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Chapter 1

Preliminaries

This chapter consists mainly of standard definitions and results. It is advised to con-
sult it mainly for reference and to skip (at least) to Chapter[2] The reader familiar with
isogeny-based cryptography can immediately skip to Chapter [3] where the main con-
tributions of this work are highlighted. Chapters [6l and [7] have been individually

published as research papers.

1.1 Elliptic Curves

Our main references for this section are [2, 4].

1.1.1 Definition and Weierstrass models

Let k be a field. An algebraic group over k is an algebraic variety G/k together with a
specified point e € G(k), and morphisms of varieties G X G — G (multiplication), and
G — G (inversion), which induce a group structure on G (k) with respect to which e is
the identity element. A morphism of algebraic groups is a morphism of algebraic va-
rieties that is also a homomorphism of groups. Projective connected algebraic groups
are called abelian wvarieties; their group structure is always commutative. Abelian
varieties of dimension one are called elliptic curves. Any smooth projective geometri-
cally irreducible algebraic curve C over k of genus one together with a specified point
e € C(k) admits the structure of an elliptic curve with e as an identity element. Ev-
ery morphism of varieties between elliptic curves that respects the identity element
is a morphism (of algebraic groups). An elliptic curve F over k admits a k-rational
isomorphism to a smooth projective planar curve with affine model

y? + ar1zy + asy = 2° + asx? + auz + ag, (1.1)

sending the specified point e € E(k) to the unique point at infinity. A curve of this
form is called a Weierstrass curve. If the characteristic of k is not 2 or 3, there
furthermore exists an isomorphism to one for which a; = as = az = 0; i.e. to a short
Weierstrass curve, whose affine model is given by an equation of the form

y? =2° + Az + B. (1.2)
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The j-invariant of an elliptic curve E/k is an explicit element of k that can be defined
by a rational function in the coefficients of its long Weierstrass model [4, III.1]. For
the case of a short Weierstrass equation it is j(E) := (28 - 3% - A3)/(4A43 + 27B?).
Two elliptic curves over an algebraically closed field are isomorphic if and only if their
j-invariants are equal.

1.1.2 Isogenies between elliptic curves

Morphisms of elliptic curves that are not constant, or equivalently, have finite kernel,
are called isogenies. Associated to an isogeny ¢ : F — E’ is the field extension
©* 1 k(E") < k(E) of function fields given by the pull-back map ¢* : f ++ f o . The
degree deg(¢p) of an isogeny is the degree of this field extension, and an isogeny is called
separable if this is a separable field extension. An isogeny of degree / is also called an
L-isogeny. For N € Z we denote by [N] : E — E, P+ NP the multiplication-by-N
map, and its kernel, which consists of the N-torsion points, by E[N]. For every isogeny
¢ : E — E’ there exists a unique isogeny ¢ : ' — E, called the dual isogeny, such
that ¢ o » = [degp]. The degree of [N] is N2. For a field L D k, we write Endy (E)
for the set of endomorphisms of E defined over L, and write End(E) := End;(E) for
the (full) endomorphism ring. The set Endr(FE) admits a ring structure, where the
multiplication is given by composition and the addition is given (pointwise) by the
group operation. This ring is isomorphic to either [4, Cor. II1.9.4]

(i) the integers Z;
(ii) an order O in an imaginary quadratic number field K;

(iii) a maximal order O in B, , the unique quaternion algebra over Q ramified at
p and infinity, where p > 0 equals the characteristic of k.

The ring End) (E) := End;(F) ®z Q is called the endomorphism algebra of E over
L. We denote by End’(E) := End;(E) ®z Q the (full) endomorphism algebra of E.
Any non-integer endomorphism of an elliptic curve is an imaginary quadratic number,
whose norm over QQ as an algebraic integer is equal to its degree as an isogeny.

Lemma 1.1.1 Let E/k be an elliptic curve and let H be a finite subgroup of E. Then
there exists a separable isogeny ¢ : E — E' with domain E and kernel H. This isogeny
is unique up to post-composition with an isomorphism. The curve E’ is necessarily
unique up to isomorphism and we denote it by E/H.

Proof. [4, Prop. I111.4.12]. O

There is a set of formulae by Vélu [6] that can be used to explicitly compute a
Weierstrass model for E/H, as well as a description of the associated isogeny ¢ : E —
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Proposition 1.1.2 (Vélu, [6]) Let E/k be an elliptic curve in long Weierstrass form
E: y2 4+ a1xy + asy = 22 + asz? + asx + ag,
together with a finite subgroup H C E. Denote by 0 € E the point at infinity. Partition

H\{0} = Hy,UH*UH™, where Hy = H|[2]\ {0} and H" and H~ are such that for
any P € HY it holds that —P € H=. Write S = Hy U HT, and for P € S define

gp = 3x(P)* 4 2ax(P) + as — ary(P),
9p = —2y(P)—arz(P) — as,
gm Zf Pc Hg,
up = (9%)°, vp= { Pa: y
29% —a1gp  else,
v o= va, w = Z(up—&—gc(P)vp)7
pes pPes
A1 = a1, Ax=ay, Az=as,
Ay = ay—5v, Ag=as— (a} +4az)v — Tw.

Then an equation for E' = E/H is given by
E' 4+ Aywy + Asy = 2% + Aga® + Ayx + Ag. (1.3)

Furthermore, there exists a separable isogeny ¢ : E — E’ with kernel H that satisfies

2p(@) = 2@+ Y (2(Q+P)-z(P)

PeH\{0}

y(e(Q) = y@+ . WQ+P)—y(P)).

PeH\{0}

forallQ € E.

1.1.3 Elliptic curves over finite fields

Let F, be a finite field with ¢ elements of characteristic p := char(F,), and let E/F, be
an elliptic curve with long Weierstrass model E : y?+a 2y +asy = 23 +as2% +asx+a.
The g-Frobenius endomorphism 7 € End(F) is given by the map (z,y) — (z9,y9).
If N := #E(F,), then we define by ¢t := ¢+ 1 — N the trace of E/F,, also called
the trace of Frobenius. The characteristic polynomial of Frobenius is the polynomial
f = X% —tX +q. It always has 7 as a root. An elliptic curve for which p | ¢ is
called supersingular, otherwise E is called ordinary. If m ¢ Z, which is guaranteed if
FE is ordinary, then the characteristic polynomial is the minimal polynomial of 7 as an
algebraic integer. The full endomorphism ring End(E) of an ordinary elliptic curve is
an order in an imaginary quadratic number field. For a supersingular elliptic curve it
is a maximal order in the quaternion algebra B, o, over Q ramified at p and oo.
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1.2 Orientations and CM

Our main references for this subsection are [1, 3, 5].

1.2.1 Imaginary quadratic orders

An imaginary quadratic order O is an order (i.e. a full-rank Z-lattice that is also a
subring) in an imaginary quadratic number field K. It is always of the form O = Z[o]
for some o € K; such o is called a generator for O. The discriminant Disc(O) of
O is the discriminant of ¢ as an imaginary quadratic number. The discriminant is
always a negative integer that is congruent to 0 or 1 (mod 4); such integers are also
called imaginary quadratic discriminants. For every imaginary quadratic discriminant
there exists, up to ring isomorphism, a unique imaginary quadratic order with that
discriminant. An imaginary quadratic discriminant that corresponds to a maximal
order (i.e. the ring of integers of its field K) is called a fundamental discriminant. If
O, C Oy is an inclusion of imaginary quadratic orders, then Disc(O;) = v? Disc(Os),
where v = [0y : O4] is the index of O; in Oy as an additive abelian group. A proper
O-ideal a is an O-ideal for which {8 € K | fa C a} = O (cf. [5, Def. 17.9]). We call
two proper O-ideals a and b equivalent if there exists § € K for which fa = b. The
(ideal) class group Cl(O) of O is the multiplicative group of proper O-ideals up to
equivalence.

1.2.2 Elliptic curves over C

Let A C C be a Z-lattice of rank 2. We define a morphism A; — As of two such
lattices as a complex number a € C such that aA; C A, that is

HOm(Al,Ag) = {O[ eC | al C A2}

Under this notion of morphism, there is an equivalence of categories
{Elhptlc curves over C}<_{Full rank Z-lattices A C C}

Any lattice is isomorphic to one of the form A = Z 4+ 7Z = (1, 1) for some 7 in the
complex upper half plane H, and any two such lattices Ay = (1,71), Ay = (1, 72) are
isomorphic if and only if 7y and 75 are in the same SLa(Z)-orbit, i.e. if and only if there
exist integers a, b, ¢, d € Z for which ad —bc = 1 and such that 7 = (am; +b)/(cm1 +d).
This happens if and only if 7, and 75 admit the same value under the modular j-
function j: H— C.
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Figure 1.1: A rank two Z-lattice in C spanned by 1 and 7 € H.

For most lattices A = (1,7), hence for most elliptic curves over C, we have
End(A) = Z. The exception to this is precisely the special case where 7 satisfies
a (necessarily imaginary) quadratic equation

ar® 4+ br +c¢=0, for some coprime a,b,c € Z,a > 0.

In that case, End(A) = Z[a7], and we say that A has complex multiplication by the
imaginary quadratic order O := Z[a7] C K := Q(7). The field K (j(7)) depends only
on O and is called the ring class field of O. The field extension K (j(7))/K is abelian
and its Galois group is isomorphic to the class group C1(O) of O. The Hilbert class
polynomial associated to 7 is

H-(X) = 11 (X = 0o(i(7)))
ceGal(K(j(1))/K)

= 11 (X —j(E)).
E/c ell. curve
End(E)~0

The Hilbert class polynomial has integer coefficients and only depends on (the isomor-
phism class of) O; sometimes it also denoted Hp(X) or Hp(X), where D := Disc(O).

1.2.3 The CM method

Hilbert class polynomials can be used to construct elliptic curves over finite fields
with a prescribed number of points through a procedure known as the CM method.
Elliptic curves over finite fields always have complex multiplication, in the sense that
their endomorphism ring is never isomorphic to Z. Let E/F, be an ordinary elliptic
curve over a field of characteristic p > 0, and let 7 € End(E) denote the g-Frobenius
endomorphism. Then the minimal polynomial of 7 is X2 — tX + ¢, where N :=
#E(F,) = ¢+ 1—t. Since End(E) contains the imaginary quadratic order Z[n], it
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follows that
t? — 4q = Disc(Z[r]) = v? Disc(End(E)), for some v € Z.

This motivates the following algorithm

Algorithm 1.2.1 (CM method) Given a prime power ¢ = p® and an integer t € Z
coprime to ¢ for which ¢ —4q < 0, find the j-invariant of an elliptic curve E/F, with
trace of Frobenius t.

1. Find v € Z and an imaginary quadratic discriminant D such that v2D = t? — 4q.
2. Compute the Hilbert class polynomial Hp(X) € Z[X].
3. Extract a root jo € F, of Hp (mod p).

The root jo € F4 corresponds to an Fq—isomorphism class of elliptic curves. If one
wants to find a curve over F, with an exact prescribed trace, one could first construct
a curve over F, with the j-invariant jo output by the above algorithm. Then a twist
of this curve will have the desired trace.

1.2.4 Orientations

Let O C K be an imaginary quadratic order in an imaginary quadratic number field,
and let F be an elliptic curve over a field k. Throughout, we assume that k is perfect.
A K-orientation on F is an injective ring homomorphism ¢ : K — EndO(E). An O-
orientation is a K-orientation for which ¢(O) C End(FE). We say that an O-orientation
is primitive if there does not exist a strict superorder @' 2 O in K for which it is
also an O’-orientation. This is equivalent to ¢(O) = End(F) N ¢(K); this last equation
associates to each K-oriented elliptic curve a unique order O, called the primitive
order, with respect to which the orientation is primitive. Given a K-oriented curve
(E, () and an isogeny ¢ : E — E’, we obtain an induced K-orientation on E’ given by

1
o deg ¢

HOIC) pu(a)@. (1.4)

A morphism (E,¢) — (E’, ), also called a (K -oriented) isogeny, of K-oriented elliptic
curves is an isogeny ¢ : E — E’ such that ¢.(¢) = /.

Lemma 1.2.2 Let { be a prime number different from chark. Let o : (E,1) = (E',!)
be a K-oriented isogeny of degree £, and let O, O’ be the respective primitive orders.
Then exactly one of the following is true.

(i) O C O and [O': O] =4, in which case ¢ is called ascending;
(i) O 20" and [O : O] = ¢, in which case @ is called descending;

(iii) O = O, in which case ¢ is called horizontal.
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