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Chapter 1

Preliminaries

This chapter consists mainly of standard definitions and results. It is advised to con-
sult it mainly for reference and to skip (at least) to Chapter 2. The reader familiar with
isogeny-based cryptography can immediately skip to Chapter 3, where the main con-
tributions of this work are highlighted. Chapters 4, 5, 6, and 7 have been individually
published as research papers.

1.1 Elliptic Curves

Our main references for this section are [2, 4].

1.1.1 Definition and Weierstrass models

Let k be a field. An algebraic group over k is an algebraic variety G/k together with a
specified point e ∈ G(k), and morphisms of varieties G×G→ G (multiplication), and
G→ G (inversion), which induce a group structure on G(k) with respect to which e is
the identity element. A morphism of algebraic groups is a morphism of algebraic va-
rieties that is also a homomorphism of groups. Projective connected algebraic groups
are called abelian varieties; their group structure is always commutative. Abelian
varieties of dimension one are called elliptic curves. Any smooth projective geometri-
cally irreducible algebraic curve C over k of genus one together with a specified point
e ∈ C(k) admits the structure of an elliptic curve with e as an identity element. Ev-
ery morphism of varieties between elliptic curves that respects the identity element
is a morphism (of algebraic groups). An elliptic curve E over k admits a k-rational
isomorphism to a smooth projective planar curve with affine model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.1)

sending the specified point e ∈ E(k) to the unique point at infinity. A curve of this
form is called a Weierstrass curve. If the characteristic of k is not 2 or 3, there
furthermore exists an isomorphism to one for which a1 = a2 = a3 = 0; i.e. to a short
Weierstrass curve, whose affine model is given by an equation of the form

y2 = x3 +Ax+B. (1.2)
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The j-invariant of an elliptic curve E/k is an explicit element of k that can be defined
by a rational function in the coefficients of its long Weierstrass model [4, III.1]. For
the case of a short Weierstrass equation it is j(E) := (28 · 33 · A3)/(4A3 + 27B2).
Two elliptic curves over an algebraically closed field are isomorphic if and only if their
j-invariants are equal.

1.1.2 Isogenies between elliptic curves

Morphisms of elliptic curves that are not constant, or equivalently, have finite kernel,
are called isogenies. Associated to an isogeny φ : E → E′ is the field extension
φ∗ : k(E′) ↪→ k(E) of function fields given by the pull-back map φ∗ : f 7→ f ◦ φ. The
degree deg(φ) of an isogeny is the degree of this field extension, and an isogeny is called
separable if this is a separable field extension. An isogeny of degree ℓ is also called an
ℓ-isogeny. For N ∈ Z we denote by [N ] : E → E, P 7→ NP the multiplication-by-N
map, and its kernel, which consists of the N -torsion points, by E[N ]. For every isogeny
φ : E → E′ there exists a unique isogeny φ̂ : E′ → E, called the dual isogeny, such
that φ ◦ φ̂ = [degφ]. The degree of [N ] is N2. For a field L ⊇ k, we write EndL(E)
for the set of endomorphisms of E defined over L, and write End(E) := Endk̄(E) for
the (full) endomorphism ring. The set EndL(E) admits a ring structure, where the
multiplication is given by composition and the addition is given (pointwise) by the
group operation. This ring is isomorphic to either [4, Cor. III.9.4]

(i) the integers Z;

(ii) an order O in an imaginary quadratic number field K;

(iii) a maximal order O in Bp,∞, the unique quaternion algebra over Q ramified at
p and infinity, where p > 0 equals the characteristic of k.

The ring End0L(E) := EndL(E) ⊗Z Q is called the endomorphism algebra of E over
L. We denote by End0(E) := Endk̄(E) ⊗Z Q the (full) endomorphism algebra of E.
Any non-integer endomorphism of an elliptic curve is an imaginary quadratic number,
whose norm over Q as an algebraic integer is equal to its degree as an isogeny.

Lemma 1.1.1 Let E/k be an elliptic curve and let H be a finite subgroup of E. Then
there exists a separable isogeny φ : E → E′ with domain E and kernel H. This isogeny
is unique up to post-composition with an isomorphism. The curve E′ is necessarily
unique up to isomorphism and we denote it by E/H.

Proof. [4, Prop. III.4.12].

There is a set of formulae by Vélu [6] that can be used to explicitly compute a
Weierstrass model for E/H, as well as a description of the associated isogeny φ : E →
E/H.
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Proposition 1.1.2 (Vélu, [6]) Let E/k be an elliptic curve in long Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

together with a finite subgroup H ⊆ E. Denote by 0 ∈ E the point at infinity. Partition
H \ {0} = H2 ⊔H+ ⊔H−, where H2 = H[2] \ {0} and H+ and H− are such that for
any P ∈ H+ it holds that −P ∈ H−. Write S = H2 ∪H+, and for P ∈ S define

gxP = 3x(P )2 + 2a2x(P ) + a4 − a1y(P ),
gyP = −2y(P )− a1x(P )− a3,

uP = (gyP )
2, vP =

{
gxP if P ∈ H2,

2gxP − a1g
y
P else,

v =
∑
P∈S

vP , w =
∑
P∈S

(uP + x(P )vP ),

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5v, A6 = a6 − (a21 + 4a2)v − 7w.

Then an equation for E′ = E/H is given by

E′ : y2 +A1xy +A3y = x3 +A2x
2 +A4x+A6. (1.3)

Furthermore, there exists a separable isogeny φ : E → E′ with kernel H that satisfies

x(φ(Q)) = x(Q) +
∑

P∈H\{0}

(x(Q+ P )− x(P ))

y(φ(Q)) = y(Q) +
∑

P∈H\{0}

(y(Q+ P )− y(P )).

for all Q ∈ E.

1.1.3 Elliptic curves over finite fields

Let Fq be a finite field with q elements of characteristic p := char(Fq), and let E/Fq be
an elliptic curve with long Weierstrass model E : y2+a1xy+a3y = x3+a2x

2+a4x+a6.
The q-Frobenius endomorphism π ∈ End(E) is given by the map (x, y) 7→ (xq, yq).
If N := #E(Fq), then we define by t := q + 1 − N the trace of E/Fq, also called
the trace of Frobenius. The characteristic polynomial of Frobenius is the polynomial
f := X2 − tX + q. It always has π as a root. An elliptic curve for which p | t is
called supersingular, otherwise E is called ordinary. If π ̸∈ Z, which is guaranteed if
E is ordinary, then the characteristic polynomial is the minimal polynomial of π as an
algebraic integer. The full endomorphism ring End(E) of an ordinary elliptic curve is
an order in an imaginary quadratic number field. For a supersingular elliptic curve it
is a maximal order in the quaternion algebra Bp,∞ over Q ramified at p and ∞.
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1.2 Orientations and CM

Our main references for this subsection are [1, 3, 5].

1.2.1 Imaginary quadratic orders

An imaginary quadratic order O is an order (i.e. a full-rank Z-lattice that is also a
subring) in an imaginary quadratic number field K. It is always of the form O = Z[σ]
for some σ ∈ K; such σ is called a generator for O. The discriminant Disc(O) of
O is the discriminant of σ as an imaginary quadratic number. The discriminant is
always a negative integer that is congruent to 0 or 1 (mod 4); such integers are also
called imaginary quadratic discriminants. For every imaginary quadratic discriminant
there exists, up to ring isomorphism, a unique imaginary quadratic order with that
discriminant. An imaginary quadratic discriminant that corresponds to a maximal
order (i.e. the ring of integers of its field K) is called a fundamental discriminant. If
O1 ⊆ O2 is an inclusion of imaginary quadratic orders, then Disc(O1) = v2 Disc(O2),
where v = [O2 : O1] is the index of O1 in O2 as an additive abelian group. A proper
O-ideal a is an O-ideal for which {β ∈ K | βa ⊆ a} = O (cf. [5, Def. 17.9]). We call
two proper O-ideals a and b equivalent if there exists β ∈ K for which βa = b. The
(ideal) class group Cl(O) of O is the multiplicative group of proper O-ideals up to
equivalence.

1.2.2 Elliptic curves over C

Let Λ ⊆ C be a Z-lattice of rank 2. We define a morphism Λ1 → Λ2 of two such
lattices as a complex number α ∈ C such that αΛ1 ⊆ Λ2, that is

Hom(Λ1,Λ2) := {α ∈ C | αΛ1 ⊆ Λ2}.

Under this notion of morphism, there is an equivalence of categories{
Elliptic curves over C

}−−−−−−−−−−→←−−−−−−−−−−
{
Full rank Z-lattices Λ ⊆ C

}
Any lattice is isomorphic to one of the form Λ = Z + τZ = ⟨1, τ⟩ for some τ in the
complex upper half plane H, and any two such lattices Λ1 = ⟨1, τ1⟩,Λ2 = ⟨1, τ2⟩ are
isomorphic if and only if τ1 and τ2 are in the same SL2(Z)-orbit, i.e. if and only if there
exist integers a, b, c, d ∈ Z for which ad−bc = 1 and such that τ2 = (aτ1+b)/(cτ1+d).
This happens if and only if τ1 and τ2 admit the same value under the modular j-
function j : H→ C.
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τ

1

Figure 1.1: A rank two Z-lattice in C spanned by 1 and τ ∈ H.

For most lattices Λ = ⟨1, τ⟩, hence for most elliptic curves over C, we have
End(Λ) ∼= Z. The exception to this is precisely the special case where τ satisfies
a (necessarily imaginary) quadratic equation

aτ2 + bτ + c = 0, for some coprime a, b, c ∈ Z, a > 0.

In that case, End(Λ) = Z[aτ ], and we say that Λ has complex multiplication by the
imaginary quadratic order O := Z[aτ ] ⊆ K := Q(τ). The field K(j(τ)) depends only
on O and is called the ring class field of O. The field extension K(j(τ))/K is abelian
and its Galois group is isomorphic to the class group Cl(O) of O. The Hilbert class
polynomial associated to τ is

Hτ (X) :=
∏

σ∈Gal(K(j(τ))/K)

(X − σ(j(τ)))

=
∏

E/C ell. curve
End(E)∼=O

(X − j(E)).

The Hilbert class polynomial has integer coefficients and only depends on (the isomor-
phism class of) O; sometimes it also denoted HO(X) or HD(X), where D := Disc(O).

1.2.3 The CM method

Hilbert class polynomials can be used to construct elliptic curves over finite fields
with a prescribed number of points through a procedure known as the CM method.
Elliptic curves over finite fields always have complex multiplication, in the sense that
their endomorphism ring is never isomorphic to Z. Let E/Fq be an ordinary elliptic
curve over a field of characteristic p > 0, and let π ∈ End(E) denote the q-Frobenius
endomorphism. Then the minimal polynomial of π is X2 − tX + q, where N :=
#E(Fq) = q + 1 − t. Since End(E) contains the imaginary quadratic order Z[π], it
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follows that

t2 − 4q = Disc(Z[π]) = v2 Disc(End(E)), for some v ∈ Z.

This motivates the following algorithm

Algorithm 1.2.1 (CM method) Given a prime power q = pe and an integer t ∈ Z
coprime to q for which t2 − 4q < 0, find the j-invariant of an elliptic curve E/Fq with
trace of Frobenius t.

1. Find v ∈ Z and an imaginary quadratic discriminant D such that v2D = t2−4q.

2. Compute the Hilbert class polynomial HD(X) ∈ Z[X].

3. Extract a root j0 ∈ Fq of HD (mod p).

The root j0 ∈ Fq corresponds to an Fq-isomorphism class of elliptic curves. If one
wants to find a curve over Fq with an exact prescribed trace, one could first construct
a curve over Fq with the j-invariant j0 output by the above algorithm. Then a twist
of this curve will have the desired trace.

1.2.4 Orientations

Let O ⊆ K be an imaginary quadratic order in an imaginary quadratic number field,
and let E be an elliptic curve over a field k. Throughout, we assume that k is perfect.
A K-orientation on E is an injective ring homomorphism ι : K → End0(E). An O-
orientation is aK-orientation for which ι(O) ⊆ End(E). We say that an O-orientation
is primitive if there does not exist a strict superorder O′ ⊋ O in K for which it is
also an O′-orientation. This is equivalent to ι(O) = End(E)∩ ι(K); this last equation
associates to each K-oriented elliptic curve a unique order O, called the primitive
order, with respect to which the orientation is primitive. Given a K-oriented curve
(E, ι) and an isogeny φ : E → E′, we obtain an induced K-orientation on E′ given by

φ∗(ι)(α) =
1

degφ
φι(α)φ̂. (1.4)

A morphism (E, ι)→ (E′, ι′), also called a (K-oriented) isogeny, of K-oriented elliptic
curves is an isogeny φ : E → E′ such that φ∗(ι) = ι′.

Lemma 1.2.2 Let ℓ be a prime number different from char k. Let φ : (E, ι)→ (E′, ι′)
be a K-oriented isogeny of degree ℓ, and let O,O′ be the respective primitive orders.
Then exactly one of the following is true.

(i) O ⊊ O′ and [O′ : O] = ℓ, in which case φ is called ascending;

(ii) O ⊋ O′ and [O : O′] = ℓ, in which case φ is called descending;

(iii) O = O′, in which case φ is called horizontal.
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