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Chapter 3

Main Results

In this chapter, we summarize and highlight the main ideas and results of the thesis.
The full and precise versions of these results appear in joint works presented in the
later chapters.

3.1 Pairing-based attacks on class group action based
cryptography

This section accompanies two joint research works, corresponding to Chapters 4 and 5.
The first is a joint work on breaking the decisional Diffie–Hellman problem for class
group action based schemes, together with Wouter Castryck, Frederik Vercauteren,
and Benjamin Wesolowski. The second is a joint work on weak instances of the
CRS protocol, together with Sam van Buuren, Wouter Castryck, Simon-Philipp Merz,
Marzio Mula, and Frederik Vercauteren. We start this section by an introduction of
our main tool: self-pairings on elliptic curves. Then, we introduce the isogeny interpo-
lation problem; a partial solution to this problem turned out to break the SIDH scheme
(Example 2.3.1). In Section 3.1.3, we show how these two ideas come together, as we
highlight simplified versions of the ideas and main results of the two papers mentioned
above.

3.1.1 Self-pairings

Let E/k be an elliptic curve over a field k of characteristic p ≥ 0 and let m ∈ Z>0 be

such that p ∤ m. We denote by µm ⊆ k
×
the m-th roots of unity. Pairings are bilinear

maps that send a pair of points on (subgroups of) two isogenous elliptic curves over

k to the unit group k
×

of the algebraic closure of the field of definition of the curves.

The typical example is the Weil-pairing em : E[m]× E[m] → µm ⊆ k
×

[11, III.8]. It
is an alternating, Galois-invariant, non-degenerate bilinear map, which is compatible
with isogenies φ : E → E′ in the sense that

em(φ(P ), φ(Q)) = em(P,Q)degφ (3.1)

for all P,Q ∈ E[m]. We study the following notion related to pairings.
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Pairing-based attacks on class group action based cryptography

Definition 3.1.1 A self-pairing on a subgroup G of an elliptic curve E/k is a map

f : G→ k
×

such that

f(λP ) = f(P )λ
2

(3.2)

for all λ ∈ Z and all P ∈ G. △

Note that any bilinear map e : G × G → k
×

gives rise to a self-pairing f : G →
k
×
, P 7→ e(P, P ).

Example 3.1.2 Let em : E[m]×E[m]→ µm denote the Weil pairing. If τ ∈ End(E)
is any endomorphism, then we obtain a self-pairing

f : E[m]→ µm, P 7→ em(P, τ(P )), (3.3)

which we call the (τ -)twisted Weil self-pairing. 9

Example 3.1.3 Let E/K be an elliptic curve over a number field K. Then the

canonical (Néron–Tate) height ĥK : E → R satisfies (3.2), but is not a self-pairing,

since R ̸⊆ K×. 9

Similar to Equation (3.1), self-pairings have a notion of compatibility with isoge-
nies.

Definition 3.1.4 Let E, E′ be elliptic curves over k with self-pairings f : G → k
×
,

f ′ : G′ → k
×

on subgroups G ⊆ E, G′ ⊆ E′. Let φ : E → E′ be an isogeny. We say
that the self-pairings f , f ′ are compatible with φ if

φ(G) ⊆ G′, and f ′(φ(P )) = f(P )deg(φ) (3.4)

for all P ∈ G. △

Example 3.1.5 Consider the twisted Weil self-pairing f of Example 3.1.2, and let
φ : E → E be any endomorphism that commutes with τ . Then φ(E[m]) ⊆ E[m] and

f(φ(P )) = em(φ(P ), τ(φ(P ))) = em(φ(P ), φ(τ(P ))) = em(P, τ(P ))deg(φ) = f(P )deg(φ),

hence f is compatible with φ. 9

Definition 3.1.6 For a self-pairing f : G→ k
×

on a finite subgroup G, the order of
f is the smallest positive integer m such that f(G) ⊆ µm. △

3.1.2 Isogeny interpolation

Let φ : E0 → E1 be an isogeny of degree d. It is an elementary result that φ is fixed
once its images under N > 4d points are known.
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Lemma 3.1.7 [14, Lemma 3.1]. Let φ1, φ2 : E0 → E1 be isogenies of degree ≤ d.
Suppose that #ker(φ1 − φ2) > 4d. Then φ1 = φ2.

The isogeny interpolation problem asks to recover an isogeny given sufficiently
many image points. This problem can be effectively solved in certain cases.

Theorem 3.1.8 Let E0, E1 be elliptic curves over a finite field of characteristic p > 0.
Let φ : E0 → E1 be an isogeny of known degree d coprime to p. Let N ∈ Z>0 such
that N2 > 4d and gcd(N, d) = 1. Suppose that we are given either of the following:

(i) the images φ(P ), φ(Q) for a basis P,Q of E[N ]; or

(ii) the image φ(P ) for a point P ∈ E[N2] of order N2.

Then one can recover φ in polynomial time.

Proof. Case (i) is by Damien Robert [9, Thm. 1.1], following ideas from Castryck,
Decru [4], Maino, and Martindale [8]. Case (ii) follows from case (i) by a reduction
argument first proposed by Luca De Feo. A sketch of this argument appears in our
joint work in Chapter 5; see below Remark 5.6.1.

This result allows to break SIDH in polynomial time. For instance, in Exam-
ple 2.3.1, by applying the theorem to φ = φA, P = PB , Q = QB , d = 2a, and N = 3b.

3.1.3 Main contributions

Weak instances of CRS

We now highlight results of joint work with Sam van Buuren, Wouter Castryck, Simon-
Philipp Merz, Marzio Mula, and Frederik Vercauteren. The full version of this work
can be found in Chapter 5.

The main obstruction in applying the Isogeny Interpolation Theorem 3.1.8 to
schemes that are based on class group actions, such as CSIDH and CRS, is that
in such schemes no image points under the secret isogeny are shared. We studied
whether it is possible to use self-pairings to obtain information about image points
anyway, in an attempt to make class group action schemes vulnerable to the same
attacks that broke SIDH. In what follows, we assume for ease of exposition that m is
an odd integer. The following is a relatively straightforward result about self-pairings.

Lemma 3.1.9 Let f : G→ k
×

be a self-pairing and let P ∈ G of odd order m. Then
f(P ) is an m-th root of unity.

Proof. See Lemma 5.4.6.

We call a self-pairing on a subgroup G for which #G = m primitive if its image
contains a primitive m-th root of unity. By the lemma, this implies that G is cyclic.
The main idea of how self-pairings could be used to obtain information about image
points is as follows.
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Idea 3.1.10 Let φ : E → E′ be an unknown isogeny of known degree d. Suppose
that we have primitive self-pairings f : C → µm and f ′ : C ′ → µm on cyclic subgroups
C = ⟨P ⟩ ⊆ E and C ′ = ⟨P ′⟩ ⊆ E′ of order m that are compatible with φ. Then, since
φ(P ) ∈ C ′, it follows that φ(P ) = λP ′ for some λ ∈ Z. Now, since

f(P )d = f ′(φ(P )) = f ′(P ′)λ
2

, (3.5)

we can determine λ2 (mod m) from the values of f(P ), f ′(P ′), and d, by a discrete
logarithm computation in µm.

Knowing λ2 (mod m), the idea is then to guess λ (mod m), and hence φ(P ). Then,
if m is large, smooth, and square, we can recover φ using case (ii) of Theorem 3.1.8.
The next natural question is when such self-pairings exist. If the self-pairings are
assumed to be compatible with isogenies coming from a class group action (i.e. if
the above attack strategy applies to CSIDH and CRS), then our main result gives a
complete classification.

Theorem 3.1.11 (van Buuren, Castryck, Houben, Merz, Mula, Vercauteren) Let k
be a field of characteristic p ≥ 0, let O be an imaginary quadratic order of discriminant
D, and let m ∈ Z>0 be odd and such that p ∤ m. Primitive self-pairings of order m
compatible with O-oriented isogenies (through the recipe of Section 2.2.2) exist if and
only if m | D.

Proof. See Prop 5.4.8 and Section 5.5.

In CSIDH and CRS, we have O = Z[π], which has discriminant t2−4q. For CSIDH
we have that t = 0 and q = p is prime, hence the discriminant does not contain
large smooth square factors, and CSIDH remains completely insusceptible to isogeny
interpolation combined with self-pairings. We show, however, that exceptionally weak
instances of CRS admit polynomial time key-recovery attacks. See Example 5.6.4 for
an explicit such weak instance.

On the Decisional Diffie–Hellman problem

We now highlight results of joint work with Wouter Castryck, Frederik Vercauteren,
and Benjamin Wesolowski. The full version of this work can be found in Chapter 4.

The pairing-based attack described above solves the Vectorization Problem 2.2.2(i).
It was shown by Castryck, Sotáková, and Vercauteren [6] that there are cases in which
the Decisional Diffie–Hellman Problem 2.2.2(iii) can be solved in classical polynomial
time using Tate pairings. We present a new approach based on the Weil pairing that
is more general, conceptually simpler, and oftentimes more efficient than the previous
method.

In what follows, we denote bym ∈ Z>0 an odd prime number. Suppose f : G→ µm
is a self-pairing on a subgroup of an elliptic curve E. We define an equivalence relation
on µm \ {1} by setting x ∼ y ⇐⇒ ∃λ ∈ Z : y = xλ

2

. This partitions µm \ {1} into
two equivalence classes S1, S2. There are now four options for the image of G under
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f . Indeed, f(G) equals either {1}, µm, {1} ∪ S1, or {1} ∪ S2. In the last two cases,
we call f ramified.

Idea 3.1.12 Suppose that φ : E → E′ is an unknown isogeny of (unknown) degree d
coprime to m. Suppose that we have ramified self-pairings f : G→ µm and f ′ : G′ →
µm on subgroups G ⊆ E and G′ ⊆ E′ that are compatible with φ. Let P ∈ E and
P ′ ∈ E′ be such that f(P ) and f ′(P ′) are primitive m-th roots of unity. Since f ′ is
ramified, we find that

f(P )d = f ′(φ(P )) ∼ f ′(P ′).

It follows that we can determine whether d is a quadratic or non-quadratic residue
modulo m by computing whether or not f(P ) ∼ f ′(P ′).

To check whether f(P ) ∼ f ′(P ′), a discrete logarithm computation in µm followed
by a Legendre symbol computation suffices. Indeed,(

logf(P ) f
′(P ′)

m

)
=

{
1 if f(P ) ∼ f ′(P ′);
−1 if f(P ) ̸∼ f ′(P ′).

Equivalently, (
d

m

)
=

(
logf(P ) f

′(P ′)

m

)
.

Our main result classifies when ramified self-pairings compatible with isogenies
coming from a class group action exist.

Theorem 3.1.13 (Castryck, Houben, Vercauteren, Wesolowski) Let k be a field, let
O be an imaginary quadratic order of discriminant D, and let m ∈ Z>0 be an odd
prime number different from char k. Ramified self-pairings of order m compatible with
O-oriented isogenies (through the recipe of Section 2.2.2) exist if and only if m | D.
In that case, an explicit family of ramified self-pairings is given by the twisted Weil
pairing

f : E[m]→ µm, P 7→ em(P, σ(P )),

for some generator σ of O = Z[σ] of norm coprime to m.

Proof. See Theorem 4.1.1.

This leads to the following attack strategy against the Decisional Diffie–Hellman
Problem 2.2.2(iii). Using ramified self-pairings of order m compatible with the class
group action, we can determine whether the norm of (a representative of) a connecting
ideal class [a], or equivalently, the degree of an isogeny φa : E0 → [a]E0, is a square
or not modulo m. A Diffie–Hellman quadruple E0, [a]E0, [b]E0, [a][b]E0 now yields the
verifiable equality (

N(a)

m

)(
N(b)

m

)
=

(
N(ab)

m

)
.
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However, if O has ideal classes of both square and non-square norm modulo m, this
equality should fail with probability 50% when [a][b] is replaced by a random ideal
class [c] ∈ Cl(O), thus giving a non-negligible distinguishing advantage.

3.2 Generalized class polynomials

This section accompanies joint work with Marco Streng on generalized class polyno-
mials, corresponding to Chapter 6. After introducing (classical) class polynomials, we
present and motivate the definition of a multivariate analogue. We then highlight the
main results of our joint paper.

3.2.1 Class polynomials

Recall from Section 1.2.2) that the Hilbert class polynomial associated to an imaginary
quadratic number τ in the complex upper half plane H is defined as

Hτ (X) =
∏

σ∈Gal(K(j(τ))/K)

(X − σ(j(τ))) ∈ Z[X]. (3.6)

Hilbert class polynomials can be used to construct elliptic curves over finite fields
with a prescribed number of points through the CM method; Algorithm 1.2.1. The
bottleneck in this algorithm is in the computation of the Hilbert class polynomial;
the main reason being that its coefficients are typically large, as illustrated by the
following example.

Example 3.2.1 Let τ ∈ H be an imaginary quadratic number of discriminant D =
−103. Then

Hτ (X) = X5 + 70292286280125X4 + 85475283659296875X3

+ 4941005649165514137656250000X2

+ 13355527720114165506172119140625X

+ 28826612937014029067466156005859375.

9

For larger discriminants the situation gets worse rather quickly. For “typical”
discriminants of size 109 the total size is already in the gigabytes [13]. One possible
idea to remedy this, is to replace the j-function in (3.6) by a different modular function,
in the hope that the resulting polynomial will have smaller coefficients. The resulting
more general notion of class polynomial is captured by the following definition.

Definition 3.2.2 Let f be a modular function and τ ∈ H imaginary quadratic. If
f(τ) ∈ K(j(τ)) then we call (f, τ) a class invariant, and we define the associated class
polynomial by
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Hτ [f ](X) =
∏

σ∈Gal(K(f(τ))/K)

(X − σ(f(τ))).

△

Note thatK(f(τ))/K is indeed automatically Galois, sinceK(j(τ))/K is an abelian
extension.

Example 3.2.3 Let f(z) = ζ−148 η(
z+1
2 )/η(z), where ζ48 is a primitive 48-th root of

unity, and

η(z) = q1/24
∞∏
n=1

(1− qn), where q = exp(2πiz) (3.7)

is the Dedekind η-function. Let τ be as in Example 3.2.1. Then

Hτ [f](X) = X5 + 2X4 + 3X3 + 3X2 +X − 1. (3.8)

9

The modular function f from the example is known as Weber’s function (well,
one of three such functions [15, §34]). It is related to the modular j-function by the
equation

(f24 − 1)3 − jf24 = 0. (3.9)

For any τ of discriminant ≡ 1 (mod 8), we have that (f, τ) is a class invariant. The
resulting class polynomials can be used in place of Hilbert class polynomials in the
CM method; the only extra step one needs is to compute a j-invariant from an “f-
invariant” using (3.9). The phenomenon that the Weber function yields smaller class
polynomials can be explained through the following definition.

Definition 3.2.4 The reduction factor of a modular function f of level N is

r(f) =
deg(j : X(N)→ P1)

deg(f : X(N)→ P1)
.

△

At imaginary quadratic τ ∈ H, the value of the modular j-function j(τ) is an
algebraic number (in fact, an algebraic integer). We denote by h(j(τ)) its logarithmic
height. For a (possibly multivariate) nonzero polynomial F over C, we denote by
|F |∞ ∈ R>0 the maximum of the absolute values of its coefficients.

Proposition 3.2.5 Let f be a modular function that has a q-expansion with coeffi-
cients in a number field, and let τ1, τ2, . . . ∈ H be a sequence of imaginary quadratic
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numbers such that h(j(τi))→∞. Suppose that K(f(τi)) = K(j(τi)) for all i. Then

log |Hτi [j](X)|∞
log |Hτi [f ](X)|∞

→ r(f). (3.10)

Proof. This result follows from [7, Prop. B.3.5]; see the argument on the bottom of
page 9 of [2].

Essentially, the proposition says that for a modular function f , asymptotically, the
bitsize of the largest coefficient of its class polynomials are a factor r(f) less than that
of Hilbert class polynomials. For Weber’s function f, the reduction factor is 72, which
means that asymptotically we would require about 72 times fewer digits to write down
the largest coefficient of a class polynomial for f when compared to j. No modular
function with a reduction factor larger than 72 is known. In fact, according to the
following result, we cannot do much better.

Theorem 3.2.6 (Bröker–Stevenhagen, 2008) Let f be a modular function. Then
r(f) ≤ 32768/325 ≈ 100.82.

Proof. See [2, Thm. 4.1].

The upper bound on r(f) can be further improved to 96 if one assumes Selberg’s
eigenvalue conjecture [10].

3.2.2 Main contributions

We now highlight results of joint work with Marco Streng. The full version of this
work can be found in Chapter 6.

Since the reduction factors of class polynomials are limited by the Bröker-Stevenhagen
bound, we considered a multivariate extension that we call generalized class polynomi-
als. A univariate polynomial over a field k can be seen as a function on the projective
line P1(k) whose poles are restricted to the unique point at infinity. Class polynomials
can thus be described, up to a multiplicative constant, by their divisor as a function
on P1.

divHτ [f ] =
∑
σ∈G

(σ(f(τ)))−#G(∞), where G = Gal(K(f(τ))/K).

In other words, for a class invariant (f, τ), the class polynomial represents a function
on P1 that has a simple zero at every element of the Galois orbit of f(τ), and a pole
at the unique point at infinity; see Figure 3.1.
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P1 f(τ)

σ1(f(τ)) σ2(f(τ))σ3(f(τ))

τ

H

· · ·

f

Figure 3.1: The Galois orbit of a class invariant.

ψ(τ)

σ1(ψ(τ))

σ2(ψ(τ))

σ3(ψ(τ))

−
∑
σi(ψ(τ))

τ

H

ψ = (x, y)

· · ·x

y

Figure 3.2: The Galois orbit of a pair of class invariants satisfying the equation of an
elliptic curve.

Now suppose that we are given, instead of one class invariant, a pair (x, τ), (y, τ)
of class invariants. Since any pair of modular functions is algebraically dependent,
the modular functions x, y satisfy the equation of a (possibly singular) planar curve.
Let us suppose for simplicity that this is an elliptic curve E given by a Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Then ψ(τ) := (x(τ), y(τ)) defines a point on E(K(j(τ)), hence we can again consider
its Galois orbit. Setting G := Gal(K(x(τ), y(τ))/K), the generalized class polynomial
Hτ [E] ∈ K[X,Y ] is now defined, uniquely up to a non-zero multiplicative scalar, by
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its divisor

divHτ [E] =
∑
σ∈G

(
σ(ψ(τ))

)
+
(
−
∑
σ∈G

σ(ψ(τ))︸ ︷︷ ︸
sum on E

)
− (#G+ 1)

(
∞
)
,

where ∞ ∈ E denotes the unique point at infinity. Note that the extra term (the
negative of the sum of the points in the Galois orbit) is now necessary to ensure that
the resulting divisor is principal; see Figure 3.2.

Example 3.2.7 Consider the modular curve E = X0
+(119); i.e. the quotient of

X0(119) = H/Γ0(119) by the Fricke-Atkin-Lehner involution τ 7→ −119/τ . Then E
is an elliptic curve, and a modular parametrization is given by

E : y2 + 3xy − y = x3 − 3x2 + x,

where x, y are modular functions for Γ0(119) with q-expansions

x = q−2 + q−1 + 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 4q6 + 5q7 + . . .

y = q−3 + 1 + 2q + 2q2 + 4q3 + 4q4 + 7q5 + 9q6 + 12q7 + . . .

where q = exp(2πiτ/119). Let τ be an imaginary quadratic number of discriminant
−103. Then, further depending on τ , there are two options for the generalized class
polynomial:1

Hτ1 [E] = X3 + 2X2 +XY + 2X + Y,

Hτ2 [E] = X3 − 2X2 −XY +X + 2Y + 1.

One can compare this with Examples 3.2.1, 3.2.3. 9

We may expect to estimate the size reduction of the coefficients of generalized class
polynomials compared to Hilbert class polynomials through the following generaliza-
tion of Definition 3.2.4.

Definition 3.2.8 The reduction factor of a modular curve C is

r(C) :=
deg(j : X(N)→ P1)

deg(ψ : X(N)→ C)
,

where ψ is any covering of C by the modular curve X(N) for some N ∈ Z>0. △

For the case of rational elliptic curves with a finite number of points, this indeed
correctly measures the expected asymptotic size reduction.

1For X+
0 (119), the number of distinct class polynomials per discriminant is always at most two.
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Theorem 3.2.9 (Houben, Streng) Assume C is an elliptic curve over Q of rank
0, and that the map ψ = (x, y) : H → C consists of a pair of modular functions
corresponding to Weierstrass coordinates of C and whose q-expansions are rational.
If τ ∈ H ranges over a sequence of imaginary quadratic points for which K(ψ(τ)) =
K(j(τ)) and

h(j(τ))

log log(#Cl(O))
→∞, (3.11)

then
log |Hτ [j]|∞
log |Hτ [C]|∞

→ r(C). (3.12)

Proof. See Theorem 6.3.4.

For the case of the modular curve in Example 3.2.7, the reduction factor is 72; equal
to the one for Weber’s function. We did not find any elliptic curve with a reduction
factor better than 72. Though this might seem somewhat disappointing, we believe
there are several interesting conclusions and challenges for further work. For example:

(i) Weber’s function is only known to yield class invariants for discriminants ≡ 1
(mod 8). The generalized class polynomials associated to X0

+(119) are the first
known to yield class invariants of reduction factor ≥ 72 for discriminants ̸≡ 1
(mod 8).

(ii) The coordinate function x on X0
+(119) yields previously unknown univariate

class polynomials. Its reduction factor of 36 already beats all previously known
class invariants along a subset of imaginary quadratic discriminants of positive
density (defined by a congruence condition). As a result, we expect that the
further study of generalized class polynomials could provide new insights into
the univariate case as well.

(iii) We know that there exist higher genus curves whose reduction factors exceed
the Bröker-Stevenhagen bound. For example, the modular curve X0

+(239) has
genus 3 and reduction factor r(X0

+(239)) = 120. It remains to study whether
the analogue of Theorem 3.2.9 holds for this curve.

It should be further noted that Theorem 3.2.9 only provides an asymptotic and
concludes nothing about the speed of convergence. Some practical height reduction
factors for X0

+(119), i.e. the left hand side of (3.12), for fundamental discriminants of
prime class number are plotted in Figure 3.3.
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Figure 3.3: Practical reduction factors for Hτ [X
0
+(119)] for fundamental discriminants D

with gcd(D, 119) = 1 and prime class number n < 100. In the graph on the right, the x-axis
plots the parameter from (3.11), and class polynomials with lower class number correspond
to points with a lighter shade.

3.3 Radical isogenies

This section accompanies joint work with Wouter Castryck, Thomas Decru, and Fred-
erik Vercauteren on horizontal racewalking using radical isogenies, corresponding to
Chapter 7. After introducing and motivating the study of radical isogenies, we sum-
marize and highlight the main contributions of our joint paper.

3.3.1 Computing isogeny chains

One of the main disadvantages of isogeny-based cryptography compared to other post-
quantum proposals, such as lattice-based cryptography, is that it is relatively slow.
Therefore, there has been continued interest in optimizing the algorithms underlying
the evaluation of isogeny-based protocols. Most isogeny-based protocols rely on com-
puting isogenies of small degree between elliptic curves. This often takes the form of
isogeny walks, such as in Figure 2.6, which typically consist of chains of isogenies of
small degree. For example, in CSIDH-512, see Example 2.2.3, one computes isogenies
of degree up to 587 in chains of length up to 5. Since isogenies of smaller degree are
typically easier to evaluate, a straightforward optimization to the CSIDH protocol is
to skew the possible lengths of the chains; i.e. to take longer chains using isogenies
of small degree and shorter chains using isogenies of larger degree. This happens, for
example, in CSURF-512 [3]. The topic of our research is an attempt to make the
evaluation of chains of isogenies of a given degree faster. For this, we would like to be
able to extend isogeny chains efficiently, i.e., assuming we have computed a chain

E0
φ1−→ E1

φ2−→ · · · φk−−→ Ek (3.13)
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of isogenies of degree N of length k ≥ 1 such that the composition of the isogenies is
cyclic2 of degree Nk, we would like to efficiently compute an isogeny φk : Ek → Ek+1

of degree N that cyclically extends the chain. More precisely, we study the following
problem.

Problem 3.3.1 Let E/Fq be an elliptic curve and let N ∈ Z>1 coprime to charFq.
Let P ∈ E(Fq)[N ] and consider the cyclic isogeny φ : E → E′ = E/⟨P ⟩ of degree N .

Find P ′ on E′(Fq) such that the composition E
φ−→ E′ → E′/⟨P ′⟩ is a cyclic isogeny

of degree N2.

One possible method, if say E′[N ](Fq) ∼= (Z/NZ), is to sample a random point
Q ∈ E′(Fq), and to multiply by a suitable cofactor P ′ := (#E′(Fq)/N)Q. This
results in a suitable point P ′ of order N with probability ϕ(N)/N , where ϕ is Euler’s
totient function. However, this is non-deterministic, and relatively slow, since we must
multiply a point on E′(Fq) by the (in case of cryptographic applications) large integer
#E′(Fq)/N ≈ q. Alternatively, one could

(i) find the j-invariant of E′/⟨P ′⟩ by extracting a root of the modular polynomial
ΦN (j(E′), X) different from j(E) over Fq; or

(ii) extract a root over Fq of the N -division polynomial on E′(Fq),

but these root-finding algorithms are typically even slower. A different approach is sug-
gested by radical isogenies, first introduced by Castryck, Decru, and Vercauteren [5].
We will illustrate the idea with an example, which will make use of the following
notion.

Definition 3.3.2 Let k be a field of characteristic p ≥ 0 and let E/k be an elliptic
curve. Let P ∈ E(k) be a point of order N ≥ 4 such that p ∤ N . Then there exist
unique b, c ∈ k such that E admits an isomorphism φ : E → Eb,c to the Weierstrass
curve

Eb,c : y
2 + (1− c)xy − by = x3 − bx2 (3.14)

for which φ(P ) = (0, 0) [12, Lemma 2.1]. Such a Weierstrass model is called the Tate
normal form of the pair (E,P ). △

Example 3.3.3 (Radical 5-isogenies) Consider Problem 3.3.1 for the case N = 5.
Using the Tate normal form, any elliptic curve with a point of order 5 can be written
as

E : y2 − (1− b)xy − by = x3 − bx2, where P = (0, 0).

for some value of the parameter b. Instead of specifying this parameter, we consider
it as a formal variable and write down the general equation for E/⟨P ⟩ using Vélu’s

2That is, the kernel of the isogeny is a cyclic subgroup of E0. For example, if N is prime, this is
equivalent to the condition that kerφi ̸= ker φ̂i−1 for all i = 2, . . . , k.
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formulae (1.3):

y2 + (1− b)xy − by = x3 − bx2 − 5b(b2 + 2b− 1)x− b(b4 + 10b3 − 5b2 + 15b− 1).

By finding an appropriate root of the 5-division polynomial on this curve, still written
in terms of the formal variable b, we can obtain a formula for the coordinates of a 5-
torsion point P ′ = (x′0, y

′
0) on E/⟨P ⟩ that cyclically extends the isogeny E → E/⟨P ⟩.

x′0 = 5α4 + (b− 3)α3 + (b+ 2)α2 + (2b− 1)α− 2b,

y′0 = 5α4 + (b− 3)α3 + (b2 − 10b+ 1)α2 + (13b− b2)α− b2 − 11b,

where α = 5
√
b. Putting the curve-point pair (E/⟨P ⟩, P ′) in Tate normal form, we

obtain the following Weierstrass model for (the isomorphic curve) E′ ∼= E/⟨P ⟩:

E′ : y2 − (1− b′)xy − b′y = x3 − b′x2, where b′ = α
α4 + 3α2 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1
,

thus obtaining an equation for the corresponding Tate-normal-form parameter b′ of
the curve E′. Now, computing a chain of 5-isogenies of elliptic curves over Fq amounts
to iteratively computing b′ from b. If gcd(5, q− 1) = 1 then this is deterministic, and,
for fields Fq of cryptographic size, faster than any other known method of computing

chains of 5-isogenies. 9

In general, if (b, c) denote the Tate normal form parameters of a curve E together
with a point of order N > 3, there exists a formal expression (depending on N) for the
Tate normal form parameters (b′, c′) of a next curve E′ in an N -isogeny chain. This
expression is an algebraic function of b, c, and α = N

√
ρ(b, c), where ρ(b, c) is another

explicit algebraic function of b and c; cf. the formula for b′ in Example 3.3.3. Such an
expression is known as a radical isogeny formula and its general existence was shown
in [5, Thm. 5].

3.3.2 Main contibutions

We now highlight results of joint work with Wouter Castryck, Thomas Decru, and
Frederik Vercauteren. The full version of this work can be found in Chapter 7.

Though radical isogeny formulae always exist, they are not always easy to find.
The approach suggested by Example 3.3.3 to use the N -division polynomial on E′

was employed in [5], but proved computationally infeasible for N > 13. We developed
an alternative way to compute radical isogeny formulae, which allowed to extend the
range from N ≤ 13 up to all primes N ≤ 41. In addition to that, we rewrote and
simplified the formulae up to degree N = 19. As an example, we compare expressions
for the old and new radical 8-isogeny formulae below.
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Example 3.3.4 (Old radical 8-isogeny formula, from [5])

A′ =
−A3 + 6A2 − 12A+ 8

A2
α7 +

4A3 − 24A2 + 48A− 32

A3 + 4A2 − 4A
α6 +

−4A3 + 24A2 − 48A+ 32

A3 + 4A2 − 4A
α5 +

2A3 − 12A2 + 24A− 16

A3 + 4A2 − 4A
α4 +

A− 2

A
α3 +

−2A2 + 4A

A2 + 4A− 4
α2 +

3A2 − 4

A2 + 4A− 4
α+

−A2 + 2A

A2 + 4A− 4
,

where α = 8
√
(−A3 +A2)/(A4 − 8A3 + 24A2 − 32A+ 16). 9

This is equivalent to the following.

Example 3.3.5 (New radical 8-isogeny formula, from Chapter 7)

A′ =
−2A(A− 2)α2 −A(A− 2)

(A− 2)2α4 −A(A− 2)α2 −A(A− 2)α+A
,

where α = 8
√
−A2(A− 1)/(A− 2)4. 9

To evaluate radical isogenies, specifically to obtain α, one needs to compute an
N -th root over Fp. If p is odd, then for even degrees N such an N -th root is never
unique. It turns out that choosing an incorrect root sometimes yields an N -isogeny
that does not come from the class group action, i.e. an isogeny that is not horizontal
in the sense of Lemma 1.2.2. We conjectured, and proved for N ≤ 14, a simple
criterion to select the right root, which allows for faster deterministic computation of
isogeny walks in even degree. The combined optimizations and improvements to the
radical isogeny formulae led to a speed up of 12% over the previous implementation
of CSIDH-512 using radical isogenies (which in turn obtained a speed up of 19% over
an implementation of 512-bit CSIDH without radical isogenies [1]). Using radical 16-
isogenies, we obtained about a factor of 3 speed up for the computation of long chains
of 2-isogenies over 512-bit prime fields.
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