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Chapter 8

Conclusion

The main part of this work, Chapters 4, 5, 6, and 7, consists of four jointly written
research papers.

In Chapter 4, we described a novel way in which pairings on elliptic curves can
be used to attack the Decisional Diffie–Hellman problem for class group actions on
oriented elliptic curves. We showed how the assigned character values associated to
connecting ideal classes can be evaluated using the Weil pairing. This was previously
only established for the Tate pairing. Our approach works more generally, is concep-
tually simpler, and speeds up the previous approach in certain cases. The attack only
applies in case the class number is even. As a consequence, we recommend to restrict
CSIDH and CRS to class groups of odd order.

In Chapter 5, we classified when non-trivial self-pairings on cyclic subgroups com-
patible with isogenies oriented by an imaginary quadratic order exist. Combining such
self-pairings together with isogeny interpolation leads to a new attack strategy against
CRS in the case where the degree of the secret isogeny is known. As a result of our
classification, this implies the existence of weak instances of CRS; ones in which the
discriminant has a large square smooth divisor coprime to the field characteristic.1

One way to surely mitigate these attacks, is to use a discriminant of the form −p
where p is prime. CSIDH, in which the discriminant is of the form −4p, also remains
unaffected by the strategy. An interesting future question to explore is whether small
divisors of the discriminant could be exploited to obtain partial information about the
secret isogeny. Furthermore, for some non-trivial self-pairings, we do not yet have an
efficient algorithm to compute them; an interesting further topic of research would
be to study the existence of efficient Miller-type algorithms for generalized Weil and
Tate pairings. It would also be compelling to study whether the results of Chapters 4
and 5 can be unified and extended into a classification of self-pairings on general, not
necessarily cyclic, subgroups compatible with oriented isogenies.

In Chapter 6, we devised generalized class polynomials; a multivariate extension of
class polynomials. Class polynomials have previously been studied as a generalization
of Hilbert class polynomials. The sizes of their coefficients are sometimes smaller by
an asymptotic factor, improving their computational applicability in, for example, the
CM method. The best known class polynomials obtain an asymptotic size reduction
factor of 72. We showed that generalized class polynomials obtain provable asymptotic

1At the time of writing, upcoming work has been announced claiming that the condition that the
divisor be square may be removed.
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size reductions that were previously unattainable for a positive proportion of imagi-
nary quadratic discriminants. However, our best such examples still have a reduction
factor of at most 72. An interesting further research goal would be to find the first
example of a family of generalized class polynomials, say of prime class number, that
attain provable asymptotic size reductions beyond 72, or perhaps even exceeding the
theoretical univariate bound of 100.83. Another goal is to extend the state-of-the-art
method for computing class polynomials, a CRT-based approach by Sutherland, to
the case of generalized class polynomials.

In Chapter 7, we studied radical isogenies; a method to compute chains of isogenies
of fixed degree based on formulae containing a radical expression. We developed a new
way to compute radical isogeny formulae that combines the CM method and Galois
theory of function fields of modular curves with CRT-based rational interpolation.
This extended the range of degrees in which formulae are available from N ≤ 13 to all
prime N ≤ 41. Moreover, we simplified formulae and improved their computational
performance. We also formulated a conjecture that states, in case of CSIDH, which
radical must be taken for the corresponding radical isogeny to be horizontal, and
proved this conjecture for all N ≤ 14. A further goal would be to prove this conjecture
for all (even)N ≥ 4. It would also be interesting to find a method for producing general
radical isogeny formulae that is more direct than by means of rational interpolation,
for example by obtaining a closed form expression, or a linear recurrence relation
satisfied by the formulae.
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