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Chapter 5

Weak instances of class group
action based cryptography via
self-pairings

This chapter consists of a paper written together with Wouter Castryck, Simon-Philipp
Merz, Marzio Mula, Sam van Buuren, and Frederik Vercauteren. It has been published
as

Wouter Castryck, Marc Houben, Simon-Philipp Merz, Marzio Mula, Sam van Buuren,
and Frederik Vercauteren. Weak instances of class group action based cryptography
via self-pairings. In Advances in Cryptology – CRYPTO 2023, pages 762–792, Lecture
Notes in Computer Science, vol 14083. Springer, Cham. https://doi.org/10.1007/
978-3-031-38548-3_25.
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Compared to the published version we added Section 5.8, which appears as Appendix
A in the eprint version [5]. We also fixed some typos. The numbering (of e.g. theorems
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Acknowledgements

We owe thanks to Luca De Feo, Damien Robert, Katherine Stange and the anonymous
reviewers for various helpful comments, discussions and suggestions. We thank Abel
Laval for pointing out a typo in Equation (5.7).

61

https://doi.org/10.1007/978-3-031-38548-3_25
https://doi.org/10.1007/978-3-031-38548-3_25


Abstract

In this paper we study non-trivial self-pairings with cyclic domains that are compatible with
isogenies between elliptic curves oriented by an imaginary quadratic order O. We prove that
the order m of such a self-pairing necessarily satisfies m | ∆O (and even 2m | ∆O if 4 | ∆O
and 4m | ∆O if 8 | ∆O) and is not a multiple of the field characteristic. Conversely, for each m
satisfying these necessary conditions, we construct a family of non-trivial cyclic self-pairings
of order m that are compatible with oriented isogenies, based on generalized Weil and Tate
pairings.

As an application, we identify weak instances of class group actions on elliptic curves
assuming the degree of the secret isogeny is known. More in detail, we show that if m2 |
∆O for some prime power m then given two primitively O-oriented elliptic curves (E, ι)
and (E′, ι′) = [a](E, ι) connected by an unknown invertible ideal a ⊆ O, we can recover a
essentially at the cost of a discrete logarithm computation in a group of order m2, assuming
the norm of a is given and is smaller than m2. We give concrete instances, involving ordinary
elliptic curves over finite fields, where this turns into a polynomial time attack.

Finally, we show that these self-pairings simplify known results on the decisional Diffie–

Hellman problem for class group actions on oriented elliptic curves.
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Weak instances of class group action based cryptography via self-pairings

5.1 Introduction

Isogeny based cryptography using class group actions was originally proposed in the
works of Couveignes [13] and Rostovtsev–Stolbunov [32] (CRS), and both use ordinary
elliptic curves. In particular, let O be an order in an imaginary quadratic number field
K, then there is a natural action of the ideal-class group Cl(O) on the set of ordinary
elliptic curves (up to isomorphism) over a finite field Fq whose endomorphism ring is
isomorphic to O. Since it is difficult to construct ordinary elliptic curves with many
small rational subgroups and large enough Cl(O), computing the class group action
in CRS is rather slow. CSIDH [7, 3] significantly improved the efficiency of the CRS
approach by considering the set of supersingular elliptic curves over a large prime
field Fp and restricting to the Fp-rational endomorphisms. These form a subring of
the full endomorphism ring which again is isomorphic to an order O in an imaginary
quadratic number field. Since #E(Fp) = p + 1 for such supersingular elliptic curves,
it now becomes trivial to force the existence of small rational subgroups by choosing p
such that p+ 1 has small prime factors. The OSIDH protocol by Colò and Kohel [12]
(and more rigorously by Onuki [27]) extended this even further by using oriented
elliptic curves: here one considers elliptic curves together with an O-orientation, which
is simply an injective ring homomorphism ι : O ↪→ End(E). OSIDH provides a
convenient unifying framework for CRS and CSIDH, but also contains many new
families of potential cryptographic interest. While the original Colò–Kohel proposal
does not seem viable [15], a more recent proposal [16] looks promising.

A different approach to isogeny based cryptography is taken by SIDH [21], which
relies on random walks in the isogeny graph of supersingular elliptic curves over Fp2 .
To make the protocol work however, it needs to reveal the action of the secret isogeny
ϕ : E → E′ on a basis of E[m], where m typically is a power of 2 or 3. This
extra information was recently exploited in a series of papers [30, 4, 23] resulting in
a polynomial time attack on SIDH. This attack not only showed that SIDH is totally
insecure, but also added a very powerful technique to the isogeny toolbox: it is possible
to recover a secret isogeny ϕ : E → E′ between two elliptic curves E and E′, all defined
over a finite field Fq, in polynomial time if the following information is available:

• the action of ϕ on a basis of E[m] is given where m is sufficiently smooth,

• the degree d = deg(ϕ) is known and coprime with m,

• m2 > d.

The origins of this paper trace back to the simple question: to what extent can
the above technique be applied to the class group action setting and are there weak
instances where this results in a polynomial time attack? To illustrate which problems
need to be solved, we will focus on the CSIDH setting (the more general oriented case
is deferred to later sections). In particular, assume E and E′ are two supersingular
elliptic curves over Fp connected by a secret isogeny ϕ : E → E′ := [a]E with ker(ϕ) =
E[a] and a ⊆ O an invertible ideal. To be able to apply the above technique to recover
ϕ, we need to know the degree of ϕ and its action on a basis of E[m] for some smooth
m.
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Whether the degree of ϕ is known depends on how the class group action is imple-
mented, e.g. in side-channel protected implementations, the degree is sometimes fixed
and thus known. For example, this may be the case for the “dummy-free” constant-
time variant of CSIDH that was proposed in [9]. In CSIDH variants that employ
dummy computations to achieve constant-time, fault attacks that skip isogeny com-
putations could allow an attacker to determine whether an isogeny was a dummy com-
putation or not, and thus deduce information about the private key. In the dummy-free
approach the parity of each secret exponent ei in CSIDH is fixed and sampled from
an interval [−e, e]. For e = 1, which was suggested both in [9] and in [10], the degree
of any secret isogeny is thus fixed to a publicly known value, i.e. the product of all
the split primes used in the CSIDH group action. In the remainder of the paper,
we will assume the degree of ϕ is known. Note that by construction, the degree is
automatically smooth, so this does not impose a further restriction.

Determining the action of the secret isogeny ϕ on a basis of E[m] for a chosen m is
a somewhat more challenging task, since we only have E, E′ and the degree of ϕ at our
disposal. To make partial progress, note that we can choosem = ℓr for some small odd
prime ℓ not dividing d = deg(ϕ) that splits in Q(

√
−p). Then E[m] is spanned by two

eigenspaces ⟨P ⟩, ⟨Q⟩ of the Frobenius endomorphism πp corresponding to two different
eigenvalues. Since ϕ commutes with πp, E

′[m] will also be spanned by two eigenspaces
⟨P ′⟩, ⟨Q′⟩ of πp on E′ corresponding to these same eigenvalues, so we already have
that ⟨P ′⟩ = ⟨ϕ(P )⟩ and ⟨Q′⟩ = ⟨ϕ(Q)⟩. In particular, there exist units λ, µ ∈ Z/mZ
such that P ′ = λϕ(P ) and Q′ = µϕ(Q). Using the independence of the points P and
Q (resp. P ′ and Q′) and compatibility of the classical Weil pairing em with isogenies,
we obtain

em(P ′, Q′) = em(λϕ(P ), µϕ(Q)) = em(P,Q)λµd .

By computing a discrete logarithm (note that ℓ is assumed small, so computing the
discrete logarithm is easy), we can therefore eliminate one variable, say µ, since d is
assumed known, so we are left with determining λ. It is tempting to use the same
trick again by pairing P ′ with itself, which would lead to

em(P ′, P ′) = em(λϕ(P ), λϕ(P )) = em(P, P )λ
2d .

Unfortunately, the classical Weil pairing em results in a trivial self-pairing, i.e. we
always have em(P, P ) = 1. What we thus require is a non-trivial self-pairing fm
compatible with isogenies, which implies fm(ϕ(P )) = fm(P )d, and thus fm(P ′) =

fm(P )λ
2d, with both sides of order m say. We thus recover λ up to sign and as such

we can recover ±ϕ. The existence of non-trivial self-pairings therefore is crucial to the
success of the attack.

Contributions

• We give a self-contained overview of generalized Weil [20] and Tate [2] pairings,
filling some gaps in the existing literature and relating both pairings by extending
a result in [20]. Although these generalized pairings are more powerful than the
classical Weil and Tate pairings, they do not seem to be well known in the

64



Weak instances of class group action based cryptography via self-pairings

cryptographic community.

• We formally define a cyclic self-pairing of order m on an elliptic curve E to
be a homogeneous degree-2 function fm : C → µm with cyclic domain C ⊆ E
such that im(fm) spans µm. We derive necessary conditions for the existence of
non-trivial cyclic self-pairings of order m on O-oriented elliptic curves that are
compatible with oriented isogenies. In particular, we show that m cannot be a
multiple of the field characteristic and that m | ∆O, with ∆O the discriminant
of O (and even 2m | ∆O if 4 | ∆O and 4m | ∆O if 8 | ∆O). Note that our results
only apply to self-pairings compatible with isogenies, which is required to make
the above attack work. This is in stark contrast to considering an individual
elliptic curve, where non-trivial cyclic self-pairings of order m always exist (as
soon as m is not a multiple of the field characteristic), e.g. by choosing any cyclic

order-m subgroup C = ⟨P ⟩ and simply defining fm(λP ) = ζλ
2

m with ζm some
fixed primitive m-th root of unity.

• For m satisfying these necessary conditions we construct cyclic self-pairings of
order m compatible with oriented isogenies, based on generalized Weil and Tate
pairings.

• Using these non-trivial cyclic self-pairings, we are the first to identify weak in-
stances of class group action based cryptography. In the best case, we obtain
a polynomial time attack on the vectorization problem when deg(ϕ) is known
and powersmooth, ℓ2r | q − 1, E(Fq)[ℓ

∞] is cyclic of order at least ℓ2r, and
ℓ2r > deg(ϕ). This for instance would be the case if one would use a setup like
SiGamal [26], but using the group action underlying CRS instead of CSIDH.
Note however that our attack does not apply to SiGamal itself for two major
reasons: here ∆O = −4p and the degree of the secret isogeny is not known.

• We present a more elegant version of existing results [8, 6] on the decisional
Diffie–Hellman problem for class group actions. In particular, in Remark 5.5.3
we give a conceptual explanation for a phenomenon observed in [8, App.A].
This also illustrates why the general framework of oriented elliptic curves can be
useful even if one is only interested in elliptic curves over Fq equipped with the
natural Frobenius orientation.

5.2 Background

Throughout this paper, k denotes a perfect field (e.g., a finite field Fq) with algebraic
closure k, and K is an imaginary quadratic number field with maximal order OK .

5.2.1 Oriented elliptic curves

Our main references are Colò–Kohel [12] and Onuki [27], although we present mat-
ters in somewhat greater generality (in the sense that we also cover non-supersingular

65



Background

elliptic curves). A K-orientation on an elliptic curve E/k is an injective ring homo-
morphism

ι : K ↪→ End0(E) := End(E)⊗Z Q,

where End(E) denotes the full ring of endomorphisms of E (i.e., defined over k). The
couple (E, ι) is called a K-oriented elliptic curve.

Example 5.2.1 The standard example to keep in mind is that of an elliptic curve
E over a finite field Fq for which the q-th power Frobenius endomorphism πq is not
a scalar multiplication (that is, we exclude supersingular elliptic curves E/Fp2r on
which Frobenius acts as [±pr]). In that case we have an orientation

ι : Q(σ) ↪→ End0(E) : σ 7→ πq, σ =
tE +

√
t2E − 4q

2
(5.1)

with tE the trace of Frobenius of E over Fq. We call this the Frobenius orientation.
If (and only if) E is ordinary then ι is an isomorphism. If E is supersingular then
the image of ι is the subalgebra End0q(E) = Endq(E) ⊗Z Q, with Endq(E) the ring
of Fq-rational endomorphisms of E. By abuse of notation, we will occasionally just

identify σ with πq and refer to ι as a Q(πq)-orientation. 9

Example 5.2.2 More generally, every endomorphism α ∈ End(E)\Z naturally gives
rise to an orientation. Indeed, such an endomorphism necessarily satisfies α2−tα+n =
0 where the trace t = Tr(α) and the norm n = N(α) (which we recall is equal to the
degree of α) satisfy t2 − 4n < 0. Fixing

σ =
t+
√
t2 − 4n

2
∈ C

we obtain an orientation ι : Q(σ) ↪→ End0(E), which is unique if we impose that

ι(σ) = α. Every orientation arises in this way. 9

For an order O ⊆ K, we say that a K-orientation ι : K ↪→ End0(E) is an O-
orientation if ι(O) ⊆ End(E). If moreover ι(O′) ̸⊆ End(E) for every strict superorder
O′ ⊋ O in K, then we say that it concerns a primitive O-orientation. Note that any
K-orientation ι is a primitive O-orientation for a unique order O ⊆ K, namely for the
order ι−1(End(E)). We call this order the primitive order for the K-orientation. Let
us also introduce the following weaker notion:

Definition 5.2.3 An O-orientation on an elliptic curve E/k is said to be locally
primitive at a positive integer m if the index of O inside the primitive order is coprime
to m. △

The following is a convenient sufficient condition for local primitivity:

Lemma 5.2.4 Let E/k be an elliptic curve, let σ ∈ End(E) and let m be a positive
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Weak instances of class group action based cryptography via self-pairings

integer such that

(i) char(k) ∤ m,

(ii) E[ℓ, σ] ∼= Z/ℓZ for every prime divisor ℓ | m.

Then the natural Z[σ]-orientation on E is locally primitive at m. As a partial converse,
we have that this orientation is not locally primitive at m as soon as E[ℓ, σ] ∼= Z/ℓZ×
Z/ℓZ for some prime divisor ℓ | m.

Proof. If the orientation is not locally primitive at m, then we must have (σ − a)/ℓ ∈
End(E) for a prime divisor ℓ | m and some a ∈ Z. Thus σ would act as multiplication-
by-a on E[ℓ]. By assumption (ii) we necessarily have a = 0, but then E[ℓ, σ] = E[ℓ] ∼=
Z/ℓZ × Z/ℓZ in view of assumption (i): a contradiction. Conversely, if E[ℓ, σ] ∼=
Z/ℓZ×Z/ℓZ then by [36, Cor. III.4.11] we know that there exists an α ∈ End(E) such
that α ◦ [ℓ] = σ, so the primitive order must contain σ/ℓ, hence the Z[σ]-orientation
is not locally primitive at m.

Example 5.2.5 The Frobenius orientation on an elliptic curve E over a finite field
Fq is also a Z[πq]-orientation. If E(Fq)[ℓ] ∼= Z/ℓZ for some prime number ℓ ∤ q, then
by Lemma 5.2.4 applied to σ = πq − 1 this orientation is locally primitive at ℓ. If

E[ℓ] ⊆ E(Fq) then it is not. 9

If ϕ : E → E′ is an isogeny and if ι is a K-orientation on E, then we can define an
induced K-orientation ϕ∗(ι) on E

′ by letting

ϕ∗(ι)(α) =
1

deg(ϕ)
ϕ ◦ ι(α) ◦ ϕ̂, ∀α ∈ K,

where ϕ̂ denotes the dual isogeny of ϕ. Given two K-oriented elliptic curves (E, ι) and
(E′, ι′), we say that an isogeny ϕ : E → E′ is K-oriented if ι′ = ϕ∗(ι); in this case,
we write ϕ : (E, ι) → (E′, ι′). The dual of a K-oriented isogeny is automatically K-
oriented as well. TwoK-oriented elliptic curves (E, ι) and (E′, ι′) are called isomorphic
if there exists an isomorphism ϕ : E → E′ such that ϕ∗(ι) = ι′.

Example 5.2.6 Let E,E′ be elliptic curves over Fq with the same trace of Frobenius,
so that they can both be viewed as K-oriented elliptic curves with K = Q(σ) as

in (5.1). Then an isogeny ϕ : E → E′ is K-oriented if and only if it is Fq-rational. 9

5.2.2 Class group actions

The set

Eℓℓall
k
(O) = { (E, ι) |E ell. curve over k, ι primitive O-orientation on E }/ ∼=

of primitively O-oriented elliptic curves over k up to isomorphism comes equipped
with an action by the ideal class group of O, which we denote by Cl(O). For elliptic
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Generalized Weil and Tate pairings

curves over C with complex multiplication, this is a classical result. The case where
k is a finite field and the orientation is by Frobenius is treated in [35, 38]. This group
action, which we describe below in more detail, is free, but in general not transitive,
see e.g. [35, Thm. 4.5] and [27, Prop. 3.3] for some subtleties. To avoid issues arising
from the non-transitivity, we define

Eℓℓk(O) ⊆ Eℓℓ
all
k
(O)

to be an arbitrary but fixed orbit (in practice, where we want to study a secret relation
between two primitively O-oriented elliptic curves, it will concern the orbit containing
these two curves.)

The action is defined as follows. Let (E, ι) be a primitively O-oriented elliptic
curve and let [a] ∈ Cl(O) be an ideal class, represented by an invertible ideal a ⊆ O
of norm coprime to max{1, char(k)}; every ideal class admits such a representative
by [14, Cor. 7.17]. One defines the a-torsion subgroup as

E[a] =
⋂
α∈a

ker(ι(α)),

which turns out to be finite (of order N(a) = #(O/a), to be more precise). Thus there
exists an elliptic curve E′ and a separable isogeny ϕa : E → E′ with ker(ϕa) = E[a],
which is unique up to post-composition with an isomorphism. The isomorphism class
of (E′, ϕa∗(ι)) is independent of the choice of the representing ideal a. One then lets
[a](E, ι) be this isomorphism class, and this turns out to define a free group action.

5.2.3 Horizontal, ascending and descending isogenies

Let ℓ ̸= char(k) be a prime number and consider an ℓ-isogeny ϕ : (E1, ι1) → (E2, ι2)
of K-oriented elliptic curves. Let O1 ⊆ K be the primitive order of ι1 and let O2 ⊆ K
be the primitive order of ι2. Then one of the following is true:

• O1 ⊆ O2 and [O2 : O1] = ℓ, in which case ϕ is called ascending,

• O1 = O2, in which case ϕ is called horizontal,

• O2 ⊆ O1 and [O1 : O2] = ℓ, in which case ϕ is called descending.

It is clear that the dual of an ascending isogeny is descending and vice versa. All
horizontal isogenies are of the form ϕa for some invertible ideal a ⊆ O1 = O2 of norm
ℓ, with dual ϕa. Ascending isogenies are of the form ϕa for some non-invertible ideal
a ⊆ O1 of norm ℓ, while descending isogenies are not of the form ϕa at all.

5.3 Generalized Weil and Tate pairings

We review some properties of the generalized Weil and Tate pairings on elliptic curves,
with a focus on how the latter can be defined in terms of the former. The main sources
of inspiration for this section were papers by Bruin [2] and Garefalakis [20], although
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now we should highlight the work by Robert [31, §4], which appeared near the submis-
sion time of the current article and takes this discussion to a deeper level. Nevertheless,
while the following statements may be well-known to some experts, we did not succeed
in pinpointing exact references for all of them, so we take the opportunity to fill some
apparent gaps in the existing literature.

5.3.1 Weil pairing

Following [20] and [36, Ex. III.3.15], to any elliptic curve isogeny ψ : E → E′ over a
perfect field k such that char(k) ∤ deg(ψ) one can associate the ψ-Weil pairing

eψ : ker(ψ)× ker(ψ̂)→ k
∗
: (P,Q) 7→ g ◦ τP

g
,

where ψ̂ : E′ → E denotes the dual of ψ. Here, g ∈ k(E) is any function with divisor
ψ∗(Q) − ψ∗(0E′) and τP denotes the translation-by-P map. It can be argued that
(g ◦ τP )/g is indeed constant. The ψ-Weil pairing takes values in µm, with m any
positive integer such that ker(ψ) ⊆ E[m]. When applied to the multiplication-by-m
map on an elliptic curve E one recovers the classical m-Weil pairing, as it is defined
in [36, §III.8].

Lemma 5.3.1 The ψ-Weil pairing is bilinear, non-degenerate, Gal(k, k)-invariant
and further satisfies:

1. Skew-symmetry: for any isogeny ψ : E → E′ we have

eψ(P,Q) = eψ̂(Q,P )
−1 for all P ∈ ker(ψ), Q ∈ ker(ψ̂),

2. Compatibility Weil-I: for any chain of isogenies E
ϕ→ E′

ψ→ E′′ we have

(a) eψ◦ϕ(P,Q) = eψ(ϕ(P ), Q) for all P ∈ ker(ψ ◦ ϕ), Q ∈ ker(ψ̂),

(b) eψ◦ϕ(P,Q) = eϕ(P, ψ̂(Q)) for all P ∈ ker(ϕ), Q ∈ ker(ϕ̂ ◦ ψ̂),

3. Compatibility Weil-II: for any positive integer m and any isogeny ϕ : E → E′

we have

em(ϕ(P ), Q) = em(P, ϕ̂(Q)) for all P ∈ E[m], Q ∈ E′[m].

Proof. We refer to [20, §2] and [36, Ex. III.3.15(c)] for bilinearity, non-degeneracy,
Galois invariance and Compatibility Weil-I(a). Compatibility Weil-II is just a restate-
ment of [36, III.Prop. 8.2]. Skew-symmetry is well-known in case ψ = m. The general
case can be found in [31, §4.1], although this can also been seen as a consequence of
the case ψ = m. Indeed, write m = deg(ψ) and pick any point R ∈ E′ such that

ψ̂(R) = P and likewise pick any point S ∈ E such that ψ(S) = Q. Observe that R,S

69



Generalized Weil and Tate pairings

are m-torsion points. Then one checks that

eψ(P,Q) = eψ(ψ̂(R), ψ(S)) = em(R,ψ(S)) = em(ψ(S), R)−1 =

em(S, ψ̂(R))−1 = eψ̂(ψ(S), ψ̂(R))
−1 = eψ̂(Q,P )

−1

as wanted. Here the first and last equality use Compatibility Weil-I(a), the third
equality uses skew-symmetry for the classical m-Weil pairing, and the fourth equality
uses Compatibility Weil-II. Compatibility Weil-I(b) is an immediate consequence of
Compatibility Weil-I(a) and skew-symmetry.

For ψ = m there is an equivalent definition of the Weil pairing which is more
amenable to computation via Miller’s algorithm [24].

Lemma 5.3.2 Let P,Q ∈ E[m]. Choose divisors

DP ∼ (P )− (0E) and DQ ∼ (Q)− (0E)

whose supports are disjoint from {(Q), (0E)} and {(P ), (0E)}, respectively. Let fm,P , fm,Q ∈
k(E) be such that

div(fm,P ) = m(P )−m(0E), div(fm,Q) = m(Q)−m(0E).

Then em(P,Q) = (−1)mfm,P (DQ)/fm,Q(DP ).

Proof. See e.g. [25].

There is no known analogue of this result for the more general ψ-Weil pairing; see [28,
§3.6] for a discussion. Note that it is possible to relax the assumption on the supports
of DP , DQ by working with normalized functions, along the lines of [25, Def. 4].

5.3.2 Tate pairing

The literature describes a number of related pairings on elliptic curves that are all
being referred to as the Tate pairing. We focus on the case k = Fq. Following
Bruin [2], to any Fq-rational isogeny ψ : E → E′ such that ker(ψ) ⊆ E[m] ⊆ E[q − 1]
we associate the ψ-Tate pairing

Tψ : (ker(ψ̂))(Fq)×
E′(Fq)

ψ(E(Fq))
→ µm ⊆ F∗q

defined by Tψ(P,Q) = eψ̂(P, πq(R) − R), where R is arbitrary such that ψ(R) = Q.
This is sometimes called the reduced Tate pairing in order to distinguish it from the
Frey–Rück Tate pairing (see below); this terminology is particularly common in case
ψ = m.
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Remark 5.3.3 Bruin instead writes eψ(πq(R)−R,P ), so in view of the skew-symmetry
we appear to have inverted the pairing value; however, this inversion compensates for
the fact that Bruin follows a different convention for the Weil pairing [2, §4]. In
particular, our two definitions of the ψ-Tate pairing match. ♢

Lemma 5.3.4 The ψ-Tate pairing is bilinear, non-degenerate, Gal(Fq,Fq)-invariant
and moreover satisfies:

1. Compatibility Tate-I: for any chain of Fq-rational isogenies E
ϕ→ E′

ψ→ E′′ we
have

Tψ◦ϕ(P,Q) = Tψ(P,Q) for all P ∈ (ker(ψ̂))(Fq) , Q ∈ E′′(Fq),

2. Compatibility Tate-II: for any positive integer m and any Fq-rational isogeny
ϕ : E → E′ we have

Tm(ϕ(P ), Q) = Tm(P, ϕ̂(Q)) for all P ∈ E[m](Fq), Q ∈ E′(Fq).

Proof. For compatibility Tate-I we note that

Tψ◦ϕ(P,Q) = eϕ̂◦ψ̂(P, πq(R)−R) = eψ̂(P, πq(ϕ(R))− ϕ(R))

for any R such that ψ(ϕ(R)) = Q; here we used Compatibility Weil-I(b) and the fact
that ϕ is defined over Fq. But this is indeed equal to Tψ(P,Q), because ψ(ϕ(R)) = Q.
Compatibility Tate-II is an immediate consequence of Compatibility Weil-II.

Notice that applying Compatibility Tate-I to E′
ϕ→ E

ψ→ E′, where ϕ is such that
[m] = ψ ◦ ϕ (e.g., ϕ = ψ̂ in case ψ is cyclic of degree m), shows that

Tψ(P,Q) = Tm(P,Q) for all P ∈ (ker(ψ̂))(Fq) , Q ∈ E′(Fq)

from which one sees that the ψ-Tate pairing is just a restriction of the m-Tate pairing.
This is in stark contrast with the ψ-Weil pairing, whose relation to the m-Weil pairing
is much more convoluted.

The following is an alternative interpretation of the ψ-Tate pairing in terms of the
Weil pairing. This generalizes Garefalakis’ main observation [20, §5].

Proposition 5.3.5 Consider an Fq-rational isogeny ψ : E → E′ between elliptic
curves over Fq and assume that

ker(ψ) ⊆ E[q − 1].

Then we obtain a well-defined pairing

E′(Fq)

ψ(E(Fq))
× (ker(ψ̂))(Fq)→ F∗q
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from the (πq − 1)-Weil pairing

eπq−1 : E′(Fq)× ker(π̂q − 1)→ F∗q

on E′, by restricting the domain of the second argument to ker(π̂q − 1) ∩ ker(ψ̂).
Moreover,

Tψ(P,Q) = eπq−1(Q,P )
−1

for all P ∈ (ker(ψ̂))(Fq) and Q ∈ E′(Fq).

Proof. We first show that

ker(π̂q − 1) ∩ ker(ψ̂) = ker(πq − 1) ∩ ker(ψ̂) = (ker(ψ̂))(Fq).

Indeed, we have ker(ψ̂) ⊆ E′[q−1] and #ker(πq−1) = #ker(π̂q−1) = q− t+1, with
t the trace of Frobenius. From this it follows that

ker(πq − 1) ∩ ker(ψ̂), ker(π̂q − 1) ∩ ker(ψ̂) ⊆ E′[t− 2].

Using that (π̂q − 1) + (πq − 1) = t− 2, the desired equality follows.

Next, we observe that any point Q ∈ (ker(ψ̂))(Fq) pairs trivially with ψ(P ) for
any P ∈ E(Fq):

eπq−1(ψ(P ), Q) = e(πq−1)◦ψ(P,Q) = eψ◦(πq−1)(P,Q) = eπq−1(P, ψ̂(Q)) = 1,

where the first three equalities use Compatibility Weil-I(a), the rationality of ψ, and
Compatibility Weil-I(b), respectively. So we indeed end up with a pairing whose
domain coincides with that of Tψ, up to reordering the factors.

Finally, to see that both pairings are each other’s inverses, take P ∈ (ker(ψ̂))(Fq)
and Q ∈ E′(Fq). From Compatibility Tate-I we know that

Tψ(P,Q) = Tψ◦(πq−1)(P,Q) = e(π̂q−1)◦ψ̂(P, (πq − 1)(R)) = eψ̂◦(π̂q−1)(P, (πq − 1)(R))

with R such that ψ ◦ (πq − 1)R = Q. Compatibility Weil-I(b) allows us to rewrite this
as

eπ̂q−1(P,ψ((πq − 1)(R))) = eπ̂q−1(P,Q)

which indeed equals eπq−1(Q,P )
−1 by skew-symmetry.

We will extend this observation to a wider class of pairings in Section 5.5.
Following [18] and [31, §4.4–4.5] one can also consider the Frey–Rück ψ-Tate pairing

tψ : (ker(ψ̂))(Fq)×
E′(Fq)

ψ(E(Fq))
→

F∗q
(F∗q)

m
: (P,Q) 7→ fm,P (DQ)

with fm,P and DQ as in Lemma 5.3.2.1 It allows for an efficient evaluation through

1It may seem suspicious, at first sight, that fm,P (DQ) does not depend on ψ. However, here too,
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Miller’s algorithm. The Frey-Rück ψ-Tate pairing relates to the reduced ψ-Tate pairing
Tm via the rule

Tψ(P,Q) = tψ(P,Q)(q−1)/m, (5.2)

see [2, §4] and [31, Rmk. 4.14], which is the reason for calling the former reduced. In
particular, also Tψ can be evaluated efficiently.

Remark 5.3.6 It may be tempting to rephrase Lemma 5.3.2 as

em(P,Q) = tm(P,Q)/tm(Q,P ),

however one should be careful with this: other representatives of tm(P,Q) and tm(Q,P )
may fail to quotient to em(P,Q). See [19, §IX.6] for a discussion. ♢

5.4 Self-pairings

In this section we analyze self-pairings, which we formally define as follows:

Definition 5.4.1 A self-pairing on a finite subgroup G of an elliptic curve E/k is a
homogeneous function

f : G→ k
∗

of degree 2. In other words, for all P ∈ G and λ ∈ Z it holds that f(λP ) = f(P )λ
2

. △

As the terminology suggests, our primary examples come from the application of
a bilinear pairing to a point and itself. More generally, it is natural to consider

f : G→ k
∗
: P 7→ e(τ1(P ), τ2(P )) (5.3)

for endomorphisms τ1, τ2 ∈ End(E) (possibly scalar multiplications), with e a bilinear
pairing on a group that contains τ1(G)× τ2(G).

Example 5.4.2 Let m ≥ 2 be an integer. The skew-symmetry of the classical Weil
pairing implies that em(P, P ) = 1 for any P ∈ E[m]. More generally, the m-Weil
pairing becomes trivial whenever it is evaluated at two points belonging to the same
cyclic subgroup ⟨P ⟩ ⊆ E[m]:

em(τ1P, τ2P ) = em(P, P )τ1τ2 = 1 for any τ1, τ2 ∈ Z.

In particular, if one wants to build non-trivial self-pairings from the classical Weil
pairing, then this requires the use of at least one non-scalar τi. 9

Example 5.4.3 The following example is inspired by [19, p. 193]. Consider the elliptic
curve E : y2 = x3 + 1 over a finite field Fq with q ≡ 1 mod 3. It comes equipped with

the Frey–Rück ψ-Tate pairing is just a restriction of the Frey–Rück m-Tate pairing.
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the Fq-rational automorphism τ : (x, y) 7→ (ωx, y), with ω a primitive 3rd root of
unity. Let ℓ | #E(Fq) be a prime satisfying ℓ ≡ 2 mod 3. Then the self-pairing

E[ℓ]→ F∗q : P 7→ eℓ(P, τ(P ))

takes non-trivial values for any P ̸= 0E . Indeed, every non-zero P ∈ E[ℓ] is mapped
to an independent point because there are no non-trivial eigenvectors for the action
of τ on E[ℓ]: its characteristic polynomial x2 + x+ 1 is irreducible mod ℓ. Since τ is

defined over Fq, this reasoning also proves that E[ℓ] ⊆ E(Fq). 9

Example 5.4.4 As a more interesting example, consider an ordinary elliptic curve
E/Fq with endomorphism ring Z[πq], and assume m | q − 1. The natural reduction
map E(Fq) → E(Fq)/m(E(Fq)) allows us to view the reduced m-Tate pairing as a
bilinear map

Tm : E(Fq)[m]× E(Fq)→ µm. (5.4)

By doing so, we may give up on the right non-degeneracy, but the pairing is still left
non-degenerate, that is, for any non-trivial point P ∈ E(Fq)[m] there exists a point
Q ∈ E(Fq) such that Tm(P,Q) ̸= 1. Since End(E) = Z[πq], the group E(Fq) is cyclic
(see [22, Thm. 1] or apply Lemma 5.2.4 to σ = πq − 1). Thus, in this case, we have an
induced self-pairing

E(Fq)→ µm : P 7→ Tm(τP, P ), (5.5)

where τ denotes scalar multiplication by the index [E(Fq) : E(Fq)[m]]. This self-
pairing is non-trivial as soon as E(Fq)[m] is non-trivial. Note that we can restrict the

domain E(Fq) to its m-primary part E(Fq)[m
∞] without affecting this property. 9

Remark 5.4.5 By the definition of Tm, the image of (5.5) can be rewritten as

em

(
τP,

πq − 1

m
(P )

)
which seems to be an instance of (5.3) with e the m-Weil pairing. However, note that
(πq − 1)/m is not an endomorphism of E. On the other hand, it does descend (or
rather ascend) to an endomorphism when considered on E/⟨P ⟩ and this is enough for
the pairing to be defined unambiguously. Recall from Proposition 5.3.5 that (5.5) can
also be rewritten as eπq−1(P, τP )

−1. ♢

Our definition of a self-pairing a priori allows for maps that do not come from
a bilinear pairing. This is indeed possible and, interestingly, a small example has
appeared in the literature. Let E be an elliptic curve over a finite field Fq with
q ≡ 1 mod 4 and #E(Fq) ≡ 2 mod 4. Then the “semi-reduced Tate pairing”

E(Fq)[2]→ µ4 : P 7→ f2,P (DR)
q2−1

4 , 2R = P (5.6)

from [8, Rmk. 11] maps 0E to 1 and it sends the point of order 2 to a primitive 4-th
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root of unity. Such an increase of order is impossible for self-pairings coming from a
bilinear pairing along the recipe (5.3). Yet it is easy to check that this does concern a
self-pairing.

This is essentially the oddest thing that can happen:

Lemma 5.4.6 Self-pairings map points of order n to gcd(n, 2)n-th roots of unity.

Proof. Let f : G→ k
∗
be a self-pairing on an elliptic curve E. Let P ∈ G have order

n. Then from

f(P )n
2

= f(nP ) = f(0E) = f(0 · 0E) = f(0E)
02 = 1

and

f(P )n
2+2n =

f(P )(n+1)2

f(P )
=
f((n+ 1)P )

f(P )
= 1

it follows that the order of f(P ) divides gcd(n2, n2 + 2n) = gcd(n, 2)n.

Let us now bring isogenies into the picture. Indeed, as discussed in the introduction,
self-pairings are only interesting if they are non-trivial and enjoy compatibility with a
natural class of isogenies, in the following sense:

Definition 5.4.7 Consider two elliptic curves E,E′ over k equipped with respective
self-pairings f : G → k

∗
, f ′ : G′ → k

∗
for finite subgroups G ⊆ E, G′ ⊆ E′. Let

ϕ : E → E′ be an isogeny. We say that f and f ′ are compatible with ϕ if

ϕ(G) ⊆ G′, f ′(ϕ(P )) = f(P )deg(ϕ)

for all P ∈ G. △

The most powerful case is where the domains G = ⟨P ⟩, G′ = ⟨P ′⟩ are cyclic: then
we know that ϕ(P ) = λP ′ for some λ ∈ Z and we can conclude

f ′(P ′)λ
2

= f(P )deg(ϕ), (5.7)

leaking information about λ if deg(ϕ) is known and vice versa. We will sometimes
refer to self-pairings with cyclic domains as cyclic self-pairings. In the non-cyclic case,
extracting such information becomes more intricate, although in certain cases it may
still be possible; see Remark 5.6.8. We note that the self-pairing from Example 5.4.4 is
cyclic, and it follows from Compatibility Tate-II that it is compatible with horizontal
Fq-rational isogenies; more specifically (and more generally), if m | q − 1 and E, E′

are elliptic curves over Fq such that the m-primary parts of E(Fq), E
′(Fq) are cyclic,

then the self-pairings

E(Fq)[m
∞]→ µm : P 7→ Tm(τP, P ), E′(Fq)[m

∞]→ µm : P 7→ Tm(τP, P ),

with τ = [E(Fq) : E(Fq)[m]] = [E′(Fq) : E′(Fq)[m]], are compatible with any Fq-
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rational isogeny ϕ : E → E′.

The focus of the current paper lies, more generally, on non-trivial cyclic self-pairings
on O-oriented elliptic curves, for some arbitrary (but fixed) imaginary quadratic order
O. If we merely impose compatibility with endomorphisms coming from O, then this
already imposes severe restrictions:

Proposition 5.4.8 Let O be an imaginary quadratic order with discriminant ∆O and
let (E, ι) be an O-oriented elliptic curve over k. Assume that there exists a self-pairing

f : C → k
∗

on some finite cyclic subgroup C ⊆ E which is compatible with endomorphisms in
ι(O). In other words, for every σ ∈ O and every P ∈ C we have

ι(σ)(P ) ∈ C, f(ι(σ)(P )) = f(P )N(σ).

Write m = #⟨f(C)⟩. Then

(i) char(k) ∤ m,

(ii) m | ∆O,

(iii) with r the 2-valuation of ∆O, we have:

– if r = 2 then m | ∆O/2,

– if r ≥ 3 then m | ∆O/4.

Remark 5.4.9 Note that the image of a self-pairing is not necessarily a group, which
is why we write ⟨f(C)⟩ rather than f(C). ♢

Proof. Statement (i) follows immediately from the fact that k
∗
contains no elements

of order char(k).

As for (ii) and (iii), let P be a generator of C. Then f(P ) has order m. For any
σ ∈ O we have that ι(σ)(P ) = λσP for some λσ ∈ Z, and via

f(P )N(σ) = f(ι(σ)(P )) = f(λσP ) = f(P )λ
2
σ

we see that N(σ) ≡ λ2σ mod m. Writing s for the 2-valuation of m, we make a case
distinction:

• If s ≤ 1 then from Lemma 5.4.6 we see that some multiple R of P must have
order m. Let σ be such that O = Z[σ]. From

(σ−σ̂)2R = (σ2+σ̂2−2N(σ))R = (λ2σ+λ
2
σ̂−2N(σ))R = (2N(σ)−2N(σ))R = 0

it follows that m | ∆O as wanted.
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• If s ≥ 2 then Lemma 5.4.6 only shows the existence of a point R ∈ C of order
m/2 and we obtain the weaker conclusionm | 2∆O. But at least this implies that
∆O is even, so we must have r ≥ 2. Write ∆O = −2rn and consider elements in
O of the form

σ =

√
∆O
2

+ 2ta a, t ∈ Z≥0,

so that N(σ) = 2r−2n+ 22ta2 has to be a square modulo 2s for every choice of
a, t. We distinguish further:

– If r is odd, then also r− 2 is odd and taking a = 0 immediately shows that
s ≤ r − 2, as wanted.

– If r is even, then taking t = (r − 2)/2 yields that n+ a2 must be a square
modulo 2s−r+2 for all a. If s ≥ r then this gives a contradiction both in
case n ≡ 1 mod 4 (take a = 1) and in case n ≡ 3 mod 4 (take a = 0). So
s ≤ r − 1.

It remains to show that if r ≥ 4 is even then in fact s ≤ r − 2. But if s = r − 1
then taking t = (r − 4)/2 yields that 4n+ a2 must be a square modulo 8 for all
a, which gives a contradiction (take a = 0).

We will refer to the quantity m = #⟨f(C)⟩ as the order of the self-pairing f . In
the next section, we will show, by explicit construction, that the necessary conditions
from Proposition 5.4.8 are in fact sufficient for the existence of a family of cyclic
self-pairings

f(E,ι) : C(E,ι) → k
∗
, (E, ι) ∈ Eℓℓk(O),

all satisfying #⟨im(f(E,ι))⟩ = m and compatible with horizontal isogenies (the family
will also cover many non-primitively O-oriented elliptic curves and non-horizontal
isogenies; more on that in Section 5.5).

Remark 5.4.10 One may want to relax the assumptions from Proposition 5.4.8 and
impose compatibility with endomorphisms whose norm is coprime to m only. This is
good enough for the applications we have in mind, and the semi-reduced Tate pairing
from (5.6) shows that this is a strict relaxation. Indeed, we know from [8, Thm. 10] that
it is compatible with Fq-rational isogenies of odd degree, but there exist Fq-rational
endomorphisms of even degree for which compatibility fails: denoting the pairing by
f , we see from

f(P ) = ζ4 and f((πq − 1)P ) = f(0E) = 1

that it cannot be compatible with the endomorphism πq − 1, since N(πq − 1) =
#E(Fq) ≡ 2 mod 4. This concerns a self-pairing of order 4 on a Z[πq]-oriented elliptic
curve, so it would not be allowed for by Proposition 5.4.8 because ∆Z[πq ] ≡ 4 mod 8.
In Appendix 5.8 we will prove a relaxed version of Proposition 5.4.8, and we will also
show (in a non-effective fashion) that the above example is part of a larger class of
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self-pairings of 2-power order that are compatible with K-oriented isogenies of odd
degree only. ♢

5.5 Constructing non-trivial self-pairings

Let O be an order in an imaginary quadratic number field K and let m | ∆O be a
divisor satisfying the necessary conditions from Proposition 5.4.8:

• char(k) ∤ m,

• if 4 | ∆O then m | ∆O/2,

• if 8 | ∆O then m | ∆O/4.

We will construct a family of cyclic self-pairings of order m, one for each (E, ι) ∈
Eℓℓk(O), which is compatible with all horizontal isogenies. More generally, the con-
struction will apply to all O-oriented elliptic curves (E, ι) for which the orientation is
locally primitive at m, in the sense of Definition 5.2.3. Compatibility will hold for any
K-oriented isogeny between two such curves. Our construction is based on a natural
generalization of the ψ-Tate pairing to O-oriented elliptic curves, which we discuss
first. We will actually only rely on the cases where ψ is a scalar multiplication, but
the discussion is fully general for the sake of analogy with the ψ-Tate pairing.

5.5.1 A generalization of the ψ-Tate pairing

Let m ≥ 2 be any integer that is invertible in k. Consider two O-oriented elliptic
curves (E, ι), (E′, ι′) and let ψ : E → E′ be a K-oriented isogeny between them.
Assume that ker(ψ) ⊆ E[m] and let σ ∈ O be such that

Tr(σ) ≡ 0 mod gcd(m,N(σ)). (5.8)

We define

Tσψ : (ker(ψ̂))[σ]× E′[σ]

ψ(E[σ])
→ µm ⊆ k

∗
: (P,Q) 7→ eψ̂(P, σ(R))

where R ∈ E is such that ψ(R) = Q and we abusingly write σ instead of ι(σ), ι′(σ).
This is well-defined: indeed,

• we have (ψ ◦ σ)(R) = (σ ◦ ψ)(R) = σ(Q) = 0E′ , so σ(R) ∈ ker(ψ),

• making another choice for R amounts to replacing R ← R + T for some T ∈
ker(ψ), and

eψ̂(P, σT ) = eσ̂◦ψ̂(P, T ) = eψ̂◦σ̂(P, T ) = eψ̂(σ̂(P ), T ) = eψ̂((Tr(σ)−σ)(P ), T ) = 1
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where the first and third equalities use Compatibility Weil-I and the last equality
follows from

P ∈ ker(ψ̂) ∩ ker(σ) ⊆ E′[m] ∩ E′[N(σ)] = E′[gcd(m,N(σ))].

The reader should notice the analogy with the definition of the ψ-Tate pairing from
Section 5.3. Indeed, applying the above to elliptic curves over Fq equipped with
the natural Frobenius orientation and to σ = πq − 1, we exactly recover the ψ-Tate
pairing; the assumption m | q − 1 that was made there indeed implies (5.8), i.e.
Tr(πq − 1) ≡ 0 mod gcd(m,N(πq − 1)).

The pairing Tσψ is bilinear and non-degenerate. Possibly the easiest way to verify
this is by noting that the statement and proof of Proposition 5.3.5 carry over: we have

Tσψ (P,Q) = eσ(Q,P )
−1

for all P ∈ (ker(ψ̂))[σ] and Q ∈ E′[σ], so these properties follow from those of the gen-
eralized Weil pairing. Our pairing also satisfies the direct analogues of Compatibilities
Tate-I and Tate-II:

1. for any chain of K-oriented isogenies E
ϕ→ E′

ψ→ E′′ between O-oriented elliptic
curves we have

Tσψ◦ϕ(P,Q) = Tσψ (P,Q) for all P ∈ (ker(ψ̂))[σ], Q ∈ E′′[σ],

2. for any positive integer m and any K-oriented isogeny ϕ : E → E′ between
O-oriented elliptic curves we have

Tσm(ϕ(P ), Q) = Tσm(P, ϕ̂(Q)) for all P ∈ E[m,σ], Q ∈ E′[σ].

Again the proofs are copies of the corresponding properties of the ψ-Tate pairing.

5.5.2 Self-pairings from divisors of the discriminant

Now consider m ∈ Z≥2 such that m | ∆O, unless m is even in which case we make
the stronger assumptions that 2m | ∆O in case 4 | ∆O, and 4m | ∆O in case 8 | ∆O.
Furthermore assume that char(k) ∤ m. Pick any generator σ ∈ O such that

m | Tr(σ), (5.9)

except in the special case where v2(m) = 1, in which case we want

2m | Tr(σ) if 8 | ∆O, m | Tr(σ) but 2m ∤ Tr(σ) if 8 ∤ ∆O. (5.10)

Such a generator always exists. Indeed, if m is odd then we can choose whatever
generator σ ∈ O and replace it by σ − (Tr(σ))/2 mod m if needed. If m is even and
8 | ∆O then we can just take σ =

√
∆O/2, whose trace is exactly zero. If m is even

and 8 ∤ ∆O then we can take σ =
√
∆O/2 +m/2, with trace m.
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Conditions (5.9–5.10) trivially imply (5.8), so from the foregoing it follows that
to any elliptic curve E equipped with an O-orientation we can associate the non-
degenerate bilinear pairing

Tσm : E[m,σ]× E[σ]

m(E[σ])
→ µm ⊆ k

∗
,

and we know that this family of pairings is compatible with K-oriented isogenies. As
with the standard reduced Tate pairing in Example 5.4.4, we can also view Tσm as a
left non-degenerate bilinear pairing E[m,σ]× E[m∞, σ]→ µm.

Now assume that the orientation is locally primitive atm. Then the group E[m∞, σ]
is cyclic: if it were not cyclic, we would have E[m′] ⊆ E[m∞, σ] for some positive di-
visor m′ | m, but this would mean that σ/m′ ∈ End(E), contradicting that σ is a
generator of O and the orientation is locally primitive. Next, note that our assump-
tions (5.9–5.10) together with

∆O = (Tr(σ))2 − 4N(σ)

imply that m | N(σ). Along with the fact that E[m∞, σ] is cyclic, this in turn yields
that E[m,σ] is cyclic of order m. By the left non-degeneracy, we see that Tσm is
surjective onto µm and that, again as in Example 5.4.4, it can be converted into a
self-pairing

f(E,ι) : E[m∞, σ]→ µm : P 7→ Tσm(τP, P )

still satisfying #⟨im(f(E,ι))⟩ = m; here τ is the index of E[m,σ] in E[m∞, σ]. This
proves the claims made at the beginning of this section.

5.5.3 Computing the self-pairings

For the practical applications we have in mind, our base field k will be a finite field Fq,
and then a compelling question is: what is the complexity of evaluating the self-pairings
constructed above? Concretely, for an O-oriented elliptic curve (E, ι) such that both
E and ι(O) are defined over Fq, and a divisor m | ∆O at which the orientation is
locally primitive, how efficiently can we find an appropriate σ ∈ O and compute

Tσm(τP, P ) = eσ(P, τP )
−1

with P a generator of E[m∞, σ] and τ the index of E[m,σ] inside E[m∞, σ]? Here,
by “appropriate” we mean that σ should satisfy conditions (5.9–5.10), but it is not
necessary that σ is a generator of O, as long as the orientation by Z[σ] remains locally
primitive at m.

Example 5.5.1 The situation is particularly nice for the Frobenius orientation in
case m | q − 1 and m | #E(Fq). From the identities Tr(πq − 1) = (q − 1)−#E(Fq),
N(πq − 1) = #E(Fq) and ∆O = Tr(πq − 1)2 − 4N(πq − 1) it is easy to check that m
satisfies our necessary conditions for the existence of an order-m self-pairing. Morover,
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they show that σ = πq − 1 meets conditions (5.9–5.10). If the orientation by Z[πq] is
locally primitive at m then the resulting order-m self-pairing

E(Fq)[m
∞]→ F∗q : P 7→ Tπq−1

m (τP, P ) = Tm(τP, P ), τ =
#E(Fq)[m

∞]

m

becomes an instance of the reduced m-Tate pairing, so it can be computed via the
Frey–Rück Tate pairing tm as in (5.2). The latter can be evaluated efficiently using

Miller’s algorithm, in time O(log2m log1+ε q) using fast multiplication. 9

Example 5.5.2 An interesting case is where σ = ς/b for some integer b ≥ 2, where ς
is some easier endomorphism. Then it suffices to compute T ςm(τP,Q) for any Q ∈ E
such that bQ = P . Indeed:

T ςm(τP,Q) = em(τP, ς(R)) = em(τP,
ς

b
(bR)) = Tσm(τP, P ),

with R such that mR = Q, so that m(bR) = P . E.g., if ς = πq − 1, then this again

allows us to resort to the Frey–Rück Tate pairing. 9

Remark 5.5.3 In the previous example the group E[m∞, ς], unlike E[m∞, σ], may not
be cyclic. This sheds a new and more conceptual light on the “not walking to the
floor” appendix to [8]. There m was taken to be a prime divisor of q − 1; for the sake
of exposition, let us ignore the technical (and less interesting) case m = 2 in what
follows. It was assumed that E is an ordinary elliptic curve over Fq not located on
the crater of its m-isogeny volcano, and that

E[m∞, πq − 1] = E(Fq)[m
∞] ∼=

Z

mrZ
× Z

msZ

for some r > s + 1. For us, the weaker assumptions r > s and m | ∆End(E) will do.
One then simply notes that σ := (πq − 1)/ms ∈ End(E) and that, when viewing E as
a Z[σ]-oriented elliptic curve, the orientation becomes locally primitive at m. By the
assumption on ∆End(E) we still have

m | ∆Z[σ] and consequently Tr(σ) ≡ 0 mod m,

where the last congruence uses ∆Z[σ] = Tr(σ)2 − 4N(σ) = Tr(σ)2 − 4 ·#E(Fq)/m
2s.

Thus we have a self-pairing

E[m∞, (πq − 1)/ms]→ µm : P 7→ T (πq−1)/ms

m (mr−s−1P, P )

of order m, with cyclic domain E[m∞, (πq − 1)/ms] ∼= Z/mr−sZ. When computing
this self-pairing via the standard m-Tate pairing as in Example 5.5.2, using ς = πq−1
and b = ms, we recover the pairing discussed in [8, App.A]. ♢

Unfortunately, for general σ we do not know of an analogue of the Frey–Rück Tate
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pairing, nor of an analogue of Lemma 5.3.2 for the generalized Weil pairing. The best
methods we can currently think of work by embedding the pairing into a standard Weil
pairing, that is, with respect to scalar multiplication. In this way Miller’s algorithm
becomes available. The embedding is natural via the definition:

Tσm(τP, P ) = em(τP, σ(R))

with R ∈ E such that mR = P . Alternatively, using compatibility Weil-I one can
rewrite

eσ(P, τP )
−1 = eN(σ)(P, τR)

−1

with R ∈ E a preimage of P under σ. Sincem is typically a lot smaller than N(σ), and
since evaluating σ seems easier than computing a preimage, the first method appears
to be preferable in practice.

The complexity then depends heavily on the field of definition of the points in
E[m∞, σ]. In the worst case, one may need to unveil the full N(σ)-torsion to see these
points, requiring to switch to Fqa with a the order of πq acting on E[N(σ)], which is
O(N(σ)2). We must also divide P by m to get R, for which we may need to extend
further to

Fqaa′ with a′ = O(m2).

Running Miller’s algorithm for the m-Weil pairing over Fqaa′ could then cost an atro-
cious

O(∆2+ε
O m2+ε log1+ε q),

where we have approximated N(σ) ≈ ∆O.

However, this is the absolute worst case: one typically expects E[m∞, σ] ⊆ E[mt]
for some very small constant t, most likely t = 1, and then the estimate becomes

O(m2t+2+ε log1+ε q).

E.g., in Proposition 5.6.5 this will be applied to moduli m of sub-exponential size,
leading to a sub-exponential workload. We note that the above estimates ignore the
cost of determining ι(σ) and evaluating it on R. This heavily depends on how the
orientation is given in practice, which is a separate discussion for which we refer
to [39].

5.6 Applications

In this section, we present two applications of the non-trivial self-pairings from Sec-
tion 5.5. In Section 5.6.1, we show how knowledge of the degree of a secret isogeny to-
gether with a non-trivial self-pairing on a large enough subgroup allows us to efficiently
attack certain instances of class group action based cryptography. In Section 5.6.2,
we use the generalized view of self-pairings to conceptualize previous results on the
decisional Diffie–Hellman problem for class group actions [8, 6].
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5.6.1 Easy instances of class group action inversion

Using the tools developed in the previous sections, we describe a special family of
class group actions on oriented elliptic curves for which the vectorization problem is
easy, i.e., the class group action can be efficiently inverted. More precisely, we give a
high-level recipe for recovering a secret horizontal isogeny ϕ between two primitively
O-oriented elliptic curves (E, ι), (E′, ι′) whenever d = deg(ϕ) is known and smaller
than m2, where m is a prime power satisfying

m2 | ∆O if m is odd, 4m2 | ∆O if m is even.

It is also assumed that gcd(m, char(k), d) = 1. While it has been previously pointed
out that factors dividing the discriminant can cause a decrease of security, see e.g. [3,
Rmk. 2] or [8, §5.1], it was unknown that in special cases they allow for a full break of
the vectorization problem.

Attack strategy.

Let σ ∈ O be such that Tr(σ) ≡ 0 mod m2 and the orientation by Z[σ] is locally
primitive at m. As discussed in Section 5.5.2 such a σ exists and is easy to find; we
can even choose σ to be a generator of O, but in certain cases one may want to take
a non-generator for reasons of efficiency.2

Recall, again from Section 5.5.2, that the groups E[m∞, σ] and E′[m∞, σ] are cyclic
and we obtain self-pairings

f : E[m∞, σ]→ µm2 and f ′ : E′[m∞, σ]→ µm2

of order m2 by mapping P 7→ Tσm2(τP, P ), where

τ = [E[m∞, σ] : E[m2, σ]] = [E′[m∞, σ] : E′[m2, σ]].

Now, pick respective generators P , P ′ of E[m∞, σ], E′[m∞, σ]. Because ϕ isK-oriented
and its degree is coprime to m, we know that P ′ = µϕ(P ) for some unit µ ∈ Z/m2Z.
The compatibility of f and f ′ with K-oriented isogenies then implies

f ′(P ′) = f(P )dµ
2

.

Knowing d, we can determine µ2 mod m2 using a discrete logarithm computation in
µm2 , which leaves at most four options for µ mod m2: two options if m is odd and four
options if m is a power of 2. Given a correct guess for µ mod m2, we obtain knowledge
of pair of points

Q = µτP and Q′ = τP ′

of order m2 that are connected via ϕ.

2For instance, to allow for σ of the form (πq − 1)/b as in Example 5.5.2.
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Remark 5.6.1 Guessing −µ is in fact equally fine, because it is of course good enough
to recover −ϕ = [−1] ◦ ϕ. Therefore, only in the case where m is a power of 2 there is
an actual need for guessing between ±µ and ±(1 +m2/2)µ, where we have to repeat
the procedure below in case of a wrong guess. ♢

Using a reduction by De Feo et al.,3 the problem of recovering ϕ given its images
on the cyclic subgroup ⟨Q⟩ of order m2 can be reduced to the problem of recovering
a related degree-d isogeny ϕ0 : E0 → E′0 given its images on E0[m]. The idea is to
compute the isogenies ψ : E → E0, ψ

′ : E′ → E′0 with kernels generated by mQ and
mϕ(Q), respectively, and complete the diagram:

E0 E′0

E E′

ϕ0

ϕ

ψ ψ′

The points Q0 := ψ(Q) and Q′0 := ψ′(Q′) = ψ′(ϕ(Q)) are of order m and we have

ϕ0(Q0) = Q′0. Further, by picking any generator R0 of ker(ψ̂) we obtain a basis

{Q0, R0} of E0[m]. If we choose a generator R′0 of ker(ψ̂′) then it is easy to argue that
R′0 = λϕ0(R0) for some λ ∈ Z that is coprime to m. The exact value of λ mod m can
be recovered via a discrete logarithm computation by comparing

em(Q′0, R
′
0) = em(ϕ0(Q0), λϕ0(R0)) = em(Q0, R0)

λd with em(Q0, R0),

hence we can assume that λ = 1. Thus, we are given the images of ϕ0 on a basis of
E0[m]. Since m2 > d, we can use Robert’s method from [30, §2], together with the
refinement discussed in [30, §6.4], to evaluate ϕ0 on arbitrary inputs. In particular, we
can evaluate ϕ0 on a basis of E0[d] in order to determine the kernel of ϕ0 explicitly;

this kernel can then be pushed through ψ̂ to obtain the kernel of ϕ.

Remark 5.6.2 In our main use cases, namely attacking special instances of CRS,
rather than evaluating ϕ0 on a basis of E0[d] (which may be defined over a huge field
extension only) we want to proceed as follows. For simplicity, let us focus on the
dummy-free set-up with e = 1 (see Section 5.1). Then we have d = ℓ1ℓ2 · · · ℓr for
distinct small primes ℓi that split in O. In this context, recovering ϕ amounts to
finding for each i = 1, 2, . . . , r the prime ideal li above ℓi (one out of two options) for
which E[li] is annihilated by ϕ. Then ϕ is the isogeny corresponding to the invertible
ideal l1l2 · · · lr ⊆ O. Since gcd(m, d) = 1 this can be tested directly on E0 by evaluating
ϕ0 in a generator of ψ(E[li]). ♢

3The reduction was presented at the KU Leuven isogeny days in 2022 and an article about this is
in preparation [17].
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Weak instances over Fq.

Whether or not the above strategy turns into an efficient algorithm depends amongst
others on the field arithmetic involved, the cost of evaluating ι(σ), ι′(σ), and the cost
of computing discrete logarithms in µm2 . The following proposition gives instances
where it indeed leads to a polynomial-time attack:

Proposition 5.6.3 Let E, E′ be elliptic curves defined over a finite field Fq, equipped
with their Frobenius orientations and connected by an unknown horizontal isogeny ϕ
of known degree d, assumed B-powersmooth and coprime to q. Let O ⊆ Q(πq) be
their joint primitive order. Assume that there exists a prime power m = ℓr satisfying
ℓ ≤ B, ℓ ∤ qd, ℓ2r > d, and

ℓ2r | ∆O if ℓ is odd, ℓ2r+2 | ∆O if ℓ = 2.

Further, assume that there exists a positive integer b coprime to q such that σ =
(πq − 1)/b ∈ O, Tr(σ) ≡ 0 mod ℓ2r and ℓ ∤ [O : Z[σ]]. Then the invertible ideal a ⊆ O
for which ϕ = ϕa can be computed in time poly(log q,B).

Proof. First note that

d = O(m2) = O(|∆O|) and |∆O| = (4q − Tr(πq)
2)/[O : Z[πq]]

2 = O(q)

so any subroutine which runs in time poly(d,m) also runs in time poly(q). The orien-
tation by Z[σ] being locally primitive at ℓ, we know that

E(Fq) ∼= E′(Fq) ∼=
Z

bb′Z
× Z

bb′cZ

for positive integers b′, c, where ℓ ∤ b′, that can be determined in time poly(log q)
using a point-counting algorithm [34]. Define κ = gcd(ℓ∞, c), where we note that
our assumptions imply that ℓ2r | κ: indeed recall from Section 5.5.2 that E[ℓ2r, σ] ⊆
E[σ] ∼= Z/b′Z×Z/b′cZ has order ℓ2r. A generator P ∈ E[ℓ∞, σ] is found by repeatedly

sampling X ← E(Fq) until P = bb′c
κ X has order κ. Following Example 5.5.2, the self-

pairing

f(P ) = Tσℓ2r (τP, P ) = T
πq−1

b

ℓ2r (τP, P ) = Tℓ2r (τP,
b′c

κ
X), τ =

κ

ℓ2r

can then be computed in time poly(log q) via the Frey–Rück Tate pairing. Likewise,
we can efficiently evaluate f ′ at a generator P ′ ∈ E′[ℓ∞, σ], necessarily satisfying
P ′ = µϕ(P ) for some µ. As outlined above, via a discrete logarithm computation in
µℓ2r , which can be done in time poly(log q,B), we obtain µ2 mod ℓ2r. Assuming a
correct guess for µ, from this we obtain our order-ℓ2r points Q, Q′ = ϕ(Q) and we are
all set for the torsion-point attack. Note that the points Q,Q′ are defined over Fq,
hence so are the curves E0, E

′
0 and evaluating ϕ0 at a point in E0(Fqa) only involves

arithmetic over Fqa . We then proceed as outlined in Remark 5.6.2, with the difference
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that d need not be square-free: we only require it to be powersmooth. This means
that for each prime power ℓeii dividing d, we have to test up to 2ei−1 = O(B) ideals of
norm ℓeii for annihilation by ϕ0. All arithmetic can be done in an extension of degree
a = poly(B), from which the proposition follows.

Example 5.6.4 An example application of Proposition 5.6.3 is where ℓ2r | q − 1 for
a small prime ℓ and r ≥ 1 and E(Fq)[ℓ

∞] is cyclic of order at least ℓ2r. Then m := ℓr

and σ := πq − 1 meet the above requirements. Indeed:

• the orientation by Z[πq − 1] is locally primitive at ℓ by Lemma 5.2.4,

• Tr(πq − 1) = q − 1−#E(Fq) ≡ 0 mod ℓ2r,

• ∆Z[πq−1] = Tr(πq − 1)2 − 4#E(Fq) is divisible by ℓ2r, and by ℓ2r+2 if ℓ = 2.

Here is a baby example with ℓ = 2. Let E be the ordinary elliptic curve defined by

y2 = x3 + 106960359001385152381x+ 100704579394236675333

over Fp with p := 230 · 167133741769 + 1. So here we take σ := πp − 1 and m := 215.
One checks that E[σ] = E(Fp) is a cyclic group of order

230 · 52 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31,

in particular its subgroup E(Fp)[2
∞] is cyclic of order 230 as wanted. In this case

it is easy to check that the Z[σ]-orientation is primitive overall, i.e., not just locally
at 2. This is a minimal example for a curve one would construct for a SiGamal-type
encryption scheme [26] using the group action underlying CRS instead of the CSIDH
group action; see below. By Proposition 5.6.3, one can recover horizontal isogenies
of known powersmooth degree d < 230. We implemented the attack in the Magma
computer algebra system [1],4 only skipping the final step, i.e. computing the actual

evaluation algorithm as described in [30]. 9

A generalization.

The above recipe can be generalized to the case where multiple squared prime powers
m2

1, . . . ,m
2
r divide ∆O and the degree d of our secret isogeny ϕ is known and smaller

than m2
1 · · ·m2

r. This time we use a cyclic self-pairing of order m2
1 · · ·m2

r to recover
µ2 mod m2

1 · · ·m2
r, with µ as before. Thus, we have 2r or 2r+1 options for µ depending

on whether one of the mi is even (or in fact 2r−1 or 2r options in case we do not care
about a global sign). The rest of the recipe follows mutatis mutandis.

Proposition 5.6.5 (informal) Let E,E′ be elliptic curves defined over a finite field
Fq, equipped with their Frobenius orientations and connected by an unknown horizontal
isogeny ϕ of known degree d, assumed B-powersmooth and coprime to q. Let O ⊆

4See https://github.com/KULeuven-COSIC/Weak-Class-Group-Actions for the code.
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Q(πq) be their joint primitive order. Assume that there exist r ≈
√
log q prime powers

m1, . . . ,mr ∈ Lq(1/2) coprime to qd such that m2
1 · · ·m2

r > d and

m2
1 · · ·m2

r | ∆O and 4m2
1 · · ·m2

r | ∆O if some mi is even.

Then it is expected that the invertible ideal a ⊆ O for which ϕ = ϕa can be computed
in time poly(B) · Lq(1/2).

Proof sketch. Let σ ∈ O be such that Tr(σ) ≡ 0 mod m2
1 · · ·m2

r and the orientation by
Z[σ] is locally primitive at m1 · · ·mr. If it so happens that σ = (πq − 1)/b for some b
coprime to q then we can just mimic the previous proof: the main difference is that,
this time, there are about 2r ≈ 2

√
log q = Lq(1/2) possible guesses for the secret scalar

µ, from which the stated runtime follows.

In general however, it may not be possible to pick σ of the said form, and then
the domains E[(m1 · · ·mr)

∞, σ] and E′[(m1 · · ·mr)
∞, σ] of our self-pairings may be

defined over a field extension of degree Lq(1) only, in which case there is no hope
for a sub-exponential runtime. For this reason, the attack should be broken up in
pieces. Writing mt1

1 · · ·mtr
r for the order of E[(m1 · · ·mr)

∞, σ] ∼= E′[(m1 · · ·mr)
∞, σ],

as discussed in Section 5.5.3 we heuristically expect that ti = O(1) for all i = 1, . . . , r.
If this is indeed the case, then for each i we can find generators Pi ∈ E[m∞i , σ],
P ′i ∈ E′[m∞i , σ] over an extension of degree Lq(1/2). The cyclic self-pairings

Tσm2
i
(τP, P ) and Tσm2

i
(τP ′, P ′), τ = mti−2

i

can thus be computed in time Lq(1/2) and this also accounts for the subsequent
discrete logarithm computation. Assuming a correct guess for the scalar µi such that
P ′i = µiϕ(Pi), we obtain a pair of order-m2

i points Qi, Q
′
i = ϕ(Qi). Note that, while

these points are defined over an extension of degree Lq(1/2), the groups they generate
are Fq-rational because our orientation is by Frobenius. In particular, the isogenies
ψ1, ψ

′
1 and codomains E0,1, E

′
0,1 corresponding to Q1, Q

′
1 are defined over Fq. The

idea is now to push the points Q2, Q
′
2 through ψ1, ψ

′
1 and repeat the argument, leading

to a diagram

E0,r E′0,r

...
...

E E′

ϕ0

ψr ψ′r

ϕ

ψ1 ψ′1

The map ϕ0 on top comes equipped with its images on a basis of E0,r[mi] for each
i = 1, . . . , r. For the evaluation of ϕ0 on arbitrary inputs, we can then proceed as
in [29, Prop. 2.9] and conclude as before.
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Unaffected schemes.

From the above propositions it follows that a CRS-instantiation using curves whose
discriminants are divisible by (large) powers of smallish primes may be vulnerable to a
sub-exponential attack. In particular, from a security point of view, walking down the
volcano to instantiate CRS is worse than CRS close to the crater. Each descending
step on the ℓ-volcano adds a factor ℓ2 to our discriminant and thus we can recover
isogenies of degree ℓ2 times larger than a level above, using the attack outlined in this
section. We examine how some proposed constructions avoid this problem already.

Schemes that use the maximal order as their orientation are not vulnerable to our
attack. We need that a prime power, not a prime, divides the discriminant, because the
De Feo et al. reduction works only for points of square order. The maximal order has
a discriminant that is square-free, at worst after dividing by 4, so the above does not
apply. The CSIDH variant CSURF is an example of a scheme that uses the maximal
order [3], where the discriminant is not merely square-free but even prime. Similarly,
in the original CSIDH proposal the discriminant is four times a large prime and thus
there is no factor of the discriminant large enough to enable our attack.

Schemes that are close to the crater are also secure. For instance, the SCALLOP
scheme [16] uses curves one level underneath the crater in the f -volcano, where f is a
large prime. Thus the discriminant is of the form f2 · d, where d is square-free away
from 4. Theoretically, we can still use a point of order f2 to recover an isogeny of
degree at most f2. However, to actually see the f -torsion we would need to pass to
an extension of degree O(f), which is infeasible for large enough f .

Another scheme worth mentioning is the higher-degree supersingular group ac-
tions [11]. Here the order used is Z[

√
−dp] for some square-free d, which has discrimi-

nant −dp or −4dp. Even if d was a square, d is chosen small relative to p, and as such
applying the attack above to these orientations, we could recover an isogeny of degree
2d at best.

Pairing-based attack strategy on SiGamal.

We end by commenting on a strategy, proposed to us by Luca De Feo and involving
self-pairings, to break the IND-CPA security of the SiGamal public-key encryption
scheme [26]. In SiGamal, the hardness of the IND-CPA game – i.e., given the en-
cryption of one out of two known plaintexts, guessing which one has been encrypted
– relies [26, Thm. 8] on an ad hoc assumption called the P-CSSDDH assumption.

More precisely, let p be a prime of the form 2rℓ1 · · · ℓn−1, where r ≥ 2 and ℓ1, . . . , ℓn
are distinct odd primes. Moreover, let E0 be the supersingular elliptic curve over Fp of
equation y2 = x3 + x, P0 a random generator of E0(Fp)[2

r] and a, b random elements
of odd norm in Cl(Z[πp]). Then the P-CSSDDH assumption is as follows: given the
curves E0, [a]E0, [b]E0, [ab]E0 and the points P0, P1 = ϕa(P0) and P2 = ϕb(P0), no
efficient algorithm can distinguish P3 = ϕab(P0) from a uniformly random 2r-torsion
point P ′3 ∈ [a][b]E0(Fp). Schematically:
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(E0, P0) ([a]E0, P1 = ϕa(P0))

([ab]E0, P3 = ϕab(P0), P
′
3)([b]E0, P2 = ϕb(P0))

a

bb

a

If there existed (efficiently computable) non-trivial self-pairings fi on the subgroups
⟨Pi⟩, say of order 2s, compatible with Fp-rational isogenies of odd degree, then

f1(P1) = f1(ϕa(P0)) = f0(P0)
N(a)

f2(P2) = f2(ϕb(P0)) = f0(P0)
N(b)

f3(P3) = f3(ϕab(P0)) = f0(P0)
N(a)N(b).

Thus, the P-CSSDDH challenge could then be reduced to a decisional Diffie–Hellman
problem on µ2s . However, the existence of such self-pairings fi is ruled out by Propo-
sitions 5.4.8 and 5.8.1. Since ∆O = −4p and p ≡ 3 mod 4 by construction, we are
condemned to s = 2. This is of no use since a and b are assumed to have odd norm.

5.6.2 Decisional Diffie–Hellman revisited

Genus theory [14, Ch. I§3B] attaches to every imaginary quadratic order O a list
of assigned characters, which form a set of generators for the group of quadratic
characters χ : Cl(O)→ {±1}. In detail: if

∆O = −2rmr1
1 m

r2
2 · · ·mrn

n

denotes the factorization of ∆O into prime powers, then the assigned characters include

χmi
: [a] 7→

(
N(a)

mi

)
, i = 1, . . . , n, (5.11)

and this list is extended with a subset of

δ : [a] 7→
(
−1
N(a)

)
, ϵ : [a] 7→

(
2

N(a)

)
, δϵ : [a] 7→

(
−2
N(a)

)
.

Concretely, the character δ is included if r = 2 and −∆O/4 ≡ 1 mod 4, or if r ≥ 4.
The character ϵ is included if r = 3 and −∆O/8 ≡ 3 mod 4, or if r ≥ 5. The character
δϵ is included if r = 3 and −∆O/8 ≡ 1 mod 4, or if r ≥ 5. In all this,

( ·
·
)
denotes

the Legendre/Jacobi symbol and it is assumed that [a] is represented by an invertible
ideal a ⊆ O of norm coprime with ∆O.

In the context of breaking the decisional Diffie–Hellman problem for ideal class
group actions, it was observed in [8, 6] that, given two primitively O-oriented elliptic
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curves
(E, ι), (E′, ι′) = [a](E, ι) ∈ Eℓℓk(O)

that are connected by an unknown ideal class [a], it is possible to compute χ([a]) for
any assigned character χ, purely from the knowledge of (E, ι), (E′, ι′), and at the
cost of essentially one discrete logarithm computation (e.g., in the group µm in case
χ = χm for an odd prime divisor m | ∆O).

Even though we have not much to add over [8, 6] in terms of efficiency or generality,
in this section we want to make the nearly obvious remark that cyclic self-pairings are
excellently suited for accomplishing this task. Indeed, if m is an odd prime divisor of
∆O, then we can consider the cyclic self-pairings

f : C → µm ⊆ k
∗
, f ′ : C ′ → µm ⊆ k

∗

of order m from Section 5.5. Taking any generators P ∈ C, P ′ ∈ C ′, we know that
P ′ = λϕa(P ) for some λ ∈ Z that is invertible mod m and then

f ′(P ′) = f(P )λ
2N(a) so that χm([a]) =

(
logf(P ) f

′(P ′)

m

)
.

None of the methods from [8, 6] are literal applications of this simple strategy. Indeed,
in the case of [8], which focuses on ordinary elliptic curves over finite fields, the self-
pairing step is preceded by a walk to the floor of the m-isogeny volcano truncated at
Z[πq], in order to ensure cyclic rational m∞-torsion, at which point the usual reduced
m-Tate pairing can be used. The method from [6] applies to arbitrary orientations and
avoids such walks, but it does not use cyclic self-pairings; rather, it uses self-pairings
with non-cyclic domains and, as a result, the argumentation becomes more intricate;
see Remark 5.6.8 for a discussion. So we hope to have convinced the reader that,
at least conceptually, this new method is simpler. It is also helpful in understanding
and generalizing the “not walking to the floor” phenomenon from [8, App.A], as was
already discussed in Remark 5.5.3.

Remark 5.6.6 If r ≥ 4 then we can use the cyclic self-pairings of order 2r−2 from
Section 5.5 for determining N(a) mod 2r−2, and this is enough for evaluating δ, ϵ, δϵ
in case they exist. The situation is more subtle if

• r = 2 and −∆O/4 ≡ 1 mod 4 (to evaluate δ),

• r = 3 (to evaluate one of ϵ, δϵ).

Both cases can be handled by descending to elliptic curves that are primitively (Z +
2O)-oriented, similar to the approach from [8, §3.1]. In the former case this may not
be needed: according to Proposition 5.8.1, there may exist cyclic self-pairings that
allow us to compute N(a) mod 4 directly. Indeed, for k = Fp and O = Z[

√
−p] this

is handled by the semi-reduced Tate pairing from [8, Rmk. 11], which was studied
precisely for this purpose. But for arbitrary orientations we are currently missing such
a pairing. ♢
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Remark 5.6.7 If m = char(k) then our order-m cyclic self-pairing is not available.
However, in view of the character relation [8, Eq. (1)] it is always possible to discard
one assigned character, so this concern is usually void.5 This is in complete analogy
with [8, 6]. ♢

Remark 5.6.8 In [6] an alternative attack to the DDH problem for oriented curves, that
applies to arbitrary orientations, is described, using the Weil pairing rather than the
Tate pairing. Here, the situation is slightly more intricate, in the sense that the domain
of the self-pairing is no longer cyclic. More specifically, the self-pairing associated to [6,
Thm. 1] may be constructed as follows. Let O be an imaginary quadratic order, let E
be an O-oriented elliptic curve, and suppose that m | ∆O for some odd prime number
m. Then we can write O = Z[σ], for some σ of norm coprime to m [6, Lem. 1]. We
define f : E[m] → µm, f(P ) := em(P, σ(P )). One easily checks that this is indeed a
non-trivial self-pairing compatible with horizontal isogenies. Interestingly, the proof
of [6, Thm. 1] shows that f can still be employed to recover the norm of a connecting
ideal up to squares modulo m. A similar phenomenon occurs in [6, Prop. 1& 2], where
the associated self-pairings are maps E[2]→ µ4 and E[4]→ µ8 respectively. ♢

5.7 Conclusions and open problems

In this paper we have derived necessary and sufficient conditions for non-trivial cyclic
self-pairings that are compatible with oriented isogenies, to exist. We have given
examples of such pairings based on the generalized Weil and Tate pairings.

As an application, we have identified weak instances of class group actions assuming
the degree of the secret isogeny is known and sufficiently small; some of these instances
succumb to a polynomial time attack. We note that these cases are rare, but exist
nonetheless; this situation is somewhat reminiscent of anomalous curves for which the
ECDLP can be solved in polynomial time [33, 37]. These instances can be easily
identified in that they require (large) square factors of ∆O. This also shows that
protocols that operate on or close to the crater are immune to this attack. To err on
the side of caution it is probably best to limit oneself to (nearly) prime ∆O.

The following problems remain open:

• In our attack we require square factors m2 of ∆O to be able to derive the action
of the secret isogeny on the full E[m], which is required as input to the algo-
rithm from [30]. However, it is well known that a degree d isogeny is uniquely
determined if it is specified on more than 4d points, so knowing the image of
a single point of order m > 4d should suffice. The problem remains to find a
method akin to [30] that can handle such one-dimensional input.

• Is it possible to exploit partial information, e.g. how valuable is it to know the
action of a secret isogeny on a single point of order m < 4d?

5If char(k) = 2 then it seems like we may be missing more than one assigned character, but see [6,
Footnote 1] for why this is not the case.
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• At the moment we have only used the generalized Weil and Tate pairings for
endomorphisms, whereas the definition also allows for more general isogenies ψ.
Can this somehow be exploited in a more powerful attack?

• Our definition of a self-pairing on cyclic groups of even order allows for instances
not derived from a bilinear pairing, e.g. the semi-reduced Tate pairing given
in [8, Rmk. 11]. Proposition 5.8.1 below shows that such self-pairings indeed
exist more generally, but unfortunately the proof does not give a method to effi-
ciently compute them. Regardless of computational considerations, it would be
interesting to find a more direct mathematical construction of these self-pairings
and thereby genuinely complete the classification from Sections 5.4 and 5.5.

• Are there efficient Miller-type algorithms for computing the generalized Weil and
Tate pairings? If not, do they exist for a larger class of endomorphisms than
just σ = πq − 1? At least, can these pairings be computed without needlessly
extending the base field?

5.8 Relaxing the compatibility assumption

Proposition 5.8.1 We inherit the notation/assumptions from Proposition 5.4.8, but
now we only require that our cyclic self-pairing

f : C → k
∗

of order m is compatible with endomorphisms ι(σ) for which gcd(N(σ),m) = 1. Then
char(k) ∤ m, and writing ∆O = −2rn with n odd, we have:

(a) if r = 0 and n ≡ 3 mod 8 then m | ∆O,

(b) if r = 0 and n ≡ 7 mod 8 then m | 2∆O,

(c) if r = 2 and n ≡ 1 mod 4 then m | ∆O,

(d) if r = 2 and n ≡ 3 mod 4 then m | ∆O/2,

(e) if r = 3, 4 then m | ∆O/4,

(f) if r ≥ 5 then m | ∆O/2.

Conversely, if m satisfies these necessary conditions, then we can equip every O-
oriented elliptic curve (E, ι) over k for which the orientation is locally primitive at m
with a cyclic self-pairing

f(E,ι) : C(E,ι) → k
∗

of order m, such that these self-pairings are compatible with all K-oriented isogenies
of degree coprime with m (as usual, K denotes the imaginary quadratic number field
containing O).
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Proof. Write m = 2sm′ with m′ odd. Note that the statement char(k) ∤ m is again
immediate.

In order to prove the other divisibility conditions, it is easy to see that one can
always find a generator σ ∈ O of norm coprime with m′, and by mimicking the proof
of Proposition 5.4.8 (see the part “If s ≤ 1 then . . . ”) we find that m′ | ∆O. Since the
self-pairing

C → k
∗
: P 7→ f(P )m

′
(5.12)

has order 2s, the remaining divisibility conditions just follow from the case m =
2s which is discussed below. This ignores a subtlety, namely that (5.12) may be
incompatible with endomorphisms σ for which gcd(N(σ), 2sm′) ̸= 1, rather than just
gcd(N(σ), 2s) ̸= 1. However, it is easy to check that the proof below does not suffer
from this.

As for the converse statement, the cyclic self-pairings

f(E,ι),m′ : C(E,ι),m′ → k
∗

of order m′ that were constructed in Section 5.5 are compatible with K-oriented iso-
genies of any degree. So, here too, if we manage to find cyclic self-pairings

f(E,ι),2s : C(E,ι),2s → k
∗

of order 2s that are compatible with K-oriented isogenies of odd degree, then

C(E,ι),2s × C(E,ι),m′ → k
∗
: P 7→ f(E,ι),2s(P )f(E,ι),m′(P )

is a family of cyclic self-pairings of the desired kind (we can assume that C(E,ι),2s is
2-primary, so that the domain is indeed cyclic).

Therefore, from now on we concentrate on the case m = 2s, i.e., m′ = 1. We
proceed by the case distinction from the proposition statement:

(a) If s ≥ 1 then by Lemma 5.4.6 we know that C[2] ∼= Z/2Z. The generator
σ = (1+

√
∆O)/2 satisfies Tr(σ) ≡ N(σ) ≡ 1 mod 2, so when acting on E[2] it has

characteristic polynomial x2 + x+ 1, which is irreducible. But by compatibility
with σ we know that C[2] is an eigenspace: a contradiction.

(b) If s ≥ 2 then as in the proof of Proposition 5.4.8 we find that n = N(
√
∆O)

must be a square modulo 4: a contradiction. If s = 1 then we can construct
the desired family of self-pairings as follows. Let C(E,ι) be the subgroup of E[2]

that is fixed by σ = (1 +
√
∆O)/2. This is a cyclic group of order 2 because the

characteristic polynomial is x2 + x in this case. We then simply define

f(E,ι) : C(E,ι) → {±1} : P 7→ −1, 0E 7→ 1

It is trivial that this family is compatible with K-oriented isogenies of odd degree
(but note, as a sanity check for Proposition 5.4.8, that it is not compatible with
the even-degree endomorphism σ).
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We now discuss the cases r ≥ 2. Note that the existence part is completely covered
by Section 5.5, so it suffices to prove the necessary conditions, except in cases (c) and
(f). We will use the notation

σa := a+
√

∆O/2

for any a ∈ Z. This is an element of O with norm a2 + 2r−2n.

(c) If s ≥ 3 then we arrive at a contradiction because {n, n+ 4} = {N(σ0), N(σ2)}
must both be squares modulo 8.

For existence when s = 2, fix an O-oriented elliptic curve (E, ι) and consider
the non-zero point P ∈ E[2] annihilated by σ1. This point exists because the
characteristic polynomial of σ1 mod 2 is x2, and it is unique because otherwise
E[2] ⊆ ker(σ1) would imply that 4 divides 1 + n, a contradiction. Consider the
self-pairing

f(E,ι) : C(E,ι) → µ4 : P 7→ ζ4, 0E 7→ 1

where C(E,ι) = ⟨P ⟩ and ζ4 is some fixed primitive 4-th root of unity. This is
indeed a self-pairing of order 4: we have

f(E,ι)(λP ) = f(E,ι)(P )
λ2

for any λ ∈ Z because odd squares are congruent to 1 modulo 4. It is easy to see
that f(E,ι) is compatible with oriented endomorphisms of odd degree. Indeed,
every such endomorphism σ can be written as a + bσ0 for some integers a and
b, where exactly one among a and b is even since N(σ) = a2 + b2n is odd. Thus

f(E,ι)(σ(P )) = f(E,ι)((a+ b)P ) = f(E,ι)(P )
a2+b2+2ab = f(E,ι)(P )

N(σ).

To turn this into a family of self-pairings compatible with odd-degree K-oriented
isogenies, with every O-oriented elliptic curve (E′, ι′) that is connected to (E, ι)
via a K-oriented isogeny of degree 1 mod 4, we associate a self-pairing as above.
If (E′, ι′) is connected via a K-oriented isogeny of degree 3 mod 4, then we do
the same, except we map P to −ζ4 instead of ζ4. This is unambiguous because
if (E′, ι′) was connected to (E, ι) via K-oriented isogenies of degrees 1 and 3
mod 4, then (E, ι) would have an oriented endomorphism of degree 3 mod 4: a
contradiction since we have shown above that all oriented endomorphisms have
norm of the form a2 + b2n. By construction, this family of self-pairings is then
indeed compatible with K-oriented isogenies of odd degree.6

Finally, if s = 1, then we can just resort to our family of self-pairings from
Section 5.5.

(d) If s ≥ 2 then we find that n = N(σ0) must be a square modulo 4: a contradiction.

6The construction may not reach every O-oriented elliptic curve (E′, ι′), because there may not
exist an oriented isogeny to (E, ι), e.g. in view of [27, Prop. 3.3], but we can simply repeat the
procedure inside every connected component.
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(e) If r = 3 and s ≥ 2 then 1 + 2n = N(σ1) is a square mod 4, while if r = 4 and
s ≥ 3 then 1 + 4n = N(σ1) is a square mod 8: contradictions.

(f) Assume s ≥ r. By Lemma 5.4.6 we know that C[2s−1] ∼= Z/2s−1Z. Since f is
compatible with σa for every odd integer a, each of these endomorphisms acts on
C by scalar multiplication. But then the same must be true for σ0: let λ ∈ Z be
a corresponding scalar. Since Tr(σ0) = 0 the eigenvalues of σ0 acting on E[2s−1]
are then given by ±λ and therefore

−λ2 ≡ N(σ0) = 2r−2n mod 2s−1. (5.13)

On the other hand, the compatibility implies that N(σa) ≡ (λ + a)2 mod 2s

for all odd integers a. Along with the above congruence this yields a2 − λ2 ≡
(λ+a)2 mod 2s−1. Plugging in a = ±1 we find that (λ+1)2 ≡ (λ−1)2 mod 2s−1,
so that λ ≡ 0 mod 2s−3. This means that the left-hand side of (5.13) vanishes
mod 2s−1, leaving us with 2r−2n ≡ 0 mod 2s−1: a contradiction.

For existence when s < r, it suffices to assume that s = r−1. Fix an O-oriented
elliptic curve (E, ι) such that the orientation is locally primitive at 2. Note that
2r−2 | N(σ2r−3), so from Lemma 5.2.4 we see that E[2r−2, σ2r−3 ] is cyclic of
order 2r−2. Fix a generator P and define the self-pairing

f(E,ι) : C(E,ι) → µ2r−1 : λP 7→ ζλ
2

2r−1 ,

where ζ2r−1 is some generator of µ2r−1 . As in (c), this is a well-defined self-pairing
of order 2r−1. Indeed, for any λ and t we have

f(E,ι)((λ+ 2r−2t)P ) = f(E,ι)(P )
λ2+2r−1tλ+22(r−2)t2 = f(E,ι)(λP ).

To see compatibility with odd-degree endomorphisms, similar to in (c), we re-
mark that every oriented endomorphism σ can be written as a + bσ0 for some
integers a and b. In particular, N(σ) = a2 + 2r−2b2, which is odd if and only if
a is. Then

f(E,ι)(σ(P )) = f(E,ι)((a− 2r−3b)P ) = f(E,ι)(P )
a2+2r−2ab = f(E,ι)(P )

N(σ),

where the last equality follows from the fact that ab ≡ b2 mod 2 because a is
odd, hence 2r−2ab ≡ 2r−2b2 mod 2r−1. To turn this into a family of self-pairings
compatible with odd-degree K-oriented isogenies, we proceed as in (c): if (E′, ι′)
is a primitively O-oriented elliptic curve (locally at 2) connected to (E, ι) via a
K-oriented isogeny ϕ : E → E′ of odd degree, then we equip (E′, ι′) with the
above self-pairing, except that we use

ζ
deg(ϕ)
2r−1 instead of ζ2r−1

as our primitive 2r−1-th root of unity, and we choose the specific generator
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P ′ = ϕ(P ) of E′[2r−2, σ2r−3 ].7 To see that this self-pairing is independent of the
choice of ϕ, let

ϕ1, ϕ2 : E → E′

be two K-oriented isogenies of odd degree, and write P ′i for ϕi(P ). Then P ′1 =
λP ′2 for some odd λ, and we need to check that deg(ϕ1) ≡ λ2 deg(ϕ2) mod 2r−1.

Notice that ϕ̂2 ◦ ϕ1 is an oriented endomorphism of E sending P to λ deg(ϕ2)P .
By compatibility of f(E,ι) with oriented endomorphisms of odd degree we have
(λ deg(ϕ2))

2 ≡ deg(ϕ1) deg(ϕ2) mod 2r−1. The thesis immediately follows from
the fact that deg(ϕ2) is a unit modulo 2r−1.

Remark 5.8.2 The above proof naturally raises the question whether the self-pairings
in the boundary cases

• s = r = 2, n ≡ 1 mod 4,

• s = r − 1 ≥ 4,

whose existence was shown in a non-effective way, admit a more direct description.
Such a description would be needed for these self-pairings to be of any practical use. In
the former case, we know that the answer is yes for the Frobenius orientation, thanks
to the semi-reduced Tate pairing from (5.6); see also Remark 5.4.10. Unfortunately,
this construction is of Frey–Rück type, i.e., involving Miller functions, and we do not
know if/how it generalizes to arbitary orientations. ♢

7Here again, as in Footnote 6, the construction may not reach every instance of (E′, ι′), but we
can repeat the procedure in every connected component.
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