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Summary

Cryptography is about securing information in such a way that only the intended
parties have access to that information. For example, let us say that a hypothetical
person, named Alice, would like to send a message to another hypothetical person,
named Bob. If Alice and Bob had a way to communicate in such a way that no one else
could overhear their conversation, then this would be easy; they could just converse
in plain text. However, in the real world, a perfectly secure channel of communication
is virtually impossible to guarantee, especially when communication happens over the
internet. Somehow, Alice and Bob have to agree on some sort of code language. But
how can they do that, if we assume malicious entities can listen in on all of their
conversations? One way, is through something called a Diffie–Hellman key exchange;
a method for two parties to establish a shared secret over a public communication
channel. A common way, used by many end-to-end encrypted messaging applications,
is based on mathematical objects called elliptic curves. An example of an elliptic curve
is the collection of points (x, y) in the plane satisfying the equation y2 = x3+3x2−x−3;
see Figure 9.5.
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Figure 9.5: An elliptic curve given by the
equation y2 = x3 + 3x2 − x− 3.
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Figure 9.6: Adding two points on an ellip-
tic curve.

What is special about elliptic curves, is that there is a geometric recipe to add points
on the curve to each other, which is described as follows. When we would like to
add two points P and Q on the curve, we draw the line connecting P and Q, which
intersects the curve in exactly one other point.3 The vertical line through this latter

3Unless the line is vertical; then we say P +Q = O, where O is called the point at infinity. If the

175



point intersects the curve in exactly one other point, which is P +Q; the sum of P and
Q. In the case that P = Q, then we say that the line connecting P and Q is the tangent
to the curve at P . This way, we have a recipe to compute n · P = P + P + . . .+ P︸ ︷︷ ︸

n times P

for any integer n > 0. Such multiples can be computed in a faster way than just
adding the point to itself n− 1 times, through a procedure called double-and-add. For
example, we can compute 20 · P = 2 · (2 · ((2 · (2 · P )) + P )) by just five additions (of
which four are a doubling; i.e. adding a point to itself). Now, if Alice and Bob would
like to establish a common secret, they could execute the following procedure.

(i) Alice and Bob agree publicly on a point P on an elliptic curve.

(ii) Alice and Bob generate (large) secret integers a and b.

(iii) Alice computes the point PA = a · P and sends the result to Bob.

(iv) Bob computes the point PB = b · P and sends the result to Alice.

(v) Using her secret and the point from Bob, Alice computes a · PB = (a · b) · P .

(vi) Using his secret and the point from Alice, Bob computes b · PA = (a · b) · P .

Since Alice and Bob both end up at the same point on the elliptic curve, they have
successfully established a shared secret; that is, the key echange is complete. This
common key can then be used to encrypt messages they would like to send to each
other securely.

(a · b) · P (a · b) · P

a · P

b · P
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Figure 9.7: An Elliptic Curve Diffie–Hellman key exchange.

The security of this protocol relies on the assumption that it is impossible to recover
Alice’s secret a only using the publicly available information of P and a · P . This is
called the discrete logarithm problem. Theoretically, one would eventually be able to
find a by computing 2 · P = P + P , 3 · P = P + P + P , 4 · P = P + P + P + P ,
and so on, until one eventually runs into a · P . However, this is infeasible when a is
really large; much slower than computing a ·P given a and P by using the double-and-
add method. Currently, no fast algorithms to solve the discrete logarithm problem

line is tangent to the curve in one of the points, then we count that intersection twice. In this way
“the line through P and P” is the tangent to the curve at P .
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Summary

in general are known. That is, unless we take into account quantum computers. A
quantum computer is a special type of device that bases its computational power
on the remarkable physical properties of subatomic particles. On such computers,
there are known to exist fast algorithms to solve the discrete logarithm problem. To
date, as far as we know, no one was able to build a quantum computer powerful
enough to break any practically used cryptographic protocol. However, it is unclear
whether such a device will be constructed in the near future. This has sparked a new
area of research called post-quantum cryptography, which searches for ways to encrypt
information that are secure against attacks by quantum computers. One such proposal
is called isogeny-based cryptography. Isogenies are maps between elliptic curves; a type
of transformation that takes you from one elliptic curve to the other. When chosen
in a smart way, such maps can be used to establish a key exchange as before. This
time, Alice and Bob publicly agree, not on a point on an elliptic curve, but on an
elliptic curve itself. They apply successive transformations to the curve in such a way
that they end up at the same elliptic curve, which then forms their shared secret.
Abstractly, this is pictured in Figure 9.8.
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Figure 9.8: An isogeny-based key exchange protocol.

The assumption underlying the security of isogeny-based cryptography, is that it is
difficult, given two elliptic curves E1 and E2, to find a transformation from E1 to E2.
This is called the isogeny path problem. It is assumed that this problem is difficult
even for quantum computers.

In this thesis, we consider several computational problems associated to isogenies
between elliptic curves.

Chapters 1, 2, and 3 are introductory and end with a high-level overview of the
main results presented in later chapters.

In Chapter 4 and 5, we show how, in certain instances, maps on elliptic curves
called pairings can be used to disprove computational hardness assumptions related to
isogeny-based cryptography. In special cases, we find efficient solutions to the isogeny
path problem, as well as to a weaker problem known as the Decisional Diffie–Hellman
Problem.

In Chapter 6, we develop a multivariate generalization of Hilbert class polynomials;
polynomials that encode elliptic curves with a certain structure (given by their endo-
morphism ring). We in particular discuss the computational benefits of these novel
polynomials compared to previously known class polynomials.
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In Chapter 7, we study a method to compute chains of isogenies efficiently through
equations called radical isogeny formulae. We develop a new method to obtain such
formulae, and improve on the efficiency of their evaluation. This leads to a speed-up
in the execution of certain isogeny-based cryptographic protocols.
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