validation and test set validation, 
the NPVs were higher than 90.0%, but PPVs were relatively low (68.4 and 71.1, respectively) due to the smaller 
number of positives.

Slice-level prediction performances are provided in Fig. 1C,D and Table 4. In the five-fold cross-validation, the 
MD-CTA model provided the diagnostic performances with an AUC of 0.891 (0.887–0.895), sensitivity of 82.9 
(81.7–84.0), and specificity of 80.0 (79.5–80.5), while the CNN model showed an AUC of 0.729 (0.722–0.737), 
sensitivity of 66.2 (64.8–67.6), and specificity of 66.8 (66.3–67.4). Likewise, in the test set validation, the MD-
CTA model’s AUC, sensitivity, specificity, and accuracy were 0.897 (0.890–0.904), 82.2 (79.8–84.3), and 80.1 
(79.1–81.0), while those of the CNN model were 0.757 (0.744–0.770), 68.9 (66.2–71.6), and 67.3 (66.3–68.4), 
respectively. The NPVs for the slice level prediction were over 90.0% in both five-fold cross-validation and the test 
set validation, while the PPVs were relatively low, attributed to the imbalance between positives and negatives.

The model performances evaluated exclusively on the ACS patients are provided in the Supplementary Results, 
Supplementary Table S4. In the test set validation, the Cohen’s kappa coefficient was 0.679 between the model and 
the ground truth labels. When the two key components, the composite transformer attention and the modality-
specific self-supervised pre-training, were not used together, the performance of the vanilla ViT model’s perfor-
mances were sub-optimal (Supplementary Results and Supplementary Table S5). The diagnostic performance 
of the same model for culprit lesion is presented in the Supplementary Result and Supplementary Table S6.

Analysis of the false estimates
Tables 3 and 4 show the results of the analysis of the false estimates. In the five-fold cross-validation, the FPR 
and FNR of the MD-CTA model were 13.4 (9.8–17.6) and 18.8 (12.0–27.2) for the patient-level diagnosis, and 
20.0 (19.5–20.5) and 17.1 (16.0–18.3) for the slice-level diagnosis, which was lower than the CNN model. In 
the test set validation, the FPR and FNR of the MD-CTA model were 14.7 (7.6–24.7) and 12.9 (3.6–29.8) for 
the patient-level, and 19.9 (19.0–80.9) and 17.8 (15.7–20.2) for the slice-level diagnoses, providing lower false 
estimates than the CNN model. More detailed information on false estimates is provided in the Supplementary 
Results and Supplementary Fig. S5.

Model interpretability results
We visualized the attention of the slice-level and sequence-level transformer, which reflect the model’s attention 
within the slice and between the slices, respectively. The relative importance estimated by the model has been 
normalized between 0 (low) and 1 (high), and this estimated relative importance is visualized in accordance 
with a scale bar, as depicted in Fig. 2. As provided in the representative cases in Fig. 2, Supplementary Fig. S6, 
and Supplementary Videos S1 and S2, the DL model paid attention accurately to the lesion location compared 
to the ground truth annotation at the patient level. Within a single frame, the suspected culprit lesion was well 

Table 3.  Performances of the deep learning models for patient-level diagnosis. AUC  area under the curve, 
CI confidence interval, CNN convolutional neural network, FNR false-negative rate, FPR false-positive rate, 
MD-CTA  momentum distillation-enhanced composite transformer attention, NPV negative predictive value, 
PPV positive predictive value.

AUC (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI) PPV (95% CI) NPV (95% CI) FPR (%) (95% CI) FNR (%) (95% CI)

Five-fold cross-validation

 MD-CTA model 0.901 (0.873–0.930) 81.2 (72.8–88.0) 86.6 (82.4–90.2) 68.4 (61.7–74.4) 92.8 (89.8–95.0) 13.4 (9.8–17.6) 18.8 (12.0–27.2)

 CNN model 0.621 (0.567–0.675) 59.8 (50.1–69.0) 60.2 (54.5–65.7) 34.9 (30.4–39.7) 80.8 (76.7–84.3) 39.8 (34.3–45.5) 40.2 (31.0–49.9)

Test set validation

 MD-CTA model 0.899 (0.841–0.957) 87.1 (70.2–96.4) 85.3 (75.3–92.4) 71.1 (58.3–81.2) 94.1 (86.5–97.6) 14.7 (7.6–24.7) 12.9 (3.6–29.8)

 CNN model 0.724 (0.622–0.826) 71.0 (52.0–85.8) 68.0 (56.2–78.3) 47.8 (38.1–57.8) 85.0 (76.2–90.9) 32.0 (21.7–43.8) 29.0 (14.2–48.0)

Table 4.  Performances of the deep learning models for slice-level diagnosis. AUC  area under the curve, CI 
confidence interval, CNN convolutional neural network, FNR false-negative rate, FPR false-positive rate, 
MD-CTA  momentum distillation-enhanced composite transformer attention, NPV negative predictive value, 
PPV positive predictive value.

AUC (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI) PPV (95% CI) NPV (95% CI) FPR (%) (95% CI) FNR (%) (95% CI)

Five-fold cross-validation

 MD-CTA model 0.891 (0.887–0.895) 82.9 (81.7–84.0) 80.0 (79.5–80.5) 38.5 (37.9–39.1) 96.9 (96.7–97.1) 20.0 (19.5–20.5) 17.1 (16.0–18.3)

 CNN model 0.729 (0.722–0.737) 66.2 (64.8–67.6) 66.8 (66.3–67.4) 23.2 (22.7–23.7) 92.9 (92.6–93.2) 33.2 (32.6–33.7) 33.8 (32.4–35.2)

Test set validation

 MD-CTA model 0.897 (0.890–0.904) 82.2 (79.8–84.3) 80.1 (79.1–81.0) 39.3 (38.0–40.5) 96.6 (96.2–97.0) 19.9 (19.0–80.9) 17.8 (15.7–20.2)

 CNN model 0.757 (0.744–0.770) 68.9 (66.2–71.6) 67.3 (66.3–68.4) 24.9 (23.9–25.8) 93.3 (92.7–93.8) 32.7 (31.6–33.7) 31.1 (28.4–33.8)
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localized by the model attention, suggesting that the model can identify the clinically important features within 
the given frame.

Reader study comparing the model performance with the experienced cardiologists
In the first round of the reader study, the performances of the MD-CTA model were compared with the expe-
rienced cardiologists as shown in Table 5. The model outperformed the expert readers in all diagnostic perfor-
mance metrics, and the superiority of the model was most prominent for the sensitivity (87.1% in DL model vs. 

Figure 2.  Plaque rupture and plaque erosion as seen on OCT, CTA, and CTA enhanced by DL model. 
Representative images of each label are shown. (A) shows an OCT image of plaque rupture. Plaque rupture is 
characterized by the presence of fibrous cap discontinuity with a cavity formation (asterisks) within the plaque. 
(A) also shows the residual ruptured cap (red arrow). (B,C) show CTA images of the corresponding site. (B) 
shows the ruptured cap (yellow arrow) protruding into the vessel lumen at the same site observed by OCT. (C) 
shows that the DL model attends on the ruptured cap and cavity. (D) shows an OCT image of plaque erosion. 
Definite plaque erosion is characterized by the presence of attached thrombus (blue arrow) overlying an intact 
and visualized plaque. (E,F) show CTA images of the corresponding site. (E) shows a small lumen surrounded 
by plaque without a cavity. (F) shows that the DL model attends on the site of stenosis without evidence of a 
cavity. In panels (C) and (F), the visualized model attention represents the relative importance as determined by 
the DL model for each specific image, with values normalized to a range between 0 and 1 for the images under 
consideration. CTA  computed tomography angiography, DL deep learning, OCT optical coherence tomography, 
RI relative importance.
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16.1% in reader 1, 12.9% in reader 2, and 16.1% in reader 3). The second round of the reader study was performed 
to evaluate whether the model can be used as an assisting tool to improve the diagnostic performance of the 
human reader. When given the model’s prediction results for the probability and location of the plaque erosion, 
the diagnostic performances of the human readers markedly improved, especially for the sensitivity, increasing 
from 16.1% to 83.9% in reader 1, from 12.9% to 77.4% in reader 2, and from 16.1% to 77.4% in reader 3.

Discussion
To the best of our knowledge, this is the first report showing that the automated diagnosis of plaque erosion is 
possible with a non-invasive coronary CTA using a novel DL algorithm. To achieve this goal, we have developed 
the MD-CTA model, which is able to leverage composite transformer attentions to incorporate the information 
and relationships between the coronary CTA slices, emulating the reading process of a human expert, and we 
enhanced the model’s performance with modality-specific self-supervised pre-training. The five-fold cross-
validation and the test set validation results have shown that the DL model can diagnose plaque erosion solely 
from the CTA images, attaining a clinically useful level of diagnostic performance. Our model outperformed 
the experienced cardiologists, and when used as an assisting tool, the diagnostic performances of cardiologists 
were markedly improved.

Recent efforts to apply artificial intelligence to coronary artery imaging such as OCT, CTA, and IVUS 
have been made. However, most works were devoted to dense prediction and quantification like plaque 
 segmentation16,17, or primarily focused on easily discernible abnormalities, for instance, thin-cap  fibroatheroma18; 
only a minority of works have reported the DL application for the end-to-end diagnosis of specific findings. 
Although we have previously reported novel DL model for the diagnosis of plaque erosion, intravascular imag-
ing with OCT was  required19, thus, the use of the algorithm was restricted to the catheterization laboratory.

Plaque erosion, which is responsible for up to 50% of patients with non-ST-segment elevation (NSTE)-ACS2, 
is characterized by an intact fibrous cap, preserved vascular structure, and platelet-rich thrombus. Thrombus in 
plaque erosion is attributed to apoptosis or denudation of superficial endothelial cells as opposed to fibrous cap 
disruption and creation of a cavity inside a plaque in plaque rupture. Previous studies have demonstrated that 
ACS patients with plaque erosion have fewer cardiovascular risk factors, less atherosclerotic burden, and lower 
frequency of complex lesions, less multivessel coronary artery disease, and higher prevalence of close proximity 
to a bifurcation than those with plaque  rupture20–22. In addition, on OCT images, patients with plaque erosion 
have smaller reference vessel diameter, lower prevalence of calcification and thrombus in culprit  lesions20, and 
lower prevalence of macrophage accumulation, microvessels, and spotty calcium in non-culprit  lesions23 than 
those with plaque rupture. These findings might suggest that plaque erosion is associated with lower levels of 
pan-vascular vulnerability and exhibits rather subtle structural changes at the microscopic  level24. If the afore-
mentioned microscopic structural changes could be identified by using deep learning, plaque erosion can be 
diagnosed by these specific findings, rather be diagnosed by excluding plaque rupture, as it currently stands. 
Since patients with NSTE-ACS can usually be stabilized with medical therapy and preliminary data suggest that 
conservative management might be an option for ACS patients caused by plaque  erosion5,25, we thought if we 
could make a diagnosis of plaque erosion by using CTA, this subset of patients might be able to be managed 
without invasive procedures (Fig. 3). The challenge with CTA is its capability to detect the subtle structural 
changes that occur in plaque erosion due to its lower resolution. We successfully surmounted this conundrum 
by leveraging the following approaches. First, we utilized a unique database comprised of paired coronary CTA 
and OCT images obtained simultaneously from the same subject. This approach enabled the model to learn 
from superior supervision regarding the presence and location of plaque erosion than CTA alone. As a result, 
the trained DL model could detect subtle changes in CT attenuation that might not be visible to the human eye. 
Had we built a model for diagnosing plaque erosion using the dataset lacking paired OCT images, the model’s 
performance would have been restricted to learning only from the lesions detectable by human experts in CTA 
images. Secondly, we integrated a novel design of composite transformer attention along with a self-supervised 
learning method to endow the model with a comprehensive understanding of the structural features of the 

Table 5.  Results of the reader study to validate the clinical utility of the deep learning model. CI confidence 
interval, DL deep learning, FNR false-negative rate, FPR false-positive rate, NPV negative predictive value, PPV 
positive predictive value.

Sensitivity (%) (95% CI) Specificity (%) (95% CI) PPV (95% CI) NPV (95% CI) FPR (%) (95% CI)
FNR (%) (95% 
CI)

Novel DL model 87.1 (70.2–96.4) 85.3 (75.3–92.4) 71.1 (58.3–81.2) 94.1 (86.5–97.6) 14.7 (7.6–24.7) 12.9 (3.6–29.8)

Before DL model assistance

 Reader 1 16.1 (5.5–33.7) 77.3 (66.2–86.2) 22.7 (10.6–42.1) 69.1 (64.7–73.1) 22.7 (13.8–33.8) 83.9 (66.3–94.5)

 Reader 2 12.9 (3.6–29.8) 88.0 (78.4–94.4) 30.8 (12.9–57.2) 71.0 (67.6–74.1) 12.0 (5.6–21.6) 87.1 (70.2–96.4)

 Reader 3 16.1 (5.5–33.7) 76.0 (64.8–85.1) 21.7 (10.2–40.5) 68.7 (64.2–72.8) 24.0 (14.9–35.2) 83.9 (66.3–94.5)

After DL model assistance

 Reader 1 83.9 (66.3–94.6) 89.3 (80.1–95.3) 76.5 (62.4–86.4) 93.1 (85.7–96.8) 10.7 (4.7–9.9) 16.1 (5.4–33.7)

 Reader 2 77.4 (58.9–90.4) 85.3 (75.3–92.4) 68.6 (55.0–79.6) 90.1 (82.6–94.6) 14.7 (7.6–24.7) 22.6 (9.6–41.1)

 Reader 3 77.4 (58.9–90.4) 85.3 (75.3–92.4) 68.6 (55.0–79.6) 90.1 (82.6–94.6) 14.7 (7.6–24.7) 22.6 (9.6–41.1)
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CTA volume. Our approach resulted in a remarkable improvement in diagnostic performance compared to 
conventional CNN models. Specifically, in slices that were ambiguous and perplexing, the proposed MD-CTA 
model utilized a composite of intra-slice and inter-slice attention to provide a more precise diagnosis. In recent 
years, there have been more than 800,000 patients with myocardial infarction in the United States per  year26 and 
NSTEMI has recently become the most frequent type of MI (NSTEMI increased from 52.8% in 2002 to 68.6% in 
2011)27. In patients with NSTEMI, plaque erosion is the underlying pathology in up to 75% of  cases2. Thus, the 
potential number of patients who might benefit from this new approach is enormous.

Study limitations
Our study has several limitations. First, this was a retrospective analysis of patients who underwent both CTA 
and OCT prior to PCI. Therefore, selection bias cannot be excluded because patients without significant stenosis 
on CTA might have been excluded from invasive procedures such as coronary angiography or OCT. Second, the 
test set validation was performed only for the randomly split subset from the single data source. We adopted this 
approach as it was not possible to conduct the external validation in another institution since multi-modality 
imaging data with an adequate number of patients were not available elsewhere. To alleviate concerns for the 
generalizability, we did not use any vendor-specific pre- or post-processing, and the raw Hounsfield Unit values 
were used as the input of the model after simple normalization between 0–1. Furthermore, we employed two 
methods to improve the generalizability, namely transfer learning from pre-trained models on general domain 
data and domain-specific self-supervised learning. Without these methods, the performance was found to be 
compromised, suggesting the possibility of overfitting. Third, instead of histological ground truth, the concurrent 
OCT images that have higher resolution were leveraged as the gold standard. This approach was adopted since 
it was impossible to obtain histological diagnosis in living patients. This approach has been widely adopted in 
developing the DL model for medical image analysis when histological validation is not  feasible28–30. Fourth, less 
common ACS pathologies such as a calcified plaque, spontaneous coronary dissection, and intraplaque acksedge 
were excluded. Fifth, although the prevalence of disease in non-plaque erosion was not low (34.1%), the possibil-
ity of the falsely high sensitivity of the MD-CTA model could not be completely ruled out. Sixth the diagnostic 
accuracy of the model tends to be affected by the quality of the image, for instance, severely calcified plaque or 
severe luminal narrowing lowered the accuracy of the diagnosis. Of note, plaque erosion, compared to plaque 
rupture, in general has a larger lumen. Seventh, the performance of the model slightly decreased when evaluated 
only on ACS patients. Furthermore, while the model demonstrates excellent performance in the overall diagnosis 
of plaque erosion versus non-plaque erosion, it shows a reduced performance in differentiating between plaque 
erosion and rupture. Nonetheless, our MD-CTA model clearly outperforms the CNN model (Supplementary 
Table S7). This suggests that our model may be utilized in clinical applications for purposes such as a screening 

Figure 3.  Potential Future Approach for Evaluation and Management of Patients With ACS. Patients with 
STEMI would undergo emergency catheterization. If plaque rupture is confirmed, the culprit lesion would 
be treated with stenting. If OCT demonstrated plaque erosion with preserved lumen, antithrombotic therapy 
without stenting could be considered. Patients with NSTE-ACS would undergo noninvasive coronary CTA with 
DL model after stabilization. If there is high probability of plaque erosion and preserved lumen, antithrombotic 
therapy without stenting could be considered. CTA  computed tomography angiography, DL deep learning; 
NSTE-ACS non–ST-segment elevation acute coronary syndromes, OCT optical coherence tomography, PCI 
percutaneous coronary intervention, STEMI ST-segment elevation myocardial infarction.
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tool for anomaly, based on its excellent detection capabilities for culprit lesions. Eighth, although previous small 
studies suggested that conservative management without coronary stenting might be an option for ACS patients 
with plaque erosion, data from prospective large-scale randomized trials are currently not available. Thus, further 
studies are warranted prior to the implementation of this approach into daily clinical practice. Finally, although 
we used the unique and well-curated dataset consisting of paired coronary CTA and OCT, the size of the dataset 
may still be small. Although large-scale studies with clinical outcomes would be helpful, combined pre-procedure 
CTA and intracoronary imaging in the same patients with ACS would be practically challenging.

Conclusions
The MD-CTA model, specifically designed for coronary CTA and trained with the paired coronary CTA and 
OCT database, appears promising in identifying atherosclerotic plaque erosion using non-invasive coronary 
CTA images and significantly outperformed experienced cardiologists. Further research is needed to validate 
the usefulness of this novel model in clinical practice.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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