
Computational aspects of class group actions and applications
to post-quantum cryptography
Houben, M.R.

Citation
Houben, M. R. (2024, February 28). Computational aspects of class group
actions and applications to post-quantum cryptography. Retrieved from
https://hdl.handle.net/1887/3721997
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3721997
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3721997


Chapter 2

Isogeny-based cryptography

This chapter is a concise, mostly informal, and highly incomplete introduction to the
field of isogeny-based cryptography. Our main focus in this introduction will be on
key-exchange protocols; in particular those based on class group actions. Such schemes
will be our main concern for the results presented in Chapter 3.

2.1 Diffie–Hellman key exchange

Elliptic curves are widely used in modern-day cryptography. For example, to se-
curely send information in many end-to-end encrypted messaging apps (such as What-
sApp, Signal, and LINE), and to sign transactions in blockchain (such as Bitcoin and
Ethereum). The way that messaging apps employ elliptic curves, is through a crypto-
graphic protocol known as a Diffie–Hellman key exchange. The idea of such a protocol
was first published in 1976 [6]. It is a method for two parties, typically known as Alice
and Bob, to establish a common secret over an insecure channel of communication.
Such a common secret is typically subsequently used to encrypt and decrypt informa-
tion that Alice and Bob would like to send to each other securely (like a WhatsApp
message). There are various ways to perform a Diffie–Hellman key exchange, but the
main idea is always the same. It can be roughly described as follows. First, Alice and
Bob agree publicly on a set X and an element x0 ∈ X. They also both compute a
secret function X → X. Let us say Alice computes (and keeps to herself) the function
fA : X → X, and that Bob does the same for the function fB : X → X. They
each evaluate their secret functions on x0, and send the result to each other, so that
Bob receives fA(x0) and Alice receives fB(x0). Then, they compute fA(fB(x0)) and
fB(fA(x0)) respectively. If the protocol is designed in such a way that their functions
commute, they end up at the same element of X, which is then their common secret.
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fA(fB(x0)) fB(fA(x0))
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x0 ∈ X

Figure 2.1: A blueprint for a Diffie–Hellman key-exchange.

As an example, in Elliptic Curve Diffie–Hellman (ECDH), the protocol used by
WhatsApp, Alice and Bob publicly agree on an elliptic curve E over a finite field,
and a point P ∈ E of large order n. They hold secret elements a, b ∈ {1, . . . , n}, and
they compute and send each other fA(P ) = aP and fB(P ) = bP respectively. Their
eventual shared secret is then the point abP = baP on E. For example, in WhatsApp,
the elliptic curve used is E : y2 = x3 + 486662x2 + x over the finite field Fp, where
p = 2255 − 19. The public point P ∈ E is one of the points whose x-coordinate is 9,
and has order n = 2252 + 27742317777372353535851937790883648493.

abP baP

aP

bP

a ∈ Z b ∈ Z
Alice Bob

PublicPrivate Private

P ∈ E

Figure 2.2: An Elliptic Curve Diffie–Hellman key-exchange.

The security of such a protocol is based on the assumption that it is computation-
ally infeasible to obtain any secret information by only using the publicly available
information. More concretely, consider the following set of problems that can be as-
sociated to the cryptographic scheme described above.

Problems 2.1.1 (i) Discrete Logarithm Problem (DLP). Suppose we are given P
and aP . Compute a ∈ {1, . . . , n}.

(ii) Computational Diffie–Hellman Problem (CDH). Suppose we are given P , aP ,
and bP . Compute abP ∈ E.

(iii) Decisional Diffie–Hellman Problem (DDH). Suppose we are given either a quadru-
ple {P, aP, bP, abP} or a quadruple {P, aP, bP,Q}, where Q ∈ E is random. Dis-
tinguish, with non-negligible probabilistic advantage, which of the two options
it is.1

1A more formal version of this problem can be found in, e.g. [8, Def. 8.63].
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An algorithm to solve problem (i) can be used to solve problem (ii), and an algo-
rithm to solve problem (ii) can be used to solve problem (iii). In a sense, this makes
(i) the “hardest” of the problems and (iii) the “easiest”. Many security proofs for
cryptographic schemes rely on the hypothesis that an analogue of one, or all, of these
problems is computationally infeasible. Such a hypothesis is also called a computa-
tional hardness assumption. In the case of ECDH, it is known that there exists a
quantum algorithm that solves (i) in polynomial time. This is known as Shor’s algo-
rithm [16], and applies to a wide variety of cryptographic schemes that are deployed in
practice today, including more classical schemes that are not based on elliptic curves,
such as RSA [13]. This means that ECDH and many other protocols used today are
insecure in the era of large-scale quantum computing. While it is unknown whether
a sufficiently large quantum computer exists, or will exist in the near future, that
can be practically used to break schemes that are employed in the real world, this has
sparked an area of research known as post-quantum cryptography, which looks for ways
to encrypt information using algorithms on classical computers that are safe against
quantum attacks. One such proposal is isogeny-based cryptography.

2.2 Class group action based key exchanges

The primary computational hardness assumption central to essentially all of isogeny-
based cryptography is the isogeny path problem, and can be described as follows.

Problem 2.2.1 (Isogeny path problem.) Given a pair of elliptic curves E0, E1 over
a field k, find an isogeny φ : E0 → E1.

Most isogeny-based protocols are not based solely on the pure isogeny path prob-
lem as described above, but rather on a version of it that includes some form of extra
structure or information. Sometimes, as we will see later, this extra structure turns out
to make the protocol insecure. The historically first, and still unbroken, isogeny-based
scheme is a Diffie–Hellman key exchange protocol known as CRS, named after Cou-
veignes, Rostovtsev, and Stolbunov [4, 15]. CRS, and later variants such as CSIDH [2]
and OSIDH [3], are known as class group action based key exchange protocols.

2.2.1 Obtaining a key exchange from a class group action

Let k be a perfect field, and let O be an imaginary quadratic order. Then there is a
free action

Cl(O) ⟳ {(E, ι) | E/k ell. curve, ι : O ↪→ End(E) primitive O-orientation}/ ∼= (2.1)

of the ideal class group Cl(O) of O on the set of primitively O-oriented elliptic curves
over k up to isomorphism. We will explain in a bit where this comes from, how this
action is defined, and how to evaluate it in practice, but let us first see how this gives
rise to an idea for a Diffie–Hellman key exchange protocol.
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Alice and Bob agree publicly on an elliptic curve E0/k that is primitively oriented
by O. They select secret elements [a] and [b] of Cl(O) respectively, and compute
EA := [a]E0 and EB := [b]E0. After exchanging EA and EB , they both compute
[b][a]E0 = EAB = [a][b]E0.

[a][b]E0 [b][a]E0

[a]E0

[b]E0

[a] [b]

Alice Bob

PublicPrivate Private

E0

Figure 2.3: A class group action based key exchange.

This gives rise to the following analogues of Problems 2.1.1.

Problems 2.2.2 (i) Vectorization Problem. Suppose we are given E0 and [a]E0.
Compute [a].

(ii) Computational Diffie–Hellman Problem (CDH). Suppose we are given E0, [a]E0,
and [b]E0. Compute [a][b]E0.

(iii) Decisional Diffie–Hellman Problem (DDH). Suppose we are given either a quadru-
ple {E0, [a]E0, [b]E0, [a][b]E0} or a quadruple {E0, [a]E0, [b]E0, [c]E0}, where [c] ∈
Cl(O) is a random ideal class. Distinguish, with non-negligible probabilistic ad-
vantage, which of the two options it is.

2.2.2 Defining the class group action

We now describe the group action from (2.1) explicitly. Let k be a perfect field
of characteristic p ≥ 0, let O be an imaginary quadratic order and let E/k be a
primitively O-oriented elliptic curve. Note that ι(O) is then a subring of End(E). Let
0 ̸= a be an O-ideal such that p does not divide the norm of a. We define the kernel
of a, denoted E[a], as

E[a] :=
⋂

α∈ι(a)

ker(α) (2.2)

= {P ∈ E(k) | α(P ) = 0 ∀ α ∈ ι(a)}. (2.3)

The number of elements of E[a] equals the norm of the ideal a. We denote a · E :=
E/E[a], and write φa : E → a · E for the separable isogeny with kernel E[a] (which
is unique up to post-composition with an isomorphism by Lemma 1.1.1). Moreover,
the isomorphism class of the curve a ·E together with its orientation induced by (1.4)
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through φa only depends on the ideal class of a. Since any ideal class contains a
representative whose norm is not divisible by p, this defines a group action as in (2.1).

2.2.3 Computing the class group action

We now describe how (part of) the class group action can be explicitly computed
in the setting of CRS and CSIDH. Suppose E is defined over a finite field k = Fq
of characteristic p. Let π denote the q-Frobenius endomorphism. Suppose that π is
imaginary quadratic (or, equivalently, not an element of Z), and that E is primitively
oriented by the imaginary quadratic order O := Z[π]. Denote by f := X2 − tX + q
the characteristic polynomial of Frobenius. If ℓ ̸= p is a prime number that splits in
O, then f splits modulo ℓ, that is

f = X2 − tX + q ≡ (X − λ)(X − µ) (mod ℓ).

for λ ̸= µ ∈ (Z/ℓZ)×. This corresponds to a splitting of the principal O-ideal

(ℓ) = (ℓ, π − λ)(ℓ, π − µ) = ll (2.4)

into two ideals l = (ℓ, π − λ) and l = (ℓ, π − µ) of norm ℓ. For both of these ideals,
the kernel as defined by (2.3) is a subgroup of E of order ℓ, hence corresponds to
an ℓ-isogeny with domain E. The orbit of E under the action by the subgroup of
Cl(O) generated by [l] is a cycle whose length equals the order of [l] ∈ Cl(O). We
can associate to this cycle a directed graph, whose set of nodes is the orbit of E and
whose edges are the ℓ-isogenies corresponding to the ideals l and l, i.e. corresponding
to the two eigenvalues of Frobenius λ and µ. Since ll = (ℓ) is principal, i.e. [l] and [l]
are each other’s inverses in Cl(O), the edges belonging to different eigenvalues point
in opposite directions along the cycle.

λ

µ
λ

µ

λ
µ

λµ

λ
µ

λ
µ

λ
µ

λ µ

λ
µ

Figure 2.4: Directed cycles associated to ℓ-isogenies corresponding to the eigenvalues of
Frobenius λ and µ.

The idea of CRS and CSIDH is now that we compose random walks along these
graphs for different small primes ℓi. That is, we restrict the class group action to
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ideals of the form [a] =
∏
i[li]

ai , where li is a prime ideal above ℓi and the ai ∈ Z are
sampled randomly from predetermined bounded intervals.

Figure 2.5: A union of three ℓi-isogeny
graphs.

Figure 2.6: An isogeny walk.

If the class group is sufficiently large, these random walks should still give us many
different options for, e.g., Alice’s public curve [a]E0, so that finding an isogeny between
the starting and ending curve of the walk exhaustively will remain infeasible.

Now, let us say that we would like to compute the action of the ideal l given by
(2.4) on E, i.e. one step of the walk in Figure 2.6. According to (2.3), the kernel of l
is given by

E[l] = {P ∈ E(k) | P ∈ E[ℓ], (π − λ)(P ) = 0}.

Denoting by r the order of λ ∈ (Z/ℓZ)×, we see that

(π − λ)(P ) = 0 ⇐⇒ π(P ) = λP =⇒ πr(P ) = λrP = P =⇒ P ∈ E(Fqr ).

It follows that E[l] ⊆ E[ℓ](Fqr ). One way to compute [l]E is thus to sample an ℓ-torsion
point P ∈ E(Fqr ) whose eigenvalue under the action of Frobenius is λ, and then to
compute the codomain of the ℓ-isogeny with kernel ⟨P ⟩ using Vélu’s formulae (1.3). All
of this can be done in time polynomial in ℓ and log(q). In practice, the computational
complexity depends heavily (although polynomially) on r, as field arithmetic in larger
fields is more expensive. The optimal situation for efficient evaluation of ℓ-isogeny
walks is thus the case where the multiplicative orders of the eigenvalues of Frobenius
modulo ℓ are as small as possible, i.e. λ = 1, µ = −1. This is equivalent to

t ≡ 0 (mod ℓ), and q + 1 ≡ 0 (mod ℓ).

Demanding this for many primes ℓ automatically forces t = 0 by the Chinese remainder
theorem, i.e. the curve E to be supersingular. This gives rise to CSIDH (Commutative
Supersingular Isogeny Diffie–Hellman).
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Example 2.2.3 (CSIDH-512) Let p be the prime number

p := 4 · (3 · 5 · . . . · 373)︸ ︷︷ ︸
73 consecutive primes

·587− 1 ≈ 2511. (2.5)

Let E0/Fp be the supersingular elliptic curve given by E0 : y2 = x3 + x. Then O :=
EndFp

(E0) = Z[π], where π : E0 → E0 denotes the p-Frobenius, and O ↪→ End(E0) is
a primitive orientation. We denote by ℓ1, . . . , ℓ74 the odd prime factors of p + 1, and
by li := (ℓi, π − 1) the O-ideal above ℓi corresponding to Frobenius eigenvalue +1.
This gives rise to the following Diffie–Hellman key exchange procedure.

(i) Alice samples a random element (a1, · · · , a74) ∈ {−5, . . . , 5}74, computes EA :=∏
i[li]

aiE0, and sends EA to Bob.

(ii) Bob samples a random element (b1, · · · , b74) ∈ {−5, . . . , 5}74, computes EB :=∏
i[li]

biE0, and sends EB to Alice.

(iii) Alice computes
∏
i[li]

aiEB =
∏
i[li]

ai+biE0.

(iv) Bob computes
∏
i[li]

biEA =
∏
i[li]

ai+biE0. 9

CRS follows the same protocol as CSIDH, but with an ordinary starting curve
E0/Fq. The computational performance of CRS depends heavily on the trace of E0;
one for which the eigenvalues of Frobenius have small multiplicative order modulo
many primes ℓi is typically better. Other than essentially by exhaustive search, cur-
rently no method is known for computing an ordinary elliptic curve over a finite field
with both a favorable trace and a large class group (the latter requirement rules out
the use of the CM method 1.2.1, since (Hilbert) class polynomials become impracti-
cally large; more on this in Chapter 6). Moreover, as explained above, if sufficiently
many eigenvalue pairs are “optimal”, i.e. ±1, this forces the curve to be supersingular.
As such, all known instantiations of CRS that offer cryptographic levels of security are
several orders of magnitude slower than CSIDH, and the protocol is widely considered
impractical. However, the CRS scheme is still interesting from a theoretical stand-
point, since it is conceivable that the structure of supersingular curves (particularly
their additional endomorphisms) might some day be used in an attack against CSIDH.

2.2.4 OSIDH

Oriented Supersingular-Isogeny Diffie–Hellman [3] (OSIDH) is another class group
action based protocol, which can be roughly described as follows. Let E0 be an
elliptic curve over a (large) finite prime field Fp oriented by an imaginary quadratic
order O of class number one. Let n ∈ Z>0 and let ℓ be a (small) prime number. The
idea is for Alice and Bob to act by (secret) elements of the class group of the order
On := Z+ ℓnO on length-n chains of descending ℓ-isogenies, starting from a given one
E0 → E1 → . . . → En. More specifically, Alice acts by an ideal class [a] =

∏
i[qi]

ai ,
for some prime ideals qi of small norm coprime to ℓ and exponents −r ≤ ai ≤ r (note
the similarity to the ideal class in CSIDH and CRS), to obtain [a] · (E0 → E1 → . . .→
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En) = F0 → F1 → . . . → Fn. Bob does the same with an ideal class [b] =
∏
i[li]

bi

of the same form to obtain [b] · (E0 → E1 → . . . → En) = G0 → G1 → . . . → Gn.
Then, instead of exchanging the full descending chains (Fk)0≤k≤n and (Gk)0≤k≤n
(which would be insecure; see e.g. [3, Section 5.1]), Alice and Bob publish Fn and Gn
together with the action of [li]

j for all i and all −r ≤ j ≤ r on Fn and Gn respectively.
This is sufficient for Alice and Bob to both be able to compute [b][a]En = [a][b]En
(see [3, Section 5.2] for more details). There exist exponential-time attacks against
OSIDH [5] that are practical for a large set of parameter choices; in particular for the
original proposal of [3] that claimed a security level equivalent to CSIDH-512.

2.3 SIDH

Supersingular Isogeny Diffie–Hellman [7] (SIDH) is an isogeny-based key exchange pro-
tocol that does not rely on class group actions. For a long time, SIDH was considered
the most promising post-quantum candidate for isogeny-based cryptography. Its major
advantage compared to class group action based key exchanges was in its efficiency, and
in the fact that the best-known quantum attacks had exponential complexity, whereas
CRS and CSIDH are known to admit subexponential quantum attacks [9, 10, 12]. In
2022, classical polynomial time attacks against SIDH were found [1, 11, 14].

Example 2.3.1 (SIKEp503) Let p be the prime number

p := 2250 · 3159 − 1 = 2a · 3b − 1. (2.6)

Let E0/Fp be the supersingular elliptic curve given by E0 : y2 = x3 + x. Let E0[2
a] =

⟨PA, QA⟩ and E0[3
b] = ⟨PB , QB⟩.

(i) Alice samples a random integer mA ∈ {1, . . . , 2a}, computes φA := E0 → EA :=
E0/⟨PA +mAQA⟩ and sends EA, φA(PB), φA(QB) to Bob.

(ii) Bob samples a random integer mB ∈ {1, . . . , 3b}, computes φB := E0 → EB :=
E0/⟨PB +mBQB⟩ and sends EB , φB(PA), φB(QA) to Alice.

(iii) Alice computes EB/⟨φB(PA) +mAφB(QA)⟩ = E0/⟨PA +mAQA, PB +mBQB⟩.
(iv) Bob computes EA/⟨φA(PB) +mBφA(QB)⟩ = E0/⟨PA +mAQA, PB +mBQB⟩.

9

EAB EAB

EA, φA(PB), φA(QB)

EB , φB(PA), φB(QA)

φA φB
Alice Bob

PublicPrivate Private

E0, PA, QA, PB , QB

Figure 2.7: Supersingular Isogeny Diffie–Hellman
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[3] Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs. Journal
of Mathematical Cryptolology, 14(1):414–437, 2020.

[4] Jean-Marc Couveignes. Hard homogeneous spaces, 2006. Unpublished article,
available at https://eprint.iacr.org/2006/291.

[5] Pierrick Dartois and Luca De Feo. On the security of OSIDH. In PKC (1),
volume 13177 of Lecture Notes in Computer Science, pages 52–81. Springer, 2022.
https://ia.cr/2021/1681.

[6] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[7] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19–34. Springer, 2011.

[8] J. Katz and Y. Lindell. Introduction to Modern Cryptography: Principles and
Protocols. Chapman & Hall/CRC, second edition, 2014.

[9] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM Journal on Computing, 35(1):170–188, 2005.

[10] Greg Kuperberg. Another subexponential-time quantum algorithm for the di-
hedral hidden subgroup problem. In 8th Conference on the Theory of Quan-
tum Computation, Communication and Cryptography (TQC 2013), volume 22 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 20–34. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013.

[11] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin
Wesolowski. A direct key recovery attack on SIDH. In Eurocrypt 2023 Pt. 5,
volume 14008 of Lecture Notes in Computer Science, pages 448–471. Springer,
2023.

[12] Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space, 2004.

17

https://eprint.iacr.org/2006/291
https://ia.cr/2021/1681


Bibliography

[13] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21:120–126,
1978.

[14] Damien Robert. Breaking SIDH in polynomial time. In Eurocrypt 2023 Pt. 5,
volume 14008 of Lecture Notes in Computer Science, pages 472–503. Springer,
2023.

[15] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies, 2006. Unpublished article, available at https://eprint.iacr.org/

2006/145.

[16] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. Proceedings 35th Annual Symposium on Foundations of Computer Sci-
ence, pages 124–134, 1994.

18

https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145

