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Chapter 7

Horizontal racewalking using
radical isogenies

This chapter consists of a paper written together with Wouter Castryck, Thomas De-
cru, and Frederik Vercauteren. It has been published as

Wouter Castryck, Thomas Decru, Marc Houben, and Frederik Vercauteren. Horizon-
tal racewalking using radical isogenies. In Advances in Cryptology – ASIACRYPT
2022, pages 67–96, Lecture Notes in Computer Science, vol 13792. Springer, Cham.
https://doi.org/10.1007/978-3-031-22966-4_3.

All authors of this paper contributed equally to the work.

Compared to the published version, we have corrected a few typos and mathematical
errors, added a reference in the proof of Theorem 7.6.5 to code in the GitHub repository
associated to Conjecture 7.6.4, and extended radical isogeny formulae up to degree
N = 41 (previously up to N = 37). The numbering (of e.g. theorems and definitions)
in the published version is different.
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Abstract

We address three main open problems concerning the use of radical isogenies, as presented

by Castryck, Decru and Vercauteren at Asiacrypt 2020, in the computation of long chains of

isogenies of fixed, small degree between elliptic curves over finite fields. Firstly, we present an

interpolation method for finding radical isogeny formulae in a given degreeN , which by-passes

the need for factoring division polynomials over large function fields. Using this method, we

are able to push the range for which we have formulae at our disposal from N ≤ 13 to

N ≤ 41 (where in the range 18 ≤ N ≤ 41 we have restricted our attention to prime powers).

Secondly, using a combination of known techniques and ad-hoc manipulations, we derive

optimized versions of these formulae for N ≤ 19, with some instances performing more than

twice as fast as their counterparts from 2020. Thirdly, we solve the problem of understanding

the correct choice of radical when walking along the surface between supersingular elliptic

curves over Fp with p ≡ 7 mod 8; this is non-trivial for even N and was settled for N = 2

and N = 4 only, in the latter case by Onuki and Moriya at PKC 2022. We give a conjectural

statement for all even N and prove it for N ≤ 14. The speed-ups obtained from these

techniques are substantial: using 16-isogenies, the computation of long chains of 2-isogenies

over 512-bit prime fields can be accelerated by a factor 3, and the previous implementation

of CSIDH using radical isogenies can be sped up by about 12%.
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Horizontal racewalking using radical isogenies

7.1 Introduction

One of the core operations in isogeny-based cryptography is the fast computation of
the codomain curve of a cyclic chain of horizontal Fq-isogenies of some fixed small-to-
moderate degree N ≥ 2 between elliptic curves over a finite field Fq. Here, let us recall
that an Fq-isogeny between two elliptic curves over Fq is called horizontal if their Fq-
rational endomorphism rings are isomorphic imaginary quadratic orders. The primary
use cases are CRS [10, 22] and CSIDH [7], which are proposals for post-quantum
key exchange. However fast horizontal isogenies are also key to various other recent
constructions, including digital signatures [2], oblivious transfer constructions [15],
verifiable delay functions [12], and schemes for delay encryption [11].

This paper presents a speed-up of such computations. More concretely, we upgrade
the radical isogeny approach from [6], where for any given N one produces an iterable
formula for computing the elliptic curves in a cyclic chain of N -isogenies, with each
step involving the extraction of an Nth root of some radicand ρN ∈ Fq; whence the
name “radical”. Asymptotically, for fixed N and growing q, the cost of evaluating this
formula is dominated by one exponentiation in Fq. This should be compared to one
scalar multiplication on an elliptic curve over Fq, which is the dominant cost of the
standard approach using Vélu’s formulae [26]. In practice however, radical isogenies
are useful for small N only, because they come with a large overhead; part of the goal
of the current paper is to reduce this overhead.

A first problem is simply finding radical isogeny formulae. Indeed, while their
existence was argued in [6, §3] by means of the Tate pairing, producing concrete
instances is a non-trivial task. The method proposed in [6, §4] relies on finding a zero
of the reduced N -division polynomial of a Vélu-type codomain curve over a certain
modular function field over Q. As N grows, not only the division polynomial but
also this codomain curve and the function field become increasingly complicated, and
one quickly reaches the point where this method becomes infeasible. Consequently,
the GitHub repository accompanying [6] contains no radical isogeny formulae beyond
N = 13.

A second problem is that radical isogeny formulae are highly non-unique, with
freedom coming from the choice of curve-point model (e.g., the Tate normal form),
from the choice of the radicand ρN , and from relations in the modular function field.
Different radical isogeny formulae for the same value of N can have very different
practical performances, and in view of the large overhead it is crucial to try and
produce the most efficient version. Here we should mention recent work by Onuki and
Moriya [17], who use Montgomery curves to find faster formulae in degrees N = 3, 4.
Chi-Dominguez and Reijnders [9] have presented projective (= inversion-free) radical
isogeny formulae in degrees 2 ≤ N ≤ 5 and N = 7, 9, but these are constructed directly
from the corresponding formulae from [6].

A third problem is that it is not always clear which Nth root of ρN needs to be
chosen in order to walk horizontally. In the CSIDH setting of supersingular elliptic
curves over a finite prime field Fp, horizontality comes for free if N is odd; in this
case ρN has exactly one Nth root in Fp. But even-degree Fp-isogenies, of which non-
trivial cyclic chains exist when p ≡ 7 mod 8 only, are a concern. In this case ρN will

137

https://github.com/KULeuven-COSIC/Radical-Isogenies


Introduction

admit two Nth roots in Fp, and selecting the wrong option will lead to a change of
endomorphism ring and, as a result, in a breakdown of the iteration. This can be
circumvented by an additional quadratic residuosity check at each step, but this is an
annoying extra cost. In [4, Lem. 4] it was shown that this cost can be avoided when
N = 2, because for the concrete radical isogeny formula presented there, the correct
choice always turns out to be the principal square root, i.e. the unique square root
which is again a square. This observation was extended to N = 4, now in terms of a
principal fourth root, first as a conjecture [6, Conj. 2] and recently proved by Onuki
and Moriya [17]. As mentioned in [6, §7], the correct generalization to arbitrary even
N is not immediately apparent.

Contributions

We contribute significantly to each of the above open problems, which are listed ex-
plicitly in [6, §7]. Concretely, we address:

1. Formula generation. We develop an entirely different method for finding radical
isogeny formulae in any given degree N , which avoids the need for factoring
division polynomials over large function fields. The method uses interpolation
over the modular curve X1(N) and is inspired by an alternative, Galois-theoretic
proof of the existence of radical isogeny formulae along the lines of [5]. Using
this method, we managed to generate radical isogeny formulae in degree as large
as N = 41.

2. Formula optimization. The optimization and/or simplification of rational expres-
sions modulo relations is an old and complicated problem, see for example [16].
In our case however, ad-hoc manipulations seem to yield the best results. We
now believe to have found reasonably optimized formulae up to N = 19, with
e.g. formulae for N = 11, 13 that can compete with our (optimized) version of
N = 7. To highlight one example, for N = 8 we present the iteration

A← −2A(A− 2)α2 −A(A− 2)

(A− 2)2α4 −A(A− 2)α2 −A(A− 2)α+A
with α = 8

√
−A2(A− 1)

(A− 2)4

whose counterpart from [6] spanned nearly a quarter of a page.

3. Ensuring horizontality. We believe to have found the correct generalization, at
least conjecturally, of the observations from [4, Lem. 4], [6, Conj. 2] and [17, §5]
for N = 2, 4 to arbitrary even N . The surprising new ingredient beyond N = 4
is that the principal Nth root needs to be tweaked by the Legendre symbol of
a certain coefficient appearing in Tate’s normal form; for N = 4 this Legendre
symbol is always −1 so it goes unnoticed. With the aid of Magma we managed
to prove this generalization up to N = 14.

One illustrative example where the three contributions resonate is the case N = 16.
When computing long chains of 2-isogenies, e.g. as in the set-up phase of the delay
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Horizontal racewalking using radical isogenies

function from [11], we can use radical 16-isogenies to take 4 horizontal steps “at once”,
resulting in an asymptotic speed-up by a factor of 4. Experimentally, we observed a
speed-up by a factor of about 3 over a 512-bit prime field.

As for CSIDH, we have generated a new prime CRAD-513 capable of handling
radical 8- and 9-isogenies, and using our new and optimized formulae we obtained a
speed-up of about 12% when compared to the implementation of CSURF-512 from [6].
Furthermore, comparing this to the pre-radical isogenies implementation of CSIDH-
512, one sees that the overall speed-up caused by radical isogenies at the 512-bit prime
level is about 35%. We expect that there remains room for pushing this quite a bit
further, for example by optimizing formulae for N > 19.

7.2 Background

Throughout, we let K denote a field, unless otherwise specified. The base point (=
neutral element) of an elliptic curve E/K is denoted by OE , or just O if E is clear
from the context.

7.2.1 Division polynomials

For an elliptic curve E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ K in long

Weierstrass form we set b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6, b8 = a21a6 +
4a2a6−a1a3a4+a2a23−a24. For each integer N ≥ 0 we define the N -division polynomial
as

ΨE,0 = 0, ΨE,1 = 1, ΨE,2 = 2y + a1x+ a3, ΨE,N = t ·
∏

Q∈(E[N ]\E[2])/±

(x− x(Q)),

where t = N if N is odd and t = N
2 · ΨE,2 if N is even. Note that Ψ2

E,2 = 4x3 +

b2x
2 + 2b4x + b6 is a univariate polynomial in x. These division polynomials can be

computed efficiently, thanks to the following recurrence relations:

ΨE,3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ΨE,4
ΨE,2

= 2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ b4b8 − b26,

ΨE,2N+1 = ΨE,N+2Ψ
3
E,N −ΨE,N−1Ψ

3
E,N+1 if N ≥ 2,

ΨE,2N =
ΨE,N
ΨE,2

(ΨE,N+2Ψ
2
E,N−1 −ΨE,N−2Ψ

2
E,N+1) if N ≥ 3.

By definition, we have that ΨE,N (P ) = 0 for any non-trivial P ∈ E[N ]. If one is
interested in the points of exact order N , then one can use the reduced N -division
polynomial ψE,N defined as ΨE,N/lcmd|N,d̸=N{ΨE,d}. For all primes ℓ, we simply
have ΨE,ℓ = ψE,ℓ. Observe that for N > 2, the reduced N -division polynomial of E
is a univariate polynomial in x.
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Scalar multiplication by N on E can be expressed explicitly using division polyno-
mials [20, Ex. 3.6]:

[N ]P =

(
ϕE,N (P )

ΨE,N (P )2
,
ωE,N (P )

ΨE,N (P )3

)
, (7.1)

with ϕE,N = xΨ2
E,N − ΨE,N+1ΨE,N−1 and ωE,N = 1

2ΨE,N
(ΨE,2N − ΨE,N (a1ϕE,N +

a3Ψ
2
E,N )).

7.2.2 Tate’s normal form

We study elliptic curves E/K that are equipped with a distinguished K-rational point
P of finite order N . For N ≥ 4 such a curve-point pair (E,P ) is isomorphic to a
unique pair of the form

Eb,c : y
2 + (1− c)xy − by = x3 − bx2, P = (0, 0), (7.2)

for some b, c ∈ K. This distinguished model is called the Tate normal form. It is worth
mentioning that the first few scalar multiples of (0, 0) ∈ Eb,c are easy expressions in
terms of b and c, e.g.,

− (0, 0) = (0, b), 2(0, 0) = (b, bc), −2(0, 0) = (b, 0),

3(0, 0) = (c, b− c), −3(0, 0) = (c, c2).

Expressions for higher multiples can be found using (7.1).
Furthermore, for every N ≥ 4 one can write down a polynomial FN ∈ Z[b, c] whose

vanishing, along with the non-vanishing of the discriminant

∆(Eb,c) = b3(16b2 − 8bc2 − 20bc+ b+ c(c− 1)3),

characterizes in any characteristic that the point (0, 0) ∈ Eb,c has exact order N . This
polynomial can be found as a factor of the constant term of ψEb,c,N (x) ∈ Z[b, c][x], or
by analyzing N(0, 0). It is uniquely determined up to sign. The first few instances
are F4 = c, F5 = c− b, F6 = c2 − b+ c, F7 = c3 − b2 + bc, F8 = bc2 − 2b2 + 3bc− c2,
see again [23, §2]. Thus, when viewing Eb,c over the fraction field of K[b, c]/(FN ),
one can think of it as a “universal” curve-point pair from which all elliptic curves
E/K equipped with a point P ∈ E of order N are obtained through specialization at
(unique) concrete values in K for b, c.

7.2.3 Radical isogenies

Vélu’s formulae from [26] must be fed with the explicit coordinates of the points in
G = kerφ. In many applications, this kernel is a priori described in a more implicit
form. For instance, in CSIDH it typically concerns the “unique subgroup of E(Fp) of
order ℓ” for some odd prime number ℓ. An explicit generator of this subgroup can be
found by repeatedly sampling Q← E(Fp) and computing p+1

ℓ Q until its order is ℓ, but
this scalar multiplication comes at a major cost which can dominate the application
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of Vélu’s formulae itself. Radical isogenies, as introduced in [6], are an attempt at
mitigating this.

The key observation behind radical isogenies is that if kerφ is cyclic, say generated
by a point P ∈ E(K) of order N ≥ 2 coprime to charK, then Vélu’s formulae for
producing a defining equation of E′ = E/⟨P ⟩ can be augmented with formulae yielding
the coordinates of a point P ′ ∈ E′ such that

E
φ→ E′ = E/⟨P ⟩ → E′/⟨P ′⟩

is cyclic of degree N2. Consequently, when computing a non-backtracking chain of
N -isogenies, from the second step onwards the formulae allow to bypass the scalar
multiplication. The formulae depend on N and can be chosen to

• be radical, in that they are algebraic expressions in the coefficients of E, the
coordinates of P and a radical N

√
ρN , where the radicand ρN is itself an algebraic

expression in the coefficients of E and the coordinates of P ,

• be complete, in that changing the choice of N
√
ρN , i.e., scaling it with Nth roots

of unity, produces generators for the kernel of each N -isogeny that cyclically
extends φ,

• have good reduction, in the sense that they have coefficients in Z[1/N ] and they
can be applied to any elliptic curve E, over any fieldK with charK ∤ N , equipped
with a point P ∈ E(K) of order N .

In [6] the existence of such formulae is argued using properties of the Tate pairing.
The good reduction property is in fact stated as a conjecture [6, Conj. 1].

Remark 7.2.1 When working over K = Fq for some prime power q satisfying gcd(q−
1, N) = 1, one usually wants to choose the unique instance of N

√
ρN belonging to Fq;

see [6, §5.1]. This instance can be computed as ρµN with µ ∈ Z a multiplicative inverse
of N modulo q−1. So the cost of evaluating the formulae is asymptotically dominated
by one field exponentiation. Unfortunately, the formulae come with a large overhead
and, for fixed q, they outperform plain Vélu for small values of N only. The main goal
of this paper is to push this crossover point to larger values of N . ♢

Example 7.2.2 (taken from [6, §4]) Consider an elliptic curve E with a point P of
order N = 5. The Tate normal form of this curve-point pair is Eb,b = y2+(1− b)xy−
by = x3 − bx2, P = (0, 0) for some b ̸= 0, (11± 5

√
5)/2. Vélu’s formulae produce the

following equation for E′ = E/⟨P ⟩:

y2 + (1− b)xy − by = x3 − bx2 − 5b(b2 + 2b− 1)x− b(b4 + 10b3 − 5b2 + 15b− 1).
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Analyzing the roots of ψE′,5(x) shows that for α = 5
√
ρ5 with ρ5 = b the point

P ′ =
(
5α4 + (b− 3)α3 + (b+ 2)α2 + (2b− 1)α− 2b,

5α4 + (b− 3)α3 + (b2 − 10b+ 1)α2 + (13b− b2)α− b2 − 11b
)

on E′ has order 5 and generates the kernel of a cyclic extension of φ (it is such that
φ̂(P ′) = P ). There are five such cyclic extensions, corresponding to the five possible
choices for α. Rewriting the curve-point pair (E′, P ′) into Tate normal form produces
the curve Eb′,b′ where b

′ is given by the iterable formula

ρ′5 = b′ = α
α4 + 3α3 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1
. (7.3)

9

The above example illustrates the strategy from [6] for finding radical isogeny
formulae. The cases N = 2, 3 are easy to handle [6, §4] so we assume that N ≥ 4.
One starts from the “universal” curve-point pair E = Eb,c, P = (0, 0) over

QN (b, c) := Frac
Q[b, c]

(FN )

and one computes a defining equation for E′ = E/⟨P ⟩ using Vélu’s formulae. One then
computes the division polynomial ψE′,N (x) and, for a suitable radicand ρN ∈ QN (b, c),
one finds the root x′0 ∈ QN (b, c)(N

√
ρN ) that is the x-coordinate of a point P ′ ∈ E′

such that φ̂(P ′) = P , using a root-finding algorithm; this step is a severe bottleneck.
If successful, then the corresponding y-coordinate y′0 = y(P ′) can be found by solving
a quadratic equation over QN (b, c)(N

√
ρN ). The coordinates x′0, y

′
0 are the radical

isogeny formulae we are after; one hopes, and observes in practice, that the good
reduction property comes for free. By writing the curve-point pair (E′, P ′) back in
Tate normal form (Eb′,c′ , (0, 0)) one obtains formulae for b′, c′ that can be applied
iteratively, as in the case of (7.3).

Concerning the radicand ρN , it was argued in [6, §3] that ρN = fN,P (−P ) works,
where fN,P is the function on Eb,c with divisor N(P ) − N(O) and having leading
coefficient 1 when expanded in terms of the uniformizer x/y at O, so that ρN is a
representative of the Tate pairing tN (P,−P ); see [14, Lem. 1].

7.3 Modular curves and Galois theory

This section recalls some of the theory of Galois coverings of modular curves. We
mainly refer to [18] and [19]. Along the way we present an alternative proof of the
existence of radical isogeny formulae [6, Thm. 5]. This closely resembles the discussion
in [5, §3].
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7.3.1 Congruence subgroups

Classically, as Riemann surfaces, modular curves are quotients X = XΓ = H∗/Γ of
the extended complex upper half plane H∗ = H ∪ P1(Q) by a congruence subgroup
Γ ⊂ SL2(Z), i.e. a subgroup containing Γ(N) ⊂ SL2(Z), the kernel of reduction modulo
N , for some N ∈ Z>0. The minimal N for which this last property holds is called
the level of X. The modular curve X admits a natural Zariski-open subset Y = H/Γ,
and the (finite collection of) points X \ Y are called the cusps of X. Modular curves
can be seen as irreducible smooth complex projective curves, and they always have a
“moduli interpretation”, in the sense that they (specifically, the non-cuspidal points)
parametrize complex elliptic curves together with some additional structure on the
N -torsion subgroup.

To make this latter viewpoint more precise, we will consider a different, slightly
more general, method to construct “modular” curves. These modular curves will be
more general in the sense that they may be reducible as complex projective curves;
but they will be irreducible over Q, and their geometrically irreducible components
shall be modular curves in the classical sense. Let N ≥ 1 be an integer and consider
the “universal” elliptic curve

Ej : y
2 = 4x3 − 27j

j − 1728
x− 27j

j − 1728

over Q(j), whose j-invariant equals the indeterminate j. Let Q(j, Ej [N ]) ⊂ Q(j) be
the field obtained by adjoining the coordinates of all N -torsion points of Ej . Then
this is a Galois extension, whose Galois automorphisms are completely determined by
their action on E[N ]. In particular, we have that the Galois group is isomorphic to
the automorphism group GL2(Z/NZ) of the N -torsion.

Let H ⊂ GL2(Z/NZ) be a subgroup containing −1. The fixed field Q(j, Ej [N ])H

is the function field of a smooth projective curve over Q, which we will denote by
XH . This curve has a natural moduli interpretation, in the sense that away from
a finite set its geometric points parametrize elliptic curves over Q together with a
certain structure on the N -torsion. More explicitly, it parametrizes pairs (E,α) up to
H-isomorphism, where α : E[N ]→ (Z/NZ)2 is an isomorphism of abelian groups and
two pairs (E1, α1) and (E2, α2) are called H-isomorphic if there exists an isomorphism
φ : E1 → E2 and an element h ∈ H such that α1 = h ◦ α2 ◦ φ; see [19, §3] for
more details. E.g. if we take for H the subgroup of GL2(Z/NZ) of upper-diagonal
matrices then XH is the classical modular curve X0(N), which parametrizes elliptic
curves together with a cyclic subgroup of order N .

The connection to modular curves in the classical sense is quite straightforward. If
we denote by ΓH = π−1(GL2(Z/NZ)) ⊂ SL2(Z) the congruence subgroup that is the
inverse image of H under the reduction modulo N map π : SL2(Z) → GL2(Z/NZ),
then we have that XH

∼= XΓH
as complex projective curves if and only if det(H) =

(Z/NZ)×; in general XH will be geometrically isomorphic to the disjoint union of
[(Z/NZ)× : det(H)] copies of XΓH

.
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7.3.2 The main suspects

Let N ≥ 3. The subgroups H ⊃ H ′ of GL2(Z/N
2Z) consisting of matrices having

respective forms (
±1 mod N ∗
0 mod N ∗

)
, and

(
±1 mod N ∗

0 ∗

)
correspond to the modular curves which we denote X1(N) = XH and X ′1(N) = XH′

respectively. The curve X1(N) is the classical modular curve parametrizing pairs
(E,P ) where E is an elliptic curve and P ∈ E is an N -torsion point. The curve
X ′1(N) parametrizes triples (E,P, P ′) where P ′ is a P -distinguished point, i.e. a point
P ′ ∈ E/⟨P ⟩ that maps to P under the dual isogeny E/⟨P ⟩ → E. Alternatively, it
parametrizes pairs (E,C), where C = {Q,Q+ P, . . . , Q + (N − 1)P} is a coset on E
modulo the order-N point P , where NQ = P .

Let us denote by K ⊂ L the respective function fields over Q of these curves:

K := Q(X1(N)) = Q(j, Ej [N ])H , L := Q(X ′1(N)) = Q(j, Ej [N ])H
′
.

ThenK,L are the fieldsQN (b, c) andQN (b, c, N
√
ρN ) from Section 7.2.3. The canonical

inclusion K ↪→ L corresponds to the degree-N forgetful map X ′1(N) → X1(N) :
(E,P, P ′) 7→ (E,P ). As we will see in the next section, it is possible to deduce from
a purely Galois-theoretic argument that the extension L/K is radical.

7.3.3 The Galois structure

Lemma 7.3.1 Let N ∈ Z>0 and let K ⊂ L be a degree N extension of fields whose
characteristic does not divide N . Let ζN ∈ L be a primitive N th root of unity and
assume that L(ζN ) is Galois over K with Galois group

Gal(L(ζN )/K) = Gal(L(ζN )/K(ζN ))⋊Gal(L(ζN )/L),

where the first factor is cyclic of order N , say generated by σ, and where the semidirect
product is according to the rule

τj ◦ σi ◦ τ−1j = σij (7.4)

for all i = 0, 1, . . . , N − 1 and all τj : ζN 7→ ζjN ∈ Gal(L(ζN )/L). Then there exists an
α ∈ L such that L = K(α) and αN ∈ K.

Proof. The restricted maps σi|L : L → L(ζN ) are pairwise distinct. Indeed, if i, i′ ∈
{0, 1, . . . , N − 1} are such that σi|L = σi

′ |L, then

σi−i
′
∈ Gal(L(ζN )/K(ζN )) ∩Gal(L(ζN )/L) = {id},

which can only be true if i = i′. From [21, Lem. 0CKL] we get that these restricted
maps are linearly independent over L(ζN ). Thus there exists β ∈ L such that α :=
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∑N−1
i=0 ζiNσ

i(β) is non-zero. From

τj(α) =
∑
i

ζijN (τj ◦ σi)(β) =
∑
i

ζijN (σij ◦ τj)(β) =
∑
i

ζijNσ
ij(β) = α

it follows that α ∈ L as well. Now observe that α was constructed in such a way that
σi(α) = ζ−iN α for i = 0, 1, . . . , N − 1, which has two crucial consequences. On the
one hand, it implies that Gal(L(ζN )/L) is the exact group of automorphisms fixing
K(α), or in other words L = K(α). On the other hand, it implies that σ(αN ) =
σ(α)N = (ζNα)

N = αN , so that αN is fixed by the entire Galois group, i.e. αN ∈ K
as wanted.

Now let K,L as in Section 7.3.2. Below we give an alternative proof of the fact
that L/K is a radical extension. Our strategy is to apply Lemma 7.3.1, so we will first
prove that L(ζN )/K is Galois, and then find explicitly elements σ, τj ∈ Gal(L(ζN )/K)
satisfying (7.5).

Theorem 7.3.2 The morphism X ′1(N) → X1(N) is a simple radical extension, i.e.
the degree N extension of function fields

Q(j, Ej [N
2])H ⊆ Q(j, Ej [N

2])H
′

can be realized by adjoining N
√
ρ for some function ρ on X1(N).

Proof. Let H ⊂ H ′ be the subgroup consisting of matrices whose determinant is ≡ 1
(mod N). Then the corresponding fixed field Q(j, Ej [N

2])H is L(ζN ). One can verify
that H is a normal subgroup of H, which implies that L(ζN )/K is Galois of degree
Nφ(N) with Galois group H/H.

In order to understand its structure, we first consider the intermediate extension
L ⊆ L(ζN ), which is just a cyclotomic extension with Galois group { τj : ζN 7→ ζjN | 0 ≤
j < N, gcd(j,N) = 1 } ∼= (Z/N)∗. When viewed as elements of H/H, these maps can
be identified with

τj =

(
1 0
0 j

)
mod H.

Next, we concentrate on the intermediate extension K(ζN ) ⊂ L(ζN ) which is of degree
N , and its Galois group can be identified with the cyclic group〈

σ :=

(
1 0
N 1

)〉
=

{
σi =

(
1 0
iN 1

) ∣∣∣∣ i = 0, 1, . . . , N − 1

}
,

which, as before, we consider modulo H. It is easy to see that the elements τj ◦ σi
are pairwise distinct (e.g. because j is fully determined by the action of τj ◦ σi on
ζN , and then the uniqueness of i follows at once). Therefore these Nφ(N) elements
must constitute the whole Galois group. The structure of the Galois group is then
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determined by the rules σN = 1, τ
φ(N)
j = 1, and

σi ◦ τj =
(

1 0
iN j

)
= τj ◦ σij

−1

; (7.5)

matching (7.4). The result now indeed follows by applying Lemma 7.3.1.

Remark 7.3.3 The subgroup H ⊂ GL2(Z/N
2Z) introduced in the proof of the Theo-

rem corresponds to a modular curve X ′1(N) over Q with function field L(ζN ). Since
[(Z/N2Z)× : det(H)] = φ(N) it consists geometrically of φ(N) copies of X ′1(N),
labeled by the different primitive Nth roots of unity ζN .

The level structure induced by H yields the following moduli interpretation of
X ′1(N): it parametrizes triples (E,C,R), where (E,C) ∈ X ′1(N) is as in Section 7.3.2
and R ∈ E[N ] is an N -torsion point independent of P (i.e. such that E[N ] = ⟨P,R⟩),
where we identify two such points R1 and R2 if their Weil pairing with P yields the
same (primitive) Nth root of unity, i.e. if eN (P,R1) = eN (P,R2). Forgetting R leads
to a covering X ′1(N)→ X ′1(N) of degree φ(N).

One can make sense of the Galois action of L(ζN )/K in terms of this moduli
interpretation. Given a triple P = (E, {Q,Q+ P, . . . , Q+ (N − 1)P}, R), the images
under σ and τj are

σ(P) = (E, {Q+R,Q+R+ P, . . . , Q+R+ (N − 1)P}, R),
τj(P) = (E, {jQ, jQ+ P, . . . , jQ+ (N − 1)P,R).

♢

7.4 Radical isogeny formulae through interpolation

We now describe the method we used to compute the radical isogeny formulae. Ex-
plicitly, starting from the universal Tate normal curve E = Eb,c over K = QN (b, c)
together with the point P = (0, 0) ∈ E of order N ≥ 4, we would like to find an
expression for the coordinates of a P -distinguished point P ′ on the quotient curve
E′ = E/⟨P ⟩ (whose Weierstrass model, let us assume, is given by Vélu’s formulae).
According to Section 7.3, these coordinates live over some radical field extension L of
K. For simplicity, we will mostly focus on computing the x-coordinate of P ′, as the
computation of the y-coordinate is more or less analogous.

7.4.1 A linear system

Let us denote byK an algebraic closure ofK, and let Q ∈ E(K) be such that NQ = P .
We would like to find an expression for

β0 :=

N−1∑
i=0

x(Q+ iP ),
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since by Vélu’s formulae this is equivalent to finding the x-coordinate of P ′. If we
define

γd :=
∑

S∈E[N ]

eN (P, S)dx(Q+ S),

then γNd ∈ K for all d ∈ Z: indeed, let R ∈ E(K) be an N -torsion point so that
E[N ] = ⟨P,R⟩ and denote by eN : E[N ] × E[N ] → K the Weil pairing. Then
ζN := eN (P,R) is a primitive Nth root of unity. By Remark 7.3.3, it follows that

γd =
N−1∑
j=0

eN (P, jR)d
N−1∑
i=0

x(Q+ jR+ iP ) =

N−1∑
j=0

ζjdN σ
j(β0),

for some generator σ ∈ Gal(L(ζN )/K) of Gal(L(ζN )/K(ζN )). Following the last
paragraph of the proof of Lemma 7.3.1 now shows that γNd ∈ K.

Note that γd ∈ L(ζN ) depends on the choice of Q. However all of them are related
as follows:

Lemma 7.4.1 Let Q,Q′ ∈ E[N2] be such that NQ = NQ′ = P . Then there exists
an N th root of unity ζ ∈ K such that γd(Q) = ζdγd(Q

′) for all d ∈ Z. Moreover, for
all d ∈ Z we have that γd/γ

d
1 is an element of K that is independent of the choice of

Q.

Proof. We have that Q′ differs from Q by an N -torsion point. Note that adding
multiples of P to Q clearly does not affect the value of γd while adding a multiple kR
of R scales it by ζ−kdN . This shows the first statement with ζ = ζ−kN . For the second
part, note that the independence on Q already follows from the first part. Now let σ be
as above and let τj be a generator for the cyclotomic extension L(ζN )/K(γ1). Then
τj(γd) = γd, whereas σ(γd) = ζ−dN γd. Since σ, τj together generate Gal(L(ζN )/K)
we see that γd/γ

d
1 is invariant under all Galois automorphisms of L(ζN )/K and we

conclude that it is an element of K.

Defining

βj := σj(β0) =

N−1∑
i=0

x(Q+ jR+ iP ),

we now have the following linear system.
1 1 1 · · · 1

1 ζN ζ2N · · · ζN−1N
...

...
...

. . .
...

1 ζN−1N ζ
2(N−1)
N · · · ζ

(N−1)2
N




β0
β1
...

βN−1

 =


γ0
γ1
...

γN−1

 .
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In particular, if we set α := γ1 then we see that

β0 =
1

N

N−1∑
d=0

γd =
1

N

N−1∑
d=0

(
γd
γd1

)
αd ∈ K(α) = L. (7.6)

We have now reduced the problem of finding radical isogeny formulae (at least the de-
termination of the x-coordinate of P ′) to finding expressions for the elements γd/γ

d
1 ∈

K for all d ∈ {0, . . . , N − 1}. In the next subsection we will describe the method we
used to do this. Before that we should point out one subtlety. To ensure that (7.6) is
well defined we must have α ̸= 0; in fact, to be able to use the formula in practice, we
should know exactly the value of αN ∈ K. Though, given N , this is not so difficult to
establish (or even guess) in practice; a proof of a closed expression for αN that works
for all N can be found in the appendix (from which it also follows that α is never
zero), see Theorem 7.7.1.

7.4.2 Finding the formulae

Expressions for cd := γd/γ
d
1 will of course depend heavily on how one represents the

field K = Q(X1(N)). It turns out that the representation K = QN (b, c) as presented
in Section 7.2.3 is not always optimal. In order to minimize the complexity of the
resulting formulae, as well as the running time complexity of the algorithm used to
find them, we will instead employ Sutherland’s optimized models of X1(N) [24]. These
models are optimal in the sense that they write K as the fraction field, which we
will denote QN (A,B), of Q[A,B]/GN (A,B) for some modular polynomial GN (A,B)
whose degree in B matches the gonality of X1(N) over Q (at least for N ≤ 40). In
particular, we can theoretically write every element of K, specifically the cd we are
after, as a polynomial in Q(A)[B], where the degree in B is as small as one could hope
for. It is also possible, and relatively easy in fact, to find an explicit expression for
b, c ∈ K in terms of Sutherland’s functions A,B, so one can also express the universal
Tate normal curve Eb,c as a curve EA,B over QN (A,B).

The idea is now to determine the reduction cd ∈ Fp(A)[B] of the coefficients cd
modulo several primes p, and then to lift the results to Q(A)[B] using the Chinese
Remainder Theorem. To find the cd, we sample many curves EA,B over Fp for which
Q,R, and ζN of the previous section are all defined over Fp. For each of these curves,
we explicitly compute the coefficients cd as elements of Fp. Then, as long as the number
of samples is sufficiently large, we can determine an expression for cd ∈ Fp(A)[B] by
means of rational interpolation (this last step can be achieved purely by linear algebra
over Fp).

The main problem that arises is how to efficiently generate suitable samples (A,B) ∈
X1(N)(Fp). The requirement that ζN be defined over Fp is rather trivially met by
demanding that p ≡ 1 (mod N). The condition that Q,R ∈ EA,B(Fp), however, is
more intricate, and simply generating random curves turns out to be far too ineffi-
cient for large N . Instead, we rely on an approach based on the theory of complex
multiplication.
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The CM Method

The endomorphism ring of an elliptic curve E/C is isomorphic to either Z or an or-
der O in an imaginary quadratic number field. In the latter case we say that E has
complex multiplication (CM) by O. The j-invariants of such elliptic curves are alge-
braic integers. The Hilbert class polynomial HD(X) ∈ Z[X] is the minimal polynomial
over Q of the j-invariant of an elliptic curve E/C with CM by the quadratic order of
discriminant D.

Ordinary elliptic curves over a finite field always have CM. An ordinary elliptic
curve E/Fq with CM by the imaginary quadratic order O of discriminant D exists if
and only if there exist t, u ∈ Z such that u2D = t2 − 4q and p ∤ t (where p = charFq).
In this case HD splits completely over Fq and its roots are precisely the j-invariants of
elliptic curves with CM by O. The trace of Frobenius of such curves is ±t, so they will
have q + 1± t points. One can use this to find curves over Fq with a desired number
of points; this is known as the CM Method.

Sampling curves with torsion

We now describe how to use the CM method to construct curves EA,B with full N2-
torsion over Fp; this will certainly ensure that the desired points Q,R be defined
over Fp. We thus want to find curves with number of points divisible by N4. One
approach is to strengthen the requirement that p ≡ 1 (mod N) to p ≡ 1 (mod N4)
and construct curves of trace 2 using the CM method, i.e. with CM by an order whose
discriminant D satisfies an equation of the form u2D = 22 − 4p for some u ∈ Z>0.
The structure of the Fp-rational N

∞-torsion also be controlled by D; if we choose D
to be a divisor of (22 − 4p)/N4 then E[N2](Fp) ∼= (Z/N2Z)2, see e.g. [8, Thm. 7].

Algorithm

We summarize the above discussion in the following pseudo algorithm generating rad-
ical isogeny formulae for N ≥ 4. The SageMath code we used can be found in the
GitHub repository accompanying this paper.

(i) Find all prime numbers p ≡ 1 (mod N4) up to a certain bound.

(ii) For each prime number p, determine the roots ji of the Hilbert class polyno-
mials HD modulo p for every imaginary quadratic discriminant D of the form
u2N4D = 4(p− 1) for some u ∈ Z.

(iii) For each root ji, determine the (A,B) ∈ X1(N)(Fp) for which j(EA,B) = ji.

(iv) For each pair (A,B), if EA,B has trace +2, determine cd ∈ Fp for all d ∈
{0, . . . , N − 1}.

(v) For each d, find a formula for cd ∈ Fp(A)[B] by rational interpolation.

(vi) Lift the formulae to Q(A)[B] by the Chinese Remainder Theorem.
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7.4.3 Iterative formulae

The above describes how to find an expression for the x-coordinate of P ′ as an element
of L = K(α). An analogous method can be used to find an expression for the y-
coordinate. By transforming the pair (E′, P ′) to Tate normal form one can then also
determine explicit formulae for Sutherland’s parameters A′, B′ ∈ L corresponding to
the point (E′, P ′) ∈ X1(N)(L). In this way, we obtain radical isogeny formulae that
can be applied iteratively. We list formulae for prime powers 16 < N ≤ 41 in our
GitHub repository.1

7.5 Optimizing the formulae

When optimizing radical isogeny formulae, one needs to take into account all of the
following choices.

• The radicand ρN is not unique: it can be scaled with Nth powers in QN (b, c),
and it can be raised to exponents that are coprime with N . Switching from one
radicand to another results in different radical isogeny formulae with different
performances.

• It is not self-evident that the optimized representations of X1(N) by Sutherland
from [24] will result in optimized radical isogeny formulae.

• Elements in QN (b, c, α) can be expressed in several ways since we work modulo
the two relations FN (b, c) = 0 and αN = ρN (b, c).

• It is a priori not clear what formulae we are trying to optimize; e.g. for E′ =
E/⟨P ⟩ we can try to find optimal expressions for a P -distinguished point P ′ on
E′, or we can try to write E′ in Tate normal form immediately.

We will focus on finding efficient enough formulae in this setting, where it seems
nigh impossible to prove that they are indeed the most optimal (especially for N ≥ 10
as we will see further up ahead). Hence we do not claim they are optimal, but they
should not be far off and at the very least in certain cases a big improvement compared
to the work in [6].

For N ∈ {4, 5, . . . , 10} ∪ {12}, the Tate normal form can be parametrized by a
single parameter, say A. This means that the codomain curve of a radical N -isogeny
can be put into a (new) Tate normal form with a single parameter, say A′, where
we translated the P -distinguished point P ′ to (0, 0). In practice, this new parameter
seems a good candidate to try to optimize, as can be seen from the case of N = 4, 5
from [6]. The raw equation for A′ can be easily obtained by any algebraic software
package for these small N .

To find an efficient representation of A′, consider the curve X ′1(N) defined by
αN − ρN , FN = 0. Then A′ can be seen as a function on this curve and we can
compute its divisor. For N < 10, an algebraic software package has no issues checking

1https://github.com/KULeuven-COSIC/Horizontal_Radical_Isogenies
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which linear combinations of places in its support constitute principal divisors, and
we can use this to peel off (easy) factors from A′. For every N ∈ {4, . . . , 9}, there are
clear contenders for which factorization is most efficient. We list them all, skipping
the case N = 5 which can be found in (7.3). Note that for N ≥ 6, our “factorization”
merely amounts to writing A′ as the quotient of two easyish expressions in A and α.

N = 4. In this case we have b = A, c = 0 and for α4 = A we have that

A′ = α
4α2 + 1

(2α+ 1)4
. (7.7)

N = 6. In this case we have b = A(A− 1), c = A− 1 and for α6 = −A2(A− 1) we
have that

A′ =
(−3A+ 2)α4 + 3A2α2 + 2Aα− 3A3 + 4A2

α4 + 2Aα2 + 3Aα+A2
. (7.8)

N = 7. In this case we have b = A2(A− 1), c = A(A− 1) and for α7 = A4(A− 1)
we have that

A′ =
α6 +Aα5 + 2A3α2 −A3α+A4

−α6 +Aα4 +A3α2 − 2A3α+A4
.

N = 8. In this case we have that b = A(A−1)
(A−2)2 , c =

−A(A−1)
A−2 and for α8 = −A2(A−1)

(A−2)4
we have that

A′ =
−2A(A− 2)α2 −A(A− 2)

(A− 2)2α4 −A(A− 2)α2 −A(A− 2)α+A
.

N = 9. In this case we have that b = A2(A− 1)(A2 − A+ 1), c = A2(A− 1) and
for α9 = A4(A− 1)(A2 −A+ 1)3 we have that

A′ =
A(A2 −A+ 1)(α5 +A(A2 −A+ 1)α2 +A2(A2 −A+ 1)2)

α7 −A(A2 −A+ 1)(A− 1)α4 −A3(A2 −A+ 1)2α+ (A(A2 −A+ 1))3
.

For N ≥ 10, Magma struggles to efficiently verify whether a given divisor is principal,
and those that do get found are less clean than the above factors, so we will optimize
these two cases with the more general method for larger N .2

If we compute E′ as E/⟨P ⟩ by means of Vélu’s formulae, then E′ is in (long)
Weierstrass form and we still need to compute an isomorphism to put E′ back in
Tate normal form E′t for certain b′, c′ ∈ QN (b, c, α). By [20, Prop. 1.3(d)], the iso-
morphism ι : E′t → E′ is determined by a 4-tuple (u, r, s, t), where P ′ = (r, t) is the
P -distinguished point and u is a unit. This u, when seen as a polynomial of degree
N−1 in QN (b, c)[α], seems to always be efficient to write down and evaluate. Further-
more, the expressions uc′ and ub′/c′ also enjoy this feature. In particular, a factor that
arises in the coefficient of αi has a high chance of also being there in the coefficient
of αj for j > i, which makes this efficient to evaluate in a Horner scheme with rising
powers of α. We provide the concrete expressions for N = 10 and refer the reader

2We remark that for the smaller N it can be extremely fast to let a computer algebra software
package verify that a given divisor is not principal, but to prove it is principal is harder in the majority
of cases.
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to our GitHub repository for larger N . Remark that for N = 10 we still work with
a one-parameter family of curves and the expression uA′ is just as efficient as uc′ or
ub′/c′. The operation counts for all formulae N ∈ {4, 5, . . . , 17} ∪ {19} can be found
in Table 7.1.

N = 10. In this case we have

b =
A3(A− 1)(2A− 1)

(A2 − 3A+ 1)2
, c =

−A(A− 1)(2A− 1)

(A2 − 3A+ 1)
, α10 =

A9(A− 1)(2A− 1)2

(A2 − 3A+ 1)5
,

and then A′ = vA′/u with

u = 1 + 3α+
4A− 1

A
α2 +

2c

b
α3 − c(A− 4)

bA
α4 +

(A− 1)(4A− 1)

bA
α5+

(A+ 1)(A− 1)

bA2
α6 +

4c(A− 1)

b2A
α7 +

c(A− 1)(4A− 1)

b2A2
α8 − c2(A− 1)

b3A
α9,

vA′ =A+ 2α+
A+ 1

A
α2 +

3c

b
α3 +

c(A+ 1)

bA
α4 +

(A− 1)(A+ 1)

bA
α5+

(A+ 1)(4A− 1)

bA2
α6 +

c(A− 1)

b2A
α7 +

c(A+ 1)(A− 1)

b2A2
α8 +

c2(A− 1)

b3A
α9.

7.6 Ensuring horizontality

If both E and P are defined over a finite field Fq with gcd(q − 1, N) = 1 then, as
discussed in [6, §5.1], the isogeny φ : E → E′ = E/⟨P ⟩ is necessarily horizontal. The
radicand ρN ∈ Fq admits a unique Nth root α ∈ Fq, and for this choice of α the
resulting point P ′ ∈ E′ is again defined over Fq, so the argument repeats. Thus, if
N and q − 1 are coprime, then walking horizontally using radical isogenies is natural
and easy. As explained in Remark 7.2.1, for any fixed N the cost of an iteration is
dominated by this Nth root extraction, which amounts to one exponentiation in Fq.
But if gcd(q − 1, N) > 1 then maintaining horizontality is more subtle.

In the remainder of this section we focus on the CSIDH case of supersingular elliptic
curves over a finite prime field Fp, where this issue arises (only) if p ≡ 7 mod 8 and
one navigates with cyclic isogenies of even degree N , see [13, Thm. 2.7]. In this case
gcd(p − 1, N) = 2 because N | #E(Fp) = p + 1. Let us recall that if p ≡ 7 mod 8
then supersingular elliptic curves over Fp come in two kinds: curves on the surface
of their 2-isogeny volcano, and curves on the floor. The surface is characterized by
the existence of three Fp-rational points of order 2; more precisely, the group of Fp-
rational points is isomorphic to Z2 ×Z(p+1)/2. The points of order 2 can be classified
as follows (see Figure 7.1):

• a point P→, whose halves are Fp-rational,

• a point P←, whose halves are not Fp-rational, but their x-coordinates are,

• a point P↓, the x-coordinates of whose halves are not Fp-rational.
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Previous work [6] This work Cost
per
2-

isogeny
2-isogeny - E + M + 3m + 2A 1
3-isogeny E + 6M + 3A E + 2M + 3m + 3A 1.023
4-isogeny E + 4M + 3A + I E + 3M + m + 3A + I 1.008
5-isogeny E + 7M + 6A + I E + 6M + m + 6A + I 1.034
6-isogeny - E + 9M + 6m + 9A + I 1.090
7-isogeny E + 24M + 20A + I E + 12M + 2m + 9A + I 1.043
8-isogeny - E + 11M + m + 9A + 2I 1.151
9-isogeny E + 69M + 58A + I E + 17M + 9A + I 1.062
10-isogeny - E + 57M + 5m + 31A + 3I 1.196
11-isogeny E + 599M + 610A + I E + 50M + 21m + 71A + 2I 1.293
12-isogeny - E + 90M + 8m + 35A + 3I 1.296
13-isogeny E + 783M + 776A + I E + 89M + 33m + 120A + 2I 1.448
14-isogeny - E + 159M + 16m + 131A + 4I 1.613
15-isogeny - E + 149M + 32m + 125A + 2I 1.599
16-isogeny - E + 120M + 4m + 40A + 3I 1.388
17-isogeny - E + 217M + 55m + 332A + 3I 1.921
19-isogeny - E + 329M + 125m + 437A + 3I 2.532

Table 7.1: The computational cost of radical N -isogenies for N ∈ {2, 3, . . . , 17} ∪ {19}
compared to previous work [6, Tbl. 3]. The letters E,M,A and I denote exponentiation,
(full) multiplication (including squaring), addition and inversion respectively. The letter
m denotes multiplication with a small constant. The last column expresses the cost of an
N -isogeny relative to a 2-isogeny, based on the evaluation of a chain of 100 000 horizontal
N -isogenies over Fp, where p is the CRAD-513 prime from Section 7.7. Remark that the cost
of E is approximately (1.5 log p)M with the square-and-multiply algorithm. In particular,
the last column would converge to 1 for larger values of p since the cost of a radical isogeny
will be dominated by E.

Each of these points spans the kernel of a 2-isogeny. The point P↓ takes us to the
floor, while the other two isogenies are horizontal. It can be checked that the dual
of an isogeny in the P→-direction is in the P←-direction, and vice versa. Therefore,
non-backtracking chains of horizontal 2-isogenies necessarily happen on the surface
and consistently walk in either of these two directions.

7.6.1 Horizontal vs. non-horizontal N-isogenies

Fix N ≥ 2 even and assume that p ≡ −1 mod lcm(2N, 8), so that every curve E on
the surface satisfies

E(Fp)[N ] ∼= Z2 × ZN . (7.9)
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E E′
P→P←

P↓

P ′→P ′←

P ′↓

ring of
Fp-endomorphisms:

Z
[
1+

√
−p

2

]
(surface)

Z[
√
−p] (floor)

Figure 7.1: Component of the 2-isogeny graph over Fp when p ≡ 7 mod 8. The top layer
belongs to the surface; the bottom layer belongs to the floor; and

√
−p is identified with the

Frobenius endomorphism.

Then E(Fp) has 2 or 3 cyclic subgroups of order N , depending on whether t =
ord2(N) > 1 or t = 1 (see Lemma 7.6.1 below). Every corresponding isogeny
φ : E → E/⟨P ⟩ can be decomposed as φ = θ ◦ ψ, where ψ is the N/2-isogeny with
kernel ⟨2P ⟩ and θ is the 2-isogeny with kernel ⟨ψ(P )⟩. The isogeny ψ is necessarily
horizontal: indeed, if it would involve a vertical step, then composing with θ would
necessarily involve backtracking, rendering φ non-cyclic. However, θ may take us to
the floor.

Lemma 7.6.1 Write r = ord2(p+ 1) ≥ ord2(2N) = t+ 1.

(i) If t = 1 then there are 3 options for ⟨P ⟩, corresponding to θ being in the P→-
direction, the P←-direction or the P↓-direction.

(ii) If t ≥ 2 then there are 2 options for ⟨P ⟩, corresponding to θ being in the P→-
direction or the P↓-direction.

(iii) If r ≥ t + 2 (automatic if t = 1) then the group corresponding to θ being in the
P→-direction can be characterized as follows: it is the unique group all of whose
elements admit halves in E(Fp).

Proof. (i) Under the isomorphism (7.9), the cyclic subgroups of order N are gener-
ated by (0, 1), (1, 1) or (1, 2). Note that the group ⟨2P ⟩ does not depend on this
choice, hence neither does ψ. Necessarily, the three groups must then correspond
to the three stated options for θ.

(ii) If t ≥ 2 then only the groups generated by (0, 1) or (1, 1) remain. Also note
that we can further decompose ψ = θ′ ◦ ψ′, where θ′ is a 2-isogeny with kernel
⟨ψ′(2P )⟩. Since ψ′(2P ) is halvable over Fp, this isogeny is necessarily in the
P→-direction. But then θ cannot be in the P←-direction, otherwise φ would be
non-cyclic.

(iii) If r ≥ t + 2 then E(Fp)[2N ] ∼= Z2 × Z2N from which we see that the group
generated by (0, 1) under the isomorphism (7.9) is uniquely characterized by its
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elements being halvable over Fp. But then ψ(P ) is also halvable over Fp, from
which the claim follows.

The central question of Section 7.6 is: how do we avoid that ker θ = ⟨P↓⟩, within
the framework of radical isogenies?

7.6.2 Square vs. non-square radicands

As explained in [6, §5.3], there is a simple algebraic criterion for determining whether
quotienting out an order-N point P ∈ E keeps us on the surface or takes us to the floor.
Namely, we stay on the surface if and only if ρN = fN,P (−P ) is a non-zero square in
Fp. In this case ρN admits two different Nth roots α ∈ Fp, which are each other’s
negatives. The challenge is to select the sign in such a way that the next radicand ρ′N
is again a square. Indeed, for this choice of Nth root the argument repeats and one
keeps walking horizontally. Of course, one fallback is to make an arbitrary choice for
α, at the cost of an exponentiation in Fq as before. One then computes the resulting
ρ′N and checks if it is a square. If it is not, then one switches to −α.

It was observed in [4, Lem. 4] that for N = 2 the extra quadratic residuosity check
can be avoided, because the correct choice of α admits an explicit description in terms
of the “principal” square root of ρ2, by which we mean the unique square root which
is itself a square.

Remark 7.6.2 More generally, for any non-zero square ρ ∈ Fp we will refer to the
unique Nth root of ρ that is a square as the principal Nth root. Note that when com-
puting the Nth root through exponentiation, i.e., as ρ(p+1)/2N , then it is automatically
principal. ♢

Then, in more detail, the observation from [4, Lem. 4] was as follows: the radical
isogeny iteration

E : y2 = x3 +Ax2 +Bx → E′ : y2 = x3 + (A+ 6α)x2 + 4α(A+ 2α)x,

with α =
√
B, repeatedly quotients out (0, 0). If (0, 0) ∈ E is the point P→, then

(0, 0) ∈ E′ is the point P ′→ if and only if α is the principal square root. This changes
if (0, 0) ∈ E is the point P←, in which case (0, 0) ∈ E′ is the point P ′← if and only if
α is the non-principal square root.

This convenient fact was adapted to N = 4, first as a conjecture [6, Conj. 2]
but recently this got proved by Onuki and Moriya [17, §5]. We will recall the precise
statement of this adaptation in Section 7.6.4, where it will arise as an easy consequence
to our generalization to arbitrary even N . But let us first highlight two takeaways
that are already apparent from the case N = 2:

(i) When considering radical isogeny formulae for even N , then substituting −α
for α produces formulae that are equally legitimate, e.g., because −1 is an Nth
root of unity. Consequently, one cannot hope for a general rule saying that the
P→-direction always corresponds to the principal Nth root.
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(ii) Even worse, imagine that the rule does apply to some concrete choice of formulae,
and now scale the radicand ρN with gN for some arbitrary modular unit g ∈
QN (b, c), i.e. a function whose zeroes and poles are supported on the cuspidal
part of X1(N); see [23]. The radical isogeny formulae transform into a version in
which each occurrence of N

√
ρN gets replaced by N

√
ρN /g. For these new formulae,

the correct Nth root will depend on the Legendre symbol of the evaluation of g
at the point (E,P ) ∈ X1(N) under consideration.

7.6.3 Conjectural shape of ρ′N modulo squares (proved for N ≤
14)

We ran into the following property of ρ′N , which unfortunately we could not prove
beyond N = 14, but which implies a generalization of the aforementioned observations
for N = 2, 4 to arbitrary even N . Concretely, for every even N ≥ 4 we can consider

ϕE,2(x) = x4 + b(1− c)x2 − 2b2x+ b3, (7.10)

whose roots are the x-coordinates of the four halves of P = (0, 0) on E = Eb,c. Over
QN (b, c)(αN/2) this polynomial splits in two quadratic factors, with one quadratic
factor corresponding to a pair of points

N

2
Q,

N

2
Q+

N

2
P,

mapping to N
2 P
′ under φ. The discriminant of said quadratic factor is a modular unit

of X ′1(N) that we denote by ∆.

Example 7.6.3 OverQ4(b, c)(α
2) the polynomial (7.10) splits as (x2−α2x−α6)(x2+

α2x+α6). The roots of the first factor are the x-coordinates of two preimages of 2P ′.

The discriminant of that factor is ∆ = α4(1 + 4α2). 9

Our conjecture is as follows:

Conjecture 7.6.4 If the radicand ρN = fN,P (−P ) was chosen, then one has

ρ′N ≡ σαb∆ (7.11)

modulo multiplication with a non-zero square in QN (b, c)(α), for some σ ∈ {±1}.

Here, we note:

• The sign σ should be viewed against our first takeaway message (i) above: sub-
stituting −α for α produces equally valid radical isogeny formulae but flips the
sign.

• The congruence sign absorbs squares, so the conjecture is insensitive to replac-
ing ρ′N with any other representative of tN (P ′,−P ′), or even tN (P ′, λP ′) for
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whatever odd λ. However, as discussed in our second takeaway (ii) above, in the
case of ρN the precise representative does matter. Interestingly, scaling with bN

would make the statement somewhat cleaner, as it would remove the mysterious
factor b. This suggests that the radicand from Theorem 7.7.1 in the appendix is
in fact a more natural choice than fN,P (−P ).

It is exactly the presence of this factor b that made it difficult to guess how to go
beyond the case N = 4; in the case N = 4 we have b = −α4 so that modulo squares
this factor just appeared as a sign.

Theorem 7.6.5 Conjecture 7.6.4 is true for N ≤ 14.

Proof sketch. From (7.7) and Example 7.6.3 we see that ρ′4 ≡ α∆ modulo squares,
which matches with Conjecture 7.6.4 with σ = −1 because −b = α4 is a square. So
the case N = 4 is immediate.

The case N = 6 is more illustrative. Take A′, α, b as in (7.8) and let

∆ = 4(1−A)α3 + 3A3 − 7A2 + 4A

be the discriminant of the relevant quadratic factor of (7.10). One verifies, aided by
the Magma command IsPrincipal, that for ρ′6 = f6,P ′(−P ′) = −A′2(A′ − 1) the
function −bρ′6/α∆ is a square in the function field of X ′1(6) : α

6 +A2(A− 1) = 0. So
this again matches with Conjecture 7.6.4 (now with a minus sign).

In a similar way we have managed to deal with all evenN up to 14, with further help
coming from the observation that ρ′N = fN,−P ′(−P ′) ≡ f2,N2 P ′

(P ′) modulo squares,

see [3, Thm. IX.9(2)]. The right-hand side is a simpler function and therefore easier
to handle by Magma. As an example, the Magma code for N = 14 can be found in
the GitHub repository.3

As mentioned, beyond N = 14 we were no longer able to verify Conjecture 7.6.4, al-
though for N = 16 we gathered evidence by experimentally verifying Proposition 7.6.6
below for various concrete horizontal supersingular isogeny walks over finite prime
fields.

7.6.4 Horizontal isogenies and principal Nth roots

Proposition 7.6.6 Let N ≥ 4 be even and consider radical isogeny formulae for
computing chains of N -isogenies in terms of the radicand ρN = fN,P (−P ). Assume
that Conjecture 7.6.4 applies to these formulae and let σ = ±1 be the sign involved in
its statement.

Let p ≡ −1 mod lcm(2N, 8) and consider a supersingular elliptic curve E/Fp on
the surface, along with a point P ∈ E(Fp)[N ] such that the resulting isogeny φ :
E → E′ = E/⟨P ⟩ is horizontal; let θ be the corresponding degree-2 component as in
Section 7.6.1 and let b, c ∈ Fp be the corresponding Tate normal form coefficients. Let

3https://github.com/KULeuven-COSIC/Horizontal_Radical_Isogenies
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P ′ ∈ E′ be the point produced by our radical isogeny formulae, where α = N
√
ρN (b, c)

was computed as
σ · s · b(p−1)/2ρN (b, c)(p+1)/2N .

Here the sign s is determined as follows:

(i) if θ walks in the P→-direction and r > t+ 1 then s = 1,

(ii) if θ walks in the P→-direction and r = t+ 1 then s = −1,

(iii) if θ walks in the P←-direction (only possible if t = 1) then s = −1.

Then the isogeny E′ → E′/⟨P ′⟩ is horizontal.

Proof. Recall that the goal is to choose the instance of α that renders ρ′N a square.
Assuming Conjecture 7.6.4, this happens if and only if σαb∆ is a square.

In case (i) the point P is fully halvable over Fp thanks to Lemma 7.6.1(iii), so that
∆ always evaluates to a square, regardless of the choice of α. So in order for ρ′N to
be a square, it is necessary and sufficient to choose α such that σαb is a square: the
claim follows.

If we are in cases (ii) or (iii) then none of the halves of P belong to E(Fp).
Even stronger: none of these halves can have an Fp-rational x-coordinate, because
otherwise such a half H would satisfy πp(H) = −H and therefore P = πp(P ) = −P ;
a contradiction. This means that ∆ is a non-square, regardless of the choice of α, and
we can conclude as before.

Example 7.6.7 For N = 4 we recover [6, Conj. 2], proved in [17]. Indeed, recall that
σ = −1 and that b is always non-square in view of ρ4 = −b = α4. Thus we have to

compute α = sρ
(p+1)/8
4 with s = −1 if p ≡ 7 mod 16 and s = 1 if p ≡ 15 mod 16. 9

We conclude by noting that b(p−1)/2ρ(p+1)/2N = b−1(bNρN )(p+1)/2N , effectively
showing that the cost of root computation remains a single exponentiation.

7.7 Implementation

In this section we focus on N -isogenies between supersingular elliptic curves over prime
fields Fp such that computing the required radical can be done deterministically by a
single exponentiation. All tests were done in Magma v2.32-2 on an Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz with 128 GB memory.

7.7.1 Isogeny chains

The main application of these radical isogeny formulae is that they can be used to
efficiently compute a cyclic Nk-isogeny for small N and large k. This is similar to the
work in [6], but we can now use larger N , have more efficient formulae for smaller N
and are not restricted to odd N .
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Remark that the radical 5-isogeny formulae from [6] were already optimized. Ta-
ble 7.1 however shows a modest to strong speed up for radical N -isogenies for N =
7, 9, 11, 13. Over the field Fp with p the 513-bit CRAD-513 prime from Section 7.7.2,
they provide a speed-up of respectively 4%, 13%, 55% and 57% compared to the work
of [6].

The best known method to compute a chain of 17- or 19-isogenies so far was by
sampling 17- or 19-torsion points and then applying Vélu-style formulae to compute
the codomain. The cost of this is dominated by the computation of an appropriate
torsion point. With the new radical formulae from Section 7.5, we only need to
initialize the chain by computing such a torsion point once, and then can iteratively
apply the radical isogeny formulae. Working over a prime field of roughly 512 bits,
this results in an asymptotic speed-up of chaining 17-isogenies by a factor of 14, and
a factor of 10 for chaining 19-isogenies. There is somewhat of a jump in complexity
when going to optimized equations from X1(19) to X1(23) due to a jump in gonality.
In particular, we do not expect radical 23-isogenies to be much of a speed-up over
prime fields of characteristic roughly 512 bits,4 so we did not try to optimize these.
Nonetheless, for asymptotically large p the computational cost of a radical isogeny is
expected to be dominated by a full exponentiation over Fp.

For composite N , one can make a similar argument with regards to speed-up but
the comparison is more subtle. For instance, the cost of computing a 15-isogeny is
dominated by one exponentiation and 149 full multiplications according to Table 7.1.
Alternatively, a 15-isogeny can also be computed by means of the concatenation of
a 3- and 5-isogeny, the cost of which is dominated by two exponentiations and 8 full
multiplications. Assuming we work over a prime field of cryptographic size - say at
least 128 bits - the 15-isogeny will be the fastest method. However, assuming we
have rational 9-torsion available, we have access to highly efficient radical 9-isogeny
formulae, so asymptotically a 3-isogeny can be seen as half the cost of a 9-isogeny.

512 bits 1024 bits 1536 bits

260,000-isogeny 23.38s 97.42s 264.59s

430,000-isogeny 11.93s 49.51s 133.12s

820,000-isogeny 8.77s 34.58s 91.33s

1615,000-isogeny 7.92s 29.23s 75.01s

360,000-isogeny 23.39s 98.08s 266.31s

930,000-isogeny 12.77s 49.88s 134.61s

Table 7.2: Comparison in speed with regards to computing a chain of radical ℓ-isogenies
over a prime field Fp for ℓ ∈ {2, 3} by means of different prime powers. The bit levels
correspond to the size of p.

In general, composite N seem to yield more efficient formulae compared to prime

4Especially in the CSIDH setting from Section 7.7.2 where the initializing overhead is less negligi-
ble.
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N as can be seen in Table 7.1. This stems from the fact that optimized equations for
X1(N) typically have lower degree when N is composite, but also from the radical
isogeny formulae themselves which appear to have parameterless integer coefficients
(including zero) noticeably more often for composite N . These zero coefficients are
even more frequently present in the radical isogeny formulae for prime-power N . In
Table 7.2 one can see a comparison for computing low-degree prime-power chains of
isogenies for three levels of prime bitsizes.

As can be seen, computing a chain of prime-power degree isogenies can be done
more efficiently than a chain of prime degree isogenies for at least these values. The
effect is more prominent for larger prime fields, since the exponentiation in those cases
is more dominating in the overall cost of the radical isogeny formulae. We did not
optimize the formulae for N = 25, since an optimal parametrization of X1(25) is
already more complex than X1(19), and from Table 7.1 it is clear that computing
chains of 5-isogenies would most likely be just as fast or faster (at least on the 512-bit
level). Assuming the arithmetic for a radical ℓk+1-isogeny is always more complex
than the arithmetic for a radical ℓk-isogeny, the asymptotic speed-up that can be
gained from going to the next prime power is always bounded by (k + 1)/k. For this
reason, we expect that optimized radical 27- and 32-isogenies would be less efficient
than radical 9- and 16-isogenies for all bitsizes in Table 7.2, though from a certain
threshold onwards they would be the most efficient option again.

7.7.2 Impact on CSIDH

An application where chains of isogenies can be used is CSIDH [7]. We proceed just
as in [6, §6], with the following differences:

• We make use of radical 17- and 19-isogenies.

• The optimzed formulae allow us to sample higher exponents of N -isogenies for
N = 7, 9, 11, 13.

• We no longer use radical 4-isogenies, instead switching to radical 8-isogenies.

This last point may seem counterintuitive considering that chains of 16-isogenies
are faster on the 512-bit prime level, as illustrated in Table 7.2. In CSIDH however, p
is chosen such that p+ 1 is divisible by as many small primes as possible. If we want
to make use of radical 16-isogenies, we would need to have that 32 | p+ 1 (instead of
16 | p + 1 for radical 8-isogenies). This means that p would need to be roughly one
bit larger, making all the other arithmetic more expensive. The trade-off in practice
seems to be not worth it, considering the relative small gain from switching from chains
of radical 8-isogenies to chains of radical 16-isogenies. The gap in efficiency between
radical 4-isogenies and radical 8-isogenies does make a noticeable difference so we will
use those. Nonetheless, we still need an extra factor of 2 that divides p+ 1 compared
to the suggested prime in [6], so we choose CRAD-513 as the prime

p = 24 · 3 · (3 · 5 · . . . 367)︸ ︷︷ ︸
72 consecutive primes

·379 · 409− 1.
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The following sampling interval for the private key was determined heuristically, but
can be considered (near) optimal:

[−303; 303]× [−198; 198]× [−103; 103]× [−101; 101]× [−91; 91]
× [−68; 68]× [−51; 51]× [−41; 41]× [−6; 6]13 × [−5; 5]13

× [−4; 4]11 × [−3; 3]10 × [−2; 2]10 × [−1; 1]10.

Using these parameters, the class group action of the maximal private key can be
computed 12% more efficiently than in the case of [6]. For an average private key,
this speed-up will be roughly halved but from a constant-time implementation angle,
the maximal private key is a more apt benchmark. This implementation in Magma is
meant as a comparison to the work of [6], and can not be translated directly to other
(constant-time) implementations such as CTIDH [1].
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Appendix: an explicit radicand

The goal of the appendix is to prove the following result.

Theorem 7.7.1 Let N ∈ Z>2. Let K = QN (b, c) as in Section 7.2.3. Let E/K be
the elliptic curve given by y2 + (1− c)xy− by = x3 − bx2. Let P = (0, 0) ∈ E. Denote
by Ψj the j-th division polynomial on E. Set k = ⌈N/2⌉. Then ∑

S∈E[N ]

eN (P, S)x(Q+ S)

N

= N2N ·


Ψ2

k

Ψ2
k−1

(P ) if N is odd;

Ψk+1

Ψk−1
(P ) if N is even.

Pairings and division polynomials

Let K be a field and let E/K be an elliptic curve. Suppose P ∈ E(K) is of order N ,
such that charK ∤ N . Let Q ∈ E(K) satisfying NQ = P . Let f ∈ K(E), g ∈ K(E)
with respective divisors

div f = N(P )−N(O), div g =
∑

S∈E[N ]

((Q+ S)− (S)) .

Assume that g is such that gN = f ◦ [N ]. Denote by eN : E[N ]×E[N ]→ µN the Weil
pairing and by tN : E(K)[N ] × E(K)/NE(K) → K×/(K×)N the Tate pairing. For
P ∈ E, denote by τP : E → E the translation-by-P map. Let ω ∈ ΩE be an invariant
differential and denote by resP(−) : ΩE → K the residue at P as defined in [25].

Lemma 7.7.2 For every Q ∈ E(K) we have

tN (P,Q) =
“Leading coefficient of f at Q”

“Leading coefficient of f at O”
∈ K×/(K×)N .

Remark 7.7.3 Note that the leading coefficient of f (meaning the leading coefficient
of the expansion of f with respect to a uniformizer) is everywhere well defined up to
Nth powers, since the order of vanishing of f is at every point divisible by N (hence
a different choice of uniformizer scales the leading coefficient by an Nth power). Also,
the quotient in Lemma 7.7.2 is invariant under scaling f by an element of K, hence
well-defines an element of K×/(K×)N given only the divisor of f . ♢

Proof. If P = O or Q = O then both sides are equal to 1, so assume P ̸= O ≠ Q. We
distinguish two cases.

Case P = Q. Let h ∈ K(E) be any function such that ordP (h) = −1 and
ordO(h) = 1. Then tN (P, P ) = f(div(h) + (P )− (O)). By Weil reciprocity

∏
R

(−1)ordR(f) ordR(h) f
ordR(h)

gordR(f)
(R) = (−1)−2N f

−1

hN
f1

h−N
(P )

∏
R ̸=P,O

fordR(h)(R).
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equals 1. Hence

tN (P, P ) =
∏

R ̸=P,O

fordR(h)(R) =
hNf(P )

hNf(O)
∈ K×/(K×)N .

Case P ̸= Q. Let h ∈ K(E) be any function such that ordP (h) = 0, ordQ(h) = −1,
ordO(h) = 1. Then tN (P,Q) = f(div(h) + (Q)− (O)). By Weil reciprocity

1 =
∏
R

(−1)ordR(f) ordR(h) f
ordR(h)

gordR(f)
(R) = (−1)−N f

h−N
(O)

∏
R ̸=O f

ordR(h)(R)

hN (P )

Hence tN (P,Q) can be rewritten as

f(Q)
∏
R ̸=O

fordR(h)(R) = (−1)N hN (P )

(hNf)(O)
f(Q) =

f(Q)

(hNf)(O)
∈ K×/(K×)N .

Lemma 7.7.4 Let R ∈ E[N ] such that P,R generate E[N ]. We have

tN (P, P ) =

N−1∑
i,j=0

eN (P,R)ix(Q+ iR+ jP )

N

in K×/(K×)N .

Proof. We rely on the residue theorem [25, Thm. 3], whose use was suggested to us by
Alexander Lemmens. This theorem implies that

∑
P∈E resP(xg

−1ω) = 0, therefore

− resO(xg
−1ω) =

∑
S∈E[N ]

resQ+S(xg
−1ω)

=
∑

S∈E[N ]

x(Q+ S)
g

g ◦ τS
(Q) resQ(g

−1ω)

= resQ(g
−1ω)

∑
S∈E[N ]

eN (P, S)x(Q+ S).

It follows that (the last equivalence is due to Lemma 7.7.2) ∑
S∈E[N ]

eN (P, S)x(Q+ S)

N

= (−1)N x
N (gN ◦ τQ)

gN
(O)

= (−1)N xN

xN ◦ [N ]

(xN ◦ [N ])(f ◦ [N ] ◦ τQ)
f ◦ [N ]

(O)

= (−1)NN2N x
N (f ◦ τP )

f
(O)
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which equals tN (P, P ) in K×/(K×)N .

Now letK = Q(b, c), where b and c are both transcendental overQ, though possibly
algebraically dependent. Let E/K be the elliptic curve given by y2 +(1− c)xy− by =
x3 − bx2 and set P := (0, 0) ∈ E.

For Q ∈ E(K), we denote by hP,Q ∈ K(E)× any function with divisor (P )+(Q)−
(P +Q)− (O). For j ∈ Z, we define

Lj :=

((
x

y

)ordO(hP,jP )−ordP (hP,jP )

· hP,jP ◦ τP
hP,jP

)
(O).

In other words, Lj is the leading coefficient at O of the Laurent expansion of the
function (hP,jP ◦ τP )/hP,jP with respect to the uniformizer x/y. Note that, whereas
hP,Q is only well-defined up to scalar multiplication, we have that Lj is a well-defined
element of K×.

Lemma 7.7.5 We have

Lj =


b if jP = −2P or jP = −P ;
1 if jP = O;
−b if jP = P ;

b · yjP
xjP · x(j+1)P

else.

Proof. Using (note that hP,Q as given by the formula below indeed has the desired
divisor)

hP,Q =



x if Q = −P ;
1 if Q = O;

y

x− x2P
if Q = P ;

y − (yQ/xQ)x

x− xP+Q
else,

this is a straightforward check for Q ∈ {−2P,−P,O, P}. If Q ̸∈ {−2P,−P,O, P} then
in particular xP+Q ̸= 0. Let u = x/y. Then x ◦ τP = bu+O(u2) and y ◦ τP = O(u2),
while x = u−2 + O(u−1) and y = u−3 + O(u−2). Thus the leading term at O of
(hP,Q ◦ τP )/hP,Q becomes

−yQ/xQ · b
−xP+Q

= b · yQ
xQ · xQ+P

as claimed.

In what follows, N > 2 will always denote an integer and k = ⌈N/2⌉. We will
assume that b, c are such that P has order at least k + 1. Let f ∈ K(E) be any
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function with divisor N(P )−N(O) + ((k −N)P )− (kP ).

Lemma 7.7.6 We have(
xN · f ◦ τP

f

)
(O) =

⌊(N−1)/2⌋∏
j=−⌊N/2⌋

Lj .

Proof. This follows by noting that((
x

y

)2N

· xN
)
(O) = 1.

and that f =
∏⌊(N−1)/2⌋
j=−⌊N/2⌋ hP,jP has the desired divisor.

Define

ρN :=


Ψ2
k

Ψ2
k−1

(P ) if N is odd;

Ψk+1

Ψk−1
(P ) if N is even,

and π(N) :=

⌊(N−1)/2⌋∏
j=−⌊N/2⌋

Lj .

Lemma 7.7.7 For all N ∈ Z>2, we have π(N) = (−1)NρN .

Proof. We use induction on N . One easily verifies the claim for N = 3, 4, 5. Suppose
N = 2k ≥ 6 is even. Then

π(N)/π(N − 1) = b · y−kP
x−kP · x(−k+1)P

, and π(N + 1)/π(N) = b · ykP
xkP · x(k+1)P

,

whereas −ρN/ρN−1 = −(Ψk+1Ψk−1/Ψ
2
k)(P ) = −ρN+1/ρN . But the middle term

−(Ψk+1Ψk−1/Ψ
2
k)(P ) can be rewritten as xkP = x−kP (from the multiplication-by-

k formula using division polynomials; e.g. [20, Ex. 3.7]), so we can conclude using
Lemma 7.7.8.

Lemma 7.7.8 For all k ∈ Z \ {−1,−2}, we have x2kPx(k+1)P = b · ykP .

Proof. Using the coordinate-wise addition formula for Weierstrass elliptic curves (e.g.
[20, III.2.3]), we find x2kPx(k+1)P = y2kP + (1− c)xkP ykP + bx2kP − x3kP = bykP .

Proof of Theorem 7.7.1. In the proof of Lemma 7.7.4, we already saw that the left hand

side equals (−1)NN2N
(
xN · f◦τPf

)
(O). The desired result now follows by combining

Lemmas 7.7.6 and 7.7.7. □
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[26] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie
des Sciences, Série I, 273:238–241, 1971.

168


