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Preface

Elliptic curves are mathematical objects that boast rich and deep connections to nu-
merous areas of mathematics; most prominently to number theory and arithmetic
geometry. They lie at the basis of many both solved and unsolved mathematical prob-
lems, such as Fermat’s last theorem and the Birch and Swinnerton-Dyer conjecture.
In the real world, elliptic curves have become the standard in many cryptographic
protocols, and they are used millions of times per second to establish encrypted com-
munication over the internet. The security of these protocols relies on the assumption
that a certain computational problem, called the discrete logarithm problem, is diffi-
cult. Quantum computers break this assumption, and hence much of today’s widely
employed cryptography is considered potentially unsafe in the near future. An alter-
native proposal using elliptic curves is isogeny-based cryptography. It bases its security
on the computational difficulty of finding a non-trivial map, also called an isogeny,
between a pair of elliptic curves over a large finite field; a problem considered difficult
even for quantum computers.

In Chapter 1, we present background material, consisting mainly of standard defi-
nitions and results related to elliptic curves and imaginary quadratic orders.

Chapter 2 provides a short introduction to isogeny-based cryptography, in partic-
ular to protocols that are based on class group actions.

In Chapter 3, we provide a summary of the ideas and main results of the following
four chapters, all of which are papers jointly written with other authors.

Chapter 4 is a paper written together with Wouter Castryck, Frederik Vercauteren,
and Benjamin Wesolowski. We analyze situations in which certain maps on elliptic
curves called pairings can be used to break a computational hardness assumption
called the decisional Diffie–Hellman problem.

Chapter 5 is a paper written together with Sam van Buuren, Wouter Castryck,
Simon-Philipp Merz, Marzio Mula, and Frederik Vercauteren. We analyze special
cases in which pairings can be used to recover a secret isogeny between a pair of
elliptic curves over a large finite field.

Chapter 6 is a paper written together with Marco Streng. Motivated by a method
to speed up the computation of elliptic curves over finite fields with a prescribed
number of points, we devise a multivariate generalization of Hilbert class polynomials.

Chapter 7 is a paper written together with Wouter Castryck, Thomas Decru, and
Frederik Vercauteren. It concerns a method to make isogeny-based protocols more
practical by optimizing the underlying algorithms through radical isogenies.

In Chapter 8, we conclude by summarizing the main results and implications of
our work. We also highlight some topics of further research.

We thank the Research Foundation – Flanders (FWO) for their support through PhD Fel-

lowship Fundamental Research 11C7322N.
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Chapter 1

Preliminaries

This chapter consists mainly of standard definitions and results. It is advised to con-
sult it mainly for reference and to skip (at least) to Chapter 2. The reader familiar with
isogeny-based cryptography can immediately skip to Chapter 3, where the main con-
tributions of this work are highlighted. Chapters 4, 5, 6, and 7 have been individually
published as research papers.

1.1 Elliptic Curves

Our main references for this section are [2, 4].

1.1.1 Definition and Weierstrass models

Let k be a field. An algebraic group over k is an algebraic variety G/k together with a
specified point e ∈ G(k), and morphisms of varieties G×G→ G (multiplication), and
G→ G (inversion), which induce a group structure on G(k) with respect to which e is
the identity element. A morphism of algebraic groups is a morphism of algebraic va-
rieties that is also a homomorphism of groups. Projective connected algebraic groups
are called abelian varieties; their group structure is always commutative. Abelian
varieties of dimension one are called elliptic curves. Any smooth projective geometri-
cally irreducible algebraic curve C over k of genus one together with a specified point
e ∈ C(k) admits the structure of an elliptic curve with e as an identity element. Ev-
ery morphism of varieties between elliptic curves that respects the identity element
is a morphism (of algebraic groups). An elliptic curve E over k admits a k-rational
isomorphism to a smooth projective planar curve with affine model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.1)

sending the specified point e ∈ E(k) to the unique point at infinity. A curve of this
form is called a Weierstrass curve. If the characteristic of k is not 2 or 3, there
furthermore exists an isomorphism to one for which a1 = a2 = a3 = 0; i.e. to a short
Weierstrass curve, whose affine model is given by an equation of the form

y2 = x3 +Ax+B. (1.2)

1



Elliptic Curves

The j-invariant of an elliptic curve E/k is an explicit element of k that can be defined
by a rational function in the coefficients of its long Weierstrass model [4, III.1]. For
the case of a short Weierstrass equation it is j(E) := (28 · 33 · A3)/(4A3 + 27B2).
Two elliptic curves over an algebraically closed field are isomorphic if and only if their
j-invariants are equal.

1.1.2 Isogenies between elliptic curves

Morphisms of elliptic curves that are not constant, or equivalently, have finite kernel,
are called isogenies. Associated to an isogeny φ : E → E′ is the field extension
φ∗ : k(E′) ↪→ k(E) of function fields given by the pull-back map φ∗ : f 7→ f ◦ φ. The
degree deg(φ) of an isogeny is the degree of this field extension, and an isogeny is called
separable if this is a separable field extension. An isogeny of degree ℓ is also called an
ℓ-isogeny. For N ∈ Z we denote by [N ] : E → E, P 7→ NP the multiplication-by-N
map, and its kernel, which consists of the N -torsion points, by E[N ]. For every isogeny
φ : E → E′ there exists a unique isogeny φ̂ : E′ → E, called the dual isogeny, such
that φ ◦ φ̂ = [degφ]. The degree of [N ] is N2. For a field L ⊇ k, we write EndL(E)
for the set of endomorphisms of E defined over L, and write End(E) := Endk̄(E) for
the (full) endomorphism ring. The set EndL(E) admits a ring structure, where the
multiplication is given by composition and the addition is given (pointwise) by the
group operation. This ring is isomorphic to either [4, Cor. III.9.4]

(i) the integers Z;

(ii) an order O in an imaginary quadratic number field K;

(iii) a maximal order O in Bp,∞, the unique quaternion algebra over Q ramified at
p and infinity, where p > 0 equals the characteristic of k.

The ring End0L(E) := EndL(E) ⊗Z Q is called the endomorphism algebra of E over
L. We denote by End0(E) := Endk̄(E) ⊗Z Q the (full) endomorphism algebra of E.
Any non-integer endomorphism of an elliptic curve is an imaginary quadratic number,
whose norm over Q as an algebraic integer is equal to its degree as an isogeny.

Lemma 1.1.1 Let E/k be an elliptic curve and let H be a finite subgroup of E. Then
there exists a separable isogeny φ : E → E′ with domain E and kernel H. This isogeny
is unique up to post-composition with an isomorphism. The curve E′ is necessarily
unique up to isomorphism and we denote it by E/H.

Proof. [4, Prop. III.4.12].

There is a set of formulae by Vélu [6] that can be used to explicitly compute a
Weierstrass model for E/H, as well as a description of the associated isogeny φ : E →
E/H.

2



Preliminaries

Proposition 1.1.2 (Vélu, [6]) Let E/k be an elliptic curve in long Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

together with a finite subgroup H ⊆ E. Denote by 0 ∈ E the point at infinity. Partition
H \ {0} = H2 ⊔H+ ⊔H−, where H2 = H[2] \ {0} and H+ and H− are such that for
any P ∈ H+ it holds that −P ∈ H−. Write S = H2 ∪H+, and for P ∈ S define

gxP = 3x(P )2 + 2a2x(P ) + a4 − a1y(P ),
gyP = −2y(P )− a1x(P )− a3,

uP = (gyP )
2, vP =

{
gxP if P ∈ H2,

2gxP − a1g
y
P else,

v =
∑
P∈S

vP , w =
∑
P∈S

(uP + x(P )vP ),

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5v, A6 = a6 − (a21 + 4a2)v − 7w.

Then an equation for E′ = E/H is given by

E′ : y2 +A1xy +A3y = x3 +A2x
2 +A4x+A6. (1.3)

Furthermore, there exists a separable isogeny φ : E → E′ with kernel H that satisfies

x(φ(Q)) = x(Q) +
∑

P∈H\{0}

(x(Q+ P )− x(P ))

y(φ(Q)) = y(Q) +
∑

P∈H\{0}

(y(Q+ P )− y(P )).

for all Q ∈ E.

1.1.3 Elliptic curves over finite fields

Let Fq be a finite field with q elements of characteristic p := char(Fq), and let E/Fq be
an elliptic curve with long Weierstrass model E : y2+a1xy+a3y = x3+a2x

2+a4x+a6.
The q-Frobenius endomorphism π ∈ End(E) is given by the map (x, y) 7→ (xq, yq).
If N := #E(Fq), then we define by t := q + 1 − N the trace of E/Fq, also called
the trace of Frobenius. The characteristic polynomial of Frobenius is the polynomial
f := X2 − tX + q. It always has π as a root. An elliptic curve for which p | t is
called supersingular, otherwise E is called ordinary. If π ̸∈ Z, which is guaranteed if
E is ordinary, then the characteristic polynomial is the minimal polynomial of π as an
algebraic integer. The full endomorphism ring End(E) of an ordinary elliptic curve is
an order in an imaginary quadratic number field. For a supersingular elliptic curve it
is a maximal order in the quaternion algebra Bp,∞ over Q ramified at p and ∞.

3



Orientations and CM

1.2 Orientations and CM

Our main references for this subsection are [1, 3, 5].

1.2.1 Imaginary quadratic orders

An imaginary quadratic order O is an order (i.e. a full-rank Z-lattice that is also a
subring) in an imaginary quadratic number field K. It is always of the form O = Z[σ]
for some σ ∈ K; such σ is called a generator for O. The discriminant Disc(O) of
O is the discriminant of σ as an imaginary quadratic number. The discriminant is
always a negative integer that is congruent to 0 or 1 (mod 4); such integers are also
called imaginary quadratic discriminants. For every imaginary quadratic discriminant
there exists, up to ring isomorphism, a unique imaginary quadratic order with that
discriminant. An imaginary quadratic discriminant that corresponds to a maximal
order (i.e. the ring of integers of its field K) is called a fundamental discriminant. If
O1 ⊆ O2 is an inclusion of imaginary quadratic orders, then Disc(O1) = v2 Disc(O2),
where v = [O2 : O1] is the index of O1 in O2 as an additive abelian group. A proper
O-ideal a is an O-ideal for which {β ∈ K | βa ⊆ a} = O (cf. [5, Def. 17.9]). We call
two proper O-ideals a and b equivalent if there exists β ∈ K for which βa = b. The
(ideal) class group Cl(O) of O is the multiplicative group of proper O-ideals up to
equivalence.

1.2.2 Elliptic curves over C

Let Λ ⊆ C be a Z-lattice of rank 2. We define a morphism Λ1 → Λ2 of two such
lattices as a complex number α ∈ C such that αΛ1 ⊆ Λ2, that is

Hom(Λ1,Λ2) := {α ∈ C | αΛ1 ⊆ Λ2}.

Under this notion of morphism, there is an equivalence of categories{
Elliptic curves over C

}−−−−−−−−−−→←−−−−−−−−−−
{
Full rank Z-lattices Λ ⊆ C

}
Any lattice is isomorphic to one of the form Λ = Z + τZ = ⟨1, τ⟩ for some τ in the
complex upper half plane H, and any two such lattices Λ1 = ⟨1, τ1⟩,Λ2 = ⟨1, τ2⟩ are
isomorphic if and only if τ1 and τ2 are in the same SL2(Z)-orbit, i.e. if and only if there
exist integers a, b, c, d ∈ Z for which ad−bc = 1 and such that τ2 = (aτ1+b)/(cτ1+d).
This happens if and only if τ1 and τ2 admit the same value under the modular j-
function j : H→ C.

4
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τ

1

Figure 1.1: A rank two Z-lattice in C spanned by 1 and τ ∈ H.

For most lattices Λ = ⟨1, τ⟩, hence for most elliptic curves over C, we have
End(Λ) ∼= Z. The exception to this is precisely the special case where τ satisfies
a (necessarily imaginary) quadratic equation

aτ2 + bτ + c = 0, for some coprime a, b, c ∈ Z, a > 0.

In that case, End(Λ) = Z[aτ ], and we say that Λ has complex multiplication by the
imaginary quadratic order O := Z[aτ ] ⊆ K := Q(τ). The field K(j(τ)) depends only
on O and is called the ring class field of O. The field extension K(j(τ))/K is abelian
and its Galois group is isomorphic to the class group Cl(O) of O. The Hilbert class
polynomial associated to τ is

Hτ (X) :=
∏

σ∈Gal(K(j(τ))/K)

(X − σ(j(τ)))

=
∏

E/C ell. curve
End(E)∼=O

(X − j(E)).

The Hilbert class polynomial has integer coefficients and only depends on (the isomor-
phism class of) O; sometimes it also denoted HO(X) or HD(X), where D := Disc(O).

1.2.3 The CM method

Hilbert class polynomials can be used to construct elliptic curves over finite fields
with a prescribed number of points through a procedure known as the CM method.
Elliptic curves over finite fields always have complex multiplication, in the sense that
their endomorphism ring is never isomorphic to Z. Let E/Fq be an ordinary elliptic
curve over a field of characteristic p > 0, and let π ∈ End(E) denote the q-Frobenius
endomorphism. Then the minimal polynomial of π is X2 − tX + q, where N :=
#E(Fq) = q + 1 − t. Since End(E) contains the imaginary quadratic order Z[π], it
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follows that

t2 − 4q = Disc(Z[π]) = v2 Disc(End(E)), for some v ∈ Z.

This motivates the following algorithm

Algorithm 1.2.1 (CM method) Given a prime power q = pe and an integer t ∈ Z
coprime to q for which t2 − 4q < 0, find the j-invariant of an elliptic curve E/Fq with
trace of Frobenius t.

1. Find v ∈ Z and an imaginary quadratic discriminant D such that v2D = t2−4q.

2. Compute the Hilbert class polynomial HD(X) ∈ Z[X].

3. Extract a root j0 ∈ Fq of HD (mod p).

The root j0 ∈ Fq corresponds to an Fq-isomorphism class of elliptic curves. If one
wants to find a curve over Fq with an exact prescribed trace, one could first construct
a curve over Fq with the j-invariant j0 output by the above algorithm. Then a twist
of this curve will have the desired trace.

1.2.4 Orientations

Let O ⊆ K be an imaginary quadratic order in an imaginary quadratic number field,
and let E be an elliptic curve over a field k. Throughout, we assume that k is perfect.
A K-orientation on E is an injective ring homomorphism ι : K → End0(E). An O-
orientation is aK-orientation for which ι(O) ⊆ End(E). We say that an O-orientation
is primitive if there does not exist a strict superorder O′ ⊋ O in K for which it is
also an O′-orientation. This is equivalent to ι(O) = End(E)∩ ι(K); this last equation
associates to each K-oriented elliptic curve a unique order O, called the primitive
order, with respect to which the orientation is primitive. Given a K-oriented curve
(E, ι) and an isogeny φ : E → E′, we obtain an induced K-orientation on E′ given by

φ∗(ι)(α) =
1

degφ
φι(α)φ̂. (1.4)

A morphism (E, ι)→ (E′, ι′), also called a (K-oriented) isogeny, of K-oriented elliptic
curves is an isogeny φ : E → E′ such that φ∗(ι) = ι′.

Lemma 1.2.2 Let ℓ be a prime number different from char k. Let φ : (E, ι)→ (E′, ι′)
be a K-oriented isogeny of degree ℓ, and let O,O′ be the respective primitive orders.
Then exactly one of the following is true.

(i) O ⊊ O′ and [O′ : O] = ℓ, in which case φ is called ascending;

(ii) O ⊋ O′ and [O : O′] = ℓ, in which case φ is called descending;

(iii) O = O′, in which case φ is called horizontal.
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Chapter 2

Isogeny-based cryptography

This chapter is a concise, mostly informal, and highly incomplete introduction to the
field of isogeny-based cryptography. Our main focus in this introduction will be on
key-exchange protocols; in particular those based on class group actions. Such schemes
will be our main concern for the results presented in Chapter 3.

2.1 Diffie–Hellman key exchange

Elliptic curves are widely used in modern-day cryptography. For example, to se-
curely send information in many end-to-end encrypted messaging apps (such as What-
sApp, Signal, and LINE), and to sign transactions in blockchain (such as Bitcoin and
Ethereum). The way that messaging apps employ elliptic curves, is through a crypto-
graphic protocol known as a Diffie–Hellman key exchange. The idea of such a protocol
was first published in 1976 [6]. It is a method for two parties, typically known as Alice
and Bob, to establish a common secret over an insecure channel of communication.
Such a common secret is typically subsequently used to encrypt and decrypt informa-
tion that Alice and Bob would like to send to each other securely (like a WhatsApp
message). There are various ways to perform a Diffie–Hellman key exchange, but the
main idea is always the same. It can be roughly described as follows. First, Alice and
Bob agree publicly on a set X and an element x0 ∈ X. They also both compute a
secret function X → X. Let us say Alice computes (and keeps to herself) the function
fA : X → X, and that Bob does the same for the function fB : X → X. They
each evaluate their secret functions on x0, and send the result to each other, so that
Bob receives fA(x0) and Alice receives fB(x0). Then, they compute fA(fB(x0)) and
fB(fA(x0)) respectively. If the protocol is designed in such a way that their functions
commute, they end up at the same element of X, which is then their common secret.
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fA(fB(x0)) fB(fA(x0))

fA(x0)

fB(x0)

fA fB
Alice Bob

PublicPrivate Private

x0 ∈ X

Figure 2.1: A blueprint for a Diffie–Hellman key-exchange.

As an example, in Elliptic Curve Diffie–Hellman (ECDH), the protocol used by
WhatsApp, Alice and Bob publicly agree on an elliptic curve E over a finite field,
and a point P ∈ E of large order n. They hold secret elements a, b ∈ {1, . . . , n}, and
they compute and send each other fA(P ) = aP and fB(P ) = bP respectively. Their
eventual shared secret is then the point abP = baP on E. For example, in WhatsApp,
the elliptic curve used is E : y2 = x3 + 486662x2 + x over the finite field Fp, where
p = 2255 − 19. The public point P ∈ E is one of the points whose x-coordinate is 9,
and has order n = 2252 + 27742317777372353535851937790883648493.

abP baP

aP

bP

a ∈ Z b ∈ Z
Alice Bob

PublicPrivate Private

P ∈ E

Figure 2.2: An Elliptic Curve Diffie–Hellman key-exchange.

The security of such a protocol is based on the assumption that it is computation-
ally infeasible to obtain any secret information by only using the publicly available
information. More concretely, consider the following set of problems that can be as-
sociated to the cryptographic scheme described above.

Problems 2.1.1 (i) Discrete Logarithm Problem (DLP). Suppose we are given P
and aP . Compute a ∈ {1, . . . , n}.

(ii) Computational Diffie–Hellman Problem (CDH). Suppose we are given P , aP ,
and bP . Compute abP ∈ E.

(iii) Decisional Diffie–Hellman Problem (DDH). Suppose we are given either a quadru-
ple {P, aP, bP, abP} or a quadruple {P, aP, bP,Q}, where Q ∈ E is random. Dis-
tinguish, with non-negligible probabilistic advantage, which of the two options
it is.1

1A more formal version of this problem can be found in, e.g. [8, Def. 8.63].
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An algorithm to solve problem (i) can be used to solve problem (ii), and an algo-
rithm to solve problem (ii) can be used to solve problem (iii). In a sense, this makes
(i) the “hardest” of the problems and (iii) the “easiest”. Many security proofs for
cryptographic schemes rely on the hypothesis that an analogue of one, or all, of these
problems is computationally infeasible. Such a hypothesis is also called a computa-
tional hardness assumption. In the case of ECDH, it is known that there exists a
quantum algorithm that solves (i) in polynomial time. This is known as Shor’s algo-
rithm [16], and applies to a wide variety of cryptographic schemes that are deployed in
practice today, including more classical schemes that are not based on elliptic curves,
such as RSA [13]. This means that ECDH and many other protocols used today are
insecure in the era of large-scale quantum computing. While it is unknown whether
a sufficiently large quantum computer exists, or will exist in the near future, that
can be practically used to break schemes that are employed in the real world, this has
sparked an area of research known as post-quantum cryptography, which looks for ways
to encrypt information using algorithms on classical computers that are safe against
quantum attacks. One such proposal is isogeny-based cryptography.

2.2 Class group action based key exchanges

The primary computational hardness assumption central to essentially all of isogeny-
based cryptography is the isogeny path problem, and can be described as follows.

Problem 2.2.1 (Isogeny path problem.) Given a pair of elliptic curves E0, E1 over
a field k, find an isogeny φ : E0 → E1.

Most isogeny-based protocols are not based solely on the pure isogeny path prob-
lem as described above, but rather on a version of it that includes some form of extra
structure or information. Sometimes, as we will see later, this extra structure turns out
to make the protocol insecure. The historically first, and still unbroken, isogeny-based
scheme is a Diffie–Hellman key exchange protocol known as CRS, named after Cou-
veignes, Rostovtsev, and Stolbunov [4, 15]. CRS, and later variants such as CSIDH [2]
and OSIDH [3], are known as class group action based key exchange protocols.

2.2.1 Obtaining a key exchange from a class group action

Let k be a perfect field, and let O be an imaginary quadratic order. Then there is a
free action

Cl(O) ⟳ {(E, ι) | E/k ell. curve, ι : O ↪→ End(E) primitive O-orientation}/ ∼= (2.1)

of the ideal class group Cl(O) of O on the set of primitively O-oriented elliptic curves
over k up to isomorphism. We will explain in a bit where this comes from, how this
action is defined, and how to evaluate it in practice, but let us first see how this gives
rise to an idea for a Diffie–Hellman key exchange protocol.
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Alice and Bob agree publicly on an elliptic curve E0/k that is primitively oriented
by O. They select secret elements [a] and [b] of Cl(O) respectively, and compute
EA := [a]E0 and EB := [b]E0. After exchanging EA and EB , they both compute
[b][a]E0 = EAB = [a][b]E0.

[a][b]E0 [b][a]E0

[a]E0

[b]E0

[a] [b]

Alice Bob

PublicPrivate Private

E0

Figure 2.3: A class group action based key exchange.

This gives rise to the following analogues of Problems 2.1.1.

Problems 2.2.2 (i) Vectorization Problem. Suppose we are given E0 and [a]E0.
Compute [a].

(ii) Computational Diffie–Hellman Problem (CDH). Suppose we are given E0, [a]E0,
and [b]E0. Compute [a][b]E0.

(iii) Decisional Diffie–Hellman Problem (DDH). Suppose we are given either a quadru-
ple {E0, [a]E0, [b]E0, [a][b]E0} or a quadruple {E0, [a]E0, [b]E0, [c]E0}, where [c] ∈
Cl(O) is a random ideal class. Distinguish, with non-negligible probabilistic ad-
vantage, which of the two options it is.

2.2.2 Defining the class group action

We now describe the group action from (2.1) explicitly. Let k be a perfect field
of characteristic p ≥ 0, let O be an imaginary quadratic order and let E/k be a
primitively O-oriented elliptic curve. Note that ι(O) is then a subring of End(E). Let
0 ̸= a be an O-ideal such that p does not divide the norm of a. We define the kernel
of a, denoted E[a], as

E[a] :=
⋂

α∈ι(a)

ker(α) (2.2)

= {P ∈ E(k) | α(P ) = 0 ∀ α ∈ ι(a)}. (2.3)

The number of elements of E[a] equals the norm of the ideal a. We denote a · E :=
E/E[a], and write φa : E → a · E for the separable isogeny with kernel E[a] (which
is unique up to post-composition with an isomorphism by Lemma 1.1.1). Moreover,
the isomorphism class of the curve a ·E together with its orientation induced by (1.4)
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through φa only depends on the ideal class of a. Since any ideal class contains a
representative whose norm is not divisible by p, this defines a group action as in (2.1).

2.2.3 Computing the class group action

We now describe how (part of) the class group action can be explicitly computed
in the setting of CRS and CSIDH. Suppose E is defined over a finite field k = Fq
of characteristic p. Let π denote the q-Frobenius endomorphism. Suppose that π is
imaginary quadratic (or, equivalently, not an element of Z), and that E is primitively
oriented by the imaginary quadratic order O := Z[π]. Denote by f := X2 − tX + q
the characteristic polynomial of Frobenius. If ℓ ̸= p is a prime number that splits in
O, then f splits modulo ℓ, that is

f = X2 − tX + q ≡ (X − λ)(X − µ) (mod ℓ).

for λ ̸= µ ∈ (Z/ℓZ)×. This corresponds to a splitting of the principal O-ideal

(ℓ) = (ℓ, π − λ)(ℓ, π − µ) = ll (2.4)

into two ideals l = (ℓ, π − λ) and l = (ℓ, π − µ) of norm ℓ. For both of these ideals,
the kernel as defined by (2.3) is a subgroup of E of order ℓ, hence corresponds to
an ℓ-isogeny with domain E. The orbit of E under the action by the subgroup of
Cl(O) generated by [l] is a cycle whose length equals the order of [l] ∈ Cl(O). We
can associate to this cycle a directed graph, whose set of nodes is the orbit of E and
whose edges are the ℓ-isogenies corresponding to the ideals l and l, i.e. corresponding
to the two eigenvalues of Frobenius λ and µ. Since ll = (ℓ) is principal, i.e. [l] and [l]
are each other’s inverses in Cl(O), the edges belonging to different eigenvalues point
in opposite directions along the cycle.

λ

µ
λ

µ

λ
µ

λµ

λ
µ

λ
µ

λ
µ

λ µ

λ
µ

Figure 2.4: Directed cycles associated to ℓ-isogenies corresponding to the eigenvalues of
Frobenius λ and µ.

The idea of CRS and CSIDH is now that we compose random walks along these
graphs for different small primes ℓi. That is, we restrict the class group action to
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ideals of the form [a] =
∏
i[li]

ai , where li is a prime ideal above ℓi and the ai ∈ Z are
sampled randomly from predetermined bounded intervals.

Figure 2.5: A union of three ℓi-isogeny
graphs.

Figure 2.6: An isogeny walk.

If the class group is sufficiently large, these random walks should still give us many
different options for, e.g., Alice’s public curve [a]E0, so that finding an isogeny between
the starting and ending curve of the walk exhaustively will remain infeasible.

Now, let us say that we would like to compute the action of the ideal l given by
(2.4) on E, i.e. one step of the walk in Figure 2.6. According to (2.3), the kernel of l
is given by

E[l] = {P ∈ E(k) | P ∈ E[ℓ], (π − λ)(P ) = 0}.

Denoting by r the order of λ ∈ (Z/ℓZ)×, we see that

(π − λ)(P ) = 0 ⇐⇒ π(P ) = λP =⇒ πr(P ) = λrP = P =⇒ P ∈ E(Fqr ).

It follows that E[l] ⊆ E[ℓ](Fqr ). One way to compute [l]E is thus to sample an ℓ-torsion
point P ∈ E(Fqr ) whose eigenvalue under the action of Frobenius is λ, and then to
compute the codomain of the ℓ-isogeny with kernel ⟨P ⟩ using Vélu’s formulae (1.3). All
of this can be done in time polynomial in ℓ and log(q). In practice, the computational
complexity depends heavily (although polynomially) on r, as field arithmetic in larger
fields is more expensive. The optimal situation for efficient evaluation of ℓ-isogeny
walks is thus the case where the multiplicative orders of the eigenvalues of Frobenius
modulo ℓ are as small as possible, i.e. λ = 1, µ = −1. This is equivalent to

t ≡ 0 (mod ℓ), and q + 1 ≡ 0 (mod ℓ).

Demanding this for many primes ℓ automatically forces t = 0 by the Chinese remainder
theorem, i.e. the curve E to be supersingular. This gives rise to CSIDH (Commutative
Supersingular Isogeny Diffie–Hellman).
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Example 2.2.3 (CSIDH-512) Let p be the prime number

p := 4 · (3 · 5 · . . . · 373)︸ ︷︷ ︸
73 consecutive primes

·587− 1 ≈ 2511. (2.5)

Let E0/Fp be the supersingular elliptic curve given by E0 : y2 = x3 + x. Then O :=
EndFp

(E0) = Z[π], where π : E0 → E0 denotes the p-Frobenius, and O ↪→ End(E0) is
a primitive orientation. We denote by ℓ1, . . . , ℓ74 the odd prime factors of p + 1, and
by li := (ℓi, π − 1) the O-ideal above ℓi corresponding to Frobenius eigenvalue +1.
This gives rise to the following Diffie–Hellman key exchange procedure.

(i) Alice samples a random element (a1, · · · , a74) ∈ {−5, . . . , 5}74, computes EA :=∏
i[li]

aiE0, and sends EA to Bob.

(ii) Bob samples a random element (b1, · · · , b74) ∈ {−5, . . . , 5}74, computes EB :=∏
i[li]

biE0, and sends EB to Alice.

(iii) Alice computes
∏
i[li]

aiEB =
∏
i[li]

ai+biE0.

(iv) Bob computes
∏
i[li]

biEA =
∏
i[li]

ai+biE0. 9

CRS follows the same protocol as CSIDH, but with an ordinary starting curve
E0/Fq. The computational performance of CRS depends heavily on the trace of E0;
one for which the eigenvalues of Frobenius have small multiplicative order modulo
many primes ℓi is typically better. Other than essentially by exhaustive search, cur-
rently no method is known for computing an ordinary elliptic curve over a finite field
with both a favorable trace and a large class group (the latter requirement rules out
the use of the CM method 1.2.1, since (Hilbert) class polynomials become impracti-
cally large; more on this in Chapter 6). Moreover, as explained above, if sufficiently
many eigenvalue pairs are “optimal”, i.e. ±1, this forces the curve to be supersingular.
As such, all known instantiations of CRS that offer cryptographic levels of security are
several orders of magnitude slower than CSIDH, and the protocol is widely considered
impractical. However, the CRS scheme is still interesting from a theoretical stand-
point, since it is conceivable that the structure of supersingular curves (particularly
their additional endomorphisms) might some day be used in an attack against CSIDH.

2.2.4 OSIDH

Oriented Supersingular-Isogeny Diffie–Hellman [3] (OSIDH) is another class group
action based protocol, which can be roughly described as follows. Let E0 be an
elliptic curve over a (large) finite prime field Fp oriented by an imaginary quadratic
order O of class number one. Let n ∈ Z>0 and let ℓ be a (small) prime number. The
idea is for Alice and Bob to act by (secret) elements of the class group of the order
On := Z+ ℓnO on length-n chains of descending ℓ-isogenies, starting from a given one
E0 → E1 → . . . → En. More specifically, Alice acts by an ideal class [a] =

∏
i[qi]

ai ,
for some prime ideals qi of small norm coprime to ℓ and exponents −r ≤ ai ≤ r (note
the similarity to the ideal class in CSIDH and CRS), to obtain [a] · (E0 → E1 → . . .→
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En) = F0 → F1 → . . . → Fn. Bob does the same with an ideal class [b] =
∏
i[li]

bi

of the same form to obtain [b] · (E0 → E1 → . . . → En) = G0 → G1 → . . . → Gn.
Then, instead of exchanging the full descending chains (Fk)0≤k≤n and (Gk)0≤k≤n
(which would be insecure; see e.g. [3, Section 5.1]), Alice and Bob publish Fn and Gn
together with the action of [li]

j for all i and all −r ≤ j ≤ r on Fn and Gn respectively.
This is sufficient for Alice and Bob to both be able to compute [b][a]En = [a][b]En
(see [3, Section 5.2] for more details). There exist exponential-time attacks against
OSIDH [5] that are practical for a large set of parameter choices; in particular for the
original proposal of [3] that claimed a security level equivalent to CSIDH-512.

2.3 SIDH

Supersingular Isogeny Diffie–Hellman [7] (SIDH) is an isogeny-based key exchange pro-
tocol that does not rely on class group actions. For a long time, SIDH was considered
the most promising post-quantum candidate for isogeny-based cryptography. Its major
advantage compared to class group action based key exchanges was in its efficiency, and
in the fact that the best-known quantum attacks had exponential complexity, whereas
CRS and CSIDH are known to admit subexponential quantum attacks [9, 10, 12]. In
2022, classical polynomial time attacks against SIDH were found [1, 11, 14].

Example 2.3.1 (SIKEp503) Let p be the prime number

p := 2250 · 3159 − 1 = 2a · 3b − 1. (2.6)

Let E0/Fp be the supersingular elliptic curve given by E0 : y2 = x3 + x. Let E0[2
a] =

⟨PA, QA⟩ and E0[3
b] = ⟨PB , QB⟩.

(i) Alice samples a random integer mA ∈ {1, . . . , 2a}, computes φA := E0 → EA :=
E0/⟨PA +mAQA⟩ and sends EA, φA(PB), φA(QB) to Bob.

(ii) Bob samples a random integer mB ∈ {1, . . . , 3b}, computes φB := E0 → EB :=
E0/⟨PB +mBQB⟩ and sends EB , φB(PA), φB(QA) to Alice.

(iii) Alice computes EB/⟨φB(PA) +mAφB(QA)⟩ = E0/⟨PA +mAQA, PB +mBQB⟩.
(iv) Bob computes EA/⟨φA(PB) +mBφA(QB)⟩ = E0/⟨PA +mAQA, PB +mBQB⟩.

9

EAB EAB

EA, φA(PB), φA(QB)

EB , φB(PA), φB(QA)

φA φB
Alice Bob

PublicPrivate Private

E0, PA, QA, PB , QB

Figure 2.7: Supersingular Isogeny Diffie–Hellman
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Chapter 3

Main Results

In this chapter, we summarize and highlight the main ideas and results of the thesis.
The full and precise versions of these results appear in joint works presented in the
later chapters.

3.1 Pairing-based attacks on class group action based
cryptography

This section accompanies two joint research works, corresponding to Chapters 4 and 5.
The first is a joint work on breaking the decisional Diffie–Hellman problem for class
group action based schemes, together with Wouter Castryck, Frederik Vercauteren,
and Benjamin Wesolowski. The second is a joint work on weak instances of the
CRS protocol, together with Sam van Buuren, Wouter Castryck, Simon-Philipp Merz,
Marzio Mula, and Frederik Vercauteren. We start this section by an introduction of
our main tool: self-pairings on elliptic curves. Then, we introduce the isogeny interpo-
lation problem; a partial solution to this problem turned out to break the SIDH scheme
(Example 2.3.1). In Section 3.1.3, we show how these two ideas come together, as we
highlight simplified versions of the ideas and main results of the two papers mentioned
above.

3.1.1 Self-pairings

Let E/k be an elliptic curve over a field k of characteristic p ≥ 0 and let m ∈ Z>0 be

such that p ∤ m. We denote by µm ⊆ k
×
the m-th roots of unity. Pairings are bilinear

maps that send a pair of points on (subgroups of) two isogenous elliptic curves over

k to the unit group k
×

of the algebraic closure of the field of definition of the curves.

The typical example is the Weil-pairing em : E[m]× E[m] → µm ⊆ k
×

[11, III.8]. It
is an alternating, Galois-invariant, non-degenerate bilinear map, which is compatible
with isogenies φ : E → E′ in the sense that

em(φ(P ), φ(Q)) = em(P,Q)degφ (3.1)

for all P,Q ∈ E[m]. We study the following notion related to pairings.
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Definition 3.1.1 A self-pairing on a subgroup G of an elliptic curve E/k is a map

f : G→ k
×

such that

f(λP ) = f(P )λ
2

(3.2)

for all λ ∈ Z and all P ∈ G. △

Note that any bilinear map e : G × G → k
×

gives rise to a self-pairing f : G →
k
×
, P 7→ e(P, P ).

Example 3.1.2 Let em : E[m]×E[m]→ µm denote the Weil pairing. If τ ∈ End(E)
is any endomorphism, then we obtain a self-pairing

f : E[m]→ µm, P 7→ em(P, τ(P )), (3.3)

which we call the (τ -)twisted Weil self-pairing. 9

Example 3.1.3 Let E/K be an elliptic curve over a number field K. Then the

canonical (Néron–Tate) height ĥK : E → R satisfies (3.2), but is not a self-pairing,

since R ̸⊆ K×. 9

Similar to Equation (3.1), self-pairings have a notion of compatibility with isoge-
nies.

Definition 3.1.4 Let E, E′ be elliptic curves over k with self-pairings f : G → k
×
,

f ′ : G′ → k
×

on subgroups G ⊆ E, G′ ⊆ E′. Let φ : E → E′ be an isogeny. We say
that the self-pairings f , f ′ are compatible with φ if

φ(G) ⊆ G′, and f ′(φ(P )) = f(P )deg(φ) (3.4)

for all P ∈ G. △

Example 3.1.5 Consider the twisted Weil self-pairing f of Example 3.1.2, and let
φ : E → E be any endomorphism that commutes with τ . Then φ(E[m]) ⊆ E[m] and

f(φ(P )) = em(φ(P ), τ(φ(P ))) = em(φ(P ), φ(τ(P ))) = em(P, τ(P ))deg(φ) = f(P )deg(φ),

hence f is compatible with φ. 9

Definition 3.1.6 For a self-pairing f : G→ k
×

on a finite subgroup G, the order of
f is the smallest positive integer m such that f(G) ⊆ µm. △

3.1.2 Isogeny interpolation

Let φ : E0 → E1 be an isogeny of degree d. It is an elementary result that φ is fixed
once its images under N > 4d points are known.
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Lemma 3.1.7 [14, Lemma 3.1]. Let φ1, φ2 : E0 → E1 be isogenies of degree ≤ d.
Suppose that #ker(φ1 − φ2) > 4d. Then φ1 = φ2.

The isogeny interpolation problem asks to recover an isogeny given sufficiently
many image points. This problem can be effectively solved in certain cases.

Theorem 3.1.8 Let E0, E1 be elliptic curves over a finite field of characteristic p > 0.
Let φ : E0 → E1 be an isogeny of known degree d coprime to p. Let N ∈ Z>0 such
that N2 > 4d and gcd(N, d) = 1. Suppose that we are given either of the following:

(i) the images φ(P ), φ(Q) for a basis P,Q of E[N ]; or

(ii) the image φ(P ) for a point P ∈ E[N2] of order N2.

Then one can recover φ in polynomial time.

Proof. Case (i) is by Damien Robert [9, Thm. 1.1], following ideas from Castryck,
Decru [4], Maino, and Martindale [8]. Case (ii) follows from case (i) by a reduction
argument first proposed by Luca De Feo. A sketch of this argument appears in our
joint work in Chapter 5; see below Remark 5.6.1.

This result allows to break SIDH in polynomial time. For instance, in Exam-
ple 2.3.1, by applying the theorem to φ = φA, P = PB , Q = QB , d = 2a, and N = 3b.

3.1.3 Main contributions

Weak instances of CRS

We now highlight results of joint work with Sam van Buuren, Wouter Castryck, Simon-
Philipp Merz, Marzio Mula, and Frederik Vercauteren. The full version of this work
can be found in Chapter 5.

The main obstruction in applying the Isogeny Interpolation Theorem 3.1.8 to
schemes that are based on class group actions, such as CSIDH and CRS, is that
in such schemes no image points under the secret isogeny are shared. We studied
whether it is possible to use self-pairings to obtain information about image points
anyway, in an attempt to make class group action schemes vulnerable to the same
attacks that broke SIDH. In what follows, we assume for ease of exposition that m is
an odd integer. The following is a relatively straightforward result about self-pairings.

Lemma 3.1.9 Let f : G→ k
×

be a self-pairing and let P ∈ G of odd order m. Then
f(P ) is an m-th root of unity.

Proof. See Lemma 5.4.6.

We call a self-pairing on a subgroup G for which #G = m primitive if its image
contains a primitive m-th root of unity. By the lemma, this implies that G is cyclic.
The main idea of how self-pairings could be used to obtain information about image
points is as follows.
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Idea 3.1.10 Let φ : E → E′ be an unknown isogeny of known degree d. Suppose
that we have primitive self-pairings f : C → µm and f ′ : C ′ → µm on cyclic subgroups
C = ⟨P ⟩ ⊆ E and C ′ = ⟨P ′⟩ ⊆ E′ of order m that are compatible with φ. Then, since
φ(P ) ∈ C ′, it follows that φ(P ) = λP ′ for some λ ∈ Z. Now, since

f(P )d = f ′(φ(P )) = f ′(P ′)λ
2

, (3.5)

we can determine λ2 (mod m) from the values of f(P ), f ′(P ′), and d, by a discrete
logarithm computation in µm.

Knowing λ2 (mod m), the idea is then to guess λ (mod m), and hence φ(P ). Then,
if m is large, smooth, and square, we can recover φ using case (ii) of Theorem 3.1.8.
The next natural question is when such self-pairings exist. If the self-pairings are
assumed to be compatible with isogenies coming from a class group action (i.e. if
the above attack strategy applies to CSIDH and CRS), then our main result gives a
complete classification.

Theorem 3.1.11 (van Buuren, Castryck, Houben, Merz, Mula, Vercauteren) Let k
be a field of characteristic p ≥ 0, let O be an imaginary quadratic order of discriminant
D, and let m ∈ Z>0 be odd and such that p ∤ m. Primitive self-pairings of order m
compatible with O-oriented isogenies (through the recipe of Section 2.2.2) exist if and
only if m | D.

Proof. See Prop 5.4.8 and Section 5.5.

In CSIDH and CRS, we have O = Z[π], which has discriminant t2−4q. For CSIDH
we have that t = 0 and q = p is prime, hence the discriminant does not contain
large smooth square factors, and CSIDH remains completely insusceptible to isogeny
interpolation combined with self-pairings. We show, however, that exceptionally weak
instances of CRS admit polynomial time key-recovery attacks. See Example 5.6.4 for
an explicit such weak instance.

On the Decisional Diffie–Hellman problem

We now highlight results of joint work with Wouter Castryck, Frederik Vercauteren,
and Benjamin Wesolowski. The full version of this work can be found in Chapter 4.

The pairing-based attack described above solves the Vectorization Problem 2.2.2(i).
It was shown by Castryck, Sotáková, and Vercauteren [6] that there are cases in which
the Decisional Diffie–Hellman Problem 2.2.2(iii) can be solved in classical polynomial
time using Tate pairings. We present a new approach based on the Weil pairing that
is more general, conceptually simpler, and oftentimes more efficient than the previous
method.

In what follows, we denote bym ∈ Z>0 an odd prime number. Suppose f : G→ µm
is a self-pairing on a subgroup of an elliptic curve E. We define an equivalence relation
on µm \ {1} by setting x ∼ y ⇐⇒ ∃λ ∈ Z : y = xλ

2

. This partitions µm \ {1} into
two equivalence classes S1, S2. There are now four options for the image of G under
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f . Indeed, f(G) equals either {1}, µm, {1} ∪ S1, or {1} ∪ S2. In the last two cases,
we call f ramified.

Idea 3.1.12 Suppose that φ : E → E′ is an unknown isogeny of (unknown) degree d
coprime to m. Suppose that we have ramified self-pairings f : G→ µm and f ′ : G′ →
µm on subgroups G ⊆ E and G′ ⊆ E′ that are compatible with φ. Let P ∈ E and
P ′ ∈ E′ be such that f(P ) and f ′(P ′) are primitive m-th roots of unity. Since f ′ is
ramified, we find that

f(P )d = f ′(φ(P )) ∼ f ′(P ′).

It follows that we can determine whether d is a quadratic or non-quadratic residue
modulo m by computing whether or not f(P ) ∼ f ′(P ′).

To check whether f(P ) ∼ f ′(P ′), a discrete logarithm computation in µm followed
by a Legendre symbol computation suffices. Indeed,(

logf(P ) f
′(P ′)

m

)
=

{
1 if f(P ) ∼ f ′(P ′);
−1 if f(P ) ̸∼ f ′(P ′).

Equivalently, (
d

m

)
=

(
logf(P ) f

′(P ′)

m

)
.

Our main result classifies when ramified self-pairings compatible with isogenies
coming from a class group action exist.

Theorem 3.1.13 (Castryck, Houben, Vercauteren, Wesolowski) Let k be a field, let
O be an imaginary quadratic order of discriminant D, and let m ∈ Z>0 be an odd
prime number different from char k. Ramified self-pairings of order m compatible with
O-oriented isogenies (through the recipe of Section 2.2.2) exist if and only if m | D.
In that case, an explicit family of ramified self-pairings is given by the twisted Weil
pairing

f : E[m]→ µm, P 7→ em(P, σ(P )),

for some generator σ of O = Z[σ] of norm coprime to m.

Proof. See Theorem 4.1.1.

This leads to the following attack strategy against the Decisional Diffie–Hellman
Problem 2.2.2(iii). Using ramified self-pairings of order m compatible with the class
group action, we can determine whether the norm of (a representative of) a connecting
ideal class [a], or equivalently, the degree of an isogeny φa : E0 → [a]E0, is a square
or not modulo m. A Diffie–Hellman quadruple E0, [a]E0, [b]E0, [a][b]E0 now yields the
verifiable equality (

N(a)

m

)(
N(b)

m

)
=

(
N(ab)

m

)
.
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However, if O has ideal classes of both square and non-square norm modulo m, this
equality should fail with probability 50% when [a][b] is replaced by a random ideal
class [c] ∈ Cl(O), thus giving a non-negligible distinguishing advantage.

3.2 Generalized class polynomials

This section accompanies joint work with Marco Streng on generalized class polyno-
mials, corresponding to Chapter 6. After introducing (classical) class polynomials, we
present and motivate the definition of a multivariate analogue. We then highlight the
main results of our joint paper.

3.2.1 Class polynomials

Recall from Section 1.2.2) that the Hilbert class polynomial associated to an imaginary
quadratic number τ in the complex upper half plane H is defined as

Hτ (X) =
∏

σ∈Gal(K(j(τ))/K)

(X − σ(j(τ))) ∈ Z[X]. (3.6)

Hilbert class polynomials can be used to construct elliptic curves over finite fields
with a prescribed number of points through the CM method; Algorithm 1.2.1. The
bottleneck in this algorithm is in the computation of the Hilbert class polynomial;
the main reason being that its coefficients are typically large, as illustrated by the
following example.

Example 3.2.1 Let τ ∈ H be an imaginary quadratic number of discriminant D =
−103. Then

Hτ (X) = X5 + 70292286280125X4 + 85475283659296875X3

+ 4941005649165514137656250000X2

+ 13355527720114165506172119140625X

+ 28826612937014029067466156005859375.

9

For larger discriminants the situation gets worse rather quickly. For “typical”
discriminants of size 109 the total size is already in the gigabytes [13]. One possible
idea to remedy this, is to replace the j-function in (3.6) by a different modular function,
in the hope that the resulting polynomial will have smaller coefficients. The resulting
more general notion of class polynomial is captured by the following definition.

Definition 3.2.2 Let f be a modular function and τ ∈ H imaginary quadratic. If
f(τ) ∈ K(j(τ)) then we call (f, τ) a class invariant, and we define the associated class
polynomial by
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Hτ [f ](X) =
∏

σ∈Gal(K(f(τ))/K)

(X − σ(f(τ))).

△

Note thatK(f(τ))/K is indeed automatically Galois, sinceK(j(τ))/K is an abelian
extension.

Example 3.2.3 Let f(z) = ζ−148 η(
z+1
2 )/η(z), where ζ48 is a primitive 48-th root of

unity, and

η(z) = q1/24
∞∏
n=1

(1− qn), where q = exp(2πiz) (3.7)

is the Dedekind η-function. Let τ be as in Example 3.2.1. Then

Hτ [f](X) = X5 + 2X4 + 3X3 + 3X2 +X − 1. (3.8)

9

The modular function f from the example is known as Weber’s function (well,
one of three such functions [15, §34]). It is related to the modular j-function by the
equation

(f24 − 1)3 − jf24 = 0. (3.9)

For any τ of discriminant ≡ 1 (mod 8), we have that (f, τ) is a class invariant. The
resulting class polynomials can be used in place of Hilbert class polynomials in the
CM method; the only extra step one needs is to compute a j-invariant from an “f-
invariant” using (3.9). The phenomenon that the Weber function yields smaller class
polynomials can be explained through the following definition.

Definition 3.2.4 The reduction factor of a modular function f of level N is

r(f) =
deg(j : X(N)→ P1)

deg(f : X(N)→ P1)
.

△

At imaginary quadratic τ ∈ H, the value of the modular j-function j(τ) is an
algebraic number (in fact, an algebraic integer). We denote by h(j(τ)) its logarithmic
height. For a (possibly multivariate) nonzero polynomial F over C, we denote by
|F |∞ ∈ R>0 the maximum of the absolute values of its coefficients.

Proposition 3.2.5 Let f be a modular function that has a q-expansion with coeffi-
cients in a number field, and let τ1, τ2, . . . ∈ H be a sequence of imaginary quadratic
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numbers such that h(j(τi))→∞. Suppose that K(f(τi)) = K(j(τi)) for all i. Then

log |Hτi [j](X)|∞
log |Hτi [f ](X)|∞

→ r(f). (3.10)

Proof. This result follows from [7, Prop. B.3.5]; see the argument on the bottom of
page 9 of [2].

Essentially, the proposition says that for a modular function f , asymptotically, the
bitsize of the largest coefficient of its class polynomials are a factor r(f) less than that
of Hilbert class polynomials. For Weber’s function f, the reduction factor is 72, which
means that asymptotically we would require about 72 times fewer digits to write down
the largest coefficient of a class polynomial for f when compared to j. No modular
function with a reduction factor larger than 72 is known. In fact, according to the
following result, we cannot do much better.

Theorem 3.2.6 (Bröker–Stevenhagen, 2008) Let f be a modular function. Then
r(f) ≤ 32768/325 ≈ 100.82.

Proof. See [2, Thm. 4.1].

The upper bound on r(f) can be further improved to 96 if one assumes Selberg’s
eigenvalue conjecture [10].

3.2.2 Main contributions

We now highlight results of joint work with Marco Streng. The full version of this
work can be found in Chapter 6.

Since the reduction factors of class polynomials are limited by the Bröker-Stevenhagen
bound, we considered a multivariate extension that we call generalized class polynomi-
als. A univariate polynomial over a field k can be seen as a function on the projective
line P1(k) whose poles are restricted to the unique point at infinity. Class polynomials
can thus be described, up to a multiplicative constant, by their divisor as a function
on P1.

divHτ [f ] =
∑
σ∈G

(σ(f(τ)))−#G(∞), where G = Gal(K(f(τ))/K).

In other words, for a class invariant (f, τ), the class polynomial represents a function
on P1 that has a simple zero at every element of the Galois orbit of f(τ), and a pole
at the unique point at infinity; see Figure 3.1.
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P1 f(τ)

σ1(f(τ)) σ2(f(τ))σ3(f(τ))

τ

H

· · ·

f

Figure 3.1: The Galois orbit of a class invariant.

ψ(τ)

σ1(ψ(τ))

σ2(ψ(τ))

σ3(ψ(τ))

−
∑
σi(ψ(τ))

τ

H

ψ = (x, y)

· · ·x

y

Figure 3.2: The Galois orbit of a pair of class invariants satisfying the equation of an
elliptic curve.

Now suppose that we are given, instead of one class invariant, a pair (x, τ), (y, τ)
of class invariants. Since any pair of modular functions is algebraically dependent,
the modular functions x, y satisfy the equation of a (possibly singular) planar curve.
Let us suppose for simplicity that this is an elliptic curve E given by a Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Then ψ(τ) := (x(τ), y(τ)) defines a point on E(K(j(τ)), hence we can again consider
its Galois orbit. Setting G := Gal(K(x(τ), y(τ))/K), the generalized class polynomial
Hτ [E] ∈ K[X,Y ] is now defined, uniquely up to a non-zero multiplicative scalar, by

27



Generalized class polynomials

its divisor

divHτ [E] =
∑
σ∈G

(
σ(ψ(τ))

)
+
(
−
∑
σ∈G

σ(ψ(τ))︸ ︷︷ ︸
sum on E

)
− (#G+ 1)

(
∞
)
,

where ∞ ∈ E denotes the unique point at infinity. Note that the extra term (the
negative of the sum of the points in the Galois orbit) is now necessary to ensure that
the resulting divisor is principal; see Figure 3.2.

Example 3.2.7 Consider the modular curve E = X0
+(119); i.e. the quotient of

X0(119) = H/Γ0(119) by the Fricke-Atkin-Lehner involution τ 7→ −119/τ . Then E
is an elliptic curve, and a modular parametrization is given by

E : y2 + 3xy − y = x3 − 3x2 + x,

where x, y are modular functions for Γ0(119) with q-expansions

x = q−2 + q−1 + 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 4q6 + 5q7 + . . .

y = q−3 + 1 + 2q + 2q2 + 4q3 + 4q4 + 7q5 + 9q6 + 12q7 + . . .

where q = exp(2πiτ/119). Let τ be an imaginary quadratic number of discriminant
−103. Then, further depending on τ , there are two options for the generalized class
polynomial:1

Hτ1 [E] = X3 + 2X2 +XY + 2X + Y,

Hτ2 [E] = X3 − 2X2 −XY +X + 2Y + 1.

One can compare this with Examples 3.2.1, 3.2.3. 9

We may expect to estimate the size reduction of the coefficients of generalized class
polynomials compared to Hilbert class polynomials through the following generaliza-
tion of Definition 3.2.4.

Definition 3.2.8 The reduction factor of a modular curve C is

r(C) :=
deg(j : X(N)→ P1)

deg(ψ : X(N)→ C)
,

where ψ is any covering of C by the modular curve X(N) for some N ∈ Z>0. △

For the case of rational elliptic curves with a finite number of points, this indeed
correctly measures the expected asymptotic size reduction.

1For X+
0 (119), the number of distinct class polynomials per discriminant is always at most two.
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Theorem 3.2.9 (Houben, Streng) Assume C is an elliptic curve over Q of rank
0, and that the map ψ = (x, y) : H → C consists of a pair of modular functions
corresponding to Weierstrass coordinates of C and whose q-expansions are rational.
If τ ∈ H ranges over a sequence of imaginary quadratic points for which K(ψ(τ)) =
K(j(τ)) and

h(j(τ))

log log(#Cl(O))
→∞, (3.11)

then
log |Hτ [j]|∞
log |Hτ [C]|∞

→ r(C). (3.12)

Proof. See Theorem 6.3.4.

For the case of the modular curve in Example 3.2.7, the reduction factor is 72; equal
to the one for Weber’s function. We did not find any elliptic curve with a reduction
factor better than 72. Though this might seem somewhat disappointing, we believe
there are several interesting conclusions and challenges for further work. For example:

(i) Weber’s function is only known to yield class invariants for discriminants ≡ 1
(mod 8). The generalized class polynomials associated to X0

+(119) are the first
known to yield class invariants of reduction factor ≥ 72 for discriminants ̸≡ 1
(mod 8).

(ii) The coordinate function x on X0
+(119) yields previously unknown univariate

class polynomials. Its reduction factor of 36 already beats all previously known
class invariants along a subset of imaginary quadratic discriminants of positive
density (defined by a congruence condition). As a result, we expect that the
further study of generalized class polynomials could provide new insights into
the univariate case as well.

(iii) We know that there exist higher genus curves whose reduction factors exceed
the Bröker-Stevenhagen bound. For example, the modular curve X0

+(239) has
genus 3 and reduction factor r(X0

+(239)) = 120. It remains to study whether
the analogue of Theorem 3.2.9 holds for this curve.

It should be further noted that Theorem 3.2.9 only provides an asymptotic and
concludes nothing about the speed of convergence. Some practical height reduction
factors for X0

+(119), i.e. the left hand side of (3.12), for fundamental discriminants of
prime class number are plotted in Figure 3.3.
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Figure 3.3: Practical reduction factors for Hτ [X
0
+(119)] for fundamental discriminants D

with gcd(D, 119) = 1 and prime class number n < 100. In the graph on the right, the x-axis
plots the parameter from (3.11), and class polynomials with lower class number correspond
to points with a lighter shade.

3.3 Radical isogenies

This section accompanies joint work with Wouter Castryck, Thomas Decru, and Fred-
erik Vercauteren on horizontal racewalking using radical isogenies, corresponding to
Chapter 7. After introducing and motivating the study of radical isogenies, we sum-
marize and highlight the main contributions of our joint paper.

3.3.1 Computing isogeny chains

One of the main disadvantages of isogeny-based cryptography compared to other post-
quantum proposals, such as lattice-based cryptography, is that it is relatively slow.
Therefore, there has been continued interest in optimizing the algorithms underlying
the evaluation of isogeny-based protocols. Most isogeny-based protocols rely on com-
puting isogenies of small degree between elliptic curves. This often takes the form of
isogeny walks, such as in Figure 2.6, which typically consist of chains of isogenies of
small degree. For example, in CSIDH-512, see Example 2.2.3, one computes isogenies
of degree up to 587 in chains of length up to 5. Since isogenies of smaller degree are
typically easier to evaluate, a straightforward optimization to the CSIDH protocol is
to skew the possible lengths of the chains; i.e. to take longer chains using isogenies
of small degree and shorter chains using isogenies of larger degree. This happens, for
example, in CSURF-512 [3]. The topic of our research is an attempt to make the
evaluation of chains of isogenies of a given degree faster. For this, we would like to be
able to extend isogeny chains efficiently, i.e., assuming we have computed a chain

E0
φ1−→ E1

φ2−→ · · · φk−−→ Ek (3.13)
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of isogenies of degree N of length k ≥ 1 such that the composition of the isogenies is
cyclic2 of degree Nk, we would like to efficiently compute an isogeny φk : Ek → Ek+1

of degree N that cyclically extends the chain. More precisely, we study the following
problem.

Problem 3.3.1 Let E/Fq be an elliptic curve and let N ∈ Z>1 coprime to charFq.
Let P ∈ E(Fq)[N ] and consider the cyclic isogeny φ : E → E′ = E/⟨P ⟩ of degree N .

Find P ′ on E′(Fq) such that the composition E
φ−→ E′ → E′/⟨P ′⟩ is a cyclic isogeny

of degree N2.

One possible method, if say E′[N ](Fq) ∼= (Z/NZ), is to sample a random point
Q ∈ E′(Fq), and to multiply by a suitable cofactor P ′ := (#E′(Fq)/N)Q. This
results in a suitable point P ′ of order N with probability ϕ(N)/N , where ϕ is Euler’s
totient function. However, this is non-deterministic, and relatively slow, since we must
multiply a point on E′(Fq) by the (in case of cryptographic applications) large integer
#E′(Fq)/N ≈ q. Alternatively, one could

(i) find the j-invariant of E′/⟨P ′⟩ by extracting a root of the modular polynomial
ΦN (j(E′), X) different from j(E) over Fq; or

(ii) extract a root over Fq of the N -division polynomial on E′(Fq),

but these root-finding algorithms are typically even slower. A different approach is sug-
gested by radical isogenies, first introduced by Castryck, Decru, and Vercauteren [5].
We will illustrate the idea with an example, which will make use of the following
notion.

Definition 3.3.2 Let k be a field of characteristic p ≥ 0 and let E/k be an elliptic
curve. Let P ∈ E(k) be a point of order N ≥ 4 such that p ∤ N . Then there exist
unique b, c ∈ k such that E admits an isomorphism φ : E → Eb,c to the Weierstrass
curve

Eb,c : y
2 + (1− c)xy − by = x3 − bx2 (3.14)

for which φ(P ) = (0, 0) [12, Lemma 2.1]. Such a Weierstrass model is called the Tate
normal form of the pair (E,P ). △

Example 3.3.3 (Radical 5-isogenies) Consider Problem 3.3.1 for the case N = 5.
Using the Tate normal form, any elliptic curve with a point of order 5 can be written
as

E : y2 − (1− b)xy − by = x3 − bx2, where P = (0, 0).

for some value of the parameter b. Instead of specifying this parameter, we consider
it as a formal variable and write down the general equation for E/⟨P ⟩ using Vélu’s

2That is, the kernel of the isogeny is a cyclic subgroup of E0. For example, if N is prime, this is
equivalent to the condition that kerφi ̸= ker φ̂i−1 for all i = 2, . . . , k.
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formulae (1.3):

y2 + (1− b)xy − by = x3 − bx2 − 5b(b2 + 2b− 1)x− b(b4 + 10b3 − 5b2 + 15b− 1).

By finding an appropriate root of the 5-division polynomial on this curve, still written
in terms of the formal variable b, we can obtain a formula for the coordinates of a 5-
torsion point P ′ = (x′0, y

′
0) on E/⟨P ⟩ that cyclically extends the isogeny E → E/⟨P ⟩.

x′0 = 5α4 + (b− 3)α3 + (b+ 2)α2 + (2b− 1)α− 2b,

y′0 = 5α4 + (b− 3)α3 + (b2 − 10b+ 1)α2 + (13b− b2)α− b2 − 11b,

where α = 5
√
b. Putting the curve-point pair (E/⟨P ⟩, P ′) in Tate normal form, we

obtain the following Weierstrass model for (the isomorphic curve) E′ ∼= E/⟨P ⟩:

E′ : y2 − (1− b′)xy − b′y = x3 − b′x2, where b′ = α
α4 + 3α2 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1
,

thus obtaining an equation for the corresponding Tate-normal-form parameter b′ of
the curve E′. Now, computing a chain of 5-isogenies of elliptic curves over Fq amounts
to iteratively computing b′ from b. If gcd(5, q− 1) = 1 then this is deterministic, and,
for fields Fq of cryptographic size, faster than any other known method of computing

chains of 5-isogenies. 9

In general, if (b, c) denote the Tate normal form parameters of a curve E together
with a point of order N > 3, there exists a formal expression (depending on N) for the
Tate normal form parameters (b′, c′) of a next curve E′ in an N -isogeny chain. This
expression is an algebraic function of b, c, and α = N

√
ρ(b, c), where ρ(b, c) is another

explicit algebraic function of b and c; cf. the formula for b′ in Example 3.3.3. Such an
expression is known as a radical isogeny formula and its general existence was shown
in [5, Thm. 5].

3.3.2 Main contibutions

We now highlight results of joint work with Wouter Castryck, Thomas Decru, and
Frederik Vercauteren. The full version of this work can be found in Chapter 7.

Though radical isogeny formulae always exist, they are not always easy to find.
The approach suggested by Example 3.3.3 to use the N -division polynomial on E′

was employed in [5], but proved computationally infeasible for N > 13. We developed
an alternative way to compute radical isogeny formulae, which allowed to extend the
range from N ≤ 13 up to all primes N ≤ 41. In addition to that, we rewrote and
simplified the formulae up to degree N = 19. As an example, we compare expressions
for the old and new radical 8-isogeny formulae below.
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Example 3.3.4 (Old radical 8-isogeny formula, from [5])

A′ =
−A3 + 6A2 − 12A+ 8

A2
α7 +

4A3 − 24A2 + 48A− 32

A3 + 4A2 − 4A
α6 +

−4A3 + 24A2 − 48A+ 32

A3 + 4A2 − 4A
α5 +

2A3 − 12A2 + 24A− 16

A3 + 4A2 − 4A
α4 +

A− 2

A
α3 +

−2A2 + 4A

A2 + 4A− 4
α2 +

3A2 − 4

A2 + 4A− 4
α+

−A2 + 2A

A2 + 4A− 4
,

where α = 8
√
(−A3 +A2)/(A4 − 8A3 + 24A2 − 32A+ 16). 9

This is equivalent to the following.

Example 3.3.5 (New radical 8-isogeny formula, from Chapter 7)

A′ =
−2A(A− 2)α2 −A(A− 2)

(A− 2)2α4 −A(A− 2)α2 −A(A− 2)α+A
,

where α = 8
√
−A2(A− 1)/(A− 2)4. 9

To evaluate radical isogenies, specifically to obtain α, one needs to compute an
N -th root over Fp. If p is odd, then for even degrees N such an N -th root is never
unique. It turns out that choosing an incorrect root sometimes yields an N -isogeny
that does not come from the class group action, i.e. an isogeny that is not horizontal
in the sense of Lemma 1.2.2. We conjectured, and proved for N ≤ 14, a simple
criterion to select the right root, which allows for faster deterministic computation of
isogeny walks in even degree. The combined optimizations and improvements to the
radical isogeny formulae led to a speed up of 12% over the previous implementation
of CSIDH-512 using radical isogenies (which in turn obtained a speed up of 19% over
an implementation of 512-bit CSIDH without radical isogenies [1]). Using radical 16-
isogenies, we obtained about a factor of 3 speed up for the computation of long chains
of 2-isogenies over 512-bit prime fields.
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Chapter 4

On the decisional
Diffie–Hellman problem for
class group actions on
oriented elliptic curves

This chapter consists of a paper written together with Wouter Castryck, Frederik Ver-
cauteren, and Benjamin Wesolowski. It has been published as

Wouter Castryck, Marc Houben, Frederik Vercauteren, and Benjamin Wesolowski.
On the decisional Diffie-Hellman problem for class group actions on oriented elliptic
curves. Res. Number Theory, 8(4):Paper No. 99, 18, 2022. https://doi.org/10.
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in Algorithm 1 based on a suggestion by Marco Streng. Additionally, we more con-
cretely specified the input size in the complexity statements of Section 4.5, following
a suggestion by Chloe Martindale. The numbering (of e.g. theorems and definitions)
in the published version is different.
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Abstract

We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary

quadratic order O in an unknown ideal class [a] ∈ Cl(O) that connects two given O-oriented

elliptic curves (E, ι) and (E′, ι′) = [a](E, ι). When specialized to ordinary elliptic curves over

finite fields, our method is conceptually simpler and often somewhat faster than a recent

approach due to Castryck, Sotáková and Vercauteren, who rely on the Tate pairing instead.

The main implication of our work is that it breaks the decisional Diffie–Hellman problem for

practically all oriented elliptic curves that are acted upon by an even-order class group. It

can also be used to better handle the worst cases in Wesolowski’s recent reduction from the

vectorization problem for oriented elliptic curves to the endomorphism ring problem, leading

to a method that always works in sub-exponential time.
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4.1 Introduction

This paper is primarily concerned with the Decisional Diffie–Hellman problem
(DDH) for ideal class groups acting on oriented elliptic curves through isogenies. In
order to state this problem precisely, we fix an order O in an imaginary quadratic
number field K along with an algebraically closed field k. A (primitive) O-orientation
on an elliptic curve E over k is an injective ring homomorphism ι : O ↪→ End(E) that
cannot be extended to a superorder O′ ⊋ O in K. The set

EℓℓO(k) = { (E, ι) |E an elliptic curve over k and ι an O-orientation on E }/ ∼=,

if non-empty, comes equipped with a free action

Cl(O)× EℓℓO(k) −→ EℓℓO(k) : ([a], (E, ι)) 7−→ [a](E, ι) (4.1)

by the ideal class group of O, see Section 4.2 for details (including what it means for
two O-oriented elliptic curves (E, ι) and (E′, ι′) to be isomorphic). Now assume that
a party, say Eve, has unlimited access to samples from EℓℓO(k)3 that are consistently
of either of the following two forms:(

[a](E, ι), [b](E, ι), [a][b](E, ι)
)

[a], [b]
$← Cl(O),(

[a](E, ι), [b](E, ι), [c](E, ι)
)

[a], [b], [c]
$← Cl(O),

for some fixed and publicly known (E, ι). Then Eve successfully solves DDH if she can
guess, with non-negligible advantage, from which of these two distributions her triples
were sampled.

The hardness of the decisional Diffie–Hellman problem is a natural security foun-
dation for cryptographic constructions based on ideal class group actions, which can
be traced back to the works of Couveignes [11] and Rostovtsev–Stolbunov [24, 28] and
which have attracted much attention lately, in the context of post-quantum cryptog-
raphy. Here, one lets k be an algebraic closure of a finite field, in which case all curves
in EℓℓO(k) can be defined over a common finite subfield F ⊆ k. While the initial focus
was on ordinary elliptic curves, whose orientations ι are just ring isomorphisms, most
of the latest work is concerned with supersingular elliptic curves, whose endomorphism
rings are orders in a quaternion algebra and therefore leave room for a wide range of
orientations. Here, we highlight supersingular elliptic curves defined over a finite prime
field Fp, which are naturally oriented by an order in Q(

√
−p). The corresponding ideal

class group actions underpin CSIDH [6] and spin-offs such as [1, 15, 2, 20], and tend to
yield more practical cryptosystems than in the ordinary case. More generally oriented
supersingular elliptic curves made their first cryptographic appearance in the OSIDH
protocol due to Colò and Kohel [10]. To date, this protocol remains largely theoretical,
but it has attracted a good amount of recent interest, see e.g. [13, 22, 31].

Our paper revisits the recent work [8], which presents an efficient solution to DDH
for essentially all ordinary elliptic curves over finite fields whose endomorphism ring
has an even class number. In more detail, as soon as there exists a non-trivial assigned
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character χ : Cl(O)→ {±1} of sufficiently small modulusm, the attack from [8] allows
Eve to compute χ([a]) merely from the knowledge of (E, ι) and (E′, ι′) = [a](E, ι), i.e.,
without knowing [a] itself. This indeed suffices to break DDH, since it allows her to
check whether χ([c]) = χ([a])χ([b]), which is true for [c] = [a][b], but for uniformly
random [c] it fails with probability 1/2.

Unfortunately, the method from [8] is specific to ordinary curves: the attack pro-
ceeds by extending the base field and navigating to the floors of the m-isogeny volca-
noes1 of (E, ι) and (E, ι′), with the goal of enforcing non-trivial cyclic rational m∞-
torsion, and then recovering the character value using two Tate pairing computations.
Beyond ordinary curves, it is generally impossible to turn the rational m∞-torsion
cyclic using an isogeny walk, so this strategy fails. For supersingular elliptic curves
over Fp with p ≡ 1 mod 4 equipped with their natural Z[

√
−p]-orientation, where it

suffices to consider the assigned character of modulus m = 4, an ad-hoc fix was given
in [8, Thm. 10], but it is unclear how this fix would generalize.

Contribution

We give an alternative method for computing assigned character values χ([a]) purely
from (E, ι) and (E′, ι′) = [a](E, ι), using the Weil pairing rather than the Tate pair-
ing. Our approach deals with arbitrary orientations and works over arbitrary fields.
Moreover, it simplifies and often speeds up the attack from [8] in the case of ordinary
elliptic curves over finite fields, as it avoids the need for navigating through isogeny
volcanoes. It also naturally incorporates the previously ad-hoc case of supersingular
elliptic curves over prime fields.

The main result is easy enough to be stated right away; we recall that for an odd
prime divisor m | Disc(O), the assigned character of modulus m is defined as

χm : Cl(O)→ {±1} : [a] 7→
(
N(a)

m

)
(4.2)

where it is assumed that [a] is represented by an ideal a of norm coprime to m (see
our conventions further down) and

( ·
m

)
is the Legendre symbol.

Theorem 4.1.1 Let O be an imaginary quadratic order and let (E, ι), (E′, ι′) be
O-oriented elliptic curves connected by an ideal class [a] ∈ Cl(O). Let m | Disc(O)
be an odd prime divisor different from char k and consider the assigned character
χm : Cl(O) → {±1} of modulus m. Then O admits a generator σ (i.e. O = Z[σ]) of
norm coprime to m, and for any such σ there exist points P ∈ E[m], P ′ ∈ E′[m] such
that ι(σ)(P ) is not a multiple of P , and likewise for P ′. Moreover

χm([a]) =
( a
m

)
with a = logem(P,ι(σ)(P )) em(P ′, ι′(σ)(P ′)), regardless of the choice of such σ, P, P ′.

1Or rather 2-isogeny volcanoes in case m ∈ {4, 8}.

40



On the DDH problem for class group actions

The condition that σ be a generator of O can be relaxed to σ ∈ O\(Z+mO). A proof
of Theorem 4.1.1, along with its adaptations covering assigned characters with even
modulus, can be found in Section 4.3. Since these results apply to arbitrary fields,
they may be of independent theoretical interest.

Applications and implications

From a cryptographic viewpoint, the most important consequence is that DDH should
be considered broken by classical computers for essentially all elliptic curves over finite
fields that are oriented by an imaginary quadratic order O with even class number;
see Section 4.4 for a more in-depth discussion.

As a more surprising application, we prove in Section 4.5 that the new method
allows to significantly improve reductions between computational problems underly-
ing isogeny-based cryptography. On one hand, we have the problem of computing
endomorphism rings of supersingular elliptic curves. It is of foundational importance
to the field, as its presumed hardness is necessary for the security of essentially all
isogeny-based cryptosystems [17, 7, 16]. Oriented versions of this Endomorphism
Ring Problem were introduced in [31]. On the other hand, many cryptosystems
relate directly to the presumably hard inversion problem for the action of the class
group Cl(O) on oriented supersingular curves: the Vectorization Problem. It
was proved in [31] that the vectorization problem reduces to the endomorphism ring
problem in polynomial time in the length of the instance and in #(Cl(O)[2]). Unfortu-
nately, the dependence on #(Cl(O)[2]) means that the reduction is, in the worst case,
exponential in the size of the input, since #(Cl(O)[2]) could be as large as D1/ log logD,
where D = |Disc(O)|. We improve this result, by proving in Section 4.5 that there is
a reduction from the vectorization problem to the endomorphism ring problem that,
in the worst case, is sub-exponential in the length of the input.

Conventions

Throughout, all ideal classes [a] ∈ Cl(O) are assumed to be represented by an ideal
a of norm coprime to pDisc(O), where p = max{1, char k}. Such a representative
always exists, see e.g. [12, Cor. 7.17]. For an O-oriented elliptic curve (E, ι) and a
point P ∈ E, we will sometimes write σ(P ) instead of ι(σ)(P ) if ι is clear from the
context. Likewise, for [a] ∈ Cl(O) we will sometimes write [a]E for the first component
of [a](E, ι).

Paper organization

Section 4.2 provides background: it gives the full list of assigned characters of an
imaginary quadratic order and it recalls how its ideal class group acts on oriented
elliptic curves. Our main Section 4.3 contains a proof of Theorem 4.1.1, as well as
statements and proofs for the even-modulus counterparts. Section 4.4 discusses the
algorithmic aspects of these results, along with their implications for the decisional
Diffie–Hellman problem. Finally, in Section 4.5 we present our improved reduction
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from the vectorization problem for oriented elliptic curves to the endomorphism ring
problem.

4.2 Background

4.2.1 Assigned characters

The following is a very brief summary of the relevant parts of [12, I.§3 & II.§7], to
which we refer for more details. From genus theory, we know that each order O in
an imaginary quadratic field comes equipped with an explicit list of group homomor-
phisms Cl(O) → {±1}, called the assigned characters, whose joint kernel is Cl(O)2.
Writing

Disc(O) = −2fd = −2fmf1
1 m

f2
2 · · ·mfr

r

for distinct odd prime numbers m1, . . . ,mr and exponents f ≥ 0, f1, . . . , fr ≥ 1, this
list consists of

χm1
, . . . , χmr

if f = 0,
χm1

, . . . , χmr
, δ if f = 2 and d ≡ 1 mod 4,

χm1
, . . . , χmr

if f = 2 and d ≡ 3 mod 4,
χm1 , . . . , χmr , δϵ if f = 3 and d ≡ 1 mod 4,
χm1 , . . . , χmr , ϵ if f = 3 and d ≡ 3 mod 4,
χm1

, . . . , χmr
, δ if f = 4,

χm1
, . . . , χmr

, δ, ϵ if f ≥ 5.

Here χmi is defined as in (4.2) and

δ : Cl(O)→ {±1} : [a] 7→ (−1)
N(a)−1

2 , ϵ : Cl(O)→ {±1} : [a] 7→ (−1)
N(a)2−1

8 .

Observe that δϵ can be described in one go as

δϵ : Cl(O)→ {±1} : [a] 7→ (−1)
(N(a)+2)2−9

8 .

We write µ ∈ {r, r + 1, r + 2} for the total number of assigned characters.2

Because the joint kernel is Cl(O)2, any character of Cl(O) whose order divides 2
can be written as a product of pairwise distinct assigned characters. As it turns out,
there is a unique non-trivial combination that produces the trivial character:

χf1 mod 2
m1

χf2 mod 2
m2

· · ·χfr mod 2
mr

δ
d+1
2 mod 2ϵf mod 2 = 1. (4.3)

Therefore, by combining assigned characters we obtain 2µ−1 distinct characters. Nec-
essarily, this quantity equals the cardinality of Cl(O)/Cl(O)2 ∼= Cl(O)[2].

2Note that two different assigned characters may define the same map Cl(O) → {±1}. Thus,
formally, the definition of an assigned character should include its symbol (e.g. χm1 ) as appearing in
the list above.
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Example 4.2.1 For a prime number p ≡ 1 mod 4, the ring Z[
√
−p] has two assigned

characters: δ and χp. By (4.3) these are in fact equal to each other, and non-trivial.
If p ≡ 3 mod 4 then Z[

√
−p] has only one assigned character, namely χp, and it is

trivial. 9

We often make reference to the modulus m of an assigned character χ, which is an
important complexity parameter for our attack. This is simply defined to be mi if χ = χmi

,
4 if χ = δ,
8 if χ = ϵ, δϵ.

Note that χ([a]) = χ([a′]) as soon as N(a) ≡ N(a′) mod m. Typicallym is the smallest
positive integer with this property, but not always (e.g., as in the case of mi = p in
both examples above).

4.2.2 Class group action

We now recall how the ideal class group of O acts on EℓℓO(k). This is part of the
theory of complex multiplication, which is classical for k = C, while for k an algebraic
closure of a finite field this was elaborated in [30, §3.9-12]; see also [22] for the specifics
of the supersingular case. For arbitrary k, we refer to Milne’s course notes [21, §7].

If ι is an O-orientation on an elliptic curve E over k, then we can linearly extend it
to a map K ↪→ End0(E), where End0(E) = End(E)⊗Z Q denotes the endomorphism
algebra. To each isogeny φ : E → E′ we can naturally attach an embedding

ιQ : K ↪→ End0(E′) : σ 7→ 1

degφ
φ ◦ ι(σ) ◦ φ̂,

whose restriction to the preimage O′ of End(E′) is an orientation that is called the
induced orientation, denoted by φ∗ι. We are primarily interested in isogenies φ for
which O′ = O, in which case φ is said to be horizontal with respect to ι. Two O-
oriented elliptic curves (E, ι), (E′, ι′) are called isomorphic, denoted (E, ι) ∼= (E′, ι′),
if there exists an isomorphism φ : E → E′ such that ι′ = φ∗ι.

The default way to construct a horizontal isogeny is by considering an invertible
ideal a ⊆ O of norm coprime to max{1, char k} and attaching to it the finite subgroup

E[a] =
⋂
α∈a

ker ι(α).

Then the separable degree-N(a) isogeny φa : E → E′ with kernel E[a] is horizontal.
In particular E′ comes naturally equipped with an O-orientation ι′ = φa∗ι. The pair
(E′, ι′) is well-defined up to isomorphism and only depends on the class of a inside
Cl(O); we write [a](E, ι) := (E′, ι′). This defines the map (4.1), which turns out to be
a free group action.
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Remark 4.2.2 In general the action is not transitive, where one subtlety is reflected
in [22, Prop. 3.3]; see also the example in [22, §3.1] and the proof of [26, Thm. 4.5].
This has no consequences for the current paper, since we are working in a single orbit,
namely that of the starting curve (E, ι). ♢

4.3 Evaluating characters using the Weil pairing

In this section we prove Theorem 4.1.1 and discuss its analogues for the assigned
characters δ, ϵ, δϵ. In all cases it is assumed that p = max{1, char k} is coprime to
the modulus of the character under consideration. If p is an odd prime then χp, if it
appears in the list of assigned characters, can be computed from the other characters
using the relation (4.3); see for instance Example 4.2.1 where we had χp = δ. If p = 2
then the same conclusion holds for δ, ϵ or δϵ, because in even characteristic at most
one of these three characters can appear in the list of assigned characters.3

4.3.1 Preliminaries

Lemma 4.3.1 Let O be an imaginary quadratic order and let m be an odd prime
number. Then O = Z[σ] for some σ ∈ O of norm coprime to m.

Proof. Let τ ∈ O be a generator of O, suppose of norm divisible by m. Then for any
k ∈ Z,

N(τ + k) = N(τ) + k(tr(τ) + k) ≡ k(tr(τ) + k) mod m.

Since m ≥ 3 we can thus always find k ∈ Z such that m ∤ N(τ + k).

Lemma 4.3.2 Let O be an imaginary quadratic order of even discriminant. Then
O = Z[σ] for some σ ∈ O of odd norm.

Proof. Let τ ∈ O be a purely imaginary generator of O, e.g. τ =
√

Disc(O)/4, where
Disc(O) is the discriminant of O. Then N(τ + 1) = N(τ) + tr(τ) + 1 = N(τ) + 1,
hence we can take σ = τ or σ = τ + 1.

Lemma 4.3.3 Let O be an imaginary quadratic order, let (E, ι) be an O-oriented
elliptic curve over k, let m ̸= char k be a prime number, and let σ ∈ O be a generator.
Then there exists a P ∈ E[m] such that ι(σ)(P ) is not a multiple of P .

Proof. The endomorphism ι(σ) of E induces an Fm-linear map E[m] → E[m]. Sup-
pose to the contrary that every P ∈ E[m] is an eigenvector. This can only happen if
the map has the full m-torsion E[m] as an eigenspace. Thus there exists λ ∈ Z such

3If (E, ι) is an O-oriented elliptic curve over an algebraically closed field k with char k = 2, then
25 ∤ Disc(O). Indeed, if we would have 25 | Disc(O) then E is necessarily supersingular, hence it
concerns y2 + y = x3, the unique supersingular elliptic curve in characteristic 2. Its endomorphism
ring is isomorphic to the ring of Hurwitz quaternions H, and it is easy to check that every embedding
O ↪→ H can be extended to an embedding O′ ↪→ H with Disc(O′) = Disc(O)/4. See [22, Prop. 3.2]
for a generalization of this observation.
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that E[m] ⊆ ker(ι(σ − λ)). It then follows that ιQ((σ − λ)/m) ∈ End(E), and hence
that σ−λ ∈ mO by the fact that ι is a primitive embedding, i.e. it cannot be extended
to a strict superorder of O. Since Z+mO ⊊ O this contradicts the assumption that
σ generates O.

4.3.2 Evaluating the characters χm

We now prove Theorem 4.1.1.

Proof of Theorem 4.1.1. The existence of σ, P, P ′ follows from Lemma 4.3.1 combined
with Lemma 4.3.3. The endomorphism ι(σ) of E induces an Fm-linear map E[m] →
E[m]. Sincem | Disc(O) = tr(σ)2−4N(σ) andm ∤ N(σ), its characteristic polynomial
has a nonzero double root, say α ∈ F×m. Consequently, we can extend to a basis P0, P
of E[m] for which the matrix of σ is in upper-triangular form

(
α β
0 α

)
for some β ∈ F×m.

With respect to this basis any Q ∈ E[m] that is not an eigenvector of σ is of the form
Q = λP0 + µP where µ ̸= 0. We see that

em(Q, σ(Q)) = em(λP0 + µP, (αλ+ βµ)P0 + αµP ) = em(P, βP0)
µ2

= em(P, σ(P ))µ
2

,

showing that em(P, σ(P )) is independent of the choice of P , up to raising to powers
that are nonzero squares modulo m. Then, of course, the same conclusion applies to
em(P ′, σ(P ′)).

Recall our convention from the introduction, namely that we assume that the
norm of a, which equals the degree of the corresponding isogeny φ = φa : E → E′,
is coprime to m. In particular, P0 ̸∈ kerφ. By definition of the class group action,
ι′ = φ∗ι satisfies

ι′(σ)(φ(P )) =

(
1

degφ
φι(σ)φ̂

)
(φ(P )) = φ(ι(σ)(P )) = βφ(P0) + αφ(P ),

showing that φ(P ) is not an eigenvector for ι′(σ) acting on ([a]E)[m]. So we see that
em(φ(P ), ι′(σ)(φ(P ))) is obtained from em(P ′, ι′(σ)(P ′)) by raising it to a nonzero
square mod m. To conclude, we observe that

em(φ(P ), ι′(σ)(φ(P ))) = em(φ(P ), φ(ι(σ)(P ))) = em(P, ι(σ)(P ))degφ.

4.3.3 Evaluating δ, ϵ or δϵ

We now present the analogues of Theorem 4.1.1 for the even-modulus characters δ, ϵ
and δϵ. We first focus on δ, which, as we saw in Section 4.2.1, is an assigned character
if and only if we can write Disc(O) = −4 · d for some d ≡ 0, 1 mod 4.

Proposition 4.3.4 Assume char k ̸= 2. Let O be an imaginary quadratic order of
discriminant −4 · d where d ≡ 0, 1 mod 4, and let (E, ι), (E′, ι′) be O-oriented elliptic
curves over k connected by an ideal class [a] ∈ Cl(O). Then O admits an odd-norm
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generator σ, and for any such σ there exist points P ∈ E[4], P ′ ∈ E′[4] such that
ι(σ)(2P ) ̸= 2P and ι′(σ)(2P ′) ̸= 2P ′. Moreover

δ([a]) = (−1)
a−1
2 ,

with a = loge4(P,ι(σ)(P )) e4(P
′, ι′(σ)(P ′)), for any such choice of σ, P, P ′.

Proof. The existence of σ, P, P ′ follows from Lemma 4.3.2 and Lemma 4.3.3. Note that
the assumption on the discriminant of O shows that the character δ indeed exists, and
that this implies that N(σ) ≡ 1 mod 4 (since the principal ideal class [(σ)] lies in
the kernel of δ). By upper-triangularizing the action of σ on E[2] as in the proof of
Theorem 4.1.1, we see that there exists a P0 ∈ E[4] such that the matrix Mσ of σ
acting on E[4] with respect to the basis P0, P is of the form

Mσ ≡
(
1 1
0 1

)
mod 2.

Since N(σ) ≡ 1 mod 4 this means thatMσ is of the form either
(
α β
0 α

)
or
(
α β
2 −α

)
, with

α, β odd. Any Q with the property that σ(2Q) ̸= 2Q is of the form λP0 + µP where
µ is odd. If Mσ is of the first form we get

e4(Q, σ(Q)) = e4(λP0 + µP, (αλ+ βµ)P0 + αµP ) = e4(P, βP0)
µ2

= e4(P, σ(P ))
µ2

.

If Mσ is of the second form we again get

e4(Q, σ(Q)) = e4(λP0 + µP, (αλ+ βµ)P0 + (2λ− αµ)P )
= e4(P, βP0)

µ2

e4(P, P0)
2(λαµ−λ2) = e4(P, σ(P ))

µ2

where the last equality uses that λ, µ, α are odd. From µ2 ≡ 1 mod 4 it follows that
e4(P, σ(P )) does not depend on the choice of P . Then, of course, the same is true for
e4(P

′, σ(P ′)).
By our convention we assume that the norm of a, and hence the degree of the

corresponding isogeny φ = φa : E → E′, is odd. In particular, 2P0 ̸∈ kerφ and

ι′(σ)(φ(2P )) =

(
1

degφ
φι(σ)φ̂

)
(φ(2P )) = φ(ι(σ)(2P )) = φ(2P0) + φ(2P )

is different from φ(2P ). Thus we find that e4(P
′, σ(P ′)) equals

e4(φ(P ), ι
′(σ)(φ(P ))) = e4(φ(P ), φ(ι(σ)(P ))) = e4(P, ι(σ)(P ))

degφ,

which concludes the proof.

Next, we discuss the modulus-8 characters ϵ and δϵ. Note that by Section 4.2.1,
we have that ϵ is an assigned character if and only if either 25 | Disc(O) or Disc(O) =
−23 · d with d ≡ 3 mod 4. Similarly, δϵ is an assigned character if and only if either
25 | Disc(O) or Disc(O) = −23 · d with d ≡ 1 mod 4.
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Proposition 4.3.5 Assume char k ̸= 2, let O be an imaginary quadratic order of
discriminant Disc(O) ≡ −2fd with d odd and f ≥ 3, and consider O-oriented elliptic
curves (E, ι), (E′, ι′) over k connected by an ideal class [a] ∈ Cl(O). Assume that ϵ,
resp. δϵ, appears among the assigned characters of O. Then O admits an odd-norm
generator σ, and for any such σ there exist points P ∈ E[8], P ′ ∈ E′[8] such that
ι(σ)(4P ) ̸= 4P and ι′(σ)(4P ′) ̸= 4P ′. Moreover ϵ([a]), resp. δϵ([a]), can be computed
as

ϵ([a]) = (−1)
a2−1

8 , resp. δϵ([a]) = (−1)
(a+2)2−9

8 ,

with
a = loge8(P,ι(σ)(P )) e8(P

′, ι′(σ)(P ′)),

and for any such choice of σ, P, P ′.

Proof. As in the previous proof, the existence of σ, P, P ′ follows from Lemma 4.3.2
and Lemma 4.3.3. The main difference with the foregoing proofs is that if Q ∈ E[8]
is another point satisfying σ(4Q) ̸= 4Q, then e8(Q, σ(Q)) relates more subtly to
e8(P, σ(P )). Namely, we will argue that

e8(Q, σ(Q)) ∈
{
e8(P, σ(P )), e8(P, σ(P ))

N(σ)
}
, (4.4)

and then of course the same again applies to e8(P
′, σ(P ′)). This will then lead to the

conclusion that

e8(P
′, σ(P ′)) ∈

{
e8(P, σ(P ))

degφ, e8(P, σ(P ))
N(σ) degφ

}
,

which is indeed sufficient, since the principal ideal class [(σ)] has trivial character
values. More explicitly, if ϵ exists then we must have N(σ) mod 8 ∈ {1, 7}, while if δϵ
exists then we have N(σ) mod 8 ∈ {1, 3}.

In order to prove (4.4), note that, since N(σ) ≡ 1 mod 2,

tr(σ)2 + 4 ≡ tr(σ)2 − 4 ·N(σ) = Disc(O) ≡ 0 mod 8,

so that tr(σ) ≡ 2 mod 4. It follows that the characteristic polynomial of σ modulo 4
is X2+2X +N(σ), hence we can extend to a basis P0, P of E[8] such that the matrix
of ι(σ) acting on E[8] is of the form

Mσ ≡



(
α β

0 α

)
mod 4 if N(σ) ≡ 1 mod 4,(

α β

2 α

)
mod 4 if N(σ) ≡ 3 mod 4,

47



Evaluating characters using the Weil pairing

with α, β odd. It follows that

M2
σ ≡



(
1 2

0 1

)
mod 4 if N(σ) ≡ 1 mod 4,(

3 2

0 3

)
mod 4 if N(σ) ≡ 3 mod 4.

In any case we can record that

e8(P, σ
2(P ))2 = e8(P, P0)

4 = −1. (4.5)

Now, with respect to the basis P, σ(P ), the matrix of ι(σ) acting on E[8] is congruent
to ( 0 1

1 0 ) mod 2. Any other Q = λP + µσ(P ) such that σ(4Q) ̸= 4Q thus has exactly
one of λ, µ odd. We now proceed to showing (4.4). If µ is odd then we can write
σ(Q) = λ′P + µ′σ(P ) with λ′ odd, so since

e8(Q, σ(Q))N(σ) = e8(σ(Q), σ2(Q))

we may reduce to the case where λ is odd (and µ is even). For odd λ, we have

e8(Q, σ(Q)) = e8(λ
−1Q, σ(λ−1Q))λ

2

= e8(λ
−1Q, σ(λ−1Q)),

hence we may further reduce to the case where λ = 1. Now note that

e8(P + µσ(P ), σ(P ) + µσ2(P )) = e8(P, σ(P ))e8(σ(P ), σ
2(P ))µ

2

e8(P, σ
2(P ))µ

= e8(P, σ(P ))e8(P, σ(P ))
4µ2

4 N(σ)e8(P, σ
2(P ))2

µ
2

= e8(P, σ(P )) · (−1)
µ2

4 · (−1)
µ
2

= e8(P, σ(P )),

where in the third equality we used (4.5).

Remark 4.3.6 If O is an imaginary quadratic order of discriminant Disc(O) ≡ 0 mod
25, then both ϵ and δϵ and hence δ = (δϵ)ϵ exist, so that N(σ) ≡ 1 mod 8. In this case
there is a well-defined group homomorphism γ : Cl(O)→ (Z/8Z)× : [a] 7→ N(a) mod 8
through which δ, ϵ, δϵ factor. This is the only situation where one can get finer-than-
binary modular information about N(a) modulo a prime power; the above proof shows
that we can recover γ([a]) at once as

loge8(P,ι(σ)(P )) e8(P
′, ι′(σ)(P ′).

♢

Remark 4.3.7 In the statements of Theorem 4.1.1, Proposition 4.3.4 and Propo-
sition 4.3.5, the condition that σ be a generator of O can in fact be relaxed to
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σ ∈ O \ (Z + mO) if m is odd and to σ ∈ O \ (Z + 2O) if m is even, without
modifying the proofs. ♢

Wrapping up, we have given justification for Algorithm 1 below, evaluating an
assigned character χ : Cl(O) → {±1} of modulus m coprime to max{1, char k} in
an unknown ideal class [a] connecting two given O-oriented curves (E, ι) and (E′, ι′).
Here, by the field of definition of (E, ι), (E′, ι′) we mean any (e.g., the smallest) subfield
F ⊆ k over which the curves E,E′ and the endomorphisms in ι(O), ι′(O) are defined.

Algorithm 1: Evaluating an assigned character in an unknown ideal class

Input:
O-oriented curves (E, ι), (E′, ι′) in the same orbit with field of definition F
an assigned character χ of Cl(O) with modulus m coprime to max{1, charF}

Output:
χ([a]) ∈ {±1}, where [a] ∈ Cl(O) is such that (E′, ι′) = [a](E, ι)

1: Find a generator σ of O of norm coprime to m.
2: Base-change to the smallest extension F ⊇ F over which all points in E[m] are

defined; necessarily, then also all of E′[m] is defined over F .
3: Find a point P ∈ E(F) such that E[m] = ⟨P, ι(σ)(P )⟩ and compute
ζ = em(P, ι(σ)(P )).

4: Likewise, find a point P ′ ∈ E′(F) such that E′[m] = ⟨P ′, ι′(σ)(P ′)⟩ and compute
ζ ′ = em(P ′, ι′(σ)(P ′)).

5: Inside µm ⊆ F×, compute a = logζ ζ
′.

6: If m is an odd prime then recover χ([a]) as
(
a
m

)
, else recover χ([a]) as

(−1)
a−1
2 , (−1)

a2−1
8 , (−1)

(a+2)2−9
8 ,

depending on whether χ = δ, ϵ, δϵ, respectively.

4.4 Complexity and consequences for DDH

Running Algorithm 1 in practice comes with challenges that are specific to our field
of definition F . Nevertheless, before going into a more detailed analysis of our main
case of interest, namely where F is a finite field, let us add some general comments to
its six numbered steps:

1. Very easy, by following the proof of Lemma 4.3.1 or Lemma 4.3.2.

2. The degree of F/F is O(m2).4

4Indeed, by going to at most a quadratic extension, we may assume F is such that ι(O) ⊆ EndF (E).
The orientation endows E[m] with the structure of an O-module, and AutO(E[m]) ∼= (O/mO)×.
Since endomorphisms coming from O are defined over F , hence commute with Gal(F/F ), we thus
obtain a group homomorphism Gal(F/F ) → AutO(E[m]), which is injective by definition of F . The
result follows since #(O/mO)× = O(m2).

49



Complexity and consequences for DDH

3.–4. For m an odd prime, the proof of Theorem 4.1.1 shows that the set of m-
torsion points that are independent of their image under σ has size m2 − m.
So it suffices to try O(1) random points P ∈ E[m], compute ι(σ)(P ) and check
whether em(P, ι(σ)(P )) is a primitive mth root of unity (i.e., not 1).5

5. Pollard-ρ type algorithms allow us to compute the discrete logarithm using
O(
√
m) operations in µm.

6. Trivial.

Theorem 4.4.1 Let O = Z[σ] be an imaginary quadratic order and consider two
O-oriented elliptic curves (E, ι) and (E′, ι′) that belong to the same orbit under the
action of Cl(O), say given in Weierstrass form and connected by an unknown ideal
class [a]. Assume that E,E′, ι(O), ι′(O) are all defined over a finite field Fq. Let χ be
an assigned character of O with modulus m coprime to q. There exists a randomized
algorithm for computing χ([a]) that is expected to use

Õ(m3 log2 q) (4.6)

bit operations and O(1) calls to ι(σ), ι′(σ).

Proof. If we write fE(x, y) for the defining Weierstrass polynomial of E and ΨE,m(x)
for its m-division polynomial, then the field F can be constructed as (a quadratic
extension of) the splitting field of the resultant rE,m(x) = resy(fE ,ΨE,m), whose de-
gree is O(m2). The division polynomial ΨE,m(x) can be computed recursively and
the resultant rE,m(x) can be factored using Kedlaya–Umans [19]. Using fast arith-
metic, this takes a combined time of (4.6). Note that we obtain all points in E[m]
as a by-product; once we know F we can sample points from E′[m] faster. The Weil
pairings can be computed using Miller’s algorithm, taking O(logm) operations in F ,
and Pollard-ρ takes an expected O(

√
m) operations in F , so these costs are dominated

by (4.6), again assuming fast arithmetic. Finally, while the norm of the given genera-
tor σ may not be coprime to m, from the proofs of Lemma 4.3.1 and Lemma 4.3.2 we
see that we can instead work with σ + k, for some positive integer k bounded by m.
Since ι(σ + k) = ι(σ) + [k], the overhead this causes is clearly absorbed by (4.6); and
similarly for ι′(σ + k).

The effectivity of this algorithm co-depends on how easy it is to evaluate ι(σ)
and ι′(σ), which is a separate discussion that is captured by the notion of efficient
representations, see Section 4.5.1 and [32] for more details. One special but interesting
case is where ι(σ) equals πFq

, or is easily derived from it, whose cost is quasi-quadratic
in m log q. So, in this case, the overall cost remains estimated by (4.6). This matches
with the asymptotic runtime of the Tate pairing attack from [8], as estimated in [8,

5Alternatively, one may opt for a more deterministic approach by computing and analyzing a
matrix of ι(σ) acting on E[m], in which case two evaluations of ι(σ) will do. Note however that
writing down a matrix of ι(σ) comes at the cost of computing some discrete logarithms.
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§5.1].6

While the Weil pairing attack is conceptually simpler (no descent of the isogeny
volcano needed), in general one should expect the Tate pairing attack to run faster in
practice. The main reason is that there it suffices to work over a field F such that
E admits an F-rational point of order m, rather than requiring all m-torsion to be
F-rational (in turn, this is because the Tate pairing admits non-trivial self-pairing
values, in contrast with the Weil pairing). The degree of such an extension field is
bounded by O(m), rather than by O(m2). But the comparison turns in favour of
the Weil pairing as soon as E[m] ⊆ E(Fq), where no field extension is needed. Note
that, here, it makes more sense to measure the cost of a call to ι(σ), ι′(σ) by the cost
of evaluating (πFq

− 1)/ms, where s is maximal such that E[ms] ⊆ E(Fq); see [25,
Lem. 1]. For this we need s successive point divisions by m; the cost of such a division
is dominated by that of finding a root of a polynomial of degree m2, which can be
done in time

Õ(m2 log2 q), (4.7)

see [23, §2]. This now becomes the dominant cost of the attack. The asymptotic cost
of the Tate pairing also drops to (4.7) in this case, but the Weil pairing attack comes
with less overhead.

All this aside, let us re-emphasize that the Weil pairing approach works in far
greater generality: for arbitrary orientations and over any field admitting explicit
computation. A proof-of-concept implementation of the new method can be found at
https://github.com/KULeuven-COSIC/oriented_DDH. At the time of publication,
this implementation handles the case of Z[

√
−p]-oriented elliptic curves in character-

istic p ≡ 1 mod 4. We intend to extend the repository in due course, by also covering
the higher-degree group actions that were described in [9].

Consequences for DDH

If Cl(O) admits a non-trivial assigned character whose modulus m is sufficiently small,
say polynomially bounded by logDisc(O), and if it satisfies gcd(m, q) = 1, then we
can use this character to distinguish between random triples and Diffie–Hellman triples
with probability 1/2, as explained in the introduction. So, in this case, we can consider
the decisional Diffie–Hellman problem broken for O-oriented elliptic curves over Fq.
More generally, if Cl(O) admits s ≥ 1 independent such characters (meaning that one
cannot use the relation (4.3) to rewrite one of the characters in terms of the others),
then we can distinguish with probability 1− 1/2s.

A sufficient condition for the existence of such a character is that Disc(O) has at
least two small odd prime factors different from p = charFq.

7 Heuristically, we expect
that this applies to a density 1 subset of all imaginary quadratic orders when ordered

6Here and below, for simplicity, the height h ≈ valm(tr(πF )2 − 4#F) of the m-isogeny volcano of
E over F is estimated by O(1).

7In serious cryptographic applications, one can ignore the phrase “different from p = charFq”.
Indeed, if p | Disc(O) then E and E′ are necessarily supersingular, so if moreover p is small then we
can compute End(E) and End(E′) by navigating through all O(p) nodes of the supersingular isogeny
graph. As a result, one is skating on very thin ice (see Section 4.5).
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by the absolute value of their discriminant. This can be backed up using Mertens’
third theorem; or see [29, III.§6] for more dedicated tools.

As discussed in [8, §6], one can thwart the attack by restricting the class-group
action to Cl(O)2, or at least to a subgroup of Cl(O) on which all assigned characters of
small modulus have trivial evaluations. However, this may have practical consequences
in terms of key generation and key validation. Moreover, we do not rule out that the
attack can be modified to work for characters whose order is a larger power of 2, e.g., in
view of [3, 27]. Quantumly, it is known that 2r-torsion subgroups, for any small fixed
value of r, do not contribute to the hardness of the vectorization problem anyway [5].
Therefore, the cleanest way out is to follow the recommendation from [8, §6], namely
to only work with orientations by imaginary quadratic orders whose class number is
odd. There may be constructive reasons to deviate from this, e.g., as in the OSIDH
protocol [10] where one uses orders of large prime power conductor in an imaginary
quadratic field with class number one (such orders always have even class number).

Remark 4.4.2 It is interesting to view Theorem 4.4.1 against the classical decisional
Diffie–Hellman problem, namely for exponentiation in a group G = ⟨g⟩ of some
large prime order m. Note that exponentiation defines a free and transitive action
of (Z/mZ)× on the set of generators of G. The Legendre symbol

χ : (Z/mZ)× → {±1} : a 7→
( a
m

)
is the unique quadratic character, of modulus m, and if one could cook up an efficient
classical way for computing χ(a) merely from the knowledge of g and ga, then this
would break DDH in this setting. This would be a spectacular result; in general, to
the best of our knowledge, we cannot do significantly better than computing a using
Pollard-ρ and then evaluating χ at a. This should be compared to steps 5. and 6. from
Algorithm 1. In other words, one could say that classical DDH is not weakened by
the existence of χ because its modulus is large. ♢

4.5 Reductions to endomorphism ring computation

In this section, we prove that our main result Theorem 4.1.1 allows to significantly
improve reductions between computational problems underlying isogeny-based cryp-
tography. It was proved in [31] that two such families of problems are tightly con-
nected: there are computational reductions from action inversion problems (called
Effective O-Vectorization or Effective O-Uber) to endomorphism ring com-
putation problems (called O-EndRing and O-EndRing∗). However, these reduc-
tions are exponential in the worst case. In this section, we apply Theorem 4.1.1 to
obtain reductions that are sub-exponential in the worst case, and even polynomial in
many regimes of interest. All results in this section that start with (ERH), such as
Theorem 4.5.7, assume the extended Riemann hypothesis — precisely, the Riemann
hypothesis for Hecke L-functions.
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4.5.1 The supersingular endomorphism ring problem

In this section, we assume that the field k is an algebraic closure of a finite field of
characteristic p, and that p does not split in O, nor does it divide the conductor of O.
Then, the set EℓℓO(k) is non-empty and all curves in it are supersingular; this set is
often denoted by SSO(p) in the literature [22, Prop. 3.2]. Recall that a curve E/k is
supersingular if and only if its endomorphism ring End(E) is isomorphic to a maximal
order in the quaternion algebra

Bp,∞ =

(
−q,−p

Q

)
= Q+Qi+Qj +Qij,

with the multiplication rules i2 = −q, j2 = −p, and ji = −ij, where q is a positive
integer that depends on p.

Given a supersingular elliptic curve E over k, the endomorphism ring problem
EndRing consists in computing four endomorphisms that form a basis of End(E).
There is flexibility in how these endomorphisms can be represented, but we always
assume that it is an efficient representation. As in [32], we say that an isogeny φ :
E → E′ is given in an efficient representation if there is an algorithm to evaluate
φ(P ) for any P ∈ E(Fpr ) in time polynomial in the length of the representation of
φ and in r log(p). We also assume that an efficient representation of φ has length
Ω(log(deg(φ))).

This endomorphism ring problem is of foundational importance to isogeny-based
cryptography: it is presumed to be hard, and this hardness is necessary (and sometimes
sufficient) for the security of essentially all isogeny-based protocols [17, 7, 16]. It
does not, however, capture well the notion of orientation, which plays an important
role in many protocols. Therefore, the following oriented variants were introduced
in [31]. Computationally, an O-orientation ι is represented by a generator σ of O (i.e.,
O = Z[σ]) together with an efficient representation of the endomorphism ι(σ).

Problem 4.5.1 (O-EndRing) Given (E, ι) ∈ EℓℓO(k), find a basis of End(E).

Problem 4.5.2 (O-EndRing∗) Given an O-orientable curve E, find a basis of
End(E), and an O-orientation of E expressed in this basis.

Clearly, O-EndRing reduces to O-EndRing∗.

4.5.2 Action inversion problems

Many cryptosystems relate, directly or more subtly, to an inversion problem for the
action of Cl(O) on EℓℓO(k). In essence, given (E, ι) and (E′, ι′) in EℓℓO(k), find a class
[a] such that (E′, ι′) ∼= [a](E, ι) (or decide that it does not exist). This is called the
vectorization problem. It is too weak for many practical purposes, because knowledge
of the class [a] is not sufficient to efficiently apply its action on any other O-oriented
curve. Therefore, the following stronger problem was introduced in [31].
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Problem 4.5.3 (Effective O-Vectorization) Given three O-oriented supersin-
gular curves (E, ι), (E′, ι′), (F, ȷ) ∈ EℓℓO(k), find an O-ideal a (or decide that it does
not exist) such that (E′, ι′) ∼= [a](E, ι), and an efficient representation of φa : (F, ȷ)→
[a](F, ȷ).

The security of many cryptosystems directly reduces to this problem, such as
CSIDH [6], CSI-FiSh [1], CSURF [4], or other generalizations [9].

One can define a similar problem where no orientation is provided for E′. Then,
one cannot require (E′, ι′) ∼= [a](E, ι) anymore, but one can still ask for E′ ∼= [a]E.
The resulting Uber isogeny problem was introduced in [14].

Problem 4.5.4 (Effective O-Uber) Given two O-oriented curves (E, ι), (F, ȷ) ∈
EℓℓO(k) and an O-orientable curve E′, find an O-ideal a such that E′ ∼= [a]E, and an
efficient representation of φa : (F, ȷ)→ [a](F, ȷ).

This Effective O-Uber problem is significantly harder than the Effective
O-Vectorization problem. In fact, most isogeny-based cryptosystems reduce to an
instance of Effective O-Uber [14], even cryptosystems such as SIDH [18] which, at
first sight, do not seem to involve any orientation.

4.5.3 Action inversion reduces to endomorphism ring

Strengthening and generalizing a result of [7], it was proved in [31] that Effective
O-Vectorization reduces to O-EndRing, and that Effective O-Uber reduces to
O-EndRing∗. Both reductions are in polynomial time in the length of the instance,
and in #(Cl(O)[2]). Unfortunately, the dependence on #(Cl(O)[2]) means that the
reduction is, in the worst case, exponential in the size of the input, since #(Cl(O)[2])
could be as large as D1/ log logD, where D = |Disc(O)|. The issue is the follow-
ing: given two oriented curves (E, ι) and (E′, ι′) as in the definition of Effective
O-Vectorization, the reductions first find a class [a]2 such that (E′, ι′) ∼= [a](E, ι).
Finding [a] from [a]2 is a square root computation. There are #(Cl(O)[2]) square roots
of [a]2, but only one is the correct class [a]. In [31], one simply does an exhaustive
search. Now, thanks to Theorem 4.1.1, there is a much more efficient way to find the
correct square root, which in the worst case is sub-exponential in Disc(O). This is the
following proposition. Recall the L-notation

Lx(α) = exp
(
O
(
(log x)α(log log x)1−α

))
for sub-exponential complexities.

Proposition 4.5.5 (ERH) Given O of discriminant −D, the factorization D =∏ω(D)
i=1 ℓeii (with ℓi < ℓi+1), two O-oriented elliptic curves (E, ι), (E′, ι′) ∈ EℓℓO(k), a

basis of End(E), and an O-ideal a for which there exists an ideal class [c] such that
[a] = [c]2 and (E′, ι′) = [c](E, ι), one can find a representative for the ideal class [c] in
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probabilistic polynomial time in the length of the input and in8

min
(
2ω(D),max

i

(
ℓi | ℓi ≤ 2ω(D)−i

))
≪ min

(
LD(1/2),#(Cl(O)[2]), ℓω(D)

)
.

Here, by “probabilistic polynomial time in the length of the input”, we mean probabilis-
tic polynomial time in log p, logD, logN(a), the lengths of ι and ι′, and in the length
of the basis of End(E).

Before proving it, let us recall the following proposition from [31].

Proposition 4.5.6 (ERH, [31, Proposition 9]) Given (E, ι) ∈ EℓℓO(k), a basis of
End(E), and an O-ideal a, one can compute [a](E, ι) and an efficient representation
of φa : (E, ι) → [a](E, ι) in probabilistic polynomial time in the length of the input.
That is, in log |Disc(O)|, log p, logN(a), and in the length of ι and of the basis of
End(E).

Proof of Proposition 4.5.5. Let B > 0 be a bound to be tuned later. Consider the sets
of prime numbers

P1 = {ℓ | ℓ is an odd prime factor of Disc(O) and ℓ ≤ B}, and
P2 = {ℓ | ℓ is an odd prime factor of Disc(O) and ℓ > B}.

For each ℓ ∈ P1, compute χℓ([c]) in time ℓO(1) using Theorem 4.4.1 and the fact that
(E′, ι′) = [c](E, ι). Now, with [3], one can compute square roots in Cl(O) in polynomial
time, so we get an ideal a such that [a] and [c] differ by a two-torsion factor. From [3],
one also gets a basis of Cl(O)[2], so we can ensure that χℓ([a]) = χℓ([c]) for each ℓ ∈ P1.
The solution is now of the form [c] = [a][b] where [b] is in the subgroup G of Cl(O)[2]
of classes such that χℓ([b]) = 1 for all ℓ ∈ P1. Therefore, the number of remaining
candidates for the class [c] is #G ≤ 2#P2+1. These can be enumerated (from the
basis of Cl(O)[2], deduce a basis of the subgroup G) and checked for correctness in
polynomial time using Proposition 4.5.6 and the provided basis of End(E). Overall,
the running time is polynomial in log p, log |Disc(O)|, B, and 2#P2 . The running time
follows by choosing B = min

(
2ω(D),maxi

(
ℓi | ℓi ≤ 2ω(D)−i)).

Let us prove the last inequality. First, 2ω(D) ≪ #(Cl(O)[2]), so B ≪ #(Cl(O)[2]).
Second, if {ℓi | ℓi ≤ 2ω(D)−i} is empty, then 2ω(D)−1 < ℓ1 ≤ ℓω(D) so 2ω(D) ≪ ℓω(D).

If it is not empty, clearly maxi
(
ℓi | ℓi ≤ 2ω(D)−i) ≪ ℓω(D). In both cases, we deduce

B ≪ ℓω(D). Lastly, it remains to see that B ≪ LD(1/2). Suppose there exists j such

that ℓj = maxi
(
ℓi | ℓi ≤ 2ω(D)−i). We have log2(ℓj) ≤ ω(D)− j, and

log2(D) ≥
ω(D)∑
i=j+1

log2(ℓi) ≥ (ω(D)− j) log2(ℓj) ≥ log2(ℓj)
2.

8With the convention that max(∅) = +∞.
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We deduce that ℓj ≤ 2log2(D)1/2 , hence B ≪ LD(1/2). If there exists no such j, then

log2(D) ≥
ω(D)∑
i=1

log2(ℓi) ≥
ω(D)∑
i=1

(ω(D)− i) = Θ(ω(D)2),

so 2ω(D) = LD(1/2), hence B ≪ LD(1/2).

The main result of this section is the following theorem.

Theorem 4.5.7 (ERH, reduction of Effective O-Vectorization to O-EndRing)

Given an order O of discriminant −D, the factorization D =
∏ω(D)
i=1 ℓeii (with ℓi <

ℓi+1), three O-oriented elliptic curves (E, ι), (E′, ι′), (F, ȷ) ∈ EℓℓO(k), together with
bases of End(E), End(E′) and End(F ), one can compute (or assert that it does not
exist) an O-ideal c such that (E′, ι′) = [c](E, ι) and an efficient representation of
φc : (F, ȷ)→ [c](F, ȷ) in probabilistic polynomial time in the length of the input and in

min
(
2ω(D),max

i

(
ℓi | ℓi ≤ 2ω(D)−i

))
≪ min

(
LD(1/2),#(Cl(O)[2]), ℓω(D)

)
.

Here, by “probabilistic polynomial time in the length of the input”, we mean proba-
bilistic polynomial time in log p, logD, the lengths of ι, ι′, and ȷ, and in the lengths of
the bases of End(E), End(E′), and End(F ).

Remark 4.5.8 This improves the result of [31, Thm. 2] in two ways. First, the worst
case is now sub-exponential: when D is primorial, the running time of [31, Thm. 2]
could reach about D1/ log logD, while it is now always at most LD(1/2). Second,
Theorem 4.5.7 is now very efficient for a new important family of discriminants: when
almost all prime divisors of D are small, no matter how many there are. In particular,
primorial numbers (the worst case of [31, Thm. 2]) now benefit from a polynomial time
algorithm. ♢

Proof. Thanks to Proposition 4.5.5, the proof is a straightforward adaptation of the
proof of [31, Thm. 2]. Suppose we are given (E, ι), (E′, ι′) ∈ EℓℓO(k), together with
End(E) and End(E′). Consider the involution τp : EℓℓO(k) → EℓℓO(k) defined in [31,
Def. 7] as τp(E, ι) = (E(p), (ϕp)∗ῑ), where ῑ is the conjugate of ι (i.e., ῑ(α) = ι(α) for
any α ∈ O), and ϕp : E → E(p) is the Frobenius isogeny.

Then, per [31, Prop. 11], one can compute a and b such that τp(E, ι) = [a](E, ι)
and τp(E

′, ι′) = [b](E′, ι′) in polynomial time. From [31, Lem. 10], the ideal class of
c is one of the #(Cl(O)[2]) square roots of [ab]. Therefore, the ideal c can be found
by Proposition 4.5.5 within the claimed running time. Finally, compute an efficient
representation of φc : (F, ȷ)→ [c](F, ȷ) in polynomial time with Proposition 4.5.6.

Corollary 4.5.9 (ERH) Given an order O of discriminant −D, and the factorization

D =
∏ω(D)
i=1 ℓeii (with ℓi < ℓi+1), Effective O-Uber reduces to O-EndRing∗ in
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probabilistic polynomial time in the length of the instance and in

min
(
2ω(D),max

i

(
ℓi | ℓi ≤ 2ω(D)−i

))
≪ min

(
LD(1/2),#(Cl(O)[2]), ℓω(D)

)
.

Here, by “probabilistic polynomial time in the length of the instance”, we mean prob-
abilistic polynomial time in log p, logD, and in the lengths of the orientations.

Proof. Again, this is a straightforward adaptation of [31, Cor. 4]. Suppose we are given
(E, ι), (F, ȷ) ∈ EℓℓO(k) and an O-orientable elliptic curve E′. Solving O-EndRing∗,
one can find ε-bases of End(E), End(F ) and End(E′), and an O-orientation ι′ of E′.
The result follows from Theorem 4.5.7.

57



Bibliography

4.6 Bibliography

[1] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Ef-
ficient isogeny based signatures through class group computations. In Asia-
crypt (1), volume 11921 of Lecture Notes in Computer Science, pages 227–247.
Springer, 2019. https://ia.cr/2018/485.

[2] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom func-
tions from isogenies. In Asiacrypt (2), volume 12492 of Lecture Notes in Computer
Science, pages 520–550. Springer, 2020. https://ia.cr/2020/1532.

[3] Wieb Bosma and Peter Stevenhagen. On the computation of quadratic 2-class
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Chapter 5

Weak instances of class group
action based cryptography via
self-pairings

This chapter consists of a paper written together with Wouter Castryck, Simon-Philipp
Merz, Marzio Mula, Sam van Buuren, and Frederik Vercauteren. It has been published
as

Wouter Castryck, Marc Houben, Simon-Philipp Merz, Marzio Mula, Sam van Buuren,
and Frederik Vercauteren. Weak instances of class group action based cryptography
via self-pairings. In Advances in Cryptology – CRYPTO 2023, pages 762–792, Lecture
Notes in Computer Science, vol 14083. Springer, Cham. https://doi.org/10.1007/
978-3-031-38548-3_25.

All authors of this paper contributed equally to the work.

Compared to the published version we added Section 5.8, which appears as Appendix
A in the eprint version [5]. We also fixed some typos. The numbering (of e.g. theorems
and definitions) in the published version is different.
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Abstract

In this paper we study non-trivial self-pairings with cyclic domains that are compatible with
isogenies between elliptic curves oriented by an imaginary quadratic order O. We prove that
the order m of such a self-pairing necessarily satisfies m | ∆O (and even 2m | ∆O if 4 | ∆O
and 4m | ∆O if 8 | ∆O) and is not a multiple of the field characteristic. Conversely, for each m
satisfying these necessary conditions, we construct a family of non-trivial cyclic self-pairings
of order m that are compatible with oriented isogenies, based on generalized Weil and Tate
pairings.

As an application, we identify weak instances of class group actions on elliptic curves
assuming the degree of the secret isogeny is known. More in detail, we show that if m2 |
∆O for some prime power m then given two primitively O-oriented elliptic curves (E, ι)
and (E′, ι′) = [a](E, ι) connected by an unknown invertible ideal a ⊆ O, we can recover a
essentially at the cost of a discrete logarithm computation in a group of order m2, assuming
the norm of a is given and is smaller than m2. We give concrete instances, involving ordinary
elliptic curves over finite fields, where this turns into a polynomial time attack.

Finally, we show that these self-pairings simplify known results on the decisional Diffie–

Hellman problem for class group actions on oriented elliptic curves.
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5.1 Introduction

Isogeny based cryptography using class group actions was originally proposed in the
works of Couveignes [13] and Rostovtsev–Stolbunov [32] (CRS), and both use ordinary
elliptic curves. In particular, let O be an order in an imaginary quadratic number field
K, then there is a natural action of the ideal-class group Cl(O) on the set of ordinary
elliptic curves (up to isomorphism) over a finite field Fq whose endomorphism ring is
isomorphic to O. Since it is difficult to construct ordinary elliptic curves with many
small rational subgroups and large enough Cl(O), computing the class group action
in CRS is rather slow. CSIDH [7, 3] significantly improved the efficiency of the CRS
approach by considering the set of supersingular elliptic curves over a large prime
field Fp and restricting to the Fp-rational endomorphisms. These form a subring of
the full endomorphism ring which again is isomorphic to an order O in an imaginary
quadratic number field. Since #E(Fp) = p + 1 for such supersingular elliptic curves,
it now becomes trivial to force the existence of small rational subgroups by choosing p
such that p+ 1 has small prime factors. The OSIDH protocol by Colò and Kohel [12]
(and more rigorously by Onuki [27]) extended this even further by using oriented
elliptic curves: here one considers elliptic curves together with an O-orientation, which
is simply an injective ring homomorphism ι : O ↪→ End(E). OSIDH provides a
convenient unifying framework for CRS and CSIDH, but also contains many new
families of potential cryptographic interest. While the original Colò–Kohel proposal
does not seem viable [15], a more recent proposal [16] looks promising.

A different approach to isogeny based cryptography is taken by SIDH [21], which
relies on random walks in the isogeny graph of supersingular elliptic curves over Fp2 .
To make the protocol work however, it needs to reveal the action of the secret isogeny
ϕ : E → E′ on a basis of E[m], where m typically is a power of 2 or 3. This
extra information was recently exploited in a series of papers [30, 4, 23] resulting in
a polynomial time attack on SIDH. This attack not only showed that SIDH is totally
insecure, but also added a very powerful technique to the isogeny toolbox: it is possible
to recover a secret isogeny ϕ : E → E′ between two elliptic curves E and E′, all defined
over a finite field Fq, in polynomial time if the following information is available:

• the action of ϕ on a basis of E[m] is given where m is sufficiently smooth,

• the degree d = deg(ϕ) is known and coprime with m,

• m2 > d.

The origins of this paper trace back to the simple question: to what extent can
the above technique be applied to the class group action setting and are there weak
instances where this results in a polynomial time attack? To illustrate which problems
need to be solved, we will focus on the CSIDH setting (the more general oriented case
is deferred to later sections). In particular, assume E and E′ are two supersingular
elliptic curves over Fp connected by a secret isogeny ϕ : E → E′ := [a]E with ker(ϕ) =
E[a] and a ⊆ O an invertible ideal. To be able to apply the above technique to recover
ϕ, we need to know the degree of ϕ and its action on a basis of E[m] for some smooth
m.
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Whether the degree of ϕ is known depends on how the class group action is imple-
mented, e.g. in side-channel protected implementations, the degree is sometimes fixed
and thus known. For example, this may be the case for the “dummy-free” constant-
time variant of CSIDH that was proposed in [9]. In CSIDH variants that employ
dummy computations to achieve constant-time, fault attacks that skip isogeny com-
putations could allow an attacker to determine whether an isogeny was a dummy com-
putation or not, and thus deduce information about the private key. In the dummy-free
approach the parity of each secret exponent ei in CSIDH is fixed and sampled from
an interval [−e, e]. For e = 1, which was suggested both in [9] and in [10], the degree
of any secret isogeny is thus fixed to a publicly known value, i.e. the product of all
the split primes used in the CSIDH group action. In the remainder of the paper,
we will assume the degree of ϕ is known. Note that by construction, the degree is
automatically smooth, so this does not impose a further restriction.

Determining the action of the secret isogeny ϕ on a basis of E[m] for a chosen m is
a somewhat more challenging task, since we only have E, E′ and the degree of ϕ at our
disposal. To make partial progress, note that we can choosem = ℓr for some small odd
prime ℓ not dividing d = deg(ϕ) that splits in Q(

√
−p). Then E[m] is spanned by two

eigenspaces ⟨P ⟩, ⟨Q⟩ of the Frobenius endomorphism πp corresponding to two different
eigenvalues. Since ϕ commutes with πp, E

′[m] will also be spanned by two eigenspaces
⟨P ′⟩, ⟨Q′⟩ of πp on E′ corresponding to these same eigenvalues, so we already have
that ⟨P ′⟩ = ⟨ϕ(P )⟩ and ⟨Q′⟩ = ⟨ϕ(Q)⟩. In particular, there exist units λ, µ ∈ Z/mZ
such that P ′ = λϕ(P ) and Q′ = µϕ(Q). Using the independence of the points P and
Q (resp. P ′ and Q′) and compatibility of the classical Weil pairing em with isogenies,
we obtain

em(P ′, Q′) = em(λϕ(P ), µϕ(Q)) = em(P,Q)λµd .

By computing a discrete logarithm (note that ℓ is assumed small, so computing the
discrete logarithm is easy), we can therefore eliminate one variable, say µ, since d is
assumed known, so we are left with determining λ. It is tempting to use the same
trick again by pairing P ′ with itself, which would lead to

em(P ′, P ′) = em(λϕ(P ), λϕ(P )) = em(P, P )λ
2d .

Unfortunately, the classical Weil pairing em results in a trivial self-pairing, i.e. we
always have em(P, P ) = 1. What we thus require is a non-trivial self-pairing fm
compatible with isogenies, which implies fm(ϕ(P )) = fm(P )d, and thus fm(P ′) =

fm(P )λ
2d, with both sides of order m say. We thus recover λ up to sign and as such

we can recover ±ϕ. The existence of non-trivial self-pairings therefore is crucial to the
success of the attack.

Contributions

• We give a self-contained overview of generalized Weil [20] and Tate [2] pairings,
filling some gaps in the existing literature and relating both pairings by extending
a result in [20]. Although these generalized pairings are more powerful than the
classical Weil and Tate pairings, they do not seem to be well known in the
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cryptographic community.

• We formally define a cyclic self-pairing of order m on an elliptic curve E to
be a homogeneous degree-2 function fm : C → µm with cyclic domain C ⊆ E
such that im(fm) spans µm. We derive necessary conditions for the existence of
non-trivial cyclic self-pairings of order m on O-oriented elliptic curves that are
compatible with oriented isogenies. In particular, we show that m cannot be a
multiple of the field characteristic and that m | ∆O, with ∆O the discriminant
of O (and even 2m | ∆O if 4 | ∆O and 4m | ∆O if 8 | ∆O). Note that our results
only apply to self-pairings compatible with isogenies, which is required to make
the above attack work. This is in stark contrast to considering an individual
elliptic curve, where non-trivial cyclic self-pairings of order m always exist (as
soon as m is not a multiple of the field characteristic), e.g. by choosing any cyclic

order-m subgroup C = ⟨P ⟩ and simply defining fm(λP ) = ζλ
2

m with ζm some
fixed primitive m-th root of unity.

• For m satisfying these necessary conditions we construct cyclic self-pairings of
order m compatible with oriented isogenies, based on generalized Weil and Tate
pairings.

• Using these non-trivial cyclic self-pairings, we are the first to identify weak in-
stances of class group action based cryptography. In the best case, we obtain
a polynomial time attack on the vectorization problem when deg(ϕ) is known
and powersmooth, ℓ2r | q − 1, E(Fq)[ℓ

∞] is cyclic of order at least ℓ2r, and
ℓ2r > deg(ϕ). This for instance would be the case if one would use a setup like
SiGamal [26], but using the group action underlying CRS instead of CSIDH.
Note however that our attack does not apply to SiGamal itself for two major
reasons: here ∆O = −4p and the degree of the secret isogeny is not known.

• We present a more elegant version of existing results [8, 6] on the decisional
Diffie–Hellman problem for class group actions. In particular, in Remark 5.5.3
we give a conceptual explanation for a phenomenon observed in [8, App.A].
This also illustrates why the general framework of oriented elliptic curves can be
useful even if one is only interested in elliptic curves over Fq equipped with the
natural Frobenius orientation.

5.2 Background

Throughout this paper, k denotes a perfect field (e.g., a finite field Fq) with algebraic
closure k, and K is an imaginary quadratic number field with maximal order OK .

5.2.1 Oriented elliptic curves

Our main references are Colò–Kohel [12] and Onuki [27], although we present mat-
ters in somewhat greater generality (in the sense that we also cover non-supersingular
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elliptic curves). A K-orientation on an elliptic curve E/k is an injective ring homo-
morphism

ι : K ↪→ End0(E) := End(E)⊗Z Q,

where End(E) denotes the full ring of endomorphisms of E (i.e., defined over k). The
couple (E, ι) is called a K-oriented elliptic curve.

Example 5.2.1 The standard example to keep in mind is that of an elliptic curve
E over a finite field Fq for which the q-th power Frobenius endomorphism πq is not
a scalar multiplication (that is, we exclude supersingular elliptic curves E/Fp2r on
which Frobenius acts as [±pr]). In that case we have an orientation

ι : Q(σ) ↪→ End0(E) : σ 7→ πq, σ =
tE +

√
t2E − 4q

2
(5.1)

with tE the trace of Frobenius of E over Fq. We call this the Frobenius orientation.
If (and only if) E is ordinary then ι is an isomorphism. If E is supersingular then
the image of ι is the subalgebra End0q(E) = Endq(E) ⊗Z Q, with Endq(E) the ring
of Fq-rational endomorphisms of E. By abuse of notation, we will occasionally just

identify σ with πq and refer to ι as a Q(πq)-orientation. 9

Example 5.2.2 More generally, every endomorphism α ∈ End(E)\Z naturally gives
rise to an orientation. Indeed, such an endomorphism necessarily satisfies α2−tα+n =
0 where the trace t = Tr(α) and the norm n = N(α) (which we recall is equal to the
degree of α) satisfy t2 − 4n < 0. Fixing

σ =
t+
√
t2 − 4n

2
∈ C

we obtain an orientation ι : Q(σ) ↪→ End0(E), which is unique if we impose that

ι(σ) = α. Every orientation arises in this way. 9

For an order O ⊆ K, we say that a K-orientation ι : K ↪→ End0(E) is an O-
orientation if ι(O) ⊆ End(E). If moreover ι(O′) ̸⊆ End(E) for every strict superorder
O′ ⊋ O in K, then we say that it concerns a primitive O-orientation. Note that any
K-orientation ι is a primitive O-orientation for a unique order O ⊆ K, namely for the
order ι−1(End(E)). We call this order the primitive order for the K-orientation. Let
us also introduce the following weaker notion:

Definition 5.2.3 An O-orientation on an elliptic curve E/k is said to be locally
primitive at a positive integer m if the index of O inside the primitive order is coprime
to m. △

The following is a convenient sufficient condition for local primitivity:

Lemma 5.2.4 Let E/k be an elliptic curve, let σ ∈ End(E) and let m be a positive
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integer such that

(i) char(k) ∤ m,

(ii) E[ℓ, σ] ∼= Z/ℓZ for every prime divisor ℓ | m.

Then the natural Z[σ]-orientation on E is locally primitive at m. As a partial converse,
we have that this orientation is not locally primitive at m as soon as E[ℓ, σ] ∼= Z/ℓZ×
Z/ℓZ for some prime divisor ℓ | m.

Proof. If the orientation is not locally primitive at m, then we must have (σ − a)/ℓ ∈
End(E) for a prime divisor ℓ | m and some a ∈ Z. Thus σ would act as multiplication-
by-a on E[ℓ]. By assumption (ii) we necessarily have a = 0, but then E[ℓ, σ] = E[ℓ] ∼=
Z/ℓZ × Z/ℓZ in view of assumption (i): a contradiction. Conversely, if E[ℓ, σ] ∼=
Z/ℓZ×Z/ℓZ then by [36, Cor. III.4.11] we know that there exists an α ∈ End(E) such
that α ◦ [ℓ] = σ, so the primitive order must contain σ/ℓ, hence the Z[σ]-orientation
is not locally primitive at m.

Example 5.2.5 The Frobenius orientation on an elliptic curve E over a finite field
Fq is also a Z[πq]-orientation. If E(Fq)[ℓ] ∼= Z/ℓZ for some prime number ℓ ∤ q, then
by Lemma 5.2.4 applied to σ = πq − 1 this orientation is locally primitive at ℓ. If

E[ℓ] ⊆ E(Fq) then it is not. 9

If ϕ : E → E′ is an isogeny and if ι is a K-orientation on E, then we can define an
induced K-orientation ϕ∗(ι) on E

′ by letting

ϕ∗(ι)(α) =
1

deg(ϕ)
ϕ ◦ ι(α) ◦ ϕ̂, ∀α ∈ K,

where ϕ̂ denotes the dual isogeny of ϕ. Given two K-oriented elliptic curves (E, ι) and
(E′, ι′), we say that an isogeny ϕ : E → E′ is K-oriented if ι′ = ϕ∗(ι); in this case,
we write ϕ : (E, ι) → (E′, ι′). The dual of a K-oriented isogeny is automatically K-
oriented as well. TwoK-oriented elliptic curves (E, ι) and (E′, ι′) are called isomorphic
if there exists an isomorphism ϕ : E → E′ such that ϕ∗(ι) = ι′.

Example 5.2.6 Let E,E′ be elliptic curves over Fq with the same trace of Frobenius,
so that they can both be viewed as K-oriented elliptic curves with K = Q(σ) as

in (5.1). Then an isogeny ϕ : E → E′ is K-oriented if and only if it is Fq-rational. 9

5.2.2 Class group actions

The set

Eℓℓall
k
(O) = { (E, ι) |E ell. curve over k, ι primitive O-orientation on E }/ ∼=

of primitively O-oriented elliptic curves over k up to isomorphism comes equipped
with an action by the ideal class group of O, which we denote by Cl(O). For elliptic
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curves over C with complex multiplication, this is a classical result. The case where
k is a finite field and the orientation is by Frobenius is treated in [35, 38]. This group
action, which we describe below in more detail, is free, but in general not transitive,
see e.g. [35, Thm. 4.5] and [27, Prop. 3.3] for some subtleties. To avoid issues arising
from the non-transitivity, we define

Eℓℓk(O) ⊆ Eℓℓ
all
k
(O)

to be an arbitrary but fixed orbit (in practice, where we want to study a secret relation
between two primitively O-oriented elliptic curves, it will concern the orbit containing
these two curves.)

The action is defined as follows. Let (E, ι) be a primitively O-oriented elliptic
curve and let [a] ∈ Cl(O) be an ideal class, represented by an invertible ideal a ⊆ O
of norm coprime to max{1, char(k)}; every ideal class admits such a representative
by [14, Cor. 7.17]. One defines the a-torsion subgroup as

E[a] =
⋂
α∈a

ker(ι(α)),

which turns out to be finite (of order N(a) = #(O/a), to be more precise). Thus there
exists an elliptic curve E′ and a separable isogeny ϕa : E → E′ with ker(ϕa) = E[a],
which is unique up to post-composition with an isomorphism. The isomorphism class
of (E′, ϕa∗(ι)) is independent of the choice of the representing ideal a. One then lets
[a](E, ι) be this isomorphism class, and this turns out to define a free group action.

5.2.3 Horizontal, ascending and descending isogenies

Let ℓ ̸= char(k) be a prime number and consider an ℓ-isogeny ϕ : (E1, ι1) → (E2, ι2)
of K-oriented elliptic curves. Let O1 ⊆ K be the primitive order of ι1 and let O2 ⊆ K
be the primitive order of ι2. Then one of the following is true:

• O1 ⊆ O2 and [O2 : O1] = ℓ, in which case ϕ is called ascending,

• O1 = O2, in which case ϕ is called horizontal,

• O2 ⊆ O1 and [O1 : O2] = ℓ, in which case ϕ is called descending.

It is clear that the dual of an ascending isogeny is descending and vice versa. All
horizontal isogenies are of the form ϕa for some invertible ideal a ⊆ O1 = O2 of norm
ℓ, with dual ϕa. Ascending isogenies are of the form ϕa for some non-invertible ideal
a ⊆ O1 of norm ℓ, while descending isogenies are not of the form ϕa at all.

5.3 Generalized Weil and Tate pairings

We review some properties of the generalized Weil and Tate pairings on elliptic curves,
with a focus on how the latter can be defined in terms of the former. The main sources
of inspiration for this section were papers by Bruin [2] and Garefalakis [20], although
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now we should highlight the work by Robert [31, §4], which appeared near the submis-
sion time of the current article and takes this discussion to a deeper level. Nevertheless,
while the following statements may be well-known to some experts, we did not succeed
in pinpointing exact references for all of them, so we take the opportunity to fill some
apparent gaps in the existing literature.

5.3.1 Weil pairing

Following [20] and [36, Ex. III.3.15], to any elliptic curve isogeny ψ : E → E′ over a
perfect field k such that char(k) ∤ deg(ψ) one can associate the ψ-Weil pairing

eψ : ker(ψ)× ker(ψ̂)→ k
∗
: (P,Q) 7→ g ◦ τP

g
,

where ψ̂ : E′ → E denotes the dual of ψ. Here, g ∈ k(E) is any function with divisor
ψ∗(Q) − ψ∗(0E′) and τP denotes the translation-by-P map. It can be argued that
(g ◦ τP )/g is indeed constant. The ψ-Weil pairing takes values in µm, with m any
positive integer such that ker(ψ) ⊆ E[m]. When applied to the multiplication-by-m
map on an elliptic curve E one recovers the classical m-Weil pairing, as it is defined
in [36, §III.8].

Lemma 5.3.1 The ψ-Weil pairing is bilinear, non-degenerate, Gal(k, k)-invariant
and further satisfies:

1. Skew-symmetry: for any isogeny ψ : E → E′ we have

eψ(P,Q) = eψ̂(Q,P )
−1 for all P ∈ ker(ψ), Q ∈ ker(ψ̂),

2. Compatibility Weil-I: for any chain of isogenies E
ϕ→ E′

ψ→ E′′ we have

(a) eψ◦ϕ(P,Q) = eψ(ϕ(P ), Q) for all P ∈ ker(ψ ◦ ϕ), Q ∈ ker(ψ̂),

(b) eψ◦ϕ(P,Q) = eϕ(P, ψ̂(Q)) for all P ∈ ker(ϕ), Q ∈ ker(ϕ̂ ◦ ψ̂),

3. Compatibility Weil-II: for any positive integer m and any isogeny ϕ : E → E′

we have

em(ϕ(P ), Q) = em(P, ϕ̂(Q)) for all P ∈ E[m], Q ∈ E′[m].

Proof. We refer to [20, §2] and [36, Ex. III.3.15(c)] for bilinearity, non-degeneracy,
Galois invariance and Compatibility Weil-I(a). Compatibility Weil-II is just a restate-
ment of [36, III.Prop. 8.2]. Skew-symmetry is well-known in case ψ = m. The general
case can be found in [31, §4.1], although this can also been seen as a consequence of
the case ψ = m. Indeed, write m = deg(ψ) and pick any point R ∈ E′ such that

ψ̂(R) = P and likewise pick any point S ∈ E such that ψ(S) = Q. Observe that R,S
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are m-torsion points. Then one checks that

eψ(P,Q) = eψ(ψ̂(R), ψ(S)) = em(R,ψ(S)) = em(ψ(S), R)−1 =

em(S, ψ̂(R))−1 = eψ̂(ψ(S), ψ̂(R))
−1 = eψ̂(Q,P )

−1

as wanted. Here the first and last equality use Compatibility Weil-I(a), the third
equality uses skew-symmetry for the classical m-Weil pairing, and the fourth equality
uses Compatibility Weil-II. Compatibility Weil-I(b) is an immediate consequence of
Compatibility Weil-I(a) and skew-symmetry.

For ψ = m there is an equivalent definition of the Weil pairing which is more
amenable to computation via Miller’s algorithm [24].

Lemma 5.3.2 Let P,Q ∈ E[m]. Choose divisors

DP ∼ (P )− (0E) and DQ ∼ (Q)− (0E)

whose supports are disjoint from {(Q), (0E)} and {(P ), (0E)}, respectively. Let fm,P , fm,Q ∈
k(E) be such that

div(fm,P ) = m(P )−m(0E), div(fm,Q) = m(Q)−m(0E).

Then em(P,Q) = (−1)mfm,P (DQ)/fm,Q(DP ).

Proof. See e.g. [25].

There is no known analogue of this result for the more general ψ-Weil pairing; see [28,
§3.6] for a discussion. Note that it is possible to relax the assumption on the supports
of DP , DQ by working with normalized functions, along the lines of [25, Def. 4].

5.3.2 Tate pairing

The literature describes a number of related pairings on elliptic curves that are all
being referred to as the Tate pairing. We focus on the case k = Fq. Following
Bruin [2], to any Fq-rational isogeny ψ : E → E′ such that ker(ψ) ⊆ E[m] ⊆ E[q − 1]
we associate the ψ-Tate pairing

Tψ : (ker(ψ̂))(Fq)×
E′(Fq)

ψ(E(Fq))
→ µm ⊆ F∗q

defined by Tψ(P,Q) = eψ̂(P, πq(R) − R), where R is arbitrary such that ψ(R) = Q.
This is sometimes called the reduced Tate pairing in order to distinguish it from the
Frey–Rück Tate pairing (see below); this terminology is particularly common in case
ψ = m.
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Remark 5.3.3 Bruin instead writes eψ(πq(R)−R,P ), so in view of the skew-symmetry
we appear to have inverted the pairing value; however, this inversion compensates for
the fact that Bruin follows a different convention for the Weil pairing [2, §4]. In
particular, our two definitions of the ψ-Tate pairing match. ♢

Lemma 5.3.4 The ψ-Tate pairing is bilinear, non-degenerate, Gal(Fq,Fq)-invariant
and moreover satisfies:

1. Compatibility Tate-I: for any chain of Fq-rational isogenies E
ϕ→ E′

ψ→ E′′ we
have

Tψ◦ϕ(P,Q) = Tψ(P,Q) for all P ∈ (ker(ψ̂))(Fq) , Q ∈ E′′(Fq),

2. Compatibility Tate-II: for any positive integer m and any Fq-rational isogeny
ϕ : E → E′ we have

Tm(ϕ(P ), Q) = Tm(P, ϕ̂(Q)) for all P ∈ E[m](Fq), Q ∈ E′(Fq).

Proof. For compatibility Tate-I we note that

Tψ◦ϕ(P,Q) = eϕ̂◦ψ̂(P, πq(R)−R) = eψ̂(P, πq(ϕ(R))− ϕ(R))

for any R such that ψ(ϕ(R)) = Q; here we used Compatibility Weil-I(b) and the fact
that ϕ is defined over Fq. But this is indeed equal to Tψ(P,Q), because ψ(ϕ(R)) = Q.
Compatibility Tate-II is an immediate consequence of Compatibility Weil-II.

Notice that applying Compatibility Tate-I to E′
ϕ→ E

ψ→ E′, where ϕ is such that
[m] = ψ ◦ ϕ (e.g., ϕ = ψ̂ in case ψ is cyclic of degree m), shows that

Tψ(P,Q) = Tm(P,Q) for all P ∈ (ker(ψ̂))(Fq) , Q ∈ E′(Fq)

from which one sees that the ψ-Tate pairing is just a restriction of the m-Tate pairing.
This is in stark contrast with the ψ-Weil pairing, whose relation to the m-Weil pairing
is much more convoluted.

The following is an alternative interpretation of the ψ-Tate pairing in terms of the
Weil pairing. This generalizes Garefalakis’ main observation [20, §5].

Proposition 5.3.5 Consider an Fq-rational isogeny ψ : E → E′ between elliptic
curves over Fq and assume that

ker(ψ) ⊆ E[q − 1].

Then we obtain a well-defined pairing

E′(Fq)

ψ(E(Fq))
× (ker(ψ̂))(Fq)→ F∗q
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from the (πq − 1)-Weil pairing

eπq−1 : E′(Fq)× ker(π̂q − 1)→ F∗q

on E′, by restricting the domain of the second argument to ker(π̂q − 1) ∩ ker(ψ̂).
Moreover,

Tψ(P,Q) = eπq−1(Q,P )
−1

for all P ∈ (ker(ψ̂))(Fq) and Q ∈ E′(Fq).

Proof. We first show that

ker(π̂q − 1) ∩ ker(ψ̂) = ker(πq − 1) ∩ ker(ψ̂) = (ker(ψ̂))(Fq).

Indeed, we have ker(ψ̂) ⊆ E′[q−1] and #ker(πq−1) = #ker(π̂q−1) = q− t+1, with
t the trace of Frobenius. From this it follows that

ker(πq − 1) ∩ ker(ψ̂), ker(π̂q − 1) ∩ ker(ψ̂) ⊆ E′[t− 2].

Using that (π̂q − 1) + (πq − 1) = t− 2, the desired equality follows.

Next, we observe that any point Q ∈ (ker(ψ̂))(Fq) pairs trivially with ψ(P ) for
any P ∈ E(Fq):

eπq−1(ψ(P ), Q) = e(πq−1)◦ψ(P,Q) = eψ◦(πq−1)(P,Q) = eπq−1(P, ψ̂(Q)) = 1,

where the first three equalities use Compatibility Weil-I(a), the rationality of ψ, and
Compatibility Weil-I(b), respectively. So we indeed end up with a pairing whose
domain coincides with that of Tψ, up to reordering the factors.

Finally, to see that both pairings are each other’s inverses, take P ∈ (ker(ψ̂))(Fq)
and Q ∈ E′(Fq). From Compatibility Tate-I we know that

Tψ(P,Q) = Tψ◦(πq−1)(P,Q) = e(π̂q−1)◦ψ̂(P, (πq − 1)(R)) = eψ̂◦(π̂q−1)(P, (πq − 1)(R))

with R such that ψ ◦ (πq − 1)R = Q. Compatibility Weil-I(b) allows us to rewrite this
as

eπ̂q−1(P,ψ((πq − 1)(R))) = eπ̂q−1(P,Q)

which indeed equals eπq−1(Q,P )
−1 by skew-symmetry.

We will extend this observation to a wider class of pairings in Section 5.5.
Following [18] and [31, §4.4–4.5] one can also consider the Frey–Rück ψ-Tate pairing

tψ : (ker(ψ̂))(Fq)×
E′(Fq)

ψ(E(Fq))
→

F∗q
(F∗q)

m
: (P,Q) 7→ fm,P (DQ)

with fm,P and DQ as in Lemma 5.3.2.1 It allows for an efficient evaluation through

1It may seem suspicious, at first sight, that fm,P (DQ) does not depend on ψ. However, here too,
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Miller’s algorithm. The Frey-Rück ψ-Tate pairing relates to the reduced ψ-Tate pairing
Tm via the rule

Tψ(P,Q) = tψ(P,Q)(q−1)/m, (5.2)

see [2, §4] and [31, Rmk. 4.14], which is the reason for calling the former reduced. In
particular, also Tψ can be evaluated efficiently.

Remark 5.3.6 It may be tempting to rephrase Lemma 5.3.2 as

em(P,Q) = tm(P,Q)/tm(Q,P ),

however one should be careful with this: other representatives of tm(P,Q) and tm(Q,P )
may fail to quotient to em(P,Q). See [19, §IX.6] for a discussion. ♢

5.4 Self-pairings

In this section we analyze self-pairings, which we formally define as follows:

Definition 5.4.1 A self-pairing on a finite subgroup G of an elliptic curve E/k is a
homogeneous function

f : G→ k
∗

of degree 2. In other words, for all P ∈ G and λ ∈ Z it holds that f(λP ) = f(P )λ
2

. △

As the terminology suggests, our primary examples come from the application of
a bilinear pairing to a point and itself. More generally, it is natural to consider

f : G→ k
∗
: P 7→ e(τ1(P ), τ2(P )) (5.3)

for endomorphisms τ1, τ2 ∈ End(E) (possibly scalar multiplications), with e a bilinear
pairing on a group that contains τ1(G)× τ2(G).

Example 5.4.2 Let m ≥ 2 be an integer. The skew-symmetry of the classical Weil
pairing implies that em(P, P ) = 1 for any P ∈ E[m]. More generally, the m-Weil
pairing becomes trivial whenever it is evaluated at two points belonging to the same
cyclic subgroup ⟨P ⟩ ⊆ E[m]:

em(τ1P, τ2P ) = em(P, P )τ1τ2 = 1 for any τ1, τ2 ∈ Z.

In particular, if one wants to build non-trivial self-pairings from the classical Weil
pairing, then this requires the use of at least one non-scalar τi. 9

Example 5.4.3 The following example is inspired by [19, p. 193]. Consider the elliptic
curve E : y2 = x3 + 1 over a finite field Fq with q ≡ 1 mod 3. It comes equipped with

the Frey–Rück ψ-Tate pairing is just a restriction of the Frey–Rück m-Tate pairing.
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the Fq-rational automorphism τ : (x, y) 7→ (ωx, y), with ω a primitive 3rd root of
unity. Let ℓ | #E(Fq) be a prime satisfying ℓ ≡ 2 mod 3. Then the self-pairing

E[ℓ]→ F∗q : P 7→ eℓ(P, τ(P ))

takes non-trivial values for any P ̸= 0E . Indeed, every non-zero P ∈ E[ℓ] is mapped
to an independent point because there are no non-trivial eigenvectors for the action
of τ on E[ℓ]: its characteristic polynomial x2 + x+ 1 is irreducible mod ℓ. Since τ is

defined over Fq, this reasoning also proves that E[ℓ] ⊆ E(Fq). 9

Example 5.4.4 As a more interesting example, consider an ordinary elliptic curve
E/Fq with endomorphism ring Z[πq], and assume m | q − 1. The natural reduction
map E(Fq) → E(Fq)/m(E(Fq)) allows us to view the reduced m-Tate pairing as a
bilinear map

Tm : E(Fq)[m]× E(Fq)→ µm. (5.4)

By doing so, we may give up on the right non-degeneracy, but the pairing is still left
non-degenerate, that is, for any non-trivial point P ∈ E(Fq)[m] there exists a point
Q ∈ E(Fq) such that Tm(P,Q) ̸= 1. Since End(E) = Z[πq], the group E(Fq) is cyclic
(see [22, Thm. 1] or apply Lemma 5.2.4 to σ = πq − 1). Thus, in this case, we have an
induced self-pairing

E(Fq)→ µm : P 7→ Tm(τP, P ), (5.5)

where τ denotes scalar multiplication by the index [E(Fq) : E(Fq)[m]]. This self-
pairing is non-trivial as soon as E(Fq)[m] is non-trivial. Note that we can restrict the

domain E(Fq) to its m-primary part E(Fq)[m
∞] without affecting this property. 9

Remark 5.4.5 By the definition of Tm, the image of (5.5) can be rewritten as

em

(
τP,

πq − 1

m
(P )

)
which seems to be an instance of (5.3) with e the m-Weil pairing. However, note that
(πq − 1)/m is not an endomorphism of E. On the other hand, it does descend (or
rather ascend) to an endomorphism when considered on E/⟨P ⟩ and this is enough for
the pairing to be defined unambiguously. Recall from Proposition 5.3.5 that (5.5) can
also be rewritten as eπq−1(P, τP )

−1. ♢

Our definition of a self-pairing a priori allows for maps that do not come from
a bilinear pairing. This is indeed possible and, interestingly, a small example has
appeared in the literature. Let E be an elliptic curve over a finite field Fq with
q ≡ 1 mod 4 and #E(Fq) ≡ 2 mod 4. Then the “semi-reduced Tate pairing”

E(Fq)[2]→ µ4 : P 7→ f2,P (DR)
q2−1

4 , 2R = P (5.6)

from [8, Rmk. 11] maps 0E to 1 and it sends the point of order 2 to a primitive 4-th
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root of unity. Such an increase of order is impossible for self-pairings coming from a
bilinear pairing along the recipe (5.3). Yet it is easy to check that this does concern a
self-pairing.

This is essentially the oddest thing that can happen:

Lemma 5.4.6 Self-pairings map points of order n to gcd(n, 2)n-th roots of unity.

Proof. Let f : G→ k
∗
be a self-pairing on an elliptic curve E. Let P ∈ G have order

n. Then from

f(P )n
2

= f(nP ) = f(0E) = f(0 · 0E) = f(0E)
02 = 1

and

f(P )n
2+2n =

f(P )(n+1)2

f(P )
=
f((n+ 1)P )

f(P )
= 1

it follows that the order of f(P ) divides gcd(n2, n2 + 2n) = gcd(n, 2)n.

Let us now bring isogenies into the picture. Indeed, as discussed in the introduction,
self-pairings are only interesting if they are non-trivial and enjoy compatibility with a
natural class of isogenies, in the following sense:

Definition 5.4.7 Consider two elliptic curves E,E′ over k equipped with respective
self-pairings f : G → k

∗
, f ′ : G′ → k

∗
for finite subgroups G ⊆ E, G′ ⊆ E′. Let

ϕ : E → E′ be an isogeny. We say that f and f ′ are compatible with ϕ if

ϕ(G) ⊆ G′, f ′(ϕ(P )) = f(P )deg(ϕ)

for all P ∈ G. △

The most powerful case is where the domains G = ⟨P ⟩, G′ = ⟨P ′⟩ are cyclic: then
we know that ϕ(P ) = λP ′ for some λ ∈ Z and we can conclude

f ′(P ′)λ
2

= f(P )deg(ϕ), (5.7)

leaking information about λ if deg(ϕ) is known and vice versa. We will sometimes
refer to self-pairings with cyclic domains as cyclic self-pairings. In the non-cyclic case,
extracting such information becomes more intricate, although in certain cases it may
still be possible; see Remark 5.6.8. We note that the self-pairing from Example 5.4.4 is
cyclic, and it follows from Compatibility Tate-II that it is compatible with horizontal
Fq-rational isogenies; more specifically (and more generally), if m | q − 1 and E, E′

are elliptic curves over Fq such that the m-primary parts of E(Fq), E
′(Fq) are cyclic,

then the self-pairings

E(Fq)[m
∞]→ µm : P 7→ Tm(τP, P ), E′(Fq)[m

∞]→ µm : P 7→ Tm(τP, P ),

with τ = [E(Fq) : E(Fq)[m]] = [E′(Fq) : E′(Fq)[m]], are compatible with any Fq-
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rational isogeny ϕ : E → E′.

The focus of the current paper lies, more generally, on non-trivial cyclic self-pairings
on O-oriented elliptic curves, for some arbitrary (but fixed) imaginary quadratic order
O. If we merely impose compatibility with endomorphisms coming from O, then this
already imposes severe restrictions:

Proposition 5.4.8 Let O be an imaginary quadratic order with discriminant ∆O and
let (E, ι) be an O-oriented elliptic curve over k. Assume that there exists a self-pairing

f : C → k
∗

on some finite cyclic subgroup C ⊆ E which is compatible with endomorphisms in
ι(O). In other words, for every σ ∈ O and every P ∈ C we have

ι(σ)(P ) ∈ C, f(ι(σ)(P )) = f(P )N(σ).

Write m = #⟨f(C)⟩. Then

(i) char(k) ∤ m,

(ii) m | ∆O,

(iii) with r the 2-valuation of ∆O, we have:

– if r = 2 then m | ∆O/2,

– if r ≥ 3 then m | ∆O/4.

Remark 5.4.9 Note that the image of a self-pairing is not necessarily a group, which
is why we write ⟨f(C)⟩ rather than f(C). ♢

Proof. Statement (i) follows immediately from the fact that k
∗
contains no elements

of order char(k).

As for (ii) and (iii), let P be a generator of C. Then f(P ) has order m. For any
σ ∈ O we have that ι(σ)(P ) = λσP for some λσ ∈ Z, and via

f(P )N(σ) = f(ι(σ)(P )) = f(λσP ) = f(P )λ
2
σ

we see that N(σ) ≡ λ2σ mod m. Writing s for the 2-valuation of m, we make a case
distinction:

• If s ≤ 1 then from Lemma 5.4.6 we see that some multiple R of P must have
order m. Let σ be such that O = Z[σ]. From

(σ−σ̂)2R = (σ2+σ̂2−2N(σ))R = (λ2σ+λ
2
σ̂−2N(σ))R = (2N(σ)−2N(σ))R = 0

it follows that m | ∆O as wanted.
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• If s ≥ 2 then Lemma 5.4.6 only shows the existence of a point R ∈ C of order
m/2 and we obtain the weaker conclusionm | 2∆O. But at least this implies that
∆O is even, so we must have r ≥ 2. Write ∆O = −2rn and consider elements in
O of the form

σ =

√
∆O
2

+ 2ta a, t ∈ Z≥0,

so that N(σ) = 2r−2n+ 22ta2 has to be a square modulo 2s for every choice of
a, t. We distinguish further:

– If r is odd, then also r− 2 is odd and taking a = 0 immediately shows that
s ≤ r − 2, as wanted.

– If r is even, then taking t = (r − 2)/2 yields that n+ a2 must be a square
modulo 2s−r+2 for all a. If s ≥ r then this gives a contradiction both in
case n ≡ 1 mod 4 (take a = 1) and in case n ≡ 3 mod 4 (take a = 0). So
s ≤ r − 1.

It remains to show that if r ≥ 4 is even then in fact s ≤ r − 2. But if s = r − 1
then taking t = (r − 4)/2 yields that 4n+ a2 must be a square modulo 8 for all
a, which gives a contradiction (take a = 0).

We will refer to the quantity m = #⟨f(C)⟩ as the order of the self-pairing f . In
the next section, we will show, by explicit construction, that the necessary conditions
from Proposition 5.4.8 are in fact sufficient for the existence of a family of cyclic
self-pairings

f(E,ι) : C(E,ι) → k
∗
, (E, ι) ∈ Eℓℓk(O),

all satisfying #⟨im(f(E,ι))⟩ = m and compatible with horizontal isogenies (the family
will also cover many non-primitively O-oriented elliptic curves and non-horizontal
isogenies; more on that in Section 5.5).

Remark 5.4.10 One may want to relax the assumptions from Proposition 5.4.8 and
impose compatibility with endomorphisms whose norm is coprime to m only. This is
good enough for the applications we have in mind, and the semi-reduced Tate pairing
from (5.6) shows that this is a strict relaxation. Indeed, we know from [8, Thm. 10] that
it is compatible with Fq-rational isogenies of odd degree, but there exist Fq-rational
endomorphisms of even degree for which compatibility fails: denoting the pairing by
f , we see from

f(P ) = ζ4 and f((πq − 1)P ) = f(0E) = 1

that it cannot be compatible with the endomorphism πq − 1, since N(πq − 1) =
#E(Fq) ≡ 2 mod 4. This concerns a self-pairing of order 4 on a Z[πq]-oriented elliptic
curve, so it would not be allowed for by Proposition 5.4.8 because ∆Z[πq ] ≡ 4 mod 8.
In Appendix 5.8 we will prove a relaxed version of Proposition 5.4.8, and we will also
show (in a non-effective fashion) that the above example is part of a larger class of
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self-pairings of 2-power order that are compatible with K-oriented isogenies of odd
degree only. ♢

5.5 Constructing non-trivial self-pairings

Let O be an order in an imaginary quadratic number field K and let m | ∆O be a
divisor satisfying the necessary conditions from Proposition 5.4.8:

• char(k) ∤ m,

• if 4 | ∆O then m | ∆O/2,

• if 8 | ∆O then m | ∆O/4.

We will construct a family of cyclic self-pairings of order m, one for each (E, ι) ∈
Eℓℓk(O), which is compatible with all horizontal isogenies. More generally, the con-
struction will apply to all O-oriented elliptic curves (E, ι) for which the orientation is
locally primitive at m, in the sense of Definition 5.2.3. Compatibility will hold for any
K-oriented isogeny between two such curves. Our construction is based on a natural
generalization of the ψ-Tate pairing to O-oriented elliptic curves, which we discuss
first. We will actually only rely on the cases where ψ is a scalar multiplication, but
the discussion is fully general for the sake of analogy with the ψ-Tate pairing.

5.5.1 A generalization of the ψ-Tate pairing

Let m ≥ 2 be any integer that is invertible in k. Consider two O-oriented elliptic
curves (E, ι), (E′, ι′) and let ψ : E → E′ be a K-oriented isogeny between them.
Assume that ker(ψ) ⊆ E[m] and let σ ∈ O be such that

Tr(σ) ≡ 0 mod gcd(m,N(σ)). (5.8)

We define

Tσψ : (ker(ψ̂))[σ]× E′[σ]

ψ(E[σ])
→ µm ⊆ k

∗
: (P,Q) 7→ eψ̂(P, σ(R))

where R ∈ E is such that ψ(R) = Q and we abusingly write σ instead of ι(σ), ι′(σ).
This is well-defined: indeed,

• we have (ψ ◦ σ)(R) = (σ ◦ ψ)(R) = σ(Q) = 0E′ , so σ(R) ∈ ker(ψ),

• making another choice for R amounts to replacing R ← R + T for some T ∈
ker(ψ), and

eψ̂(P, σT ) = eσ̂◦ψ̂(P, T ) = eψ̂◦σ̂(P, T ) = eψ̂(σ̂(P ), T ) = eψ̂((Tr(σ)−σ)(P ), T ) = 1
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where the first and third equalities use Compatibility Weil-I and the last equality
follows from

P ∈ ker(ψ̂) ∩ ker(σ) ⊆ E′[m] ∩ E′[N(σ)] = E′[gcd(m,N(σ))].

The reader should notice the analogy with the definition of the ψ-Tate pairing from
Section 5.3. Indeed, applying the above to elliptic curves over Fq equipped with
the natural Frobenius orientation and to σ = πq − 1, we exactly recover the ψ-Tate
pairing; the assumption m | q − 1 that was made there indeed implies (5.8), i.e.
Tr(πq − 1) ≡ 0 mod gcd(m,N(πq − 1)).

The pairing Tσψ is bilinear and non-degenerate. Possibly the easiest way to verify
this is by noting that the statement and proof of Proposition 5.3.5 carry over: we have

Tσψ (P,Q) = eσ(Q,P )
−1

for all P ∈ (ker(ψ̂))[σ] and Q ∈ E′[σ], so these properties follow from those of the gen-
eralized Weil pairing. Our pairing also satisfies the direct analogues of Compatibilities
Tate-I and Tate-II:

1. for any chain of K-oriented isogenies E
ϕ→ E′

ψ→ E′′ between O-oriented elliptic
curves we have

Tσψ◦ϕ(P,Q) = Tσψ (P,Q) for all P ∈ (ker(ψ̂))[σ], Q ∈ E′′[σ],

2. for any positive integer m and any K-oriented isogeny ϕ : E → E′ between
O-oriented elliptic curves we have

Tσm(ϕ(P ), Q) = Tσm(P, ϕ̂(Q)) for all P ∈ E[m,σ], Q ∈ E′[σ].

Again the proofs are copies of the corresponding properties of the ψ-Tate pairing.

5.5.2 Self-pairings from divisors of the discriminant

Now consider m ∈ Z≥2 such that m | ∆O, unless m is even in which case we make
the stronger assumptions that 2m | ∆O in case 4 | ∆O, and 4m | ∆O in case 8 | ∆O.
Furthermore assume that char(k) ∤ m. Pick any generator σ ∈ O such that

m | Tr(σ), (5.9)

except in the special case where v2(m) = 1, in which case we want

2m | Tr(σ) if 8 | ∆O, m | Tr(σ) but 2m ∤ Tr(σ) if 8 ∤ ∆O. (5.10)

Such a generator always exists. Indeed, if m is odd then we can choose whatever
generator σ ∈ O and replace it by σ − (Tr(σ))/2 mod m if needed. If m is even and
8 | ∆O then we can just take σ =

√
∆O/2, whose trace is exactly zero. If m is even

and 8 ∤ ∆O then we can take σ =
√
∆O/2 +m/2, with trace m.
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Conditions (5.9–5.10) trivially imply (5.8), so from the foregoing it follows that
to any elliptic curve E equipped with an O-orientation we can associate the non-
degenerate bilinear pairing

Tσm : E[m,σ]× E[σ]

m(E[σ])
→ µm ⊆ k

∗
,

and we know that this family of pairings is compatible with K-oriented isogenies. As
with the standard reduced Tate pairing in Example 5.4.4, we can also view Tσm as a
left non-degenerate bilinear pairing E[m,σ]× E[m∞, σ]→ µm.

Now assume that the orientation is locally primitive atm. Then the group E[m∞, σ]
is cyclic: if it were not cyclic, we would have E[m′] ⊆ E[m∞, σ] for some positive di-
visor m′ | m, but this would mean that σ/m′ ∈ End(E), contradicting that σ is a
generator of O and the orientation is locally primitive. Next, note that our assump-
tions (5.9–5.10) together with

∆O = (Tr(σ))2 − 4N(σ)

imply that m | N(σ). Along with the fact that E[m∞, σ] is cyclic, this in turn yields
that E[m,σ] is cyclic of order m. By the left non-degeneracy, we see that Tσm is
surjective onto µm and that, again as in Example 5.4.4, it can be converted into a
self-pairing

f(E,ι) : E[m∞, σ]→ µm : P 7→ Tσm(τP, P )

still satisfying #⟨im(f(E,ι))⟩ = m; here τ is the index of E[m,σ] in E[m∞, σ]. This
proves the claims made at the beginning of this section.

5.5.3 Computing the self-pairings

For the practical applications we have in mind, our base field k will be a finite field Fq,
and then a compelling question is: what is the complexity of evaluating the self-pairings
constructed above? Concretely, for an O-oriented elliptic curve (E, ι) such that both
E and ι(O) are defined over Fq, and a divisor m | ∆O at which the orientation is
locally primitive, how efficiently can we find an appropriate σ ∈ O and compute

Tσm(τP, P ) = eσ(P, τP )
−1

with P a generator of E[m∞, σ] and τ the index of E[m,σ] inside E[m∞, σ]? Here,
by “appropriate” we mean that σ should satisfy conditions (5.9–5.10), but it is not
necessary that σ is a generator of O, as long as the orientation by Z[σ] remains locally
primitive at m.

Example 5.5.1 The situation is particularly nice for the Frobenius orientation in
case m | q − 1 and m | #E(Fq). From the identities Tr(πq − 1) = (q − 1)−#E(Fq),
N(πq − 1) = #E(Fq) and ∆O = Tr(πq − 1)2 − 4N(πq − 1) it is easy to check that m
satisfies our necessary conditions for the existence of an order-m self-pairing. Morover,
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they show that σ = πq − 1 meets conditions (5.9–5.10). If the orientation by Z[πq] is
locally primitive at m then the resulting order-m self-pairing

E(Fq)[m
∞]→ F∗q : P 7→ Tπq−1

m (τP, P ) = Tm(τP, P ), τ =
#E(Fq)[m

∞]

m

becomes an instance of the reduced m-Tate pairing, so it can be computed via the
Frey–Rück Tate pairing tm as in (5.2). The latter can be evaluated efficiently using

Miller’s algorithm, in time O(log2m log1+ε q) using fast multiplication. 9

Example 5.5.2 An interesting case is where σ = ς/b for some integer b ≥ 2, where ς
is some easier endomorphism. Then it suffices to compute T ςm(τP,Q) for any Q ∈ E
such that bQ = P . Indeed:

T ςm(τP,Q) = em(τP, ς(R)) = em(τP,
ς

b
(bR)) = Tσm(τP, P ),

with R such that mR = Q, so that m(bR) = P . E.g., if ς = πq − 1, then this again

allows us to resort to the Frey–Rück Tate pairing. 9

Remark 5.5.3 In the previous example the group E[m∞, ς], unlike E[m∞, σ], may not
be cyclic. This sheds a new and more conceptual light on the “not walking to the
floor” appendix to [8]. There m was taken to be a prime divisor of q − 1; for the sake
of exposition, let us ignore the technical (and less interesting) case m = 2 in what
follows. It was assumed that E is an ordinary elliptic curve over Fq not located on
the crater of its m-isogeny volcano, and that

E[m∞, πq − 1] = E(Fq)[m
∞] ∼=

Z

mrZ
× Z

msZ

for some r > s + 1. For us, the weaker assumptions r > s and m | ∆End(E) will do.
One then simply notes that σ := (πq − 1)/ms ∈ End(E) and that, when viewing E as
a Z[σ]-oriented elliptic curve, the orientation becomes locally primitive at m. By the
assumption on ∆End(E) we still have

m | ∆Z[σ] and consequently Tr(σ) ≡ 0 mod m,

where the last congruence uses ∆Z[σ] = Tr(σ)2 − 4N(σ) = Tr(σ)2 − 4 ·#E(Fq)/m
2s.

Thus we have a self-pairing

E[m∞, (πq − 1)/ms]→ µm : P 7→ T (πq−1)/ms

m (mr−s−1P, P )

of order m, with cyclic domain E[m∞, (πq − 1)/ms] ∼= Z/mr−sZ. When computing
this self-pairing via the standard m-Tate pairing as in Example 5.5.2, using ς = πq−1
and b = ms, we recover the pairing discussed in [8, App.A]. ♢

Unfortunately, for general σ we do not know of an analogue of the Frey–Rück Tate
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pairing, nor of an analogue of Lemma 5.3.2 for the generalized Weil pairing. The best
methods we can currently think of work by embedding the pairing into a standard Weil
pairing, that is, with respect to scalar multiplication. In this way Miller’s algorithm
becomes available. The embedding is natural via the definition:

Tσm(τP, P ) = em(τP, σ(R))

with R ∈ E such that mR = P . Alternatively, using compatibility Weil-I one can
rewrite

eσ(P, τP )
−1 = eN(σ)(P, τR)

−1

with R ∈ E a preimage of P under σ. Sincem is typically a lot smaller than N(σ), and
since evaluating σ seems easier than computing a preimage, the first method appears
to be preferable in practice.

The complexity then depends heavily on the field of definition of the points in
E[m∞, σ]. In the worst case, one may need to unveil the full N(σ)-torsion to see these
points, requiring to switch to Fqa with a the order of πq acting on E[N(σ)], which is
O(N(σ)2). We must also divide P by m to get R, for which we may need to extend
further to

Fqaa′ with a′ = O(m2).

Running Miller’s algorithm for the m-Weil pairing over Fqaa′ could then cost an atro-
cious

O(∆2+ε
O m2+ε log1+ε q),

where we have approximated N(σ) ≈ ∆O.

However, this is the absolute worst case: one typically expects E[m∞, σ] ⊆ E[mt]
for some very small constant t, most likely t = 1, and then the estimate becomes

O(m2t+2+ε log1+ε q).

E.g., in Proposition 5.6.5 this will be applied to moduli m of sub-exponential size,
leading to a sub-exponential workload. We note that the above estimates ignore the
cost of determining ι(σ) and evaluating it on R. This heavily depends on how the
orientation is given in practice, which is a separate discussion for which we refer
to [39].

5.6 Applications

In this section, we present two applications of the non-trivial self-pairings from Sec-
tion 5.5. In Section 5.6.1, we show how knowledge of the degree of a secret isogeny to-
gether with a non-trivial self-pairing on a large enough subgroup allows us to efficiently
attack certain instances of class group action based cryptography. In Section 5.6.2,
we use the generalized view of self-pairings to conceptualize previous results on the
decisional Diffie–Hellman problem for class group actions [8, 6].
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5.6.1 Easy instances of class group action inversion

Using the tools developed in the previous sections, we describe a special family of
class group actions on oriented elliptic curves for which the vectorization problem is
easy, i.e., the class group action can be efficiently inverted. More precisely, we give a
high-level recipe for recovering a secret horizontal isogeny ϕ between two primitively
O-oriented elliptic curves (E, ι), (E′, ι′) whenever d = deg(ϕ) is known and smaller
than m2, where m is a prime power satisfying

m2 | ∆O if m is odd, 4m2 | ∆O if m is even.

It is also assumed that gcd(m, char(k), d) = 1. While it has been previously pointed
out that factors dividing the discriminant can cause a decrease of security, see e.g. [3,
Rmk. 2] or [8, §5.1], it was unknown that in special cases they allow for a full break of
the vectorization problem.

Attack strategy.

Let σ ∈ O be such that Tr(σ) ≡ 0 mod m2 and the orientation by Z[σ] is locally
primitive at m. As discussed in Section 5.5.2 such a σ exists and is easy to find; we
can even choose σ to be a generator of O, but in certain cases one may want to take
a non-generator for reasons of efficiency.2

Recall, again from Section 5.5.2, that the groups E[m∞, σ] and E′[m∞, σ] are cyclic
and we obtain self-pairings

f : E[m∞, σ]→ µm2 and f ′ : E′[m∞, σ]→ µm2

of order m2 by mapping P 7→ Tσm2(τP, P ), where

τ = [E[m∞, σ] : E[m2, σ]] = [E′[m∞, σ] : E′[m2, σ]].

Now, pick respective generators P , P ′ of E[m∞, σ], E′[m∞, σ]. Because ϕ isK-oriented
and its degree is coprime to m, we know that P ′ = µϕ(P ) for some unit µ ∈ Z/m2Z.
The compatibility of f and f ′ with K-oriented isogenies then implies

f ′(P ′) = f(P )dµ
2

.

Knowing d, we can determine µ2 mod m2 using a discrete logarithm computation in
µm2 , which leaves at most four options for µ mod m2: two options if m is odd and four
options if m is a power of 2. Given a correct guess for µ mod m2, we obtain knowledge
of pair of points

Q = µτP and Q′ = τP ′

of order m2 that are connected via ϕ.

2For instance, to allow for σ of the form (πq − 1)/b as in Example 5.5.2.
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Remark 5.6.1 Guessing −µ is in fact equally fine, because it is of course good enough
to recover −ϕ = [−1] ◦ ϕ. Therefore, only in the case where m is a power of 2 there is
an actual need for guessing between ±µ and ±(1 +m2/2)µ, where we have to repeat
the procedure below in case of a wrong guess. ♢

Using a reduction by De Feo et al.,3 the problem of recovering ϕ given its images
on the cyclic subgroup ⟨Q⟩ of order m2 can be reduced to the problem of recovering
a related degree-d isogeny ϕ0 : E0 → E′0 given its images on E0[m]. The idea is to
compute the isogenies ψ : E → E0, ψ

′ : E′ → E′0 with kernels generated by mQ and
mϕ(Q), respectively, and complete the diagram:

E0 E′0

E E′

ϕ0

ϕ

ψ ψ′

The points Q0 := ψ(Q) and Q′0 := ψ′(Q′) = ψ′(ϕ(Q)) are of order m and we have

ϕ0(Q0) = Q′0. Further, by picking any generator R0 of ker(ψ̂) we obtain a basis

{Q0, R0} of E0[m]. If we choose a generator R′0 of ker(ψ̂′) then it is easy to argue that
R′0 = λϕ0(R0) for some λ ∈ Z that is coprime to m. The exact value of λ mod m can
be recovered via a discrete logarithm computation by comparing

em(Q′0, R
′
0) = em(ϕ0(Q0), λϕ0(R0)) = em(Q0, R0)

λd with em(Q0, R0),

hence we can assume that λ = 1. Thus, we are given the images of ϕ0 on a basis of
E0[m]. Since m2 > d, we can use Robert’s method from [30, §2], together with the
refinement discussed in [30, §6.4], to evaluate ϕ0 on arbitrary inputs. In particular, we
can evaluate ϕ0 on a basis of E0[d] in order to determine the kernel of ϕ0 explicitly;

this kernel can then be pushed through ψ̂ to obtain the kernel of ϕ.

Remark 5.6.2 In our main use cases, namely attacking special instances of CRS,
rather than evaluating ϕ0 on a basis of E0[d] (which may be defined over a huge field
extension only) we want to proceed as follows. For simplicity, let us focus on the
dummy-free set-up with e = 1 (see Section 5.1). Then we have d = ℓ1ℓ2 · · · ℓr for
distinct small primes ℓi that split in O. In this context, recovering ϕ amounts to
finding for each i = 1, 2, . . . , r the prime ideal li above ℓi (one out of two options) for
which E[li] is annihilated by ϕ. Then ϕ is the isogeny corresponding to the invertible
ideal l1l2 · · · lr ⊆ O. Since gcd(m, d) = 1 this can be tested directly on E0 by evaluating
ϕ0 in a generator of ψ(E[li]). ♢

3The reduction was presented at the KU Leuven isogeny days in 2022 and an article about this is
in preparation [17].
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Weak instances over Fq.

Whether or not the above strategy turns into an efficient algorithm depends amongst
others on the field arithmetic involved, the cost of evaluating ι(σ), ι′(σ), and the cost
of computing discrete logarithms in µm2 . The following proposition gives instances
where it indeed leads to a polynomial-time attack:

Proposition 5.6.3 Let E, E′ be elliptic curves defined over a finite field Fq, equipped
with their Frobenius orientations and connected by an unknown horizontal isogeny ϕ
of known degree d, assumed B-powersmooth and coprime to q. Let O ⊆ Q(πq) be
their joint primitive order. Assume that there exists a prime power m = ℓr satisfying
ℓ ≤ B, ℓ ∤ qd, ℓ2r > d, and

ℓ2r | ∆O if ℓ is odd, ℓ2r+2 | ∆O if ℓ = 2.

Further, assume that there exists a positive integer b coprime to q such that σ =
(πq − 1)/b ∈ O, Tr(σ) ≡ 0 mod ℓ2r and ℓ ∤ [O : Z[σ]]. Then the invertible ideal a ⊆ O
for which ϕ = ϕa can be computed in time poly(log q,B).

Proof. First note that

d = O(m2) = O(|∆O|) and |∆O| = (4q − Tr(πq)
2)/[O : Z[πq]]

2 = O(q)

so any subroutine which runs in time poly(d,m) also runs in time poly(q). The orien-
tation by Z[σ] being locally primitive at ℓ, we know that

E(Fq) ∼= E′(Fq) ∼=
Z

bb′Z
× Z

bb′cZ

for positive integers b′, c, where ℓ ∤ b′, that can be determined in time poly(log q)
using a point-counting algorithm [34]. Define κ = gcd(ℓ∞, c), where we note that
our assumptions imply that ℓ2r | κ: indeed recall from Section 5.5.2 that E[ℓ2r, σ] ⊆
E[σ] ∼= Z/b′Z×Z/b′cZ has order ℓ2r. A generator P ∈ E[ℓ∞, σ] is found by repeatedly

sampling X ← E(Fq) until P = bb′c
κ X has order κ. Following Example 5.5.2, the self-

pairing

f(P ) = Tσℓ2r (τP, P ) = T
πq−1

b

ℓ2r (τP, P ) = Tℓ2r (τP,
b′c

κ
X), τ =

κ

ℓ2r

can then be computed in time poly(log q) via the Frey–Rück Tate pairing. Likewise,
we can efficiently evaluate f ′ at a generator P ′ ∈ E′[ℓ∞, σ], necessarily satisfying
P ′ = µϕ(P ) for some µ. As outlined above, via a discrete logarithm computation in
µℓ2r , which can be done in time poly(log q,B), we obtain µ2 mod ℓ2r. Assuming a
correct guess for µ, from this we obtain our order-ℓ2r points Q, Q′ = ϕ(Q) and we are
all set for the torsion-point attack. Note that the points Q,Q′ are defined over Fq,
hence so are the curves E0, E

′
0 and evaluating ϕ0 at a point in E0(Fqa) only involves

arithmetic over Fqa . We then proceed as outlined in Remark 5.6.2, with the difference
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that d need not be square-free: we only require it to be powersmooth. This means
that for each prime power ℓeii dividing d, we have to test up to 2ei−1 = O(B) ideals of
norm ℓeii for annihilation by ϕ0. All arithmetic can be done in an extension of degree
a = poly(B), from which the proposition follows.

Example 5.6.4 An example application of Proposition 5.6.3 is where ℓ2r | q − 1 for
a small prime ℓ and r ≥ 1 and E(Fq)[ℓ

∞] is cyclic of order at least ℓ2r. Then m := ℓr

and σ := πq − 1 meet the above requirements. Indeed:

• the orientation by Z[πq − 1] is locally primitive at ℓ by Lemma 5.2.4,

• Tr(πq − 1) = q − 1−#E(Fq) ≡ 0 mod ℓ2r,

• ∆Z[πq−1] = Tr(πq − 1)2 − 4#E(Fq) is divisible by ℓ2r, and by ℓ2r+2 if ℓ = 2.

Here is a baby example with ℓ = 2. Let E be the ordinary elliptic curve defined by

y2 = x3 + 106960359001385152381x+ 100704579394236675333

over Fp with p := 230 · 167133741769 + 1. So here we take σ := πp − 1 and m := 215.
One checks that E[σ] = E(Fp) is a cyclic group of order

230 · 52 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31,

in particular its subgroup E(Fp)[2
∞] is cyclic of order 230 as wanted. In this case

it is easy to check that the Z[σ]-orientation is primitive overall, i.e., not just locally
at 2. This is a minimal example for a curve one would construct for a SiGamal-type
encryption scheme [26] using the group action underlying CRS instead of the CSIDH
group action; see below. By Proposition 5.6.3, one can recover horizontal isogenies
of known powersmooth degree d < 230. We implemented the attack in the Magma
computer algebra system [1],4 only skipping the final step, i.e. computing the actual

evaluation algorithm as described in [30]. 9

A generalization.

The above recipe can be generalized to the case where multiple squared prime powers
m2

1, . . . ,m
2
r divide ∆O and the degree d of our secret isogeny ϕ is known and smaller

than m2
1 · · ·m2

r. This time we use a cyclic self-pairing of order m2
1 · · ·m2

r to recover
µ2 mod m2

1 · · ·m2
r, with µ as before. Thus, we have 2r or 2r+1 options for µ depending

on whether one of the mi is even (or in fact 2r−1 or 2r options in case we do not care
about a global sign). The rest of the recipe follows mutatis mutandis.

Proposition 5.6.5 (informal) Let E,E′ be elliptic curves defined over a finite field
Fq, equipped with their Frobenius orientations and connected by an unknown horizontal
isogeny ϕ of known degree d, assumed B-powersmooth and coprime to q. Let O ⊆

4See https://github.com/KULeuven-COSIC/Weak-Class-Group-Actions for the code.
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Q(πq) be their joint primitive order. Assume that there exist r ≈
√
log q prime powers

m1, . . . ,mr ∈ Lq(1/2) coprime to qd such that m2
1 · · ·m2

r > d and

m2
1 · · ·m2

r | ∆O and 4m2
1 · · ·m2

r | ∆O if some mi is even.

Then it is expected that the invertible ideal a ⊆ O for which ϕ = ϕa can be computed
in time poly(B) · Lq(1/2).

Proof sketch. Let σ ∈ O be such that Tr(σ) ≡ 0 mod m2
1 · · ·m2

r and the orientation by
Z[σ] is locally primitive at m1 · · ·mr. If it so happens that σ = (πq − 1)/b for some b
coprime to q then we can just mimic the previous proof: the main difference is that,
this time, there are about 2r ≈ 2

√
log q = Lq(1/2) possible guesses for the secret scalar

µ, from which the stated runtime follows.

In general however, it may not be possible to pick σ of the said form, and then
the domains E[(m1 · · ·mr)

∞, σ] and E′[(m1 · · ·mr)
∞, σ] of our self-pairings may be

defined over a field extension of degree Lq(1) only, in which case there is no hope
for a sub-exponential runtime. For this reason, the attack should be broken up in
pieces. Writing mt1

1 · · ·mtr
r for the order of E[(m1 · · ·mr)

∞, σ] ∼= E′[(m1 · · ·mr)
∞, σ],

as discussed in Section 5.5.3 we heuristically expect that ti = O(1) for all i = 1, . . . , r.
If this is indeed the case, then for each i we can find generators Pi ∈ E[m∞i , σ],
P ′i ∈ E′[m∞i , σ] over an extension of degree Lq(1/2). The cyclic self-pairings

Tσm2
i
(τP, P ) and Tσm2

i
(τP ′, P ′), τ = mti−2

i

can thus be computed in time Lq(1/2) and this also accounts for the subsequent
discrete logarithm computation. Assuming a correct guess for the scalar µi such that
P ′i = µiϕ(Pi), we obtain a pair of order-m2

i points Qi, Q
′
i = ϕ(Qi). Note that, while

these points are defined over an extension of degree Lq(1/2), the groups they generate
are Fq-rational because our orientation is by Frobenius. In particular, the isogenies
ψ1, ψ

′
1 and codomains E0,1, E

′
0,1 corresponding to Q1, Q

′
1 are defined over Fq. The

idea is now to push the points Q2, Q
′
2 through ψ1, ψ

′
1 and repeat the argument, leading

to a diagram

E0,r E′0,r

...
...

E E′

ϕ0

ψr ψ′r

ϕ

ψ1 ψ′1

The map ϕ0 on top comes equipped with its images on a basis of E0,r[mi] for each
i = 1, . . . , r. For the evaluation of ϕ0 on arbitrary inputs, we can then proceed as
in [29, Prop. 2.9] and conclude as before.
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Unaffected schemes.

From the above propositions it follows that a CRS-instantiation using curves whose
discriminants are divisible by (large) powers of smallish primes may be vulnerable to a
sub-exponential attack. In particular, from a security point of view, walking down the
volcano to instantiate CRS is worse than CRS close to the crater. Each descending
step on the ℓ-volcano adds a factor ℓ2 to our discriminant and thus we can recover
isogenies of degree ℓ2 times larger than a level above, using the attack outlined in this
section. We examine how some proposed constructions avoid this problem already.

Schemes that use the maximal order as their orientation are not vulnerable to our
attack. We need that a prime power, not a prime, divides the discriminant, because the
De Feo et al. reduction works only for points of square order. The maximal order has
a discriminant that is square-free, at worst after dividing by 4, so the above does not
apply. The CSIDH variant CSURF is an example of a scheme that uses the maximal
order [3], where the discriminant is not merely square-free but even prime. Similarly,
in the original CSIDH proposal the discriminant is four times a large prime and thus
there is no factor of the discriminant large enough to enable our attack.

Schemes that are close to the crater are also secure. For instance, the SCALLOP
scheme [16] uses curves one level underneath the crater in the f -volcano, where f is a
large prime. Thus the discriminant is of the form f2 · d, where d is square-free away
from 4. Theoretically, we can still use a point of order f2 to recover an isogeny of
degree at most f2. However, to actually see the f -torsion we would need to pass to
an extension of degree O(f), which is infeasible for large enough f .

Another scheme worth mentioning is the higher-degree supersingular group ac-
tions [11]. Here the order used is Z[

√
−dp] for some square-free d, which has discrimi-

nant −dp or −4dp. Even if d was a square, d is chosen small relative to p, and as such
applying the attack above to these orientations, we could recover an isogeny of degree
2d at best.

Pairing-based attack strategy on SiGamal.

We end by commenting on a strategy, proposed to us by Luca De Feo and involving
self-pairings, to break the IND-CPA security of the SiGamal public-key encryption
scheme [26]. In SiGamal, the hardness of the IND-CPA game – i.e., given the en-
cryption of one out of two known plaintexts, guessing which one has been encrypted
– relies [26, Thm. 8] on an ad hoc assumption called the P-CSSDDH assumption.

More precisely, let p be a prime of the form 2rℓ1 · · · ℓn−1, where r ≥ 2 and ℓ1, . . . , ℓn
are distinct odd primes. Moreover, let E0 be the supersingular elliptic curve over Fp of
equation y2 = x3 + x, P0 a random generator of E0(Fp)[2

r] and a, b random elements
of odd norm in Cl(Z[πp]). Then the P-CSSDDH assumption is as follows: given the
curves E0, [a]E0, [b]E0, [ab]E0 and the points P0, P1 = ϕa(P0) and P2 = ϕb(P0), no
efficient algorithm can distinguish P3 = ϕab(P0) from a uniformly random 2r-torsion
point P ′3 ∈ [a][b]E0(Fp). Schematically:
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(E0, P0) ([a]E0, P1 = ϕa(P0))

([ab]E0, P3 = ϕab(P0), P
′
3)([b]E0, P2 = ϕb(P0))

a

bb

a

If there existed (efficiently computable) non-trivial self-pairings fi on the subgroups
⟨Pi⟩, say of order 2s, compatible with Fp-rational isogenies of odd degree, then

f1(P1) = f1(ϕa(P0)) = f0(P0)
N(a)

f2(P2) = f2(ϕb(P0)) = f0(P0)
N(b)

f3(P3) = f3(ϕab(P0)) = f0(P0)
N(a)N(b).

Thus, the P-CSSDDH challenge could then be reduced to a decisional Diffie–Hellman
problem on µ2s . However, the existence of such self-pairings fi is ruled out by Propo-
sitions 5.4.8 and 5.8.1. Since ∆O = −4p and p ≡ 3 mod 4 by construction, we are
condemned to s = 2. This is of no use since a and b are assumed to have odd norm.

5.6.2 Decisional Diffie–Hellman revisited

Genus theory [14, Ch. I§3B] attaches to every imaginary quadratic order O a list
of assigned characters, which form a set of generators for the group of quadratic
characters χ : Cl(O)→ {±1}. In detail: if

∆O = −2rmr1
1 m

r2
2 · · ·mrn

n

denotes the factorization of ∆O into prime powers, then the assigned characters include

χmi
: [a] 7→

(
N(a)

mi

)
, i = 1, . . . , n, (5.11)

and this list is extended with a subset of

δ : [a] 7→
(
−1
N(a)

)
, ϵ : [a] 7→

(
2

N(a)

)
, δϵ : [a] 7→

(
−2
N(a)

)
.

Concretely, the character δ is included if r = 2 and −∆O/4 ≡ 1 mod 4, or if r ≥ 4.
The character ϵ is included if r = 3 and −∆O/8 ≡ 3 mod 4, or if r ≥ 5. The character
δϵ is included if r = 3 and −∆O/8 ≡ 1 mod 4, or if r ≥ 5. In all this,

( ·
·
)
denotes

the Legendre/Jacobi symbol and it is assumed that [a] is represented by an invertible
ideal a ⊆ O of norm coprime with ∆O.

In the context of breaking the decisional Diffie–Hellman problem for ideal class
group actions, it was observed in [8, 6] that, given two primitively O-oriented elliptic
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curves
(E, ι), (E′, ι′) = [a](E, ι) ∈ Eℓℓk(O)

that are connected by an unknown ideal class [a], it is possible to compute χ([a]) for
any assigned character χ, purely from the knowledge of (E, ι), (E′, ι′), and at the
cost of essentially one discrete logarithm computation (e.g., in the group µm in case
χ = χm for an odd prime divisor m | ∆O).

Even though we have not much to add over [8, 6] in terms of efficiency or generality,
in this section we want to make the nearly obvious remark that cyclic self-pairings are
excellently suited for accomplishing this task. Indeed, if m is an odd prime divisor of
∆O, then we can consider the cyclic self-pairings

f : C → µm ⊆ k
∗
, f ′ : C ′ → µm ⊆ k

∗

of order m from Section 5.5. Taking any generators P ∈ C, P ′ ∈ C ′, we know that
P ′ = λϕa(P ) for some λ ∈ Z that is invertible mod m and then

f ′(P ′) = f(P )λ
2N(a) so that χm([a]) =

(
logf(P ) f

′(P ′)

m

)
.

None of the methods from [8, 6] are literal applications of this simple strategy. Indeed,
in the case of [8], which focuses on ordinary elliptic curves over finite fields, the self-
pairing step is preceded by a walk to the floor of the m-isogeny volcano truncated at
Z[πq], in order to ensure cyclic rational m∞-torsion, at which point the usual reduced
m-Tate pairing can be used. The method from [6] applies to arbitrary orientations and
avoids such walks, but it does not use cyclic self-pairings; rather, it uses self-pairings
with non-cyclic domains and, as a result, the argumentation becomes more intricate;
see Remark 5.6.8 for a discussion. So we hope to have convinced the reader that,
at least conceptually, this new method is simpler. It is also helpful in understanding
and generalizing the “not walking to the floor” phenomenon from [8, App.A], as was
already discussed in Remark 5.5.3.

Remark 5.6.6 If r ≥ 4 then we can use the cyclic self-pairings of order 2r−2 from
Section 5.5 for determining N(a) mod 2r−2, and this is enough for evaluating δ, ϵ, δϵ
in case they exist. The situation is more subtle if

• r = 2 and −∆O/4 ≡ 1 mod 4 (to evaluate δ),

• r = 3 (to evaluate one of ϵ, δϵ).

Both cases can be handled by descending to elliptic curves that are primitively (Z +
2O)-oriented, similar to the approach from [8, §3.1]. In the former case this may not
be needed: according to Proposition 5.8.1, there may exist cyclic self-pairings that
allow us to compute N(a) mod 4 directly. Indeed, for k = Fp and O = Z[

√
−p] this

is handled by the semi-reduced Tate pairing from [8, Rmk. 11], which was studied
precisely for this purpose. But for arbitrary orientations we are currently missing such
a pairing. ♢
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Remark 5.6.7 If m = char(k) then our order-m cyclic self-pairing is not available.
However, in view of the character relation [8, Eq. (1)] it is always possible to discard
one assigned character, so this concern is usually void.5 This is in complete analogy
with [8, 6]. ♢

Remark 5.6.8 In [6] an alternative attack to the DDH problem for oriented curves, that
applies to arbitrary orientations, is described, using the Weil pairing rather than the
Tate pairing. Here, the situation is slightly more intricate, in the sense that the domain
of the self-pairing is no longer cyclic. More specifically, the self-pairing associated to [6,
Thm. 1] may be constructed as follows. Let O be an imaginary quadratic order, let E
be an O-oriented elliptic curve, and suppose that m | ∆O for some odd prime number
m. Then we can write O = Z[σ], for some σ of norm coprime to m [6, Lem. 1]. We
define f : E[m] → µm, f(P ) := em(P, σ(P )). One easily checks that this is indeed a
non-trivial self-pairing compatible with horizontal isogenies. Interestingly, the proof
of [6, Thm. 1] shows that f can still be employed to recover the norm of a connecting
ideal up to squares modulo m. A similar phenomenon occurs in [6, Prop. 1& 2], where
the associated self-pairings are maps E[2]→ µ4 and E[4]→ µ8 respectively. ♢

5.7 Conclusions and open problems

In this paper we have derived necessary and sufficient conditions for non-trivial cyclic
self-pairings that are compatible with oriented isogenies, to exist. We have given
examples of such pairings based on the generalized Weil and Tate pairings.

As an application, we have identified weak instances of class group actions assuming
the degree of the secret isogeny is known and sufficiently small; some of these instances
succumb to a polynomial time attack. We note that these cases are rare, but exist
nonetheless; this situation is somewhat reminiscent of anomalous curves for which the
ECDLP can be solved in polynomial time [33, 37]. These instances can be easily
identified in that they require (large) square factors of ∆O. This also shows that
protocols that operate on or close to the crater are immune to this attack. To err on
the side of caution it is probably best to limit oneself to (nearly) prime ∆O.

The following problems remain open:

• In our attack we require square factors m2 of ∆O to be able to derive the action
of the secret isogeny on the full E[m], which is required as input to the algo-
rithm from [30]. However, it is well known that a degree d isogeny is uniquely
determined if it is specified on more than 4d points, so knowing the image of
a single point of order m > 4d should suffice. The problem remains to find a
method akin to [30] that can handle such one-dimensional input.

• Is it possible to exploit partial information, e.g. how valuable is it to know the
action of a secret isogeny on a single point of order m < 4d?

5If char(k) = 2 then it seems like we may be missing more than one assigned character, but see [6,
Footnote 1] for why this is not the case.
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• At the moment we have only used the generalized Weil and Tate pairings for
endomorphisms, whereas the definition also allows for more general isogenies ψ.
Can this somehow be exploited in a more powerful attack?

• Our definition of a self-pairing on cyclic groups of even order allows for instances
not derived from a bilinear pairing, e.g. the semi-reduced Tate pairing given
in [8, Rmk. 11]. Proposition 5.8.1 below shows that such self-pairings indeed
exist more generally, but unfortunately the proof does not give a method to effi-
ciently compute them. Regardless of computational considerations, it would be
interesting to find a more direct mathematical construction of these self-pairings
and thereby genuinely complete the classification from Sections 5.4 and 5.5.

• Are there efficient Miller-type algorithms for computing the generalized Weil and
Tate pairings? If not, do they exist for a larger class of endomorphisms than
just σ = πq − 1? At least, can these pairings be computed without needlessly
extending the base field?

5.8 Relaxing the compatibility assumption

Proposition 5.8.1 We inherit the notation/assumptions from Proposition 5.4.8, but
now we only require that our cyclic self-pairing

f : C → k
∗

of order m is compatible with endomorphisms ι(σ) for which gcd(N(σ),m) = 1. Then
char(k) ∤ m, and writing ∆O = −2rn with n odd, we have:

(a) if r = 0 and n ≡ 3 mod 8 then m | ∆O,

(b) if r = 0 and n ≡ 7 mod 8 then m | 2∆O,

(c) if r = 2 and n ≡ 1 mod 4 then m | ∆O,

(d) if r = 2 and n ≡ 3 mod 4 then m | ∆O/2,

(e) if r = 3, 4 then m | ∆O/4,

(f) if r ≥ 5 then m | ∆O/2.

Conversely, if m satisfies these necessary conditions, then we can equip every O-
oriented elliptic curve (E, ι) over k for which the orientation is locally primitive at m
with a cyclic self-pairing

f(E,ι) : C(E,ι) → k
∗

of order m, such that these self-pairings are compatible with all K-oriented isogenies
of degree coprime with m (as usual, K denotes the imaginary quadratic number field
containing O).
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Proof. Write m = 2sm′ with m′ odd. Note that the statement char(k) ∤ m is again
immediate.

In order to prove the other divisibility conditions, it is easy to see that one can
always find a generator σ ∈ O of norm coprime with m′, and by mimicking the proof
of Proposition 5.4.8 (see the part “If s ≤ 1 then . . . ”) we find that m′ | ∆O. Since the
self-pairing

C → k
∗
: P 7→ f(P )m

′
(5.12)

has order 2s, the remaining divisibility conditions just follow from the case m =
2s which is discussed below. This ignores a subtlety, namely that (5.12) may be
incompatible with endomorphisms σ for which gcd(N(σ), 2sm′) ̸= 1, rather than just
gcd(N(σ), 2s) ̸= 1. However, it is easy to check that the proof below does not suffer
from this.

As for the converse statement, the cyclic self-pairings

f(E,ι),m′ : C(E,ι),m′ → k
∗

of order m′ that were constructed in Section 5.5 are compatible with K-oriented iso-
genies of any degree. So, here too, if we manage to find cyclic self-pairings

f(E,ι),2s : C(E,ι),2s → k
∗

of order 2s that are compatible with K-oriented isogenies of odd degree, then

C(E,ι),2s × C(E,ι),m′ → k
∗
: P 7→ f(E,ι),2s(P )f(E,ι),m′(P )

is a family of cyclic self-pairings of the desired kind (we can assume that C(E,ι),2s is
2-primary, so that the domain is indeed cyclic).

Therefore, from now on we concentrate on the case m = 2s, i.e., m′ = 1. We
proceed by the case distinction from the proposition statement:

(a) If s ≥ 1 then by Lemma 5.4.6 we know that C[2] ∼= Z/2Z. The generator
σ = (1+

√
∆O)/2 satisfies Tr(σ) ≡ N(σ) ≡ 1 mod 2, so when acting on E[2] it has

characteristic polynomial x2 + x+ 1, which is irreducible. But by compatibility
with σ we know that C[2] is an eigenspace: a contradiction.

(b) If s ≥ 2 then as in the proof of Proposition 5.4.8 we find that n = N(
√
∆O)

must be a square modulo 4: a contradiction. If s = 1 then we can construct
the desired family of self-pairings as follows. Let C(E,ι) be the subgroup of E[2]

that is fixed by σ = (1 +
√
∆O)/2. This is a cyclic group of order 2 because the

characteristic polynomial is x2 + x in this case. We then simply define

f(E,ι) : C(E,ι) → {±1} : P 7→ −1, 0E 7→ 1

It is trivial that this family is compatible with K-oriented isogenies of odd degree
(but note, as a sanity check for Proposition 5.4.8, that it is not compatible with
the even-degree endomorphism σ).
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We now discuss the cases r ≥ 2. Note that the existence part is completely covered
by Section 5.5, so it suffices to prove the necessary conditions, except in cases (c) and
(f). We will use the notation

σa := a+
√

∆O/2

for any a ∈ Z. This is an element of O with norm a2 + 2r−2n.

(c) If s ≥ 3 then we arrive at a contradiction because {n, n+ 4} = {N(σ0), N(σ2)}
must both be squares modulo 8.

For existence when s = 2, fix an O-oriented elliptic curve (E, ι) and consider
the non-zero point P ∈ E[2] annihilated by σ1. This point exists because the
characteristic polynomial of σ1 mod 2 is x2, and it is unique because otherwise
E[2] ⊆ ker(σ1) would imply that 4 divides 1 + n, a contradiction. Consider the
self-pairing

f(E,ι) : C(E,ι) → µ4 : P 7→ ζ4, 0E 7→ 1

where C(E,ι) = ⟨P ⟩ and ζ4 is some fixed primitive 4-th root of unity. This is
indeed a self-pairing of order 4: we have

f(E,ι)(λP ) = f(E,ι)(P )
λ2

for any λ ∈ Z because odd squares are congruent to 1 modulo 4. It is easy to see
that f(E,ι) is compatible with oriented endomorphisms of odd degree. Indeed,
every such endomorphism σ can be written as a + bσ0 for some integers a and
b, where exactly one among a and b is even since N(σ) = a2 + b2n is odd. Thus

f(E,ι)(σ(P )) = f(E,ι)((a+ b)P ) = f(E,ι)(P )
a2+b2+2ab = f(E,ι)(P )

N(σ).

To turn this into a family of self-pairings compatible with odd-degree K-oriented
isogenies, with every O-oriented elliptic curve (E′, ι′) that is connected to (E, ι)
via a K-oriented isogeny of degree 1 mod 4, we associate a self-pairing as above.
If (E′, ι′) is connected via a K-oriented isogeny of degree 3 mod 4, then we do
the same, except we map P to −ζ4 instead of ζ4. This is unambiguous because
if (E′, ι′) was connected to (E, ι) via K-oriented isogenies of degrees 1 and 3
mod 4, then (E, ι) would have an oriented endomorphism of degree 3 mod 4: a
contradiction since we have shown above that all oriented endomorphisms have
norm of the form a2 + b2n. By construction, this family of self-pairings is then
indeed compatible with K-oriented isogenies of odd degree.6

Finally, if s = 1, then we can just resort to our family of self-pairings from
Section 5.5.

(d) If s ≥ 2 then we find that n = N(σ0) must be a square modulo 4: a contradiction.

6The construction may not reach every O-oriented elliptic curve (E′, ι′), because there may not
exist an oriented isogeny to (E, ι), e.g. in view of [27, Prop. 3.3], but we can simply repeat the
procedure inside every connected component.
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(e) If r = 3 and s ≥ 2 then 1 + 2n = N(σ1) is a square mod 4, while if r = 4 and
s ≥ 3 then 1 + 4n = N(σ1) is a square mod 8: contradictions.

(f) Assume s ≥ r. By Lemma 5.4.6 we know that C[2s−1] ∼= Z/2s−1Z. Since f is
compatible with σa for every odd integer a, each of these endomorphisms acts on
C by scalar multiplication. But then the same must be true for σ0: let λ ∈ Z be
a corresponding scalar. Since Tr(σ0) = 0 the eigenvalues of σ0 acting on E[2s−1]
are then given by ±λ and therefore

−λ2 ≡ N(σ0) = 2r−2n mod 2s−1. (5.13)

On the other hand, the compatibility implies that N(σa) ≡ (λ + a)2 mod 2s

for all odd integers a. Along with the above congruence this yields a2 − λ2 ≡
(λ+a)2 mod 2s−1. Plugging in a = ±1 we find that (λ+1)2 ≡ (λ−1)2 mod 2s−1,
so that λ ≡ 0 mod 2s−3. This means that the left-hand side of (5.13) vanishes
mod 2s−1, leaving us with 2r−2n ≡ 0 mod 2s−1: a contradiction.

For existence when s < r, it suffices to assume that s = r−1. Fix an O-oriented
elliptic curve (E, ι) such that the orientation is locally primitive at 2. Note that
2r−2 | N(σ2r−3), so from Lemma 5.2.4 we see that E[2r−2, σ2r−3 ] is cyclic of
order 2r−2. Fix a generator P and define the self-pairing

f(E,ι) : C(E,ι) → µ2r−1 : λP 7→ ζλ
2

2r−1 ,

where ζ2r−1 is some generator of µ2r−1 . As in (c), this is a well-defined self-pairing
of order 2r−1. Indeed, for any λ and t we have

f(E,ι)((λ+ 2r−2t)P ) = f(E,ι)(P )
λ2+2r−1tλ+22(r−2)t2 = f(E,ι)(λP ).

To see compatibility with odd-degree endomorphisms, similar to in (c), we re-
mark that every oriented endomorphism σ can be written as a + bσ0 for some
integers a and b. In particular, N(σ) = a2 + 2r−2b2, which is odd if and only if
a is. Then

f(E,ι)(σ(P )) = f(E,ι)((a− 2r−3b)P ) = f(E,ι)(P )
a2+2r−2ab = f(E,ι)(P )

N(σ),

where the last equality follows from the fact that ab ≡ b2 mod 2 because a is
odd, hence 2r−2ab ≡ 2r−2b2 mod 2r−1. To turn this into a family of self-pairings
compatible with odd-degree K-oriented isogenies, we proceed as in (c): if (E′, ι′)
is a primitively O-oriented elliptic curve (locally at 2) connected to (E, ι) via a
K-oriented isogeny ϕ : E → E′ of odd degree, then we equip (E′, ι′) with the
above self-pairing, except that we use

ζ
deg(ϕ)
2r−1 instead of ζ2r−1

as our primitive 2r−1-th root of unity, and we choose the specific generator
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P ′ = ϕ(P ) of E′[2r−2, σ2r−3 ].7 To see that this self-pairing is independent of the
choice of ϕ, let

ϕ1, ϕ2 : E → E′

be two K-oriented isogenies of odd degree, and write P ′i for ϕi(P ). Then P ′1 =
λP ′2 for some odd λ, and we need to check that deg(ϕ1) ≡ λ2 deg(ϕ2) mod 2r−1.

Notice that ϕ̂2 ◦ ϕ1 is an oriented endomorphism of E sending P to λ deg(ϕ2)P .
By compatibility of f(E,ι) with oriented endomorphisms of odd degree we have
(λ deg(ϕ2))

2 ≡ deg(ϕ1) deg(ϕ2) mod 2r−1. The thesis immediately follows from
the fact that deg(ϕ2) is a unit modulo 2r−1.

Remark 5.8.2 The above proof naturally raises the question whether the self-pairings
in the boundary cases

• s = r = 2, n ≡ 1 mod 4,

• s = r − 1 ≥ 4,

whose existence was shown in a non-effective way, admit a more direct description.
Such a description would be needed for these self-pairings to be of any practical use. In
the former case, we know that the answer is yes for the Frobenius orientation, thanks
to the semi-reduced Tate pairing from (5.6); see also Remark 5.4.10. Unfortunately,
this construction is of Frey–Rück type, i.e., involving Miller functions, and we do not
know if/how it generalizes to arbitary orientations. ♢

7Here again, as in Footnote 6, the construction may not reach every instance of (E′, ι′), but we
can repeat the procedure in every connected component.
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Chapter 6

Generalized class polynomials

This chapter consists of a paper written together with Marco Streng. It has been
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Abstract

The Hilbert class polynomial has as roots the j-invariants of elliptic curves whose endomor-

phism ring is a given imaginary quadratic order. It can be used to compute elliptic curves

over finite fields with a prescribed number of points. Since its coefficients are typically rather

large, there has been continued interest in finding alternative modular functions whose cor-

responding class polynomials are smaller. Best known are Weber’s functions, which reduce

the size by a factor of 72 for a positive density subset of imaginary quadratic discriminants.

On the other hand, Bröker and Stevenhagen showed that no modular function will ever do

better than a factor of 100.83. We introduce a generalization of class polynomials, with re-

duction factors that are not limited by the Bröker-Stevenhagen bound. We provide examples

matching Weber’s reduction factor. For an infinite family of discriminants, their reduction

factors surpass those of all previously known modular functions by a factor at least 2.

102



Generalized class polynomials

6.1 Introduction

The Hilbert class polynomial HD[j] of the imaginary quadratic order O of discriminant
D is the minimal polynomial of the j-invariant of an elliptic curve with endomorphism
ring O. It is a defining polynomial of the ring class field of O and can be used
for constructing elliptic curves over a finite field with a given number of points. Its
coefficients are however rather large, which limits its practical usefulness. Already in
1908, Weber [37] therefore introduced alternative class invariants to be used instead
of j, which resulted in class polynomials with coefficients that have roughly 1/72 of
the digits of the coefficients of the Hilbert class polynomial for certain discriminants.

There has been continued interest in alternative class invariants ever since (e.g. [2,
30, 18, 17, 31, 8, 10, 11, 4, 14, 12, 9]). None however matched, let alone surpassed,
the factor 72 of Weber’s functions. Moreover, Bröker and Stevenhagen [4] showed that
no class invariant will ever do better than a factor 100.83. Under Selberg’s eigenvalue
conjecture [32, Conjecture 1], this bound reduces to 96.

We introduce generalized (multivariate) class polynomials, define an appropriate
notion of their reduction factor, and show that this notion indeed gives a measure
of their “size” compared to the Hilbert class polynomial (Section 6.3). Contrary to
classical class polynomials, the reduction factors of generalized class polynomials are
not limited by the Bröker-Stevenhagen bound.

We give a family of generalized class polynomials for which we prove that the
reduction factor matches Weber’s 72 for a large range of values of D, including in-
finitely many values of D where no reduction of 36 or better was previously known
(Section 6.4). We also give an example that possibly achieves the factor 120 (Re-
mark 6.7.6).

Though the focus of this paper is on introducing the generalized class invariants
and studying their height, we also give a preliminary analysis indicating that the height
reduction leads to a speed-up in their computation (Section 6.6), and we show how to
use them for constructing elliptic curves over finite fields (Section 6.5).

6.2 Generalized class polynomials

Definition 6.2.1 By a modular curve over Q we mean a smooth, projective, geo-
metrically irreducible curve C over Q together with a map ψ : H → C(C) from the
upper half space H ⊂ C with the following property. There exists a positive integer
N such that for every function f ∈ Q(C), the function f ◦ψ is a modular function for
Γ(N) with all q-expansion coefficients in Qab.

We identify f with f ◦ ψ and we identify ψ with the induced morphism of curves
X(N)→ C. △

For an order O in an imaginary quadratic number field K, we denote by KO
the associated ring class field. Let f be a modular function and τ ∈ H imaginary
quadratic, say a root of aX2 + bX + c for coprime integers a, b, c. The pair (f, τ) is
called a class invariant for the imaginary quadratic order O = Z[aτ ] if f(τ) lies in the
ring class field KO. The discriminant D of the class invariant is the discriminant of
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O. The Galois group G of K(f(τ))/K is isomorphic via the Artin map to a quotient
of the Picard group Cl(O). Associated to a class invariant is its minimal polynomial
over K, also known as the class polynomial,

Hτ [f ] :=
∏
σ∈G

(
X − σ(f(τ))

)
∈ K[X].

Under additional restrictions, class polynomials can sometimes be shown to have co-
efficients in Q (cf. [9, Thm. 4.4], [13, Thm. 5.4]); in that case we call the class poly-
nomials real. Oftentimes, a modular function admits class invariants for an infinite
family of discriminants, determined by a certain congruence condition ([31], [9, Thm.
4.3]). Sometimes the discriminant uniquely determines the class polynomial for a given
modular function.

Example 6.2.2 The modular j-function admits a unique class polynomial for any
discriminant D < 0, called the Hilbert class polynomial HD[j] := Hτ [j]. It can be
seen as a function on P1 whose zeros are the j-invariants of elliptic curves with CM
by the imaginary quadratic order of discriminant D and whose poles are restricted to
the point at infinity. 9

We propose a generalization of class polynomials, seen as functions on modular
curves of higher genus, for which the classical class polynomials can be viewed as the
genus zero case. We will mostly restrict ourselves to the case of genus one, as this
will make notation considerably less complicated. We discuss the arbitrary genus case
in Section 6.7. Let C be a modular curve over Q with a smooth Weierstrass model
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, and suppose that (x, τ), (y, τ) are class
invariants for some imaginary quadratic τ ∈ H. Consider G = Gal(K(x(τ), y(τ))/K)
and m = #G. If we denote by D the divisor of the unique point at infinity of C,
then L(∞D) has a basis b0 = 1, b1 = x, b2 = y, b3 = x2, b4 = xy, b5 = x3, b6 = x2y, . . .
(ordered by ascending degree). There exist ai ∈ K, not all zero, such that

m∑
i=0

aibi(τ) = 0. (6.1)

In fact, up to scaling by an element of K×, there exists a unique function Fτ [C] =∑m
i=0 aibi ∈ K(C) such that

divFτ [C] =

[∑
σ∈G

(σ(ψ(τ)))

]
+

(
−
∑
σ∈G

σ(ψ(τ))

)
− (m+ 1)D. (6.2)

Definition 6.2.3 We call Fτ [C] as in (6.2) a generalized class function for τ . The
associated generalized class polynomial is the unique Hτ [C] ∈ K[X,Y ] of degree ≤ 1
in Y such that Hτ [C](x, y) = Fτ [C]. △
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We note that the polynomial Hτ [C] depends on the choice of x and y, but we leave
this out of the notation. In Section 6.7 (and in particular Definition 6.7.3) we will
allow more general divisors D and bases B, leading to more general functions Fτ [C,B]
and polynomials Hτ [C,B].

Definition 6.2.4 We call the point P =
∑
σ∈G σ(ψ(τ)) ∈ C(K) the Heegner point

of the class function F . △

If the Heegner point P is the point at infinity, then am = 0. Otherwise, the point
−P is a zero of F . In particular, if P = −(0, 0), then a0 = 0.

For N ∈ Z>0, we denote by X0(N) the smooth, projective, geometrically irre-
ducible curve over Q with function field consisting of the modular functions for the
modular group Γ0(N) = {

(
a b
c d

)
∈ SL2(Z) | b ≡ 0 (mod N)} that have rational q-

expansion. We denote by X0
+(N) the quotient of X0(N) by the Fricke-Atkin-Lehner

involution z 7→ −N/z, and write η(z) for the Dedekind η-function

η(z) = q1/24
∞∏
n=1

(1− qn), where q = exp(2πiz).

Example 6.2.5 Consider the genus one modular curve C := X0
+(119). Its conductor

as an elliptic curve is 17 (Cremona label 17a4)1. A Weierstrass model for E is given
by2

y2 + 3xy − y = x3 − 3x2 + x, (6.3)

where x, y ∈ Q(C) have respective q-expansions

x = q−2 + q−1 + 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 4q6 + 5q7 + . . . ,

y = q−3 + 1 + 2q + 2q2 + 4q3 + 4q4 + 7q5 + 9q6 + 12q7 + . . . ,

where this time q = exp(2πiz/119).

The “double eta quotient” w7,17 given by

w7,17(z) =
η(z/7)η(z/17)

η(z)η(z/119)
(6.4)

1One way to deduce this is as follows. Using the command J0(119).decomposition() in Sage-
Math [36] one finds that C has conductor 17. For each of the Weierstrass models of the now finitely
many possible curves [23], there are finitely many options for the divisor of the function w7,17 given
by (6.4). The curve C has two rational CM points (both of discriminant −19), so given a possible
Weierstrass model together with a possible divisor for w7,17, one can first determine w7,17 as a func-
tion of the Weierstrass coordinates x, y by evaluating in one CM point, and then determine whether
it has the expected value in the other CM point. This process excludes all but one of the options,
and we at once in fact deduce both the Weierstrass model (6.3) and the relation between w7,17 and
x and y (6.5).

2We note that a slightly “simpler” Weierstrass model v2 + uv + v = u3 − u2 − u exists by taking
u = x and v = −y−2x, but the given model (6.3) turns out to yield slightly better practical reduction
factors (see Section 6.4.5).
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is invariant under the action of Γ0(N) [27, Thm. 1] and the Fricke-Atkin-Lehner invo-
lution [11, Thm. 2], hence also forms an element of the (rational) function field of C.
It is related to x and y by

w7,17 = −y + x2 − x. (6.5)

The curve X0
+(119) has two cusps, and they are both rational. In the given Weierstrass

model, these correspond to the point (0, 0) and the point at infinity. Numerical exam-
ples of generalized class polynomials specifically for X0

+(119) are given in Section 6.4.5.

We will treat this curve as our main test case in the rest of the paper. 9

6.3 Estimates and reduction factors

6.3.1 Reduction factors

We define the reduction factor of a modular curve C to be

r(C) =
deg(j : X(N)→ P1)

deg(ψ : X(N)→ C)
. (6.6)

In the case C = P1, we denote this number also by r(ψ) and our notation and
terminology coincide with that of [4]. The number r(ψ)−1 is denoted by ĉ(ψ) in [8] and
by c(ψ) in [9]. Bröker and Stevenhagen [4, Theorem 4.1]3 show r(ψ) ≤ 32768/325 ≤
100.83. Under Selberg’s eigenvalue conjecture, one can even prove r(ψ) ≤ 96. The
best known ψ achieves r(ψ) = 72. This result does not however apply directly to r(C).
For example, we have

r(X0(N)) = N
∏
p|N

(1 +
1

p
) and r(X0

+(N)) =
1

2
r(X0(N)) if N > 1. (6.7)

Our main example C = X0
+(119) therefore achieves r(C) =

1
2 (7+1)(17+1) = 72. For

(hyper)elliptic modular curves C we get r(C) ≤ 201.65 (or r(C) ≤ 192 under Selberg’s
eigenvalue conjecture), by applying the bounds to the x-function. Surprisingly, all
elliptic curve quotients of X0(N) we found so far have r ≤ 72 (Section 6.4.7). In
Section 6.7 we will discuss higher-genus curves, which allow for unbounded r(C).

Remark 6.3.1 In the applications we have in mind, the reduction factor is the main
source of improvement in computational efficiency. It is important to note, however,
that this number r(C) does not tell the complete story, even in the “classical” setting
(C ∼= P1), for example for the following reasons.

1. There are many challenges when computing class polynomials, and even more
with generalized class polynomials. See Section 6.6.

3The arXiv version v1 of [4] has weaker bounds than the final publication and needs to be combined
with [21, Appendix 2] to get the same result.
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2. In the CM method (Section 6.5), we will want to find a j-invariant in Fp from
a point in C(Fp). This is done using the minimal polynomial of the j-function
over Q(C), known as the modular polynomial (Lemma 6.5.1). This works best if
the degree of j over Q(C) is small. For example, this degree is 1 for C = X0(N),
is 2 for C = X0

+(N), and ranges from 1 to 20 in [9, Table 7.1], making X0
+(119)

a good choice in this respect.

3. If the (generalized) class polynomial is not real, then its coefficients lie in an
imaginary quadratic extension of Q; roughly doubling its bit size. This issue can
be avoided by imposing additional restrictions on C or τ , see Sections 6.4.2 and
6.4.3.

On the other hand, there are two important tricks that may be used in complementary
directions, providing computational improvements beyond the reduction factor r(C):

1. Under some constraints, typically when all primes dividing the level of the mod-
ular curve ramify in the CM field, both the degree and height of the class poly-
nomial are cut in half. This happens for example in the record-computation of
[14] for the Atkin invariant A71 when 71 divides the discriminant, leading to
class polynomials that are 22 · 36 = 144 times smaller than the Hilbert class
polynomial (note that the reduction factor r(A71) is 36 in this case). The same
trick also applies to generalized class polynomials, see Section 6.4.4, which in the
case of X0

+(119) leads to a factor 22 · 72 = 288 in size reduction.

2. When the class number is composite, one can decompose the ring class field into
a tower of fields whose defining polynomials have smaller degrees, also leading
to a significant speed-up in the CM method [35].

These last two tricks only work when the class number is composite. We expect both
of them to work well for generalized class polynomials, so will mainly restrict to the
case of prime class number in our examples, as this more clearly illustrates the role of
the parameter r(C). ♢

The goal of the rest of this section is to show under some hypotheses that the reduc-
tion factor r(C) is indeed an asymptotic reduction factor of the size of the polynomials
involved. For that, we will first introduce the appropriate notions of “size”.

6.3.2 Measures of polynomials and heights of their roots

For a polynomial A ∈ C[X], let |A|1 (resp. |A|∞) be the sum (resp. maximum) of
the absolute values of the coefficients of A. The Mahler measure of a polynomial
A = a

∏n
i=1(X − αi) ∈ C[X] is

M(A) = |a|
∏
i

max{1, |αi|}.
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Lemma 6.3.2 We have

|A|∞ ≤ |A|1 ≤ (n+ 1)|A|∞,
M(A) ≤ |A|1 ≤ 2nM(A),

|log |A|1 − log |A|∞| ≤ log(n+ 1),

|log |A|∞ − log(M(A))| ≤ n log(2).

Proof. The first two inequalities are by definition and the third is Equation (6) of [24].
For its converse, observe that we have |AB|1 ≤ |A|1|B|1, and hence also |A|1 ≤
|a|
∏
imax{2, 2|αi|} ≤ 2nM(A). Then take logarithms.

For an element α in a number field L of degree n, we define its (absolute logarithmic)
height to be

h(α) =
1

n

∑
v

max{0, log |α|v},

where the sum ranges over the Archimedean and non-Archimedean absolute values,
suitably normalized (that is, those denoted || · ||v in [19, §B.1]). If α is a root of an
irreducible A ∈ Z[X] of degree n, then we have

log(M(A)) = nh(α). (6.8)

Remark 6.3.3 Another measure for the complicatedness of A would be its total bit
size, or the sum s of the logarithms of the absolute values of the nonzero coefficients.
We will instead focus on |A|∞ for the following reasons.

First of all, for computational purposes, it is more useful to look at p = deg(A) ·
log |A|∞, as the required precision (or number of primes with the CRT approach) is
proportional to log |A|∞ and the number of computations to do with that precision is
proportional to deg(A).

Secondly, we get the impression from numerical computations that s is close to p.
For example, the value of s/p is spread out over the interval (0.75, 0.9) for the larger
discriminants in both Section 6.4.5 and Example 6.7.4.

Finally, it is hard to prove lower bounds on s other than s ≥ log |A|∞, as it seems
to already be hard to show that a sufficient proportion of coefficients is nonzero. ♢

6.3.3 Proof of the height reduction

Theorem 6.3.4 Let C be a modular curve over Q and suppose that C is an elliptic
curve of rank 0 with Weierstrass coordinates x and y. Suppose that τ ∈ H ranges
over a sequence of imaginary quadratic points for which C yields real generalized class
polynomials Hτ [C], and with

h(j(τ))

log(log(#Cl(O)))
→∞. (6.9)
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Scale each Hτ [C] such that it has coprime coefficients in Z. Then

d · log |F|∞
log |Hτ [j]|∞

→ 1

r(C)
,

where d is the degree of KO over K(ψ(τ)).

Remark 6.3.5 We argue that the hypothesis (6.9) is very reasonable. Under GRH, we
have

#Cl(O) = O(
√
|D| log(log |D|)), (6.10)

where D is the discriminant of O (see [22, 9.Theorem 1 and 11. on page 371], suitably
extended to arbitrary D.) Moreover, [8, §6.2] gives the approximation log |Hτ [j]|∞ ≈
π
√
|D|S(D), with S(D) =

∑
Q a
−1, where the sum ranges over reduced primitive

quadratic forms Q = ax2+ bxz+ cz2 of discriminant D. We now give a heuristic lower
bound of this sum on average over all |D| ≤ X. We have

∑
D S(D) ≈

∑
Q a
−1, where

this time the sum is taken over all reduced quadratic forms of negative discriminant
> −X (using the heuristic that imprimitive forms have a negligible contribution). As
we are only computing a lower bound, we may restrict to a ≤

√
X/8. Then b ranges

from −a to a, and c ranges from a or a+ 1 to ⌊(X + b2)/(4a)⌋; a range that contains
at least ⌊X/(8a)⌋ integers. This yields at least roughly X/4 values of b and c for each
a, hence

∑
D S(D) is roughly at least (X/4)

∑
a2≤X/8 a

−1 ≥ 1
8X log(X). It follows

that the average S(D) is at least proportional to log |D|. Thus, for “average” S(D),
we have that log |Hτ [j]|∞ is at least proportional to

√
|D| log |D|. Combined with

(6.10), (6.8), and Lemma 6.3.2, we find for such D that h(j(τ))/ log(log(#Cl(O))) is
at least proportional to log |D|/(log(log |D|))2. We thus see that (6.9) indeed holds
for “average” S(D). ♢

Theorem 6.3.4 is the analogue of the following result.

Theorem 6.3.6 (cf. Enge-Morain [8]) Let f be a modular function and suppose that
τ ∈ H ranges over a sequence of imaginary quadratic points for which (f, τ) is a class

invariant with h(j(τ))→∞. Then d · log |Hτ [f ]|∞
log |Hτ [j]|∞ →

1
r(f) , where d is the degree of KO

over K(f(τ)).

The goal of the remainder of Section 6.3 is to prove Theorem 6.3.4. We start with
a proof of Theorem 6.3.6.

Proof. Let m be the degree of K(f(τ)) over K and let n = dm be the degree of KO
over K. By Lemma 6.3.2 and (6.8), we get | 1n log |Hτ [j]|∞ − h(j(τ))| ≤ log(2) and

| dn log |Hτ [f ]|∞ − h(f(τ))| ≤ log(2).

As h(j(τ))→∞, we also get

h(f(τ))

h(j(τ))
→ 1

r(f)
(6.11)
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by [19, Proposition B.3.5(b)]. Altogether, this gives the result.

Proposition 6.3.7 Let C be a modular curve over Q and suppose that C is an elliptic
curve of rank 0 with Weierstrass coordinates x and y. For every imaginary quadratic
τ ∈ H for which C yields a real generalized class polynomial Hτ [C], let m be the degree
of K(ψ(τ)) over K and let d′ ∈ {1, 2} be the degree of K(ψ(τ))/K(x(τ)). Scale each
Hτ [C] such that it has coprime coefficients in Z. Then we have∣∣∣∣log |Hτ [C]|∞ −

d′

2
log |Hτ [x]|∞

∣∣∣∣ < Bmax{1,m log(log(m))},

for some constant B that only depends on C and the choice of Weierstrass model.

Proof. We first put the equation for C in a nice form. We have C : y2+g(x)y =
f(x). Without loss of generality we have g = 0 and f ∈ Z[X] monic of odd degree
such that f(z) ≤ −1 for all real z ≤ 0. Indeed, we obtain g = 0 by the substitution
y′ = y + 1

2g(x), then do scalings x′ = vx and y′ = wy to make f integral and
(thanks to its odd degree) monic, and then do a substitution x′ = x + c to make
f(z) ≤ −1 for all z ≤ 0. This affects Hτ [C] = A+BY and Hτ [x] as follows. The first
substitution changes A into A+ 1

2g(X)B, the second changes A into A(vX) and B into
wB(vX), and the third changes A into A(X + c). Each of these substitutions change
log(max{|A|1, |B|1}) at most by O(m), as does clearing the denominators afterwards.

Next, we relate a norm of Hτ [C] to Hτ [x]. The extra elliptic curve point
(a/b2, c/b3) :=

∑
σ∈G σ(ψ(τ)) ∈ C(Q) from (6.2) (which is minus the Heegner point)

is torsion by our assumption that C has rank 0. There are finitely many torsion
points in C(Q), hence finitely many possibilities for the polynomial T = b2X − a.
Writing Hτ [C] = A(X) + B(X)Y , we get that N(Hτ [C]) = A(X)2 + (−f(X))B(X)2

has the same divisor as the primitive polynomial Hτ [x]
d′ ·T , hence there is a constant

s ∈ Z \ {0} with N(Hτ [C]) = sHτ [x]
d′ · T .

We claim that s = ±1. If not, take a prime p | s and consider the highest-weight
term of (Hτ [C] mod p), where X has weight 2 and Y has weight deg(f). This gives
rise to the highest-degree term of (N(Hτ [C]) mod p), which is therefore nonzero, a
contradiction.

Now we use interpolation to bound Hτ [C] in terms of Hτ [x]. We will choose
interpolation points z = g(i) ≤ 0. Note that for z ≤ 0 we have

A(z)2, B(z)2 ≤ A(z)2 + (−f(z))B(z)2 = N(Hτ [C]) ≤ max{1, |z|}m|Hτ [x]|e1|T |1,

and since there are finitely many polynomials T , we get

log |A(z)|, log |B(z)| ≤ m

2
max{0, log |z|}+ d′

2
log |Hτ [x]|1 +O(1).
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Interpolation then gives, for P ∈ {A,B}:

P (X) =

k∑
i=1

P (g(i))
∏
j ̸=i

X − g(j)
g(i)− g(j)

, (6.12)

where k = deg(P ) + 1 = O(m).
Taking g(u) = − log(eu)2, we find |g(i) − g(j)| ≥ |i − j|minz∈[1,k] |g′(u)| = |i −

j|minu∈[1,k] 2
log(eu)
u = 2|i− j| log(ek)k . So for each i there are at most k/ log(k) values

of j ̸= i with |g(i)− g(j)| < 1 and each of them has |g(i)− g(j)| ≥ 1/k. We get

log
∏
j ̸=i

1

|g(i)− g(j)|
≤ (k/ log(k)) log(k) = k = O(m).

For the other factors in (6.12), we have that log |X − g(j)|1 ≤ log(1 + log(em)2)
= O(log(log(m))), so log

∏
j |X−g(j)|1 = O(m log(log(m))), as well as log |P (g(i))| ≤

d′

2 log |Hτ [x]|1+O(m log(log(m))). Taking the sum in (6.12) gives another + log(k), so

that the end result is log |P (X)|1 ≤ d′

2 log |Hτ [x]|1+O(m log(log(m))). By Lemma 6.3.2,
this also holds with | · |∞, which proves the upper bound on log |Hτ [C]|∞.

For the lower bound, note that Hτ [x]
d′ is a factor of Q = A2 − f(X) · B2, and

we have |Q|1 ≤ |A|21 + |f |1|B|21 ≤ |f |1(m + 1)2|Hτ [C]|2∞. Using the fact that M
is multiplicative by definition and is related to | · |1 and | · |∞ by Lemma 6.3.2, we
get exactly what we need: d′ log |Hτ [x]|∞ ≤ d′ logM(Hτ [x]) + O(m) ≤ logM(Q) +
O(m) ≤ log |Q|1 +O(m) ≤ 2 log(|Hτ [C]|∞) +O(m).

Proof of Theorem 6.3.4. Denote again by n = #Cl(O) the degree of KO over K.

First we apply Theorem 6.3.6 to x and get dd′ log |Hτ [x]|∞
log |Hτ [j]|∞ →

2
r(C) . Proposition 6.3.7,

together with the hypothesis h(j(τ))/(n log(log(n))) → ∞, gives 1
d′

log |Hτ [C]|∞
log |Hτ [x]| →

1
2

(as in the proof of Theorem 6.3.6). The product of these two limits gives the result.

Remark 6.3.8 Theorem 6.3.4 states that asymptotically the effect of the choice of a
model of the curve C is negligible, as is the effect of replacing f by 2f or f +1 or any
other element of Q(f) in Theorem 6.3.6.

However, in practice the error terms can be quite large and depend on these choices.
For example, if f is integral over Z[j] then Hτ [f ] is monic, and if f−1 is integral over
Z[j], then f has zero constant coefficient. This can make a difference in practical
examples as it forces the coefficients at the beginning and end to be small, though this
improvement is negligible asymptotically by the theorems. See also Remark 6.3.3. ♢

6.4 Class invariants for X0(N) and X0
+(N)

In this section we assume that C is a quotient over Q of X0(N); in other words,
C is a smooth, projective, geometrically irreducible curve over Q with function field
consisting only of modular functions for Γ0(N) that have rational q-expansion. We
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will show how to obtain generalized class functions for every discriminant D < 0 that
is square modulo 4N (Section 6.4.1).

In some cases we get further reductions from class invariants generating subfields
of KO or from real class polynomials (Sections 6.4.2–6.4.4).

In Sections 6.4.5–6.4.6 we study what this means for X0
+(119) and in Section 6.4.7

we look for more examples of elliptic curve quotients of X0(N).

6.4.1 Class invariants for X0(N)

The following result does not require C to be an elliptic curve, except that (unless C
is an elliptic curve) one needs to read the definitions in Section 6.7 for the parts about
generalized class polynomials.

Proposition 6.4.1 (based on Schertz [31]) Let C = (C,ψ) be a quotient over Q of
X0(N) and let D < 0 be a square modulo 4N .

There exist a, b, c ∈ Z with a, c > 0, b2 − 4ac = D, N | c, and gcd(a,N) =
gcd(a, b, c) = 1. Choose such a, b, c, let τ ∈ H be a root of aX2 + bX + c, with order
O = Z[aτ ], which has discriminant D. Then we have

ψ(τ) ∈ C(KO),

thus giving rise to a generalized class polynomial Hτ [C].
The Galois orbit of ψ(τ) can be computed as follows. There exists an N -system,

that is, there exist τ1, . . . , τn ∈ H such that (τiZ+Z)i is a system of representatives of
Cl(O) and such that τi is a root of aiX

2+biX+ci with gcd(ai, N) = gcd(ai, bi, ci) = 1
and bi ≡ b mod 2N . Moreover, for any such choice, we have

Gal(KO/K) · ψ(τ) = {ψ(τi) : i = 1, . . . , n}.

Proof. For the existence of a, b, c, take an arbitrary square root b of D modulo 4N , let
a = 1, and c = (b2 −D)/4. Then the existence of an N -system is [31, Proposition 3].

For any f ∈ Q(C), Theorem 4 of Schertz [31] states f(τ) ∈ KO ∪ {∞} and gives
the Gal(KO/K)-orbit as {g(Nτi) : i}, under an additional condition on the function
f(1/z). However, the condition on f(1/z) is not needed, as stated in Theorems 3.9
and 4.4 of [13]. This proves the result.

6.4.2 Real class polynomials from ramification

There are some situations in which we can actually get real class polynomials, cutting
the total required bit size in half. The first such situation is when all primes dividing
N ramify.

Proposition 6.4.2 (based on Enge-Morain [9]) Let C = (C,ψ) be a quotient over Q
of X0(N) and let D < 0 be a discriminant divisible by N if N is odd and by 4N if N
is even.
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There exist a, b, c ∈ Z with a, c > 0, N | b, c, gcd(a,N) = 1, and b2 − 4ac = D.
Choose such a, b, c, let τ ∈ H be a root of aX2 + bX + c, with order O = Z[aτ ], which
has discriminant D.

Then the Gal(KO/K)-orbit of ψ(τ) is stable under complex conjugation, and hence
we may take Hτ [C] ∈ Q[X,Y ].

Proof. If D is odd, take b = N , and if D is even, take b = 0. If N is even, then we
find 4N | b2−D. If N is odd, then we find both 4 | b2−D and N | b2−D, hence also
4N | b2 −D. Let a = 1 and c = (b2 −D)/4.

The complex conjugate of ψ(τ) is ψ(−τ) by the fact that the q-expansion coeffi-
cients are real. Here −τ is a root of aX2 − bX + c, and as N | b, we can choose the
N -system in Proposition 6.4.1 in such a way that −τ = τi for some i. This proves the
result.

6.4.3 Real class polynomials from X0
+(N)

The second situation in which we get real class polynomials is when working with
quotients of X0

+(N).

Proposition 6.4.3 (based on Theorem 3.4 of Enge-Schertz [10]) In the situation
of Proposition 6.4.1, suppose furthermore that C is a quotient of X0

+(N), and that
gcd(c/N,N) = 1.

Then the Gal(KO/K)-orbit of ψ(τ) is stable under complex conjugation, and hence
we may take Hτ [C] ∈ Q[X,Y ].

Proof. The complex conjugate of ψ(τ) is ψ(−τ) by the fact that the q-expansion
coefficients are real. As ψ is invariant under the Fricke-Atkin-Lehner involution, this
in turn is ψ(τ ′) with τ ′ = N/τ , a root of (c/N)X2 + bX + Na. As c/N is coprime
to N , we can choose the N -system in Proposition 6.4.1 in such a way that τ ′ = τi for
some i. This proves the result.

To use this result, we will need gcd(c/N,N) = 1, which can be achieved most of
the time, as follows.

Lemma 6.4.4 If D is a square modulo 4N and D = F 2D0 for a negative fundamental
discriminant D0 and a positive integer F coprime to N , then there exist a, b, c as in
Proposition 6.4.1 with gcd(c/N,N) = 1.

More generally, let D < 0 be a square modulo 4N . Then there exist a, b, c as in
Proposition 6.4.1 with gcd(c/N,N) = 1 if and only if all of the following do not hold.

1. there exists a prime p | N with ordp(N) odd and ordp(D) > ordp(4N),

2. m := ord2(N) > 0 and D is of the form 2m+1d with d ≡ 1 (mod 4),

3. m := ord2(N) > 0 and D is of the form 2md with d ≡ 1 (mod 8).
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Proof. The triple (a, b, c) exists if and only if there exists b ∈ Z such that for all p | N :
ordp(b

2 −D) = ordp(4N).

Suppose that we are not in case (1), (2), or (3). By the Chinese remainder theorem,
it suffices to find one b ∈ Z for each p | N . So let p | N be prime and let k = ordp(4N)
and l = ordp(D). If k < l, then as we are not in case (2), we find that k is even,
and we can take b = p(k/2). If k = l, then we can take b = pe with e > k/2. Now
the case k > l remains. As D is a square modulo 4N , there exists b0 ∈ Z be such
that D ≡ b20 (mod 4N). If ordp(b

2
0 − D) = ordp(4N), then we are done, so suppose

ordp(b
2
0 −D) > k.

Note that 2 ordp(b0) = l, hence l is even. Let b = b0 + pe with e to be determined
later. We get b2 − D = (b20 − D) + 2peb0 + p2e, and the terms have valuation > k,
e+ (l/2) + ordp(2), 2e respectively.

If p ̸= 2, then we choose e = k−(l/2), so 2e = k+(k−l) > k, hence ordp(b
2−D) = k.

If p = 2 and k > l + 2, then we choose e = k − (l/2)− 1, so 2e = k + (k − l − 2) > k,
hence ordp(b

2 −D) = k.

Now only the case p = 2 with k − l ∈ {1, 2} remains. Write d = 2−lD and
b1 = 2−(l/2)b0, so b1 is odd and b21 − d is divisible by 2k−l.

In the case k− l = 1, we get b21− d ≡ 0 (mod 2), and we claim that this is nonzero
modulo 4. Indeed, b21 is 1 modulo 4 and d is not (as we are not in case (2)). Therefore
ord2(b

2
1 − d) = 1 and ord2(b

2
0 −D) = 1 + l = k, so we take b = b0.

In the case k− l = 2, we get b21− d ≡ 0 (mod 4), and we claim that this is nonzero
modulo 8. Indeed, b21 is 1 modulo 8, and d is not (as we are not in case (3)). Therefore
ord2(b

2
1 − d) = 2 and ord2(b

2
0 −D) = 2 + l = k, so we take b = b0.

Conversely, suppose that b exists.

In case (1), we have ordp(D) > ordp(4N), hence 2 ordp(b) = ordp(4N) is odd,
contradiction.

In case (2), we have ord2(b
2 − 2m+1d) = m + 2, hence m + 1 = 2 ord2(b) =: 2e.

Write b = 2eb1 and note ord2(b
2
1 − d) = 1, but b21 − d is 0 modulo 4.

In case (3), we have ord2(b
2 − 2md) = m + 2, hence m = 2ord2(b) =: 2e. Write

b = 2eb1 and note ord2(b
2
1 − d) = 2, but b21 − d is 0 modulo 8.

It remains only to prove the first statement, for which it suffices to show that the
exceptions (1), (2), and (3) all imply gcd(N,F ) > 1. In case (1), we see that p2 | D
and if p = 2, then p4 | D, hence p | F . In cases (2) and (3), write D = 2vd with
v ∈ {m,m + 1}. As D is a square modulo 2m+2, we find that v is even, and hence
D = (2v/2)2d for a discriminant d, so 2 | F .

Lemma 6.4.5 Let N be the product of distinct odd primes p1, . . . , pk. The nega-
tive discriminants that are a square modulo 4N and not in one of the exceptions of
Lemma 6.4.4 have density

k∏
i=1

p2i + pi − 2

2p2i

in the set of all negative discriminants.

The negative fundamental discriminants that are a square modulo 4N (which are
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not in one of the exceptions of Lemma 6.4.4) have density

k∏
i=1

p2i + pi − 2

2(p2i − 1)

in the set of all fundamental negative discriminants.

Proof. Being a discriminant is the condition of being 0 or 1 modulo 4. It is equivalent
to being a square modulo 4. This is independent of being a square modulo pi that
does not suffer from (1), which is happens for the (pi− 1)/2 residue classes modulo pi
that are nonzero squares modulo pi, and the pi − 1 nonzero residue classes modulo p2i
that are zero modulo pi. As pi(pi − 1)/2 + pi − 1 = (p2i + pi − 2)/2, we get the first
statement.

Being a fundamental discriminant means being nonzero modulo the squares of all
odd primes and being 1, 5, 8, 9, 12, 13 modulo 16. This happens for ζ(2)−1(1−1/4)−1 6

16
of all negative integers. In order to restrict this to products that satisfy the conditions
of Lemma 6.4.4, we have to adjust the Euler product exactly by the given factor.

For example, if N = 119 = 7 · 17, then the numbers in Lemma 6.4.5 are > 0.2898
and 19/64 > 0.2968.

6.4.4 Lower-degree class polynomials from ramification

In the case where all primes dividing N ramify, we get an even greater size reduc-
tion. The point ψ(τ) will then be defined over a subfield, cutting the degree of its
minimal polynomial in half. This in turn also cuts the height of the coefficients of
this polynomial in half, as we get d ≥ 2 in Theorem 6.3.4. The amount of work re-
quired for computing the class polynomial, as well as the bit size of the polynomial
(Remark 6.3.3), is related to the degree times the logarithm of the largest coefficient,
and this product is reduced by a factor ≥ 2× 2× r(C) = 4r(C).

Proposition 6.4.6 (based on Enge-Schertz [12]) Let C = (C,ψ) be a quotient over Q
of X0(N) and let D = F 2D0 < 0 be such that N | D, gcd(F,N) = 1, and D ̸∈
{N, 4N}.

There exist a, b, c ∈ Z with a > 0, N | b, c = N , b2−4ac = D, and gcd(a, b, c) = 1.
Choose such a, b, c, let τ ∈ H be a root of aX2 + bX + c, with order O = Z[aτ ], which
has discriminant D.

Let n = ((−b +
√
D)/2, a), and let K

[n]
O be the subfield of KO fixed by the image

of n under the Artin map. Then [n] has order 2 in Cl(O) and ψ(τ) ∈ C(K [n]
O ), where

KO has degree 2 over K
[n]
O .

We get m ≤ #Cl(O)/2 in the definition of Hτ [C], we get Hτ [C] ∈ Q[X,Y ], and
we get and d ≥ 2 in Theorem 6.3.4.

If ai are the ideals τiZ + Z of an N -system, then ai and ain yield the same point
ψ(τi), while a−1i and a−1i n yield ψ(τi).
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Proof. This is exactly what we get when applying [12, Theorem 9] to the coordinate
functions f of C.

6.4.5 Numerical results for X0
+(119)

For the rest of this section we will return to our main Example 6.2.5, so set N =
119 = 7 · 17. For any τ as in Proposition 6.4.3, we have Hτ [C] ∈ Q[X,Y ]. By scaling,
we may assume that the coefficients of Hτ [C] are integral and coprime, and that the
leading coefficient (i.e. the coefficient of the monomial of highest degree as a function
on C) is positive, and this uniquely determines Hτ [C] ∈ Z[X,Y ].

For any discriminant D < 0 coprime to N such that D is a square modulo N , there
are two generalized class polynomials (depending on the choice of τ). We experimen-
tally computed both of these for all fundamental discriminants of prime class number
< 100. The main reason for restricting to prime class number is to exclude the two
tricks of Remark 6.3.1; for these discriminants, the reduction factor thus provides a
fair comparison with the Hilbert class polynomial. The method we employ numeri-
cally evaluates class invariants by their q-expansions, and finds a minimal polynomial
relation (6.1) using lattice basis reduction (LLL). We leave faster methods for future
research, but see Section 6.6 for the first ideas. Since the q-expansions can only be
evaluated up to finite precision, this does not result in provably correct polynomials,
although – based on heuristic estimates – they are highly unlikely to be incorrect.

A few examples of computed polynomials are listed in Table 6.1. Here, for the
given discriminant D, we consistently chose τ such that its primitive equation is X2+
bX + (b2 − D)/4 with b ∈ Z>0 minimal satisfying b2 ≡ D (mod 4N) and gcd((b2 −
D)/(4N), N) = 1.

D n Fτ [C]

−52 2 y + 1

−523 5 x3 + x2 − 2xy − 3x− 2y

−5347 13
x7 + 58x6 − 13x5y − 39x5 − 143x4y − 85x4 − 135x3y

−19x3 − 51x2y + 47x2 + 7xy − 12x− y + 1

−15139 29

x15 + 1028x14 − 40x13y + 37342x13 − 10557x12y + 79865x12

−167759x11y − 385199x11 − 474165x10y − 425857x10 − 69261x9y

+345059x9 + 493309x8y + 309689x8 + 168403x7y − 132377x7

−145439x6y − 22165x6 − 16029x5y + 16139x5 + 15225x4y − 4867x4

−7127x3y − 456x3 + 623x2y + 423x2 + 337xy − 65x− 64y

Table 6.1: Some conjecturally correct generalized class functions for C = X0
+(119). The

second column lists the class number n of the discriminant D.

Still assuming that Hτ [C] is scaled such that it has coprime coefficients in Z, we
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denote by

rA(τ) :=
log |Hτ [j]|∞
log |Hτ [C]|∞

the practical reduction factor of τ . Under the assumption h(j(τ))/ log(log(n)) → ∞
for n = #Cl(O) (cf. Theorem 6.3.4) we have d−1rA(τ) → r(C). Experimentally
obtained practical reduction factors, plotted against both the class number n and
log(|Hτ [j]|∞)/ log(log(n)), can be seen in Figure 6.1. To visualize the role of the
class number and the hypothesis h(j(τ))/ log(log(n))→∞, the points of higher class
number are given a darker color in the second figure.

Figure 6.1: Practical reduction factors for Hτ [X
0
+(119)] for fundamental discriminants D

with gcd(D,N) = 1 and prime class number n < 100.
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The values of the practical reduction factor rA(τ) seem to be around their expected
asymptotic value r(C) = 72 (represented by the horizontal grey line), though the con-
vergence is not apparent; especially compared to, e.g. some classical class polynomials
[8, Fig. 1]. However, in practical applications (see Section 6.5), the class numbers em-
ployed are typically several orders of magnitude higher (cf. e.g. [35]), so here we expect
the speed of convergence not to cause major deviations in expected running times (cf.
Section 6.6). For small class numbers, one can in practice even take advantage of this
phenomenon by constructing generalized class polynomial with surprisingly good prac-
tical reduction factors by selecting a basis of L(∞D) different from 1, x, y, x2, xy, . . .
(see Example 6.7.4).

6.4.6 Comparison with existing class invariants

Real class invariants typically arise subject to congruence conditions on the discrimi-
nant. For example, Weber’s functions with reduction factor 72 are not known to give
class invariants for discriminants ≡ 5 (mod 8). The reduction factors obtained by
class invariants coming from the family of (double) eta quotients wn and wp,q (such
as the Weber function w2, as well as the function w7,17 of Example 6.2.5) have been
extensively studied; cf. most notably [9]. These modular functions are not known to
yield class invariants if D is not a square modulo 4n or 4pq. Hence, to the best of our
knowledge, they also are not applicable to discriminants ≡ 5 (mod 8) as soon as n,
p or q is even. Excluding these cases, the (double) eta quotient with highest known
reduction factor is w9, with a reduction factor of 36 [9, Table 7.1].

A less-studied generalization are multiple eta quotients [12], which are quotients of
products of 2k eta functions. As far as we know these do not yield reduction factors
better than 36 for k > 1.

The only other known family of “good” class invariants (in the sense that they
have large reduction factors) are the Atkin functions Ap for prime numbers p, defined
to be the smallest-degree functions in L(∞D), where D is the unique cusp of X0

+(p).
The “best” known one here is A71, again with a reduction factor of 36, owing to the
fact that X0

+(71) has genus zero [14, §3]).
The curve C = X0

+(119) has a reduction factor r(C) = 72 and yields real class
invariants whenever D is a square modulo 4 · 7 · 17 and not divisible by 72 or 172. The
set of such D has density > 28.98% among the set of all negative discriminants (by
Lemma 6.4.5). Out of these discriminants, one-fourth are ≡ 5 (mod 8). Hence, for at
least 28.98% · 14 > 7.24% of imaginary quadratic discriminants, the reduction factor
exceeds the previously best known reduction factors by a factor of at least two.

Remark 6.4.7 One should note that the above comparison does not take into account
the discussion of Remark 6.3.1. Most importantly, the reduction factor is not syn-
onymous with the true size reduction of the class polynomials. Indeed, as noted in
that remark, the record-breaking CM construction [35] uses the Atkin invariant A71

of reduction factor 36, because the effective size reduction of class polynomials is by
a factor of roughly 22 · 36 = 144 for certain discriminants. However, by Section 6.4.4,
the same trick applies to generalized class polynomials, leading for X0

+(119) to a size
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reduction of 22 · 72 = 288, again for a positive density subset of discriminants. In Fig-
ure 6.2 we plot the practical reductions in bit size we found compared to the Hilbert
class polynomial using this trick. ♢

Figure 6.2: Bit-length reduction for Hτ [X
0
+(119)] for discriminants D ≡ 0 (mod 119) of

class number n < 100.

Remark 6.4.8 Note that the “classical” class polynomial Hτ [x], arising from the func-
tion x on X0

+(119) by itself attains a reduction factor of 36 for the same 28.98% of
discriminants. This beats all previously-known class invariants for a smaller subset
(≈ 1.2%) of discriminants: those that additionally are non-square modulo both 3
and 71. This x can be viewed as a generalisation of the Atkin functions to non-prime
levels: it is the function of minimal degree in L(∞D) for one of the cusps D ofX0

+(119).

Similarly, the degree-two map of the hyperelliptic curve X0
+(191) (not to be con-

fused with 119) has reduction factor 48, as observed by David Kohel in the AGC2T
2021 Zulip group chat. This beats the reduction factor 32 of the Atkin function A191

of degree 3 on the same curve (see Example 6.7.2).

This shows that the search for generalized class invariants can even uncover new
“classical” class invariants. ♢

6.4.7 More modular curves of genus one

We searched for more elliptic curves that could be used, and the results are in Tables
6.2, 6.3, and 6.4. In our search, we used the fact that X0(N) is well-studied and that
there is an isomorphism X0(N) → X0(N) : z 7→ Nz. Surpisingly, we found lots of
elliptic curves with reduction factor 72 and no elliptic curves with a greater reduction
factor.
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N g(X) r(X) deg(ϕ) g(C) r(C)
119 = 7 · 17 1 72 1 1 72
120 = 23 · 3 · 5 7 144 2 1 72
144 = 24 · 32 5 144 2 1 72
176 = 24 · 11 7 144 2 1 72
188 = 22 · 47 9 144 2 1 72
131 = 131 1 66 1 1 66
75 = 3 · 52 1 60 1 1 60
95 = 5 · 19 1 60 1 1 60
171 = 32 · 19 5 120 2 1 60
54 = 2 · 33 1 54 1 1 54
81 = 34 1 54 1 1 54
90 = 2 · 32 · 5 4 108 2 1 54
108 = 22 · 33 4 108 2 1 54
110 = 2 · 5 · 11 5 108 2 1 54
135 = 33 · 5 4 108 2 1 54
136 = 23 · 17 6 108 2 1 54
142 = 2 · 71 8 108 2 1 54
159 = 3 · 53 4 108 2 1 54
101 = 101 1 51 1 1 51
48 = 24 · 3 1 48 1 1 48
56 = 23 · 7 1 48 1 1 48
63 = 32 · 7 1 48 1 1 48
64 = 26 1 48 1 1 48
84 = 22 · 3 · 7 4 96 2 1 48
96 = 25 · 3 3 96 2 1 48
105 = 3 · 5 · 7 5 96 2 1 48
124 = 22 · 31 6 96 2 1 48
128 = 27 3 96 2 1 48
141 = 3 · 47 6 96 2 1 48
155 = 5 · 31 4 96 2 1 48
191 = 191 2 96 2 0 48

Table 6.2: The curves X = X0
+(N) for which there exists a map ϕ : X → C of degree

≤ 2 with g(C) ≤ 1 and r(C) ≥ 48. We used Furumoto-Hasegawa [15] and Jeon [20] to get a
complete list.

In Section 6.7, we will allow curves of higher genus, which do achieve arbitrarily
high values of r(C). Moreover, our search is by no means exhaustive, as Tables 6.2
and 6.3 restrict to maps ϕ : X → C of degree ≤ 2 and Table 6.4 only looks at one curve
X = X0(N) per isomorphism class of curves C. For example, the curve C = X0

+(119)
has r(C) = 72. However, in the Cremona database, it is listed as 17a4, and comes
with a modular parametrization ϕ17 : X0(17)→ C of degree 1, which has r(ϕ17) = 18.
This is why C does not appear in Table 6.4.
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N g(X) r(X) deg(ϕ) g(C) r(C)
36 = 22 · 32 1 72 1 1 72
60 = 22 · 3 · 5 7 144 2 1 72
72 = 23 · 32 5 144 2 1 72
92 = 22 · 23 10 144 2 1 72
94 = 2 · 47 11 144 2 1 72
49 = 72 1 56 1 1 56
24 = 23 · 3 1 48 1 1 48
32 = 25 1 48 1 1 48
42 = 2 · 3 · 7 5 96 2 1 48
48 = 24 · 3 3 96 2 0 48
62 = 2 · 31 7 96 2 1 48
69 = 3 · 23 7 96 2 1 48

Table 6.3: The curves X = X0(N) for which there exists a map ϕ : X → C of degree
≤ 2 with g(C) ≤ 1 and r(C) ≥ 48 and N is not already in Table 6.2. We used Ogg [28] and
Bars [1] to get a complete list.

Finally, the tables are restricted to quotients of X0(N). Letting go of X0(N), we
find that the genus-one modular curves 7C1, 8K1, 9H1, 12V 1, 15I1 = X1(15), 16M

1,
24J1, 27C1, 32E1 in the Pauli-Cummins database [6] all achieve r(C) ∈ {84, 96, 108}.
We have not pursued these curves yet, as Proposition 6.4.1 does not apply to them.

6.5 Application: the CM method

Class polynomials are used in the CM method for constructing elliptic curves over
finite fields with a specified characteristic polynomial of Frobenius.

The input to the CM method is a monic quadratic polynomial P = x2 − tx+ q ∈
Z[x], where q is a prime power coprime to t, and the discriminant d = t2 − 4q is
negative. The output is an elliptic curve E/Fq with q + 1 − t rational points, which
has P as its characteristic polynomial of Frobenius.

The algorithm of the classical CM method (without using class invariants for now)
is as follows. Let K = Q(

√
d).

1. Compute the Hilbert class polynomial HK of OK .

2. Find a root j0 ∈ Fq of HK (which is known to split into linear factors in Fq).

3. Construct an elliptic curve E/Fq with j(E) = j0. Compute all twists of E and
return the one with q + 1− t rational points.

In practice, one can discard the curves for which (q+1− t)Q ̸= O for some random
point Q, although there are also more straightforward methods to select the correct
twist [29].
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E N r(X) deg(ϕ) rank(E) r(C)
36a1 22 · 32 72 1 0 72
92a1 22 · 23 144 2 0 72
94a1 2 · 47 144 2 0 72
144a1 24 · 32 288 4 0 72
368e1 24 · 23 576 8 1 72
558a1 2 · 32 · 31 1152 16 1 72
704a1 26 · 11 1152 16 1 72
704k1 26 · 11 1152 16 1 72
1728a1 26 · 33 3456 48 1 72
1728v1 26 · 33 3456 48 1 72
3456a1 27 · 33 6912 96 1 72
3456e1 27 · 33 6912 96 0 72
131a1 131 132 2 1 66
575a1 52 · 23 720 12 1 60
711a1 32 · 79 960 16 1 60
755b1 5 · 151 912 16 1 57
999b1 33 · 37 1368 24 1 57
49a1 72 56 1 0 56

1323m1 33 · 72 2016 36 1 56
243a1 35 324 6 1 54
405c1 34 · 5 648 12 1 54
459a1 33 · 17 648 12 1 54
101a1 101 102 2 1 51
335a1 5 · 67 408 8 1 51
591a1 3 · 197 792 16 1 99/2
485b1 5 · 97 588 12 1 49
723b1 3 · 241 968 20 1 242/5
69a1 3 · 23 96 2 0 48
105a1 3 · 5 · 7 192 4 0 48
141d1 3 · 47 192 4 1 48
155c1 5 · 31 192 4 1 48
213a1 3 · 71 288 6 0 48

Table 6.4: The elliptic curves E/Q of conductor < 500.000 such that the modular
parametrization ϕ : X → E according to the LMFDB [23, 5, 36] gives r(C) ≥ 66 or gives
r(C) ≥ 48 and odd N .
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As the degree and height of the Hilbert class polynomial grow quickly with the
absolute value of the discriminant ∆K of K, the CM method is only feasible for small
values of |∆K |. The record computation of [35] uses class invariants, specifically arising
from the Atkin function A71. Combined with the tricks listed in Remark 6.3.1 this
allows to handle a case where |∆K | > 1016.

We will now describe how to apply the CM method using generalized class polyno-
mials. Hence let C be an elliptic modular curve. Since we are working with alternative
class invariants instead of the usual j-invariant, we will relate the two using modular
polynomials as follows.

Lemma 6.5.1 Let dj := [Q(C, j) : Q(C)]. Then there exists a polynomial ΨC =∑dj
i=0 fiZ

i ∈ Z[X,Y ][Z] of degree dj in Z such that

(i) ΨC(j) = 0;

(ii) degY (fi) ≤ 1 for each i;

(iii) the coefficients (in Z) of ΨC viewed as an element of Z[X,Y, Z] are coprime;

(iv) viewed as elements of Q(C), the fi have at most one common zero in C(Q).

Furthermore, ΨC is unique up to sign.

Proof. Consider the minimal polynomial Ψ0
C =

∑dj
i=0 giZ

i ∈ Q(C)[Z] of j over Q(C).
Let

E :=
∑

P∈C\{O}

min
i
(ordP (gi))(P ).

Then E−
(∑

P∈C ordP (E)P
)
−(deg(E)−1)(O) is a Q-rational principal divisor. There

is a unique function g up to Q×-scaling such that div(g) = E . Dividing each gi by
g gives gi ∈ L(∞(O)) = Q[x, y] satisfying ((iv)) and unique up to Q×. Now take
representatives fi satisfying ((ii)) and scale to get ((iii)), which makes ΨC unique up
to sign.

For each curve C with which we would like to apply the generalized CMmethod, the
polynomial ΨC ∈ Z[X,Y, Z] can be precomputed and stored. Next we need a criterion
for which discriminants D yields class invariants. For example, if C = X0

+(N) then
this is given by Proposition 6.4.1. Now, given a desired characteristic polynomial of
Frobenius x2−tx+q such that D = t2−4q satisfies this criterion, we have the following
algorithm for sufficiently large |D|.

(1) Compute a generalized class function F of discriminant D as well as its Heegner
point Q.

(2a) Find a zero P = (x, y) ∈ C(Fq) of F that is neither −Q nor a common root of
the polynomials f1, . . . , fdj of Lemma 6.5.1.

(2b) Find all roots j0 ∈ Fq of the polynomial ΨC(x, y, Z) ∈ Fq[Z].
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(3) For each j0, construct an elliptic curve E/Fq with j(E) = j0 and all of its twists
up to isomorphism over Fq. Return one with q + 1− t rational points.

The main advantage compared to the classical CM method, both in terms of mem-
ory and speed, is expected to be in the (dominant) first step (1) (see Section 6.6). Out
of the computationally non-dominant steps, only (2a) is less straightforward. One way
to proceed would be as follows.

(i) Compute Fx := NFq(C)/Fq(x)(F ).

(ii) Find a root x ∈ Fq of Fx.

(iii) Solve for the corresponding value of y using the linear polynomial Hτ [C](x, Y ),
or continue with both solutions y coming from the Weierstrass equation.

Remark 6.5.2 The polynomial Fx is very close to the classical class polynomial Hτ [x];
indeed, it has the same roots, together with one additional root at the x-coordinate
of the Heegner point of F . The norm computation in step ((i)) is however computa-
tionally asymptotically dominated by the computation of F . ♢

6.6 The computational benefits of our invariants

6.6.1 Space complexity of the functions

The advantage of using generalized class functions lies in their size. This already
gives a serious advantage when storing one or more class polynomials for later use,
e.g. for various values of q in the CM method. Additionally, one would expect the
smaller size to make the generalized class polynomials less expensive to compute.
Again for C a modular elliptic curve with a given Weierstrass model, we present
a preliminary analysis of the cost of computing a generalized class polynomial Hτ [C]
when compared to the “classical” class polynomial Hτ [x] (though recall that the latter
already dominates all previously-known class invariants along a positive density subset
of discriminants for C = X0

+(119), cf. Section 6.4.6).

6.6.2 Speed of complex analytic computation

We now explain how to adapt the complex analytic approximation algorithm to gen-
eralized class polynomials.

To compute the classical class polynomial Hτ [x] one first evaluates x(τ) and all
its conjugates, which are of the form xi(τi), where xi and τi can be obtained us-
ing Shimura’s reciprocity law [18] or N -systems [31]. Then one multiplies the linear
polynomials X − xi(τi) together in a binary tree using fast multiplication algorithms.

As Hτ [C] has roughly half the height, we only need half the precision at each step.
This gives a great speed-up when evaluating xi(τi), but then we also need to compute
yi(τi). Fortunately that should only take a fraction of the time required for computing
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xi(τi), as we can first compute it to low precision and then obtain as many digits as
desired quickly using

y =
−g(x) +

√
g(x)2 + 4f(x)

2

for C : y2 + g(x)y = f(x).

The binary tree step is harder to analyze. Instead of having polynomials A(X) =∏
i∈S(X − xi(τ)) to multiply for various subsets S ⊂ {1, 2, . . . , n}, we will have pairs

(F,Q) with F = A(X) +B(X)Y and

div(F ) =
∑
i∈S

(Pi) + (Q)− (#S + 1)D.

Instead of a single multiplication A1A2 to go from S1 and S2 to S3 = S1 ⊔S2, we now
need to compute the point Q3 = Q1 + Q2 (with the elliptic curve group law) and a
function F3 with

div(F3) =
∑
i∈S

(Pi)+(Q3)−(#S3+1)D = div(F1)+div(F2)+(Q3)+(O)−(Q1)−(Q2).

The following formula can be used:

F3 =
F1 F2 R mod (Y 2 − f(X))

(X − x(Q1))(X − x(Q2))
, where (6.13)

R = (x(Q1)− x(Q2)) Y + (y(−Q2)− y(−Q1)) X (6.14)

+ x(Q2)y(−Q1)− x(Q1)y(−Q2), (6.15)

and where the reduction modulo Y 2 − f(X) keeps the outcome of degree ≤ 1 in Y .

We can multiply F1 with F2 using three multiplications of half the degree, by the
same trick that is used in Karatsuba multiplication. Indeed, let

C = A1A2, D = B1B2, and E = (A1 +B2)(A2 +B1)

to get F1F2 = (C +Df)+ (E−C −D)Y . So computing F3 involves three polynomial
multiplications of half the degree of F1 and F2, as well as various multiplications and
long divisions by fixed-degree polynomials and various additions and subtractions.
The most serious computations in the binary tree are now done with half the degree
and half the number of digits, but three times as often, which takes 3/16th of the
time with naive multiplication and still less than 3/4 of the time with quasi-linear-
time multiplication. The impact of the extra additions and subtractions, as well as
the extra multiplications by a linear polynomial in X and Y and long division by
the denominator of (6.13) requires further analysis, but we expect this to be minor.
Regardless, for large discriminants, the main bottleneck is in memory complexity (as
noted in [7, Section 7]), and here we obtain an improvement of a factor of 1/2 when
passing from Hτ [x] to Hτ [C].
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6.6.3 Adapting the CRT method

Overview of CRT class polynomial computation

We now heuristically estimate the expected speed-up when computing Hτ [C] instead
of Hτ [x] using the (currently state-of-the-art) CRT method for class polynomial com-
putation [14, 34, 35]. We restrict to the case of C such that all q-expansion coefficients
of x and y are rational, and will analyse some steps only in the main case where C
is a quotient of X0

+(N). To keep our exposition simple, we will not treat the main
improvement of [35], even though we do expect it to combine well with our generalized
class invariants. We plan to give a more detailed account and an implementation in
future work.

For the CM method, it is more efficient to directly compute class polynomials
modulo q using the online CRT as in [34, Section 2]. In other words, we never write
down Hτ [C] ∈ Z[X,Y ], but instead compute (Hτ [C] mod q) ∈ Fq[X,Y ] directly from
(Hτ [C] mod p) for p in a set S of small primes. The space complexity of the CM
method is then n log(q), which is independent of our choice of class function. The
set S must be chosen in such a way that

∏
p∈S p is larger than 4 times the largest

coefficient.
By cutting the number of digits in half when switching from x to C, we essentially

cut #S in half. If the amount of work that we do for each prime p does not grow
too much, then our class function Hτ [C] yields a speed-up over the classical class
polynomial Hτ [x].

What needs to be done for each p is the following.

1. Enumerate all E′′ with endomorphism ring O and compute the appropriate
points in C(Fp).

2. Compute (F mod p) by putting together the information from Step 1.

In practice, for “typical” discriminants D with 9 to 14 digits, Sutherland [34, Sections
8.3 and 8.4] finds that performing Steps 1 and 2 together #S times is the dominant
part of the CRT method.

We will now argue why we expect each of these steps to take (much) less than
twice as long with the generalized class polynomial for suitable C. Together with the
fact that our set S is only half the original size due to the reduction factor, this means
that computing Hτ [C] takes less time than computing Hτ [x].

Enumerating via the Fricke involution

Step 1 is already very subtle in the case of a single class invariant f . Indeed, there
could be multiple Galois orbits of values f(τ) for the same order O, and hence multiple
irreducible class polynomials Hτi [f ] ∈ K[X]. In the CRT method, one has to make
sure to compute the polynomials (Hτi [f ] mod p)p for the same value of i, and only for
τi for which this is a class invariant. This issue is addressed in detail in [14, Section 4].

We will first explain how to adapt one solution to our main case of quotients C
of X0

+(N) where N is coprime to the conductor of O and D = disc(O) is a square
modulo 4N .
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We adapt the method of Section 4.3 of [14] as follows. We have Q(X0(N)) =
Q(j, jN ), where jN (z) = j(z/N) = j(WNz) for the Fricke-Atkin-Lehner involution
WN : z 7→ −N/z (this follows for example from [33, Proposition 6.9]). In par-
ticular, every function f ∈ Q(C) for a quotient C of X0(N) can be expressed as
a rational function in j and jN . In practice, these expressions can be quite large,
but (analogously to [14, Lemma 2]) we can also obtain the value f(z) as a root of
gcd(Ψf (X, j(z)),Ψf◦WN

(X, jN (z))) instead.

In the particular case where C is a quotient of X0
+(N), we even have Q(C) ⊂

Q(X0
+(N)) = Q(j + jN , j · jN ), and we can use Ψf instead of Ψf◦WN

.

So instead of enumerating just the j-values, we wish to link them with the corre-
sponding jN -values, and we do that as follows.

Suppose thatN is coprime to the conductor ofO and thatD is a square modulo 4N .
Then by Lemma 6.4.4 we get a, b, c ∈ Z with a, c > 0, b2 − 4ac = D, N | c, and
gcd(ac/N,N) = gcd(a, b, c) = 1. In line with Lemma 2 of [14] we could even take c = N

by replacing a by ac/N . We take z = −b+
√
D

2a , n = azZ+NZ, and a = zZ+Z. Then
we have O = azZ+Z, and we find that n is an invertible O-ideal with O/n ∼= Z/NZ.
In fact, we find na = zZ+NZ and hence

σ[n]j(z) = j(n−1a) = j(na) = jN (z).

Exactly as in Section 4.3 of [14], we list the j-values of elliptic curves over Fp with
endomorphism ring O, and arrange them into unoriented [n]-isogeny cycles. If C is a
quotient of X0

+(N) over Q, then for each edge of this graph, we find the f -value from
the two j-values of the end points. (In the case where the [n]-isogeny cycles are 2-cycles,
we only get one f -value per 2-cycle and we get a lower-degree class polynomial Hτ [f ].)

In practice, we could do this for f = x exactly as in [14], and then solve for y using
ΨC(x, y, j) = 0, which is linear in y. The only additional work compared to what is
done in [14] is computing and solving the linear equation to get y, which is much faster
than all the other steps.

In particular, Step 1 takes much less than twice as long with C than with x, while
we need to do it only half as often, which leads to a speed-up. Further research into
these modular polynomials is needed in order to determine the exact gain.

To also make this work for quotients of X0(N) that are not quotients of X0
+(N),

one would need to compute oriented [n]-isogeny cycles.

Other tricks for enumerating

The methods from [14, Sections 4.1 and 4.2] also seem amenable.

The main computational tool at the beginning of Section 4.1 is the modular poly-
nomial Φℓ,f , which we generalize from f to C as follows.

Let Φℓ,C be a Gröbner basis of the ideal in Q[X1, Y1, X2, Y2] of polynomials that
vanish on {(ψ(z), ψ(ℓz)) : z ∈ H}, with respect to the lexicographic ordering with
X1 > Y1 > X2 > Y2. To get from ψ(z) to all possible values of ψ(ℓz), one substitutes
ψ(z) for (X1, Y1), and then solves first for X2 and then for Y2. For each C and ℓ
this works for all but a finite set of primes p. Such multivariate modular polynomials
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would need to be precomputed. One possible starting point for computing these would
be [25, 26], which compute multivariate (Hilbert) modular polynomials, each with a
different method. For yet another approach to computing modular polynomials, see [3].

We expect the reduction factor to also give a reduction of the size of these mul-
tivariate modular polynomials, but on the other hand, we need two of them: one to
solve for x of an isogenous curve, and one to evaluate in x and get y. As evaluating
is faster than solving, we expect the use of these modular polynomials to take much
less than twice as long (and we need to do it only half as often, because we have half
as many primes).

The ‘Trace Trick’ of [14, Section 4.2] enables the use of the Weber function f in the
CRT method. In case we would also need this trick, for some more exotic curves C,
we could consider applying it with arbitrary functions f ∈ Q(C) such as f = ax+ by
for small integers a and b. In loc. cit. the relevant trace is computed with much fewer
primes, so it is ok to apply this with the lower reduction factor of f .

We did not yet consider the general algorithm of [14, Section 4.4]. It is the method
that works for all class invariants, but is only practical under additional restrictions.
We do not have examples of generalized class invariants where this trick is needed.
The challenging step to generalize is factoring a large-degree function in Q(C) in order
to obtain the small class functions.

Constructing a function from its roots

In the CRT setting the multiplications and long-divisions by small-degree polynomials
of Section 6.6.2 only take time O(nM(log(p))) per level, which is asymptotically dom-
inated by the O(M(n log(p)) time of the multiplications of large-degree polynomials.
Therefore, Step 2 seems to take about 1.5 times as long per prime p for Hτ [C] when
compared to Hτ [x].

The total running time

Concluding this preliminary analysis, we estimate the cost of computing Hτ [C] to
be significantly lower compared to Hτ [x], though further research, in particular into
(the implementation of) modular polynomials for C is required to determine the exact
gain. This is beyond the scope of the current paper, which focuses on introducing the
generalized class functions and their height reduction. We plan to give a more detailed
account and an implementation in future work.

6.7 General curves and bases

Now suppose that our modular curve C is not necessarily an elliptic curve. Let D
be an effective divisor over Q on C and let B = {b0, b1, . . .} be a Q-basis of L(∞D)
ordered by ascending degree.

The classical case is the case where we have one modular function f and we take
C = P1, ψ = f = (f : 1), D = ((1 : 0)) = (∞), and B = {1, f, f2, . . .}. The case of
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all previous sections of this paper is the case where C is an elliptic curve given by a
Weierstrass equation, D = ((0 : 1 : 0)), and B = {1, x, y, x2, xy, x3, x2y, . . .}.

Example 6.7.1 One systematic way to choose a Q-basis of L(∞D) is as follows.
First choose x ∈ L(∞D) \Q of some degree d. (For example, one can take x = f with
d = 1 in the classical case, and x = x with d = 2 in the elliptic case.) Now, let y0 = 1
and choose yj for j = 1, 2, . . . , d− 1 in such a way that

yj ∈ L(mjD) \ ⟨ykxe : k < j, e ∈ Z⟩,

where mj is minimal such that this set is non-empty. This way we obtain a vector y⃗ =
(y0, . . . , yd−1) of d functions. (For example, in the classical case we have y⃗ = 1, and in
the elliptic case we chose y⃗ = (1, y).) Then B = {xeyj : e ∈ Z≥0, j ∈ {0, 1, 2, . . . , d−1}}
is a basis of L(∞D). We order this basis by ascending degree de + mj , and if two

elements have the same degree, then we put the one with lowest j first. 9

Example 6.7.2 Consider the modular curve X0
+(191) (not to be confused with 119),

which is hyperelliptic with model t2 = s6 +2s4 +2s3 +5s2 − 6s+1 [16, Table 3], and
the unique cusp is at D = ((1 : 1 : 0)). One of the possible bases of L(∞D) obtained
by the recipe above is B = {1, x, y1, y2, x2, x2y1, x2y2, . . .}, where x = (t+s3+s+1)/2,
y1 = sx, and y2 = s(y1+1). The degrees of these functions are respectively 3, 5, and 7.

The function x is, up to multiplicative and additive constants, equal to the Atkin
function A191. The reduction factors are r(C) = 96, r(s) = 48, and r(A191) = 32. 9

As in Section 6.2, let τ ∈ H imaginary quadratic and assume that (bi, τ) is a
class invariant for every bi ∈ B. Then, again unique up to scaling, we obtain a
non-zero function Fτ [C,B] =

∑k
i=0 aibi ∈ K(C) (ai ∈ K) with k minimal such that∑k

i=0 aibi(τ) = 0.

Definition 6.7.3 We call this Fτ [C,B] the generalized class function for the triple
C,B, τ . If B is as in Example 6.7.1 then we again refer to the associated polyno-
mial Hτ [C,B] ∈ K[X,Y1, . . . , Yd] (of total degree ≤ 1 in Y1, . . . , Yd and such that
Hτ [C,B](x, y1, . . . , yd) = Fτ [C,B]) as the generalized class polynomial. △

Example 6.7.4 It turns out that, already for the case of elliptic curves, allowing
the freedom of the choice of basis of may in reality lead to potentially better practical
reduction factors. Revisiting our main example C := X0

+(119), denote by w := w7,17

the function (6.4) and by z := x + y the sum of the Weierstrass coordinates for the
model (6.3). Now consider the basis B := {1, x, z, w, xz, wx,wz,w2, wxz, w2x, . . .} of
L(∞D). The resulting generalized class polynomials corresponding to the discrimi-
nants of Table 6.1 are listed in Table 6.5. We get practical reduction factors in Figure
6.3 that are better than those in Figure 6.1.

A likely explanation for this improvement is that now not only the poles, but
also the zeroes are as much restricted to the cusps of X0

+(119) as possible. Indeed,
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the points O = (0 : 1 : 0) and P = (0, 0) are the cusps, while 2P and 3P are
rational CM points. Now div(w) = 4(P ) − 4(O), div(x) = (P ) + (3P ) − 2(O), and
div(y) = 2(P ) + (2P ) − 3(O). In particular, the function w is a modular unit. As
explained in Remark 6.3.8, modular units in the classical setting give better practical
reduction factors than non-units, even though the reduction factors are asymptotically
the same. 9

Figure 6.3: Practical reduction factors for Hτ [X
0
+(119),B] for fundamental discriminants

D with gcd(D,N) = 1 and prime class number n < 100.
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D n Fτ [C,B]
−52 2 z − x+ 1

−523 5 xw − xz − x+ 3w + z

−5347 13
xw3 − 10xw2z + 42xw2 + 48w3 + 13xwz + 35w2z + 62xw

+104w2 + 39xz + 90wz − 11x+ 41w + 39z + 1

−15139 29

xw7 − 33xw6z + 5874xw6 + 849w7 − 2119xw5z − 3865w6z

+31183xw5 − 4249w6 + 2200xw4z − 15449w5z + 36423xw4

−29399w5+6066xw3z−46282w4z+46223xw3−27578w4+6207xw2z

−30128w3z + 31320xw2 − 47581w3 + 6757xwz − 35595w2z

+8017xw − 17181w2 − 742xz − 10159wz − x− 2797w + 22z

Table 6.5: Some conjecturally correct generalized class functions for the curve C = X0
+(119)

using the L(∞D)-basis B := {1, x, z, w, xz, wx,wz,w2, wxz, w2x, . . .}.

Theorem 6.7.5 Let C : y2 + g(x)y = f(x) with f, g ∈ Q[X] be a hyperelliptic curve
such that 4f(x)+g(x)2 has odd degree and Jac(C)(Q) is finite. Set D to be the unique
point at infinity and choose the basis B = {1, x, x2, y, xy, x2y, . . .} of L(∞D). Then
Theorem 6.3.4 and Proposition 6.3.7 also hold for C and Hτ [C,B].

Proof. The original proof now goes through with only the following change. There are
finitely many possibilities for the class c of the divisor −

∑
σ((σ(ψ(τ))) − D) by our

assumption that Jac(C)(Q) is finite. For every c, choose a representative
∑m
i=1((Pi)−

D) with m minimal and consider a primitive polynomial T ∈ Z[X] with roots x(Pi)
for i = 1, . . . ,m.

Remark 6.7.6 Our proofs of Theorems 6.3.4 and 6.7.5 heavily rely on the fact that
Heegner points are torsion. To completely remove the assumption on ranks, one would
therefore need to bound the Heegner points, even in the rank-one case. Moreover, the
proofs rely on the hyperelliptic equation where we use that |a| ≤ |a + bi| for real
numbers a and b. Though we expect an analogue of these results to hold for general
modular curves, this would require additional ideas. Do note that such an analogue
would yield arbitrarily high reduction factors for generalized class polynomials by (6.7).
For example, for C = X0

+(239) of genus 3 we already obtain r(C) = 120, exceeding
the Bröker-Stevenhagen bound. ♢
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Chapter 7

Horizontal racewalking using
radical isogenies

This chapter consists of a paper written together with Wouter Castryck, Thomas De-
cru, and Frederik Vercauteren. It has been published as

Wouter Castryck, Thomas Decru, Marc Houben, and Frederik Vercauteren. Horizon-
tal racewalking using radical isogenies. In Advances in Cryptology – ASIACRYPT
2022, pages 67–96, Lecture Notes in Computer Science, vol 13792. Springer, Cham.
https://doi.org/10.1007/978-3-031-22966-4_3.

All authors of this paper contributed equally to the work.

Compared to the published version, we have corrected a few typos and mathematical
errors, added a reference in the proof of Theorem 7.6.5 to code in the GitHub repository
associated to Conjecture 7.6.4, and extended radical isogeny formulae up to degree
N = 41 (previously up to N = 37). The numbering (of e.g. theorems and definitions)
in the published version is different.
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Abstract

We address three main open problems concerning the use of radical isogenies, as presented

by Castryck, Decru and Vercauteren at Asiacrypt 2020, in the computation of long chains of

isogenies of fixed, small degree between elliptic curves over finite fields. Firstly, we present an

interpolation method for finding radical isogeny formulae in a given degreeN , which by-passes

the need for factoring division polynomials over large function fields. Using this method, we

are able to push the range for which we have formulae at our disposal from N ≤ 13 to

N ≤ 41 (where in the range 18 ≤ N ≤ 41 we have restricted our attention to prime powers).

Secondly, using a combination of known techniques and ad-hoc manipulations, we derive

optimized versions of these formulae for N ≤ 19, with some instances performing more than

twice as fast as their counterparts from 2020. Thirdly, we solve the problem of understanding

the correct choice of radical when walking along the surface between supersingular elliptic

curves over Fp with p ≡ 7 mod 8; this is non-trivial for even N and was settled for N = 2

and N = 4 only, in the latter case by Onuki and Moriya at PKC 2022. We give a conjectural

statement for all even N and prove it for N ≤ 14. The speed-ups obtained from these

techniques are substantial: using 16-isogenies, the computation of long chains of 2-isogenies

over 512-bit prime fields can be accelerated by a factor 3, and the previous implementation

of CSIDH using radical isogenies can be sped up by about 12%.
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7.1 Introduction

One of the core operations in isogeny-based cryptography is the fast computation of
the codomain curve of a cyclic chain of horizontal Fq-isogenies of some fixed small-to-
moderate degree N ≥ 2 between elliptic curves over a finite field Fq. Here, let us recall
that an Fq-isogeny between two elliptic curves over Fq is called horizontal if their Fq-
rational endomorphism rings are isomorphic imaginary quadratic orders. The primary
use cases are CRS [10, 22] and CSIDH [7], which are proposals for post-quantum
key exchange. However fast horizontal isogenies are also key to various other recent
constructions, including digital signatures [2], oblivious transfer constructions [15],
verifiable delay functions [12], and schemes for delay encryption [11].

This paper presents a speed-up of such computations. More concretely, we upgrade
the radical isogeny approach from [6], where for any given N one produces an iterable
formula for computing the elliptic curves in a cyclic chain of N -isogenies, with each
step involving the extraction of an Nth root of some radicand ρN ∈ Fq; whence the
name “radical”. Asymptotically, for fixed N and growing q, the cost of evaluating this
formula is dominated by one exponentiation in Fq. This should be compared to one
scalar multiplication on an elliptic curve over Fq, which is the dominant cost of the
standard approach using Vélu’s formulae [26]. In practice however, radical isogenies
are useful for small N only, because they come with a large overhead; part of the goal
of the current paper is to reduce this overhead.

A first problem is simply finding radical isogeny formulae. Indeed, while their
existence was argued in [6, §3] by means of the Tate pairing, producing concrete
instances is a non-trivial task. The method proposed in [6, §4] relies on finding a zero
of the reduced N -division polynomial of a Vélu-type codomain curve over a certain
modular function field over Q. As N grows, not only the division polynomial but
also this codomain curve and the function field become increasingly complicated, and
one quickly reaches the point where this method becomes infeasible. Consequently,
the GitHub repository accompanying [6] contains no radical isogeny formulae beyond
N = 13.

A second problem is that radical isogeny formulae are highly non-unique, with
freedom coming from the choice of curve-point model (e.g., the Tate normal form),
from the choice of the radicand ρN , and from relations in the modular function field.
Different radical isogeny formulae for the same value of N can have very different
practical performances, and in view of the large overhead it is crucial to try and
produce the most efficient version. Here we should mention recent work by Onuki and
Moriya [17], who use Montgomery curves to find faster formulae in degrees N = 3, 4.
Chi-Dominguez and Reijnders [9] have presented projective (= inversion-free) radical
isogeny formulae in degrees 2 ≤ N ≤ 5 and N = 7, 9, but these are constructed directly
from the corresponding formulae from [6].

A third problem is that it is not always clear which Nth root of ρN needs to be
chosen in order to walk horizontally. In the CSIDH setting of supersingular elliptic
curves over a finite prime field Fp, horizontality comes for free if N is odd; in this
case ρN has exactly one Nth root in Fp. But even-degree Fp-isogenies, of which non-
trivial cyclic chains exist when p ≡ 7 mod 8 only, are a concern. In this case ρN will
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admit two Nth roots in Fp, and selecting the wrong option will lead to a change of
endomorphism ring and, as a result, in a breakdown of the iteration. This can be
circumvented by an additional quadratic residuosity check at each step, but this is an
annoying extra cost. In [4, Lem. 4] it was shown that this cost can be avoided when
N = 2, because for the concrete radical isogeny formula presented there, the correct
choice always turns out to be the principal square root, i.e. the unique square root
which is again a square. This observation was extended to N = 4, now in terms of a
principal fourth root, first as a conjecture [6, Conj. 2] and recently proved by Onuki
and Moriya [17]. As mentioned in [6, §7], the correct generalization to arbitrary even
N is not immediately apparent.

Contributions

We contribute significantly to each of the above open problems, which are listed ex-
plicitly in [6, §7]. Concretely, we address:

1. Formula generation. We develop an entirely different method for finding radical
isogeny formulae in any given degree N , which avoids the need for factoring
division polynomials over large function fields. The method uses interpolation
over the modular curve X1(N) and is inspired by an alternative, Galois-theoretic
proof of the existence of radical isogeny formulae along the lines of [5]. Using
this method, we managed to generate radical isogeny formulae in degree as large
as N = 41.

2. Formula optimization. The optimization and/or simplification of rational expres-
sions modulo relations is an old and complicated problem, see for example [16].
In our case however, ad-hoc manipulations seem to yield the best results. We
now believe to have found reasonably optimized formulae up to N = 19, with
e.g. formulae for N = 11, 13 that can compete with our (optimized) version of
N = 7. To highlight one example, for N = 8 we present the iteration

A← −2A(A− 2)α2 −A(A− 2)

(A− 2)2α4 −A(A− 2)α2 −A(A− 2)α+A
with α = 8

√
−A2(A− 1)

(A− 2)4

whose counterpart from [6] spanned nearly a quarter of a page.

3. Ensuring horizontality. We believe to have found the correct generalization, at
least conjecturally, of the observations from [4, Lem. 4], [6, Conj. 2] and [17, §5]
for N = 2, 4 to arbitrary even N . The surprising new ingredient beyond N = 4
is that the principal Nth root needs to be tweaked by the Legendre symbol of
a certain coefficient appearing in Tate’s normal form; for N = 4 this Legendre
symbol is always −1 so it goes unnoticed. With the aid of Magma we managed
to prove this generalization up to N = 14.

One illustrative example where the three contributions resonate is the case N = 16.
When computing long chains of 2-isogenies, e.g. as in the set-up phase of the delay
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function from [11], we can use radical 16-isogenies to take 4 horizontal steps “at once”,
resulting in an asymptotic speed-up by a factor of 4. Experimentally, we observed a
speed-up by a factor of about 3 over a 512-bit prime field.

As for CSIDH, we have generated a new prime CRAD-513 capable of handling
radical 8- and 9-isogenies, and using our new and optimized formulae we obtained a
speed-up of about 12% when compared to the implementation of CSURF-512 from [6].
Furthermore, comparing this to the pre-radical isogenies implementation of CSIDH-
512, one sees that the overall speed-up caused by radical isogenies at the 512-bit prime
level is about 35%. We expect that there remains room for pushing this quite a bit
further, for example by optimizing formulae for N > 19.

7.2 Background

Throughout, we let K denote a field, unless otherwise specified. The base point (=
neutral element) of an elliptic curve E/K is denoted by OE , or just O if E is clear
from the context.

7.2.1 Division polynomials

For an elliptic curve E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ K in long

Weierstrass form we set b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6, b8 = a21a6 +
4a2a6−a1a3a4+a2a23−a24. For each integer N ≥ 0 we define the N -division polynomial
as

ΨE,0 = 0, ΨE,1 = 1, ΨE,2 = 2y + a1x+ a3, ΨE,N = t ·
∏

Q∈(E[N ]\E[2])/±

(x− x(Q)),

where t = N if N is odd and t = N
2 · ΨE,2 if N is even. Note that Ψ2

E,2 = 4x3 +

b2x
2 + 2b4x + b6 is a univariate polynomial in x. These division polynomials can be

computed efficiently, thanks to the following recurrence relations:

ΨE,3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ΨE,4
ΨE,2

= 2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ b4b8 − b26,

ΨE,2N+1 = ΨE,N+2Ψ
3
E,N −ΨE,N−1Ψ

3
E,N+1 if N ≥ 2,

ΨE,2N =
ΨE,N
ΨE,2

(ΨE,N+2Ψ
2
E,N−1 −ΨE,N−2Ψ

2
E,N+1) if N ≥ 3.

By definition, we have that ΨE,N (P ) = 0 for any non-trivial P ∈ E[N ]. If one is
interested in the points of exact order N , then one can use the reduced N -division
polynomial ψE,N defined as ΨE,N/lcmd|N,d̸=N{ΨE,d}. For all primes ℓ, we simply
have ΨE,ℓ = ψE,ℓ. Observe that for N > 2, the reduced N -division polynomial of E
is a univariate polynomial in x.
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Scalar multiplication by N on E can be expressed explicitly using division polyno-
mials [20, Ex. 3.6]:

[N ]P =

(
ϕE,N (P )

ΨE,N (P )2
,
ωE,N (P )

ΨE,N (P )3

)
, (7.1)

with ϕE,N = xΨ2
E,N − ΨE,N+1ΨE,N−1 and ωE,N = 1

2ΨE,N
(ΨE,2N − ΨE,N (a1ϕE,N +

a3Ψ
2
E,N )).

7.2.2 Tate’s normal form

We study elliptic curves E/K that are equipped with a distinguished K-rational point
P of finite order N . For N ≥ 4 such a curve-point pair (E,P ) is isomorphic to a
unique pair of the form

Eb,c : y
2 + (1− c)xy − by = x3 − bx2, P = (0, 0), (7.2)

for some b, c ∈ K. This distinguished model is called the Tate normal form. It is worth
mentioning that the first few scalar multiples of (0, 0) ∈ Eb,c are easy expressions in
terms of b and c, e.g.,

− (0, 0) = (0, b), 2(0, 0) = (b, bc), −2(0, 0) = (b, 0),

3(0, 0) = (c, b− c), −3(0, 0) = (c, c2).

Expressions for higher multiples can be found using (7.1).
Furthermore, for every N ≥ 4 one can write down a polynomial FN ∈ Z[b, c] whose

vanishing, along with the non-vanishing of the discriminant

∆(Eb,c) = b3(16b2 − 8bc2 − 20bc+ b+ c(c− 1)3),

characterizes in any characteristic that the point (0, 0) ∈ Eb,c has exact order N . This
polynomial can be found as a factor of the constant term of ψEb,c,N (x) ∈ Z[b, c][x], or
by analyzing N(0, 0). It is uniquely determined up to sign. The first few instances
are F4 = c, F5 = c− b, F6 = c2 − b+ c, F7 = c3 − b2 + bc, F8 = bc2 − 2b2 + 3bc− c2,
see again [23, §2]. Thus, when viewing Eb,c over the fraction field of K[b, c]/(FN ),
one can think of it as a “universal” curve-point pair from which all elliptic curves
E/K equipped with a point P ∈ E of order N are obtained through specialization at
(unique) concrete values in K for b, c.

7.2.3 Radical isogenies

Vélu’s formulae from [26] must be fed with the explicit coordinates of the points in
G = kerφ. In many applications, this kernel is a priori described in a more implicit
form. For instance, in CSIDH it typically concerns the “unique subgroup of E(Fp) of
order ℓ” for some odd prime number ℓ. An explicit generator of this subgroup can be
found by repeatedly sampling Q← E(Fp) and computing p+1

ℓ Q until its order is ℓ, but
this scalar multiplication comes at a major cost which can dominate the application
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of Vélu’s formulae itself. Radical isogenies, as introduced in [6], are an attempt at
mitigating this.

The key observation behind radical isogenies is that if kerφ is cyclic, say generated
by a point P ∈ E(K) of order N ≥ 2 coprime to charK, then Vélu’s formulae for
producing a defining equation of E′ = E/⟨P ⟩ can be augmented with formulae yielding
the coordinates of a point P ′ ∈ E′ such that

E
φ→ E′ = E/⟨P ⟩ → E′/⟨P ′⟩

is cyclic of degree N2. Consequently, when computing a non-backtracking chain of
N -isogenies, from the second step onwards the formulae allow to bypass the scalar
multiplication. The formulae depend on N and can be chosen to

• be radical, in that they are algebraic expressions in the coefficients of E, the
coordinates of P and a radical N

√
ρN , where the radicand ρN is itself an algebraic

expression in the coefficients of E and the coordinates of P ,

• be complete, in that changing the choice of N
√
ρN , i.e., scaling it with Nth roots

of unity, produces generators for the kernel of each N -isogeny that cyclically
extends φ,

• have good reduction, in the sense that they have coefficients in Z[1/N ] and they
can be applied to any elliptic curve E, over any fieldK with charK ∤ N , equipped
with a point P ∈ E(K) of order N .

In [6] the existence of such formulae is argued using properties of the Tate pairing.
The good reduction property is in fact stated as a conjecture [6, Conj. 1].

Remark 7.2.1 When working over K = Fq for some prime power q satisfying gcd(q−
1, N) = 1, one usually wants to choose the unique instance of N

√
ρN belonging to Fq;

see [6, §5.1]. This instance can be computed as ρµN with µ ∈ Z a multiplicative inverse
of N modulo q−1. So the cost of evaluating the formulae is asymptotically dominated
by one field exponentiation. Unfortunately, the formulae come with a large overhead
and, for fixed q, they outperform plain Vélu for small values of N only. The main goal
of this paper is to push this crossover point to larger values of N . ♢

Example 7.2.2 (taken from [6, §4]) Consider an elliptic curve E with a point P of
order N = 5. The Tate normal form of this curve-point pair is Eb,b = y2+(1− b)xy−
by = x3 − bx2, P = (0, 0) for some b ̸= 0, (11± 5

√
5)/2. Vélu’s formulae produce the

following equation for E′ = E/⟨P ⟩:

y2 + (1− b)xy − by = x3 − bx2 − 5b(b2 + 2b− 1)x− b(b4 + 10b3 − 5b2 + 15b− 1).
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Analyzing the roots of ψE′,5(x) shows that for α = 5
√
ρ5 with ρ5 = b the point

P ′ =
(
5α4 + (b− 3)α3 + (b+ 2)α2 + (2b− 1)α− 2b,

5α4 + (b− 3)α3 + (b2 − 10b+ 1)α2 + (13b− b2)α− b2 − 11b
)

on E′ has order 5 and generates the kernel of a cyclic extension of φ (it is such that
φ̂(P ′) = P ). There are five such cyclic extensions, corresponding to the five possible
choices for α. Rewriting the curve-point pair (E′, P ′) into Tate normal form produces
the curve Eb′,b′ where b

′ is given by the iterable formula

ρ′5 = b′ = α
α4 + 3α3 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1
. (7.3)

9

The above example illustrates the strategy from [6] for finding radical isogeny
formulae. The cases N = 2, 3 are easy to handle [6, §4] so we assume that N ≥ 4.
One starts from the “universal” curve-point pair E = Eb,c, P = (0, 0) over

QN (b, c) := Frac
Q[b, c]

(FN )

and one computes a defining equation for E′ = E/⟨P ⟩ using Vélu’s formulae. One then
computes the division polynomial ψE′,N (x) and, for a suitable radicand ρN ∈ QN (b, c),
one finds the root x′0 ∈ QN (b, c)(N

√
ρN ) that is the x-coordinate of a point P ′ ∈ E′

such that φ̂(P ′) = P , using a root-finding algorithm; this step is a severe bottleneck.
If successful, then the corresponding y-coordinate y′0 = y(P ′) can be found by solving
a quadratic equation over QN (b, c)(N

√
ρN ). The coordinates x′0, y

′
0 are the radical

isogeny formulae we are after; one hopes, and observes in practice, that the good
reduction property comes for free. By writing the curve-point pair (E′, P ′) back in
Tate normal form (Eb′,c′ , (0, 0)) one obtains formulae for b′, c′ that can be applied
iteratively, as in the case of (7.3).

Concerning the radicand ρN , it was argued in [6, §3] that ρN = fN,P (−P ) works,
where fN,P is the function on Eb,c with divisor N(P ) − N(O) and having leading
coefficient 1 when expanded in terms of the uniformizer x/y at O, so that ρN is a
representative of the Tate pairing tN (P,−P ); see [14, Lem. 1].

7.3 Modular curves and Galois theory

This section recalls some of the theory of Galois coverings of modular curves. We
mainly refer to [18] and [19]. Along the way we present an alternative proof of the
existence of radical isogeny formulae [6, Thm. 5]. This closely resembles the discussion
in [5, §3].
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7.3.1 Congruence subgroups

Classically, as Riemann surfaces, modular curves are quotients X = XΓ = H∗/Γ of
the extended complex upper half plane H∗ = H ∪ P1(Q) by a congruence subgroup
Γ ⊂ SL2(Z), i.e. a subgroup containing Γ(N) ⊂ SL2(Z), the kernel of reduction modulo
N , for some N ∈ Z>0. The minimal N for which this last property holds is called
the level of X. The modular curve X admits a natural Zariski-open subset Y = H/Γ,
and the (finite collection of) points X \ Y are called the cusps of X. Modular curves
can be seen as irreducible smooth complex projective curves, and they always have a
“moduli interpretation”, in the sense that they (specifically, the non-cuspidal points)
parametrize complex elliptic curves together with some additional structure on the
N -torsion subgroup.

To make this latter viewpoint more precise, we will consider a different, slightly
more general, method to construct “modular” curves. These modular curves will be
more general in the sense that they may be reducible as complex projective curves;
but they will be irreducible over Q, and their geometrically irreducible components
shall be modular curves in the classical sense. Let N ≥ 1 be an integer and consider
the “universal” elliptic curve

Ej : y
2 = 4x3 − 27j

j − 1728
x− 27j

j − 1728

over Q(j), whose j-invariant equals the indeterminate j. Let Q(j, Ej [N ]) ⊂ Q(j) be
the field obtained by adjoining the coordinates of all N -torsion points of Ej . Then
this is a Galois extension, whose Galois automorphisms are completely determined by
their action on E[N ]. In particular, we have that the Galois group is isomorphic to
the automorphism group GL2(Z/NZ) of the N -torsion.

Let H ⊂ GL2(Z/NZ) be a subgroup containing −1. The fixed field Q(j, Ej [N ])H

is the function field of a smooth projective curve over Q, which we will denote by
XH . This curve has a natural moduli interpretation, in the sense that away from
a finite set its geometric points parametrize elliptic curves over Q together with a
certain structure on the N -torsion. More explicitly, it parametrizes pairs (E,α) up to
H-isomorphism, where α : E[N ]→ (Z/NZ)2 is an isomorphism of abelian groups and
two pairs (E1, α1) and (E2, α2) are called H-isomorphic if there exists an isomorphism
φ : E1 → E2 and an element h ∈ H such that α1 = h ◦ α2 ◦ φ; see [19, §3] for
more details. E.g. if we take for H the subgroup of GL2(Z/NZ) of upper-diagonal
matrices then XH is the classical modular curve X0(N), which parametrizes elliptic
curves together with a cyclic subgroup of order N .

The connection to modular curves in the classical sense is quite straightforward. If
we denote by ΓH = π−1(GL2(Z/NZ)) ⊂ SL2(Z) the congruence subgroup that is the
inverse image of H under the reduction modulo N map π : SL2(Z) → GL2(Z/NZ),
then we have that XH

∼= XΓH
as complex projective curves if and only if det(H) =

(Z/NZ)×; in general XH will be geometrically isomorphic to the disjoint union of
[(Z/NZ)× : det(H)] copies of XΓH

.
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7.3.2 The main suspects

Let N ≥ 3. The subgroups H ⊃ H ′ of GL2(Z/N
2Z) consisting of matrices having

respective forms (
±1 mod N ∗
0 mod N ∗

)
, and

(
±1 mod N ∗

0 ∗

)
correspond to the modular curves which we denote X1(N) = XH and X ′1(N) = XH′

respectively. The curve X1(N) is the classical modular curve parametrizing pairs
(E,P ) where E is an elliptic curve and P ∈ E is an N -torsion point. The curve
X ′1(N) parametrizes triples (E,P, P ′) where P ′ is a P -distinguished point, i.e. a point
P ′ ∈ E/⟨P ⟩ that maps to P under the dual isogeny E/⟨P ⟩ → E. Alternatively, it
parametrizes pairs (E,C), where C = {Q,Q+ P, . . . , Q + (N − 1)P} is a coset on E
modulo the order-N point P , where NQ = P .

Let us denote by K ⊂ L the respective function fields over Q of these curves:

K := Q(X1(N)) = Q(j, Ej [N ])H , L := Q(X ′1(N)) = Q(j, Ej [N ])H
′
.

ThenK,L are the fieldsQN (b, c) andQN (b, c, N
√
ρN ) from Section 7.2.3. The canonical

inclusion K ↪→ L corresponds to the degree-N forgetful map X ′1(N) → X1(N) :
(E,P, P ′) 7→ (E,P ). As we will see in the next section, it is possible to deduce from
a purely Galois-theoretic argument that the extension L/K is radical.

7.3.3 The Galois structure

Lemma 7.3.1 Let N ∈ Z>0 and let K ⊂ L be a degree N extension of fields whose
characteristic does not divide N . Let ζN ∈ L be a primitive N th root of unity and
assume that L(ζN ) is Galois over K with Galois group

Gal(L(ζN )/K) = Gal(L(ζN )/K(ζN ))⋊Gal(L(ζN )/L),

where the first factor is cyclic of order N , say generated by σ, and where the semidirect
product is according to the rule

τj ◦ σi ◦ τ−1j = σij (7.4)

for all i = 0, 1, . . . , N − 1 and all τj : ζN 7→ ζjN ∈ Gal(L(ζN )/L). Then there exists an
α ∈ L such that L = K(α) and αN ∈ K.

Proof. The restricted maps σi|L : L → L(ζN ) are pairwise distinct. Indeed, if i, i′ ∈
{0, 1, . . . , N − 1} are such that σi|L = σi

′ |L, then

σi−i
′
∈ Gal(L(ζN )/K(ζN )) ∩Gal(L(ζN )/L) = {id},

which can only be true if i = i′. From [21, Lem. 0CKL] we get that these restricted
maps are linearly independent over L(ζN ). Thus there exists β ∈ L such that α :=
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∑N−1
i=0 ζiNσ

i(β) is non-zero. From

τj(α) =
∑
i

ζijN (τj ◦ σi)(β) =
∑
i

ζijN (σij ◦ τj)(β) =
∑
i

ζijNσ
ij(β) = α

it follows that α ∈ L as well. Now observe that α was constructed in such a way that
σi(α) = ζ−iN α for i = 0, 1, . . . , N − 1, which has two crucial consequences. On the
one hand, it implies that Gal(L(ζN )/L) is the exact group of automorphisms fixing
K(α), or in other words L = K(α). On the other hand, it implies that σ(αN ) =
σ(α)N = (ζNα)

N = αN , so that αN is fixed by the entire Galois group, i.e. αN ∈ K
as wanted.

Now let K,L as in Section 7.3.2. Below we give an alternative proof of the fact
that L/K is a radical extension. Our strategy is to apply Lemma 7.3.1, so we will first
prove that L(ζN )/K is Galois, and then find explicitly elements σ, τj ∈ Gal(L(ζN )/K)
satisfying (7.5).

Theorem 7.3.2 The morphism X ′1(N) → X1(N) is a simple radical extension, i.e.
the degree N extension of function fields

Q(j, Ej [N
2])H ⊆ Q(j, Ej [N

2])H
′

can be realized by adjoining N
√
ρ for some function ρ on X1(N).

Proof. Let H ⊂ H ′ be the subgroup consisting of matrices whose determinant is ≡ 1
(mod N). Then the corresponding fixed field Q(j, Ej [N

2])H is L(ζN ). One can verify
that H is a normal subgroup of H, which implies that L(ζN )/K is Galois of degree
Nφ(N) with Galois group H/H.

In order to understand its structure, we first consider the intermediate extension
L ⊆ L(ζN ), which is just a cyclotomic extension with Galois group { τj : ζN 7→ ζjN | 0 ≤
j < N, gcd(j,N) = 1 } ∼= (Z/N)∗. When viewed as elements of H/H, these maps can
be identified with

τj =

(
1 0
0 j

)
mod H.

Next, we concentrate on the intermediate extension K(ζN ) ⊂ L(ζN ) which is of degree
N , and its Galois group can be identified with the cyclic group〈

σ :=

(
1 0
N 1

)〉
=

{
σi =

(
1 0
iN 1

) ∣∣∣∣ i = 0, 1, . . . , N − 1

}
,

which, as before, we consider modulo H. It is easy to see that the elements τj ◦ σi
are pairwise distinct (e.g. because j is fully determined by the action of τj ◦ σi on
ζN , and then the uniqueness of i follows at once). Therefore these Nφ(N) elements
must constitute the whole Galois group. The structure of the Galois group is then

145



Radical isogeny formulae through interpolation

determined by the rules σN = 1, τ
φ(N)
j = 1, and

σi ◦ τj =
(

1 0
iN j

)
= τj ◦ σij

−1

; (7.5)

matching (7.4). The result now indeed follows by applying Lemma 7.3.1.

Remark 7.3.3 The subgroup H ⊂ GL2(Z/N
2Z) introduced in the proof of the Theo-

rem corresponds to a modular curve X ′1(N) over Q with function field L(ζN ). Since
[(Z/N2Z)× : det(H)] = φ(N) it consists geometrically of φ(N) copies of X ′1(N),
labeled by the different primitive Nth roots of unity ζN .

The level structure induced by H yields the following moduli interpretation of
X ′1(N): it parametrizes triples (E,C,R), where (E,C) ∈ X ′1(N) is as in Section 7.3.2
and R ∈ E[N ] is an N -torsion point independent of P (i.e. such that E[N ] = ⟨P,R⟩),
where we identify two such points R1 and R2 if their Weil pairing with P yields the
same (primitive) Nth root of unity, i.e. if eN (P,R1) = eN (P,R2). Forgetting R leads
to a covering X ′1(N)→ X ′1(N) of degree φ(N).

One can make sense of the Galois action of L(ζN )/K in terms of this moduli
interpretation. Given a triple P = (E, {Q,Q+ P, . . . , Q+ (N − 1)P}, R), the images
under σ and τj are

σ(P) = (E, {Q+R,Q+R+ P, . . . , Q+R+ (N − 1)P}, R),
τj(P) = (E, {jQ, jQ+ P, . . . , jQ+ (N − 1)P,R).

♢

7.4 Radical isogeny formulae through interpolation

We now describe the method we used to compute the radical isogeny formulae. Ex-
plicitly, starting from the universal Tate normal curve E = Eb,c over K = QN (b, c)
together with the point P = (0, 0) ∈ E of order N ≥ 4, we would like to find an
expression for the coordinates of a P -distinguished point P ′ on the quotient curve
E′ = E/⟨P ⟩ (whose Weierstrass model, let us assume, is given by Vélu’s formulae).
According to Section 7.3, these coordinates live over some radical field extension L of
K. For simplicity, we will mostly focus on computing the x-coordinate of P ′, as the
computation of the y-coordinate is more or less analogous.

7.4.1 A linear system

Let us denote byK an algebraic closure ofK, and let Q ∈ E(K) be such that NQ = P .
We would like to find an expression for

β0 :=

N−1∑
i=0

x(Q+ iP ),
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since by Vélu’s formulae this is equivalent to finding the x-coordinate of P ′. If we
define

γd :=
∑

S∈E[N ]

eN (P, S)dx(Q+ S),

then γNd ∈ K for all d ∈ Z: indeed, let R ∈ E(K) be an N -torsion point so that
E[N ] = ⟨P,R⟩ and denote by eN : E[N ] × E[N ] → K the Weil pairing. Then
ζN := eN (P,R) is a primitive Nth root of unity. By Remark 7.3.3, it follows that

γd =
N−1∑
j=0

eN (P, jR)d
N−1∑
i=0

x(Q+ jR+ iP ) =

N−1∑
j=0

ζjdN σ
j(β0),

for some generator σ ∈ Gal(L(ζN )/K) of Gal(L(ζN )/K(ζN )). Following the last
paragraph of the proof of Lemma 7.3.1 now shows that γNd ∈ K.

Note that γd ∈ L(ζN ) depends on the choice of Q. However all of them are related
as follows:

Lemma 7.4.1 Let Q,Q′ ∈ E[N2] be such that NQ = NQ′ = P . Then there exists
an N th root of unity ζ ∈ K such that γd(Q) = ζdγd(Q

′) for all d ∈ Z. Moreover, for
all d ∈ Z we have that γd/γ

d
1 is an element of K that is independent of the choice of

Q.

Proof. We have that Q′ differs from Q by an N -torsion point. Note that adding
multiples of P to Q clearly does not affect the value of γd while adding a multiple kR
of R scales it by ζ−kdN . This shows the first statement with ζ = ζ−kN . For the second
part, note that the independence on Q already follows from the first part. Now let σ be
as above and let τj be a generator for the cyclotomic extension L(ζN )/K(γ1). Then
τj(γd) = γd, whereas σ(γd) = ζ−dN γd. Since σ, τj together generate Gal(L(ζN )/K)
we see that γd/γ

d
1 is invariant under all Galois automorphisms of L(ζN )/K and we

conclude that it is an element of K.

Defining

βj := σj(β0) =

N−1∑
i=0

x(Q+ jR+ iP ),

we now have the following linear system.
1 1 1 · · · 1

1 ζN ζ2N · · · ζN−1N
...

...
...

. . .
...

1 ζN−1N ζ
2(N−1)
N · · · ζ

(N−1)2
N




β0
β1
...

βN−1

 =


γ0
γ1
...

γN−1

 .

147



Radical isogeny formulae through interpolation

In particular, if we set α := γ1 then we see that

β0 =
1

N

N−1∑
d=0

γd =
1

N

N−1∑
d=0

(
γd
γd1

)
αd ∈ K(α) = L. (7.6)

We have now reduced the problem of finding radical isogeny formulae (at least the de-
termination of the x-coordinate of P ′) to finding expressions for the elements γd/γ

d
1 ∈

K for all d ∈ {0, . . . , N − 1}. In the next subsection we will describe the method we
used to do this. Before that we should point out one subtlety. To ensure that (7.6) is
well defined we must have α ̸= 0; in fact, to be able to use the formula in practice, we
should know exactly the value of αN ∈ K. Though, given N , this is not so difficult to
establish (or even guess) in practice; a proof of a closed expression for αN that works
for all N can be found in the appendix (from which it also follows that α is never
zero), see Theorem 7.7.1.

7.4.2 Finding the formulae

Expressions for cd := γd/γ
d
1 will of course depend heavily on how one represents the

field K = Q(X1(N)). It turns out that the representation K = QN (b, c) as presented
in Section 7.2.3 is not always optimal. In order to minimize the complexity of the
resulting formulae, as well as the running time complexity of the algorithm used to
find them, we will instead employ Sutherland’s optimized models of X1(N) [24]. These
models are optimal in the sense that they write K as the fraction field, which we
will denote QN (A,B), of Q[A,B]/GN (A,B) for some modular polynomial GN (A,B)
whose degree in B matches the gonality of X1(N) over Q (at least for N ≤ 40). In
particular, we can theoretically write every element of K, specifically the cd we are
after, as a polynomial in Q(A)[B], where the degree in B is as small as one could hope
for. It is also possible, and relatively easy in fact, to find an explicit expression for
b, c ∈ K in terms of Sutherland’s functions A,B, so one can also express the universal
Tate normal curve Eb,c as a curve EA,B over QN (A,B).

The idea is now to determine the reduction cd ∈ Fp(A)[B] of the coefficients cd
modulo several primes p, and then to lift the results to Q(A)[B] using the Chinese
Remainder Theorem. To find the cd, we sample many curves EA,B over Fp for which
Q,R, and ζN of the previous section are all defined over Fp. For each of these curves,
we explicitly compute the coefficients cd as elements of Fp. Then, as long as the number
of samples is sufficiently large, we can determine an expression for cd ∈ Fp(A)[B] by
means of rational interpolation (this last step can be achieved purely by linear algebra
over Fp).

The main problem that arises is how to efficiently generate suitable samples (A,B) ∈
X1(N)(Fp). The requirement that ζN be defined over Fp is rather trivially met by
demanding that p ≡ 1 (mod N). The condition that Q,R ∈ EA,B(Fp), however, is
more intricate, and simply generating random curves turns out to be far too ineffi-
cient for large N . Instead, we rely on an approach based on the theory of complex
multiplication.
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The CM Method

The endomorphism ring of an elliptic curve E/C is isomorphic to either Z or an or-
der O in an imaginary quadratic number field. In the latter case we say that E has
complex multiplication (CM) by O. The j-invariants of such elliptic curves are alge-
braic integers. The Hilbert class polynomial HD(X) ∈ Z[X] is the minimal polynomial
over Q of the j-invariant of an elliptic curve E/C with CM by the quadratic order of
discriminant D.

Ordinary elliptic curves over a finite field always have CM. An ordinary elliptic
curve E/Fq with CM by the imaginary quadratic order O of discriminant D exists if
and only if there exist t, u ∈ Z such that u2D = t2 − 4q and p ∤ t (where p = charFq).
In this case HD splits completely over Fq and its roots are precisely the j-invariants of
elliptic curves with CM by O. The trace of Frobenius of such curves is ±t, so they will
have q + 1± t points. One can use this to find curves over Fq with a desired number
of points; this is known as the CM Method.

Sampling curves with torsion

We now describe how to use the CM method to construct curves EA,B with full N2-
torsion over Fp; this will certainly ensure that the desired points Q,R be defined
over Fp. We thus want to find curves with number of points divisible by N4. One
approach is to strengthen the requirement that p ≡ 1 (mod N) to p ≡ 1 (mod N4)
and construct curves of trace 2 using the CM method, i.e. with CM by an order whose
discriminant D satisfies an equation of the form u2D = 22 − 4p for some u ∈ Z>0.
The structure of the Fp-rational N

∞-torsion also be controlled by D; if we choose D
to be a divisor of (22 − 4p)/N4 then E[N2](Fp) ∼= (Z/N2Z)2, see e.g. [8, Thm. 7].

Algorithm

We summarize the above discussion in the following pseudo algorithm generating rad-
ical isogeny formulae for N ≥ 4. The SageMath code we used can be found in the
GitHub repository accompanying this paper.

(i) Find all prime numbers p ≡ 1 (mod N4) up to a certain bound.

(ii) For each prime number p, determine the roots ji of the Hilbert class polyno-
mials HD modulo p for every imaginary quadratic discriminant D of the form
u2N4D = 4(p− 1) for some u ∈ Z.

(iii) For each root ji, determine the (A,B) ∈ X1(N)(Fp) for which j(EA,B) = ji.

(iv) For each pair (A,B), if EA,B has trace +2, determine cd ∈ Fp for all d ∈
{0, . . . , N − 1}.

(v) For each d, find a formula for cd ∈ Fp(A)[B] by rational interpolation.

(vi) Lift the formulae to Q(A)[B] by the Chinese Remainder Theorem.
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7.4.3 Iterative formulae

The above describes how to find an expression for the x-coordinate of P ′ as an element
of L = K(α). An analogous method can be used to find an expression for the y-
coordinate. By transforming the pair (E′, P ′) to Tate normal form one can then also
determine explicit formulae for Sutherland’s parameters A′, B′ ∈ L corresponding to
the point (E′, P ′) ∈ X1(N)(L). In this way, we obtain radical isogeny formulae that
can be applied iteratively. We list formulae for prime powers 16 < N ≤ 41 in our
GitHub repository.1

7.5 Optimizing the formulae

When optimizing radical isogeny formulae, one needs to take into account all of the
following choices.

• The radicand ρN is not unique: it can be scaled with Nth powers in QN (b, c),
and it can be raised to exponents that are coprime with N . Switching from one
radicand to another results in different radical isogeny formulae with different
performances.

• It is not self-evident that the optimized representations of X1(N) by Sutherland
from [24] will result in optimized radical isogeny formulae.

• Elements in QN (b, c, α) can be expressed in several ways since we work modulo
the two relations FN (b, c) = 0 and αN = ρN (b, c).

• It is a priori not clear what formulae we are trying to optimize; e.g. for E′ =
E/⟨P ⟩ we can try to find optimal expressions for a P -distinguished point P ′ on
E′, or we can try to write E′ in Tate normal form immediately.

We will focus on finding efficient enough formulae in this setting, where it seems
nigh impossible to prove that they are indeed the most optimal (especially for N ≥ 10
as we will see further up ahead). Hence we do not claim they are optimal, but they
should not be far off and at the very least in certain cases a big improvement compared
to the work in [6].

For N ∈ {4, 5, . . . , 10} ∪ {12}, the Tate normal form can be parametrized by a
single parameter, say A. This means that the codomain curve of a radical N -isogeny
can be put into a (new) Tate normal form with a single parameter, say A′, where
we translated the P -distinguished point P ′ to (0, 0). In practice, this new parameter
seems a good candidate to try to optimize, as can be seen from the case of N = 4, 5
from [6]. The raw equation for A′ can be easily obtained by any algebraic software
package for these small N .

To find an efficient representation of A′, consider the curve X ′1(N) defined by
αN − ρN , FN = 0. Then A′ can be seen as a function on this curve and we can
compute its divisor. For N < 10, an algebraic software package has no issues checking

1https://github.com/KULeuven-COSIC/Horizontal_Radical_Isogenies
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which linear combinations of places in its support constitute principal divisors, and
we can use this to peel off (easy) factors from A′. For every N ∈ {4, . . . , 9}, there are
clear contenders for which factorization is most efficient. We list them all, skipping
the case N = 5 which can be found in (7.3). Note that for N ≥ 6, our “factorization”
merely amounts to writing A′ as the quotient of two easyish expressions in A and α.

N = 4. In this case we have b = A, c = 0 and for α4 = A we have that

A′ = α
4α2 + 1

(2α+ 1)4
. (7.7)

N = 6. In this case we have b = A(A− 1), c = A− 1 and for α6 = −A2(A− 1) we
have that

A′ =
(−3A+ 2)α4 + 3A2α2 + 2Aα− 3A3 + 4A2

α4 + 2Aα2 + 3Aα+A2
. (7.8)

N = 7. In this case we have b = A2(A− 1), c = A(A− 1) and for α7 = A4(A− 1)
we have that

A′ =
α6 +Aα5 + 2A3α2 −A3α+A4

−α6 +Aα4 +A3α2 − 2A3α+A4
.

N = 8. In this case we have that b = A(A−1)
(A−2)2 , c =

−A(A−1)
A−2 and for α8 = −A2(A−1)

(A−2)4
we have that

A′ =
−2A(A− 2)α2 −A(A− 2)

(A− 2)2α4 −A(A− 2)α2 −A(A− 2)α+A
.

N = 9. In this case we have that b = A2(A− 1)(A2 − A+ 1), c = A2(A− 1) and
for α9 = A4(A− 1)(A2 −A+ 1)3 we have that

A′ =
A(A2 −A+ 1)(α5 +A(A2 −A+ 1)α2 +A2(A2 −A+ 1)2)

α7 −A(A2 −A+ 1)(A− 1)α4 −A3(A2 −A+ 1)2α+ (A(A2 −A+ 1))3
.

For N ≥ 10, Magma struggles to efficiently verify whether a given divisor is principal,
and those that do get found are less clean than the above factors, so we will optimize
these two cases with the more general method for larger N .2

If we compute E′ as E/⟨P ⟩ by means of Vélu’s formulae, then E′ is in (long)
Weierstrass form and we still need to compute an isomorphism to put E′ back in
Tate normal form E′t for certain b′, c′ ∈ QN (b, c, α). By [20, Prop. 1.3(d)], the iso-
morphism ι : E′t → E′ is determined by a 4-tuple (u, r, s, t), where P ′ = (r, t) is the
P -distinguished point and u is a unit. This u, when seen as a polynomial of degree
N−1 in QN (b, c)[α], seems to always be efficient to write down and evaluate. Further-
more, the expressions uc′ and ub′/c′ also enjoy this feature. In particular, a factor that
arises in the coefficient of αi has a high chance of also being there in the coefficient
of αj for j > i, which makes this efficient to evaluate in a Horner scheme with rising
powers of α. We provide the concrete expressions for N = 10 and refer the reader

2We remark that for the smaller N it can be extremely fast to let a computer algebra software
package verify that a given divisor is not principal, but to prove it is principal is harder in the majority
of cases.
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to our GitHub repository for larger N . Remark that for N = 10 we still work with
a one-parameter family of curves and the expression uA′ is just as efficient as uc′ or
ub′/c′. The operation counts for all formulae N ∈ {4, 5, . . . , 17} ∪ {19} can be found
in Table 7.1.

N = 10. In this case we have

b =
A3(A− 1)(2A− 1)

(A2 − 3A+ 1)2
, c =

−A(A− 1)(2A− 1)

(A2 − 3A+ 1)
, α10 =

A9(A− 1)(2A− 1)2

(A2 − 3A+ 1)5
,

and then A′ = vA′/u with

u = 1 + 3α+
4A− 1

A
α2 +

2c

b
α3 − c(A− 4)

bA
α4 +

(A− 1)(4A− 1)

bA
α5+

(A+ 1)(A− 1)

bA2
α6 +

4c(A− 1)

b2A
α7 +

c(A− 1)(4A− 1)

b2A2
α8 − c2(A− 1)

b3A
α9,

vA′ =A+ 2α+
A+ 1

A
α2 +

3c

b
α3 +

c(A+ 1)

bA
α4 +

(A− 1)(A+ 1)

bA
α5+

(A+ 1)(4A− 1)

bA2
α6 +

c(A− 1)

b2A
α7 +

c(A+ 1)(A− 1)

b2A2
α8 +

c2(A− 1)

b3A
α9.

7.6 Ensuring horizontality

If both E and P are defined over a finite field Fq with gcd(q − 1, N) = 1 then, as
discussed in [6, §5.1], the isogeny φ : E → E′ = E/⟨P ⟩ is necessarily horizontal. The
radicand ρN ∈ Fq admits a unique Nth root α ∈ Fq, and for this choice of α the
resulting point P ′ ∈ E′ is again defined over Fq, so the argument repeats. Thus, if
N and q − 1 are coprime, then walking horizontally using radical isogenies is natural
and easy. As explained in Remark 7.2.1, for any fixed N the cost of an iteration is
dominated by this Nth root extraction, which amounts to one exponentiation in Fq.
But if gcd(q − 1, N) > 1 then maintaining horizontality is more subtle.

In the remainder of this section we focus on the CSIDH case of supersingular elliptic
curves over a finite prime field Fp, where this issue arises (only) if p ≡ 7 mod 8 and
one navigates with cyclic isogenies of even degree N , see [13, Thm. 2.7]. In this case
gcd(p − 1, N) = 2 because N | #E(Fp) = p + 1. Let us recall that if p ≡ 7 mod 8
then supersingular elliptic curves over Fp come in two kinds: curves on the surface
of their 2-isogeny volcano, and curves on the floor. The surface is characterized by
the existence of three Fp-rational points of order 2; more precisely, the group of Fp-
rational points is isomorphic to Z2 ×Z(p+1)/2. The points of order 2 can be classified
as follows (see Figure 7.1):

• a point P→, whose halves are Fp-rational,

• a point P←, whose halves are not Fp-rational, but their x-coordinates are,

• a point P↓, the x-coordinates of whose halves are not Fp-rational.
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Previous work [6] This work Cost
per
2-

isogeny
2-isogeny - E + M + 3m + 2A 1
3-isogeny E + 6M + 3A E + 2M + 3m + 3A 1.023
4-isogeny E + 4M + 3A + I E + 3M + m + 3A + I 1.008
5-isogeny E + 7M + 6A + I E + 6M + m + 6A + I 1.034
6-isogeny - E + 9M + 6m + 9A + I 1.090
7-isogeny E + 24M + 20A + I E + 12M + 2m + 9A + I 1.043
8-isogeny - E + 11M + m + 9A + 2I 1.151
9-isogeny E + 69M + 58A + I E + 17M + 9A + I 1.062
10-isogeny - E + 57M + 5m + 31A + 3I 1.196
11-isogeny E + 599M + 610A + I E + 50M + 21m + 71A + 2I 1.293
12-isogeny - E + 90M + 8m + 35A + 3I 1.296
13-isogeny E + 783M + 776A + I E + 89M + 33m + 120A + 2I 1.448
14-isogeny - E + 159M + 16m + 131A + 4I 1.613
15-isogeny - E + 149M + 32m + 125A + 2I 1.599
16-isogeny - E + 120M + 4m + 40A + 3I 1.388
17-isogeny - E + 217M + 55m + 332A + 3I 1.921
19-isogeny - E + 329M + 125m + 437A + 3I 2.532

Table 7.1: The computational cost of radical N -isogenies for N ∈ {2, 3, . . . , 17} ∪ {19}
compared to previous work [6, Tbl. 3]. The letters E,M,A and I denote exponentiation,
(full) multiplication (including squaring), addition and inversion respectively. The letter
m denotes multiplication with a small constant. The last column expresses the cost of an
N -isogeny relative to a 2-isogeny, based on the evaluation of a chain of 100 000 horizontal
N -isogenies over Fp, where p is the CRAD-513 prime from Section 7.7. Remark that the cost
of E is approximately (1.5 log p)M with the square-and-multiply algorithm. In particular,
the last column would converge to 1 for larger values of p since the cost of a radical isogeny
will be dominated by E.

Each of these points spans the kernel of a 2-isogeny. The point P↓ takes us to the
floor, while the other two isogenies are horizontal. It can be checked that the dual
of an isogeny in the P→-direction is in the P←-direction, and vice versa. Therefore,
non-backtracking chains of horizontal 2-isogenies necessarily happen on the surface
and consistently walk in either of these two directions.

7.6.1 Horizontal vs. non-horizontal N-isogenies

Fix N ≥ 2 even and assume that p ≡ −1 mod lcm(2N, 8), so that every curve E on
the surface satisfies

E(Fp)[N ] ∼= Z2 × ZN . (7.9)
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E E′
P→P←

P↓

P ′→P ′←

P ′↓

ring of
Fp-endomorphisms:

Z
[
1+

√
−p

2

]
(surface)

Z[
√
−p] (floor)

Figure 7.1: Component of the 2-isogeny graph over Fp when p ≡ 7 mod 8. The top layer
belongs to the surface; the bottom layer belongs to the floor; and

√
−p is identified with the

Frobenius endomorphism.

Then E(Fp) has 2 or 3 cyclic subgroups of order N , depending on whether t =
ord2(N) > 1 or t = 1 (see Lemma 7.6.1 below). Every corresponding isogeny
φ : E → E/⟨P ⟩ can be decomposed as φ = θ ◦ ψ, where ψ is the N/2-isogeny with
kernel ⟨2P ⟩ and θ is the 2-isogeny with kernel ⟨ψ(P )⟩. The isogeny ψ is necessarily
horizontal: indeed, if it would involve a vertical step, then composing with θ would
necessarily involve backtracking, rendering φ non-cyclic. However, θ may take us to
the floor.

Lemma 7.6.1 Write r = ord2(p+ 1) ≥ ord2(2N) = t+ 1.

(i) If t = 1 then there are 3 options for ⟨P ⟩, corresponding to θ being in the P→-
direction, the P←-direction or the P↓-direction.

(ii) If t ≥ 2 then there are 2 options for ⟨P ⟩, corresponding to θ being in the P→-
direction or the P↓-direction.

(iii) If r ≥ t + 2 (automatic if t = 1) then the group corresponding to θ being in the
P→-direction can be characterized as follows: it is the unique group all of whose
elements admit halves in E(Fp).

Proof. (i) Under the isomorphism (7.9), the cyclic subgroups of order N are gener-
ated by (0, 1), (1, 1) or (1, 2). Note that the group ⟨2P ⟩ does not depend on this
choice, hence neither does ψ. Necessarily, the three groups must then correspond
to the three stated options for θ.

(ii) If t ≥ 2 then only the groups generated by (0, 1) or (1, 1) remain. Also note
that we can further decompose ψ = θ′ ◦ ψ′, where θ′ is a 2-isogeny with kernel
⟨ψ′(2P )⟩. Since ψ′(2P ) is halvable over Fp, this isogeny is necessarily in the
P→-direction. But then θ cannot be in the P←-direction, otherwise φ would be
non-cyclic.

(iii) If r ≥ t + 2 then E(Fp)[2N ] ∼= Z2 × Z2N from which we see that the group
generated by (0, 1) under the isomorphism (7.9) is uniquely characterized by its
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elements being halvable over Fp. But then ψ(P ) is also halvable over Fp, from
which the claim follows.

The central question of Section 7.6 is: how do we avoid that ker θ = ⟨P↓⟩, within
the framework of radical isogenies?

7.6.2 Square vs. non-square radicands

As explained in [6, §5.3], there is a simple algebraic criterion for determining whether
quotienting out an order-N point P ∈ E keeps us on the surface or takes us to the floor.
Namely, we stay on the surface if and only if ρN = fN,P (−P ) is a non-zero square in
Fp. In this case ρN admits two different Nth roots α ∈ Fp, which are each other’s
negatives. The challenge is to select the sign in such a way that the next radicand ρ′N
is again a square. Indeed, for this choice of Nth root the argument repeats and one
keeps walking horizontally. Of course, one fallback is to make an arbitrary choice for
α, at the cost of an exponentiation in Fq as before. One then computes the resulting
ρ′N and checks if it is a square. If it is not, then one switches to −α.

It was observed in [4, Lem. 4] that for N = 2 the extra quadratic residuosity check
can be avoided, because the correct choice of α admits an explicit description in terms
of the “principal” square root of ρ2, by which we mean the unique square root which
is itself a square.

Remark 7.6.2 More generally, for any non-zero square ρ ∈ Fp we will refer to the
unique Nth root of ρ that is a square as the principal Nth root. Note that when com-
puting the Nth root through exponentiation, i.e., as ρ(p+1)/2N , then it is automatically
principal. ♢

Then, in more detail, the observation from [4, Lem. 4] was as follows: the radical
isogeny iteration

E : y2 = x3 +Ax2 +Bx → E′ : y2 = x3 + (A+ 6α)x2 + 4α(A+ 2α)x,

with α =
√
B, repeatedly quotients out (0, 0). If (0, 0) ∈ E is the point P→, then

(0, 0) ∈ E′ is the point P ′→ if and only if α is the principal square root. This changes
if (0, 0) ∈ E is the point P←, in which case (0, 0) ∈ E′ is the point P ′← if and only if
α is the non-principal square root.

This convenient fact was adapted to N = 4, first as a conjecture [6, Conj. 2]
but recently this got proved by Onuki and Moriya [17, §5]. We will recall the precise
statement of this adaptation in Section 7.6.4, where it will arise as an easy consequence
to our generalization to arbitrary even N . But let us first highlight two takeaways
that are already apparent from the case N = 2:

(i) When considering radical isogeny formulae for even N , then substituting −α
for α produces formulae that are equally legitimate, e.g., because −1 is an Nth
root of unity. Consequently, one cannot hope for a general rule saying that the
P→-direction always corresponds to the principal Nth root.
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(ii) Even worse, imagine that the rule does apply to some concrete choice of formulae,
and now scale the radicand ρN with gN for some arbitrary modular unit g ∈
QN (b, c), i.e. a function whose zeroes and poles are supported on the cuspidal
part of X1(N); see [23]. The radical isogeny formulae transform into a version in
which each occurrence of N

√
ρN gets replaced by N

√
ρN /g. For these new formulae,

the correct Nth root will depend on the Legendre symbol of the evaluation of g
at the point (E,P ) ∈ X1(N) under consideration.

7.6.3 Conjectural shape of ρ′N modulo squares (proved for N ≤
14)

We ran into the following property of ρ′N , which unfortunately we could not prove
beyond N = 14, but which implies a generalization of the aforementioned observations
for N = 2, 4 to arbitrary even N . Concretely, for every even N ≥ 4 we can consider

ϕE,2(x) = x4 + b(1− c)x2 − 2b2x+ b3, (7.10)

whose roots are the x-coordinates of the four halves of P = (0, 0) on E = Eb,c. Over
QN (b, c)(αN/2) this polynomial splits in two quadratic factors, with one quadratic
factor corresponding to a pair of points

N

2
Q,

N

2
Q+

N

2
P,

mapping to N
2 P
′ under φ. The discriminant of said quadratic factor is a modular unit

of X ′1(N) that we denote by ∆.

Example 7.6.3 OverQ4(b, c)(α
2) the polynomial (7.10) splits as (x2−α2x−α6)(x2+

α2x+α6). The roots of the first factor are the x-coordinates of two preimages of 2P ′.

The discriminant of that factor is ∆ = α4(1 + 4α2). 9

Our conjecture is as follows:

Conjecture 7.6.4 If the radicand ρN = fN,P (−P ) was chosen, then one has

ρ′N ≡ σαb∆ (7.11)

modulo multiplication with a non-zero square in QN (b, c)(α), for some σ ∈ {±1}.

Here, we note:

• The sign σ should be viewed against our first takeaway message (i) above: sub-
stituting −α for α produces equally valid radical isogeny formulae but flips the
sign.

• The congruence sign absorbs squares, so the conjecture is insensitive to replac-
ing ρ′N with any other representative of tN (P ′,−P ′), or even tN (P ′, λP ′) for
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whatever odd λ. However, as discussed in our second takeaway (ii) above, in the
case of ρN the precise representative does matter. Interestingly, scaling with bN

would make the statement somewhat cleaner, as it would remove the mysterious
factor b. This suggests that the radicand from Theorem 7.7.1 in the appendix is
in fact a more natural choice than fN,P (−P ).

It is exactly the presence of this factor b that made it difficult to guess how to go
beyond the case N = 4; in the case N = 4 we have b = −α4 so that modulo squares
this factor just appeared as a sign.

Theorem 7.6.5 Conjecture 7.6.4 is true for N ≤ 14.

Proof sketch. From (7.7) and Example 7.6.3 we see that ρ′4 ≡ α∆ modulo squares,
which matches with Conjecture 7.6.4 with σ = −1 because −b = α4 is a square. So
the case N = 4 is immediate.

The case N = 6 is more illustrative. Take A′, α, b as in (7.8) and let

∆ = 4(1−A)α3 + 3A3 − 7A2 + 4A

be the discriminant of the relevant quadratic factor of (7.10). One verifies, aided by
the Magma command IsPrincipal, that for ρ′6 = f6,P ′(−P ′) = −A′2(A′ − 1) the
function −bρ′6/α∆ is a square in the function field of X ′1(6) : α

6 +A2(A− 1) = 0. So
this again matches with Conjecture 7.6.4 (now with a minus sign).

In a similar way we have managed to deal with all evenN up to 14, with further help
coming from the observation that ρ′N = fN,−P ′(−P ′) ≡ f2,N2 P ′

(P ′) modulo squares,

see [3, Thm. IX.9(2)]. The right-hand side is a simpler function and therefore easier
to handle by Magma. As an example, the Magma code for N = 14 can be found in
the GitHub repository.3

As mentioned, beyond N = 14 we were no longer able to verify Conjecture 7.6.4, al-
though for N = 16 we gathered evidence by experimentally verifying Proposition 7.6.6
below for various concrete horizontal supersingular isogeny walks over finite prime
fields.

7.6.4 Horizontal isogenies and principal Nth roots

Proposition 7.6.6 Let N ≥ 4 be even and consider radical isogeny formulae for
computing chains of N -isogenies in terms of the radicand ρN = fN,P (−P ). Assume
that Conjecture 7.6.4 applies to these formulae and let σ = ±1 be the sign involved in
its statement.

Let p ≡ −1 mod lcm(2N, 8) and consider a supersingular elliptic curve E/Fp on
the surface, along with a point P ∈ E(Fp)[N ] such that the resulting isogeny φ :
E → E′ = E/⟨P ⟩ is horizontal; let θ be the corresponding degree-2 component as in
Section 7.6.1 and let b, c ∈ Fp be the corresponding Tate normal form coefficients. Let

3https://github.com/KULeuven-COSIC/Horizontal_Radical_Isogenies
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P ′ ∈ E′ be the point produced by our radical isogeny formulae, where α = N
√
ρN (b, c)

was computed as
σ · s · b(p−1)/2ρN (b, c)(p+1)/2N .

Here the sign s is determined as follows:

(i) if θ walks in the P→-direction and r > t+ 1 then s = 1,

(ii) if θ walks in the P→-direction and r = t+ 1 then s = −1,

(iii) if θ walks in the P←-direction (only possible if t = 1) then s = −1.

Then the isogeny E′ → E′/⟨P ′⟩ is horizontal.

Proof. Recall that the goal is to choose the instance of α that renders ρ′N a square.
Assuming Conjecture 7.6.4, this happens if and only if σαb∆ is a square.

In case (i) the point P is fully halvable over Fp thanks to Lemma 7.6.1(iii), so that
∆ always evaluates to a square, regardless of the choice of α. So in order for ρ′N to
be a square, it is necessary and sufficient to choose α such that σαb is a square: the
claim follows.

If we are in cases (ii) or (iii) then none of the halves of P belong to E(Fp).
Even stronger: none of these halves can have an Fp-rational x-coordinate, because
otherwise such a half H would satisfy πp(H) = −H and therefore P = πp(P ) = −P ;
a contradiction. This means that ∆ is a non-square, regardless of the choice of α, and
we can conclude as before.

Example 7.6.7 For N = 4 we recover [6, Conj. 2], proved in [17]. Indeed, recall that
σ = −1 and that b is always non-square in view of ρ4 = −b = α4. Thus we have to

compute α = sρ
(p+1)/8
4 with s = −1 if p ≡ 7 mod 16 and s = 1 if p ≡ 15 mod 16. 9

We conclude by noting that b(p−1)/2ρ(p+1)/2N = b−1(bNρN )(p+1)/2N , effectively
showing that the cost of root computation remains a single exponentiation.

7.7 Implementation

In this section we focus on N -isogenies between supersingular elliptic curves over prime
fields Fp such that computing the required radical can be done deterministically by a
single exponentiation. All tests were done in Magma v2.32-2 on an Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz with 128 GB memory.

7.7.1 Isogeny chains

The main application of these radical isogeny formulae is that they can be used to
efficiently compute a cyclic Nk-isogeny for small N and large k. This is similar to the
work in [6], but we can now use larger N , have more efficient formulae for smaller N
and are not restricted to odd N .
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Remark that the radical 5-isogeny formulae from [6] were already optimized. Ta-
ble 7.1 however shows a modest to strong speed up for radical N -isogenies for N =
7, 9, 11, 13. Over the field Fp with p the 513-bit CRAD-513 prime from Section 7.7.2,
they provide a speed-up of respectively 4%, 13%, 55% and 57% compared to the work
of [6].

The best known method to compute a chain of 17- or 19-isogenies so far was by
sampling 17- or 19-torsion points and then applying Vélu-style formulae to compute
the codomain. The cost of this is dominated by the computation of an appropriate
torsion point. With the new radical formulae from Section 7.5, we only need to
initialize the chain by computing such a torsion point once, and then can iteratively
apply the radical isogeny formulae. Working over a prime field of roughly 512 bits,
this results in an asymptotic speed-up of chaining 17-isogenies by a factor of 14, and
a factor of 10 for chaining 19-isogenies. There is somewhat of a jump in complexity
when going to optimized equations from X1(19) to X1(23) due to a jump in gonality.
In particular, we do not expect radical 23-isogenies to be much of a speed-up over
prime fields of characteristic roughly 512 bits,4 so we did not try to optimize these.
Nonetheless, for asymptotically large p the computational cost of a radical isogeny is
expected to be dominated by a full exponentiation over Fp.

For composite N , one can make a similar argument with regards to speed-up but
the comparison is more subtle. For instance, the cost of computing a 15-isogeny is
dominated by one exponentiation and 149 full multiplications according to Table 7.1.
Alternatively, a 15-isogeny can also be computed by means of the concatenation of
a 3- and 5-isogeny, the cost of which is dominated by two exponentiations and 8 full
multiplications. Assuming we work over a prime field of cryptographic size - say at
least 128 bits - the 15-isogeny will be the fastest method. However, assuming we
have rational 9-torsion available, we have access to highly efficient radical 9-isogeny
formulae, so asymptotically a 3-isogeny can be seen as half the cost of a 9-isogeny.

512 bits 1024 bits 1536 bits

260,000-isogeny 23.38s 97.42s 264.59s

430,000-isogeny 11.93s 49.51s 133.12s

820,000-isogeny 8.77s 34.58s 91.33s

1615,000-isogeny 7.92s 29.23s 75.01s

360,000-isogeny 23.39s 98.08s 266.31s

930,000-isogeny 12.77s 49.88s 134.61s

Table 7.2: Comparison in speed with regards to computing a chain of radical ℓ-isogenies
over a prime field Fp for ℓ ∈ {2, 3} by means of different prime powers. The bit levels
correspond to the size of p.

In general, composite N seem to yield more efficient formulae compared to prime

4Especially in the CSIDH setting from Section 7.7.2 where the initializing overhead is less negligi-
ble.
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N as can be seen in Table 7.1. This stems from the fact that optimized equations for
X1(N) typically have lower degree when N is composite, but also from the radical
isogeny formulae themselves which appear to have parameterless integer coefficients
(including zero) noticeably more often for composite N . These zero coefficients are
even more frequently present in the radical isogeny formulae for prime-power N . In
Table 7.2 one can see a comparison for computing low-degree prime-power chains of
isogenies for three levels of prime bitsizes.

As can be seen, computing a chain of prime-power degree isogenies can be done
more efficiently than a chain of prime degree isogenies for at least these values. The
effect is more prominent for larger prime fields, since the exponentiation in those cases
is more dominating in the overall cost of the radical isogeny formulae. We did not
optimize the formulae for N = 25, since an optimal parametrization of X1(25) is
already more complex than X1(19), and from Table 7.1 it is clear that computing
chains of 5-isogenies would most likely be just as fast or faster (at least on the 512-bit
level). Assuming the arithmetic for a radical ℓk+1-isogeny is always more complex
than the arithmetic for a radical ℓk-isogeny, the asymptotic speed-up that can be
gained from going to the next prime power is always bounded by (k + 1)/k. For this
reason, we expect that optimized radical 27- and 32-isogenies would be less efficient
than radical 9- and 16-isogenies for all bitsizes in Table 7.2, though from a certain
threshold onwards they would be the most efficient option again.

7.7.2 Impact on CSIDH

An application where chains of isogenies can be used is CSIDH [7]. We proceed just
as in [6, §6], with the following differences:

• We make use of radical 17- and 19-isogenies.

• The optimzed formulae allow us to sample higher exponents of N -isogenies for
N = 7, 9, 11, 13.

• We no longer use radical 4-isogenies, instead switching to radical 8-isogenies.

This last point may seem counterintuitive considering that chains of 16-isogenies
are faster on the 512-bit prime level, as illustrated in Table 7.2. In CSIDH however, p
is chosen such that p+ 1 is divisible by as many small primes as possible. If we want
to make use of radical 16-isogenies, we would need to have that 32 | p+ 1 (instead of
16 | p + 1 for radical 8-isogenies). This means that p would need to be roughly one
bit larger, making all the other arithmetic more expensive. The trade-off in practice
seems to be not worth it, considering the relative small gain from switching from chains
of radical 8-isogenies to chains of radical 16-isogenies. The gap in efficiency between
radical 4-isogenies and radical 8-isogenies does make a noticeable difference so we will
use those. Nonetheless, we still need an extra factor of 2 that divides p+ 1 compared
to the suggested prime in [6], so we choose CRAD-513 as the prime

p = 24 · 3 · (3 · 5 · . . . 367)︸ ︷︷ ︸
72 consecutive primes

·379 · 409− 1.
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The following sampling interval for the private key was determined heuristically, but
can be considered (near) optimal:

[−303; 303]× [−198; 198]× [−103; 103]× [−101; 101]× [−91; 91]
× [−68; 68]× [−51; 51]× [−41; 41]× [−6; 6]13 × [−5; 5]13

× [−4; 4]11 × [−3; 3]10 × [−2; 2]10 × [−1; 1]10.

Using these parameters, the class group action of the maximal private key can be
computed 12% more efficiently than in the case of [6]. For an average private key,
this speed-up will be roughly halved but from a constant-time implementation angle,
the maximal private key is a more apt benchmark. This implementation in Magma is
meant as a comparison to the work of [6], and can not be translated directly to other
(constant-time) implementations such as CTIDH [1].

161



Implementation

Appendix: an explicit radicand

The goal of the appendix is to prove the following result.

Theorem 7.7.1 Let N ∈ Z>2. Let K = QN (b, c) as in Section 7.2.3. Let E/K be
the elliptic curve given by y2 + (1− c)xy− by = x3 − bx2. Let P = (0, 0) ∈ E. Denote
by Ψj the j-th division polynomial on E. Set k = ⌈N/2⌉. Then ∑

S∈E[N ]

eN (P, S)x(Q+ S)

N

= N2N ·


Ψ2

k

Ψ2
k−1

(P ) if N is odd;

Ψk+1

Ψk−1
(P ) if N is even.

Pairings and division polynomials

Let K be a field and let E/K be an elliptic curve. Suppose P ∈ E(K) is of order N ,
such that charK ∤ N . Let Q ∈ E(K) satisfying NQ = P . Let f ∈ K(E), g ∈ K(E)
with respective divisors

div f = N(P )−N(O), div g =
∑

S∈E[N ]

((Q+ S)− (S)) .

Assume that g is such that gN = f ◦ [N ]. Denote by eN : E[N ]×E[N ]→ µN the Weil
pairing and by tN : E(K)[N ] × E(K)/NE(K) → K×/(K×)N the Tate pairing. For
P ∈ E, denote by τP : E → E the translation-by-P map. Let ω ∈ ΩE be an invariant
differential and denote by resP(−) : ΩE → K the residue at P as defined in [25].

Lemma 7.7.2 For every Q ∈ E(K) we have

tN (P,Q) =
“Leading coefficient of f at Q”

“Leading coefficient of f at O”
∈ K×/(K×)N .

Remark 7.7.3 Note that the leading coefficient of f (meaning the leading coefficient
of the expansion of f with respect to a uniformizer) is everywhere well defined up to
Nth powers, since the order of vanishing of f is at every point divisible by N (hence
a different choice of uniformizer scales the leading coefficient by an Nth power). Also,
the quotient in Lemma 7.7.2 is invariant under scaling f by an element of K, hence
well-defines an element of K×/(K×)N given only the divisor of f . ♢

Proof. If P = O or Q = O then both sides are equal to 1, so assume P ̸= O ≠ Q. We
distinguish two cases.

Case P = Q. Let h ∈ K(E) be any function such that ordP (h) = −1 and
ordO(h) = 1. Then tN (P, P ) = f(div(h) + (P )− (O)). By Weil reciprocity

∏
R

(−1)ordR(f) ordR(h) f
ordR(h)

gordR(f)
(R) = (−1)−2N f

−1

hN
f1

h−N
(P )

∏
R ̸=P,O

fordR(h)(R).
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equals 1. Hence

tN (P, P ) =
∏

R ̸=P,O

fordR(h)(R) =
hNf(P )

hNf(O)
∈ K×/(K×)N .

Case P ̸= Q. Let h ∈ K(E) be any function such that ordP (h) = 0, ordQ(h) = −1,
ordO(h) = 1. Then tN (P,Q) = f(div(h) + (Q)− (O)). By Weil reciprocity

1 =
∏
R

(−1)ordR(f) ordR(h) f
ordR(h)

gordR(f)
(R) = (−1)−N f

h−N
(O)

∏
R ̸=O f

ordR(h)(R)

hN (P )

Hence tN (P,Q) can be rewritten as

f(Q)
∏
R ̸=O

fordR(h)(R) = (−1)N hN (P )

(hNf)(O)
f(Q) =

f(Q)

(hNf)(O)
∈ K×/(K×)N .

Lemma 7.7.4 Let R ∈ E[N ] such that P,R generate E[N ]. We have

tN (P, P ) =

N−1∑
i,j=0

eN (P,R)ix(Q+ iR+ jP )

N

in K×/(K×)N .

Proof. We rely on the residue theorem [25, Thm. 3], whose use was suggested to us by
Alexander Lemmens. This theorem implies that

∑
P∈E resP(xg

−1ω) = 0, therefore

− resO(xg
−1ω) =

∑
S∈E[N ]

resQ+S(xg
−1ω)

=
∑

S∈E[N ]

x(Q+ S)
g

g ◦ τS
(Q) resQ(g

−1ω)

= resQ(g
−1ω)

∑
S∈E[N ]

eN (P, S)x(Q+ S).

It follows that (the last equivalence is due to Lemma 7.7.2) ∑
S∈E[N ]

eN (P, S)x(Q+ S)

N

= (−1)N x
N (gN ◦ τQ)

gN
(O)

= (−1)N xN

xN ◦ [N ]

(xN ◦ [N ])(f ◦ [N ] ◦ τQ)
f ◦ [N ]

(O)

= (−1)NN2N x
N (f ◦ τP )

f
(O)
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which equals tN (P, P ) in K×/(K×)N .

Now letK = Q(b, c), where b and c are both transcendental overQ, though possibly
algebraically dependent. Let E/K be the elliptic curve given by y2 +(1− c)xy− by =
x3 − bx2 and set P := (0, 0) ∈ E.

For Q ∈ E(K), we denote by hP,Q ∈ K(E)× any function with divisor (P )+(Q)−
(P +Q)− (O). For j ∈ Z, we define

Lj :=

((
x

y

)ordO(hP,jP )−ordP (hP,jP )

· hP,jP ◦ τP
hP,jP

)
(O).

In other words, Lj is the leading coefficient at O of the Laurent expansion of the
function (hP,jP ◦ τP )/hP,jP with respect to the uniformizer x/y. Note that, whereas
hP,Q is only well-defined up to scalar multiplication, we have that Lj is a well-defined
element of K×.

Lemma 7.7.5 We have

Lj =


b if jP = −2P or jP = −P ;
1 if jP = O;
−b if jP = P ;

b · yjP
xjP · x(j+1)P

else.

Proof. Using (note that hP,Q as given by the formula below indeed has the desired
divisor)

hP,Q =



x if Q = −P ;
1 if Q = O;

y

x− x2P
if Q = P ;

y − (yQ/xQ)x

x− xP+Q
else,

this is a straightforward check for Q ∈ {−2P,−P,O, P}. If Q ̸∈ {−2P,−P,O, P} then
in particular xP+Q ̸= 0. Let u = x/y. Then x ◦ τP = bu+O(u2) and y ◦ τP = O(u2),
while x = u−2 + O(u−1) and y = u−3 + O(u−2). Thus the leading term at O of
(hP,Q ◦ τP )/hP,Q becomes

−yQ/xQ · b
−xP+Q

= b · yQ
xQ · xQ+P

as claimed.

In what follows, N > 2 will always denote an integer and k = ⌈N/2⌉. We will
assume that b, c are such that P has order at least k + 1. Let f ∈ K(E) be any
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function with divisor N(P )−N(O) + ((k −N)P )− (kP ).

Lemma 7.7.6 We have(
xN · f ◦ τP

f

)
(O) =

⌊(N−1)/2⌋∏
j=−⌊N/2⌋

Lj .

Proof. This follows by noting that((
x

y

)2N

· xN
)
(O) = 1.

and that f =
∏⌊(N−1)/2⌋
j=−⌊N/2⌋ hP,jP has the desired divisor.

Define

ρN :=


Ψ2
k

Ψ2
k−1

(P ) if N is odd;

Ψk+1

Ψk−1
(P ) if N is even,

and π(N) :=

⌊(N−1)/2⌋∏
j=−⌊N/2⌋

Lj .

Lemma 7.7.7 For all N ∈ Z>2, we have π(N) = (−1)NρN .

Proof. We use induction on N . One easily verifies the claim for N = 3, 4, 5. Suppose
N = 2k ≥ 6 is even. Then

π(N)/π(N − 1) = b · y−kP
x−kP · x(−k+1)P

, and π(N + 1)/π(N) = b · ykP
xkP · x(k+1)P

,

whereas −ρN/ρN−1 = −(Ψk+1Ψk−1/Ψ
2
k)(P ) = −ρN+1/ρN . But the middle term

−(Ψk+1Ψk−1/Ψ
2
k)(P ) can be rewritten as xkP = x−kP (from the multiplication-by-

k formula using division polynomials; e.g. [20, Ex. 3.7]), so we can conclude using
Lemma 7.7.8.

Lemma 7.7.8 For all k ∈ Z \ {−1,−2}, we have x2kPx(k+1)P = b · ykP .

Proof. Using the coordinate-wise addition formula for Weierstrass elliptic curves (e.g.
[20, III.2.3]), we find x2kPx(k+1)P = y2kP + (1− c)xkP ykP + bx2kP − x3kP = bykP .

Proof of Theorem 7.7.1. In the proof of Lemma 7.7.4, we already saw that the left hand

side equals (−1)NN2N
(
xN · f◦τPf

)
(O). The desired result now follows by combining

Lemmas 7.7.6 and 7.7.7. □
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Chapter 8

Conclusion

The main part of this work, Chapters 4, 5, 6, and 7, consists of four jointly written
research papers.

In Chapter 4, we described a novel way in which pairings on elliptic curves can
be used to attack the Decisional Diffie–Hellman problem for class group actions on
oriented elliptic curves. We showed how the assigned character values associated to
connecting ideal classes can be evaluated using the Weil pairing. This was previously
only established for the Tate pairing. Our approach works more generally, is concep-
tually simpler, and speeds up the previous approach in certain cases. The attack only
applies in case the class number is even. As a consequence, we recommend to restrict
CSIDH and CRS to class groups of odd order.

In Chapter 5, we classified when non-trivial self-pairings on cyclic subgroups com-
patible with isogenies oriented by an imaginary quadratic order exist. Combining such
self-pairings together with isogeny interpolation leads to a new attack strategy against
CRS in the case where the degree of the secret isogeny is known. As a result of our
classification, this implies the existence of weak instances of CRS; ones in which the
discriminant has a large square smooth divisor coprime to the field characteristic.1

One way to surely mitigate these attacks, is to use a discriminant of the form −p
where p is prime. CSIDH, in which the discriminant is of the form −4p, also remains
unaffected by the strategy. An interesting future question to explore is whether small
divisors of the discriminant could be exploited to obtain partial information about the
secret isogeny. Furthermore, for some non-trivial self-pairings, we do not yet have an
efficient algorithm to compute them; an interesting further topic of research would
be to study the existence of efficient Miller-type algorithms for generalized Weil and
Tate pairings. It would also be compelling to study whether the results of Chapters 4
and 5 can be unified and extended into a classification of self-pairings on general, not
necessarily cyclic, subgroups compatible with oriented isogenies.

In Chapter 6, we devised generalized class polynomials; a multivariate extension of
class polynomials. Class polynomials have previously been studied as a generalization
of Hilbert class polynomials. The sizes of their coefficients are sometimes smaller by
an asymptotic factor, improving their computational applicability in, for example, the
CM method. The best known class polynomials obtain an asymptotic size reduction
factor of 72. We showed that generalized class polynomials obtain provable asymptotic

1At the time of writing, upcoming work has been announced claiming that the condition that the
divisor be square may be removed.
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size reductions that were previously unattainable for a positive proportion of imagi-
nary quadratic discriminants. However, our best such examples still have a reduction
factor of at most 72. An interesting further research goal would be to find the first
example of a family of generalized class polynomials, say of prime class number, that
attain provable asymptotic size reductions beyond 72, or perhaps even exceeding the
theoretical univariate bound of 100.83. Another goal is to extend the state-of-the-art
method for computing class polynomials, a CRT-based approach by Sutherland, to
the case of generalized class polynomials.

In Chapter 7, we studied radical isogenies; a method to compute chains of isogenies
of fixed degree based on formulae containing a radical expression. We developed a new
way to compute radical isogeny formulae that combines the CM method and Galois
theory of function fields of modular curves with CRT-based rational interpolation.
This extended the range of degrees in which formulae are available from N ≤ 13 to all
prime N ≤ 41. Moreover, we simplified formulae and improved their computational
performance. We also formulated a conjecture that states, in case of CSIDH, which
radical must be taken for the corresponding radical isogeny to be horizontal, and
proved this conjecture for all N ≤ 14. A further goal would be to prove this conjecture
for all (even)N ≥ 4. It would also be interesting to find a method for producing general
radical isogeny formulae that is more direct than by means of rational interpolation,
for example by obtaining a closed form expression, or a linear recurrence relation
satisfied by the formulae.

170



Samenvatting

Cryptografie gaat over het beveiligen van informatie op een manier waarop alleen
de beoogde personen toegang hebben tot die informatie. Stel, bijvoorbeeld, dat een
hypothetische persoon, genaamd Alice, een privébericht zou willen sturen naar een
andere hypothetische persoon, genaamd Bob. Als Alice en Bob een manier hadden
om te communiceren zodat niemand hen zou kunnen afluisteren, dan zou dat makkelijk
zijn; ze zouden hun berichten onversleuteld kunnen overbrengen. In de echte wereld
is een perfect veilige communicatieverbinding echter vrijwel onmogelijk te garanderen,
zeker wanneer communicatie over het internet gebeurt. Alice en Bob zouden dus
op een bepaalde manier een soort codetaal moeten afspreken. Maar hoe kunnen ze
dat doen, als we aannemen dat kwaadwillende personen al hun communicatie kunnen
afluisteren? Eén manier, is met een zogeheten Diffie–Hellman sleuteluitwisseling ; een
methode voor twee partijen om een gezamenlijk geheim af te spreken over een publiek
kanaal. Een gangbare manier, toegepast door veel applicaties die gebruik maken van
begin-tot-eind -versleuteling, is gebaseerd op wiskundige objecten genaamd elliptische
krommen. Een voorbeeld van een elliptische kromme is de verzameling van punten
(x, y) in het vlak die voldoen aan de vergelijking y2 = x3+3x2−x− 3; zie Figuur 9.1.

x

y

Figure 9.1: Een elliptische kromme
gegeven door y2 = x3 + 3x2 − x− 3.

P

Q

P +Q

x

y

Figure 9.2: Het optellen van twee punten
op een elliptische kromme.

Wat elliptische krommen zo speciaal maakt, is dat er een meetkundig recept bestaat
om punten op de kromme op te tellen: Stel bijvoorbeeld, dat we twee punten op de
kromme, zeg P en Q, zouden willen optellen. We tekenen dan eerst de lijn door P en Q.
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Het blijkt dat deze de kromme in precies één ander punt zal snijden.2 De verticale lijn
door dit laatste punt snijdt de kromme weer precies in één ander punt, wat we P +Q
noemen; de som van P en Q. In het geval dat P = Q, dan definiëren we “de lijn door
P en Q” als de raaklijn aan de kromme in P . Op deze manier hebben we een methode
om n · P = P + P + . . .+ P︸ ︷︷ ︸

n keer P

voor elk geheel getal n > 0 uit te rekenen. Grote zulke

veelvouden kunnen overigens met minder dan n − 1 optellingen uitgerekend worden,
door een methode genaamd double-and-add (Engels voor “verdubbelen en optellen”).
Zo kunnen we bijvoorbeeld 20 ·P uitrekenen als 20 ·P = 2 · (2 · ((2 · (2 ·P ))+P )), wat
slechts vijf optellingen kost (waarvan vier een verdubbeling zijn; i.e. een punt optellen
bij zichzelf). Nu, als Alice en Bob een elliptische kromme willen gebruiken om een
gezamenlijk geheim vast te stellen, dan kan dit als volgt.

(i) Alice en Bob spreken, in het openbaar, een punt P op een elliptische kromme af.

(ii) Alice en Bob genereren (grote) geheime gehele getallen a en b.

(iii) Alice rekent het punt PA = a · P uit, en stuurt het resultaat naar Bob.

(iv) Bob rekent het punt PB = b · P uit, en stuurt het resultaat naar Alice.

(v) Met behulp van haar geheim en het punt van Bob, berekent Alice a·PB = (a·b)·P .

(vi) Met behulp van zijn geheim en het punt van Alice, berekent Bob b·PA = (a·b)·P .

Aangezien Alice en Bob op hetzelfde punt op de elliptische kromme uitkomen, hebben
ze successvol een gezamenlijk geheim vastgesteld; dat wil zeggen, de sleuteluitwisseling
is voltooid. Deze gezamenlijke sleutel kan vervolgens gebruikt worden om beveiligde
berichten naar elkaar te sturen.

(a · b) · P (a · b) · P

a · P

b · P

a b
Alice Bob

PubliekGeheim Geheim

P

Figure 9.3: Een “Elliptic Curve Diffie–Hellman” sleuteluitwisseling.

De veiligheid van dit protocol steunt op de aanname dat het onmogelijk is om Alice’
geheim a vast te stellen uit alleen de publieke informatie van P en a · P . Dit heet het
discretelogaritmeprobleem. Theoretisch gesproken zou het weliswaar mogelijk zijn om

2Tenzij de lijn door P en Q verticaal is; dan zeggen we dat P + Q = O, waar O het punt op
oneindig heet. Als de lijn de kromme in één van de punten raakt, dan tellen we dat snijpunt dubbel.
Op die manier is “de lijn door P en P” gelijk aan de raaklijn aan de kromme in P .
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Samenvatting

a uiteindelijk te vinden door 2 ·P = P +P , 3 ·P = P +P +P , 4 ·P = P +P +P +P ,
enzovoorts, uit te rekenen totdat we a ·P tegenkomen, maar dit is praktisch niet haal-
baar zodra a heel groot is. Al deze punten nagaan duurt namelijk veel langer dan a ·P
te berekenen, gegeven a en P , met behulp van de double-and-add -methode. Tot op
heden zijn er geen snelle algoritmes bekend om het discretelogaritmeprobleem in het
algemeen op te lossen. Alhoewel, tenzij we kwantumcomputers in beschouwing nemen.
Een kwantumcomputer is een speciaal soort computer die zijn rekenkracht baseert
op de merkwaardige eigenschappen van subatomaire deeltjes. Op zulke computers
bestaan er wél snelle algoritmes die het discretelogaritmeprobleem kunnen kraken. Zo
ver we weten, is nog niemand in staat geweest een kwantumcomputer te bouwen die
krachtig genoeg is om hedendaagse cryptografie te breken, maar het is onduidelijk of
dit in de toekomst wel mogelijk zal zijn. Dit heeft een nieuw vakgebied in het leven
geroepen genaamd post-kwantum cryptografie. Deze onderzoeksrichting gaat over het
zoeken en analyseren van manieren om informatie te versleutelen die veilig zijn tegen
aanvallen van kwantumcomputers. Isogenie-gebaseerde cryptografie is een deelgebied
van deze onderzoeksdiscipline. Isogenieën zijn afbeeldingen tussen elliptische krom-
men; een soort vervorming die je van de ene elliptische kromme naar de andere brengt.
Wanneer je deze vervormingen op een slimme manier kiest, kan je een sleuteluitwisse-
lingsprocedure maken dat erg op het voorgaande protocol lijkt. Voor zo’n procedure
beginnen Alice en Bob met het afspreken van een publiek bekende elliptische kromme,
maar in plaats van een punt op die kromme te nemen, passen ze nu (geheime) ver-
vormingen toe op de elliptische kromme zelf. Als ze dit doen op een zodanige manier
dat de volgorde van hun vervormingen niet uitmaakt, eindigen ze samen met dezelfde
elliptische kromme, wat vervolgens hun gedeelde geheim uitmaakt. Een abstracte
weergave van dit protocol vindt je in Figuur 9.4

[ab]E [ab]E

[a]E

[b]E

[a] [b]

Alice Bob

PubliekGeheim Geheim

E

Figure 9.4: Een isogenie-gebaseerde sleuteluitwisseling.

De onderliggende aanname van isogenie-gebaseerde cryptografie is dat het lastig is om,
gegeven twee elliptische krommen E1 en E2, een vervorming te vinden van die je van
E1 naar E2 brengt. Dit heet ook wel het isogenie-pad-probleem. Men gaat ervan uit
dat dit probleem zelfs voor kwantumcomputers lastig is.

In dit proefschrift beschouwen we verschillende computationele problemen die aan
isogenieën tussen elliptische krommen kunnen worden toegekend.

Hoofstukken 1, 2, en 3 zijn inleidend en eindigen met een vereenvoudigd overzicht
van de hoofdresultaten uit de latere hoofdstukken.
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In Hoofdstuk 4 en 5 tonen we aan dat, in zekere instanties, afbeeldingen op el-
liptische krommen genaamd pairings gebruikt kunnen worden om bepaalde compu-
tationele moeilijkheidsaannames te weerleggen. Zo vinden we in speciale gevallen
efficiënte oplossingen voor het isogenie-pad-probleem, evenals voor een zwakker pro-
bleem genaamd het Diffie–Hellman Beslissingsprobleem.

In Hoofdstuk 6 ontwikkelen we een meervariabele veralgemening vanHilbert klassen-
polynomen; veeltermen die elliptische krommen met een bepaalde structuur (gegeven
door hun endomorfismering) beschrijven. We gaan in het bijzonder in op de com-
putationele voordelen van deze nieuwe veeltermen ten opzichte van eerder bekende
klassenpolynomen.

In Hoofdstuk 7 bestuderen we een methode om ketens van isogenieën efficiënt uit
te rekenen met behulp van vergelijkingen genaamd radicale-isogenie-formules. We
ontwikkelen een nieuwe methode om zulke formules uit te rekenen, en verbeteren
de efficiëntie van hun evaluatie. Dit zorgt voor een versnelling in het uitvoeren van
bepaalde isogenie-gebaseerde protocollen.
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Summary

Cryptography is about securing information in such a way that only the intended
parties have access to that information. For example, let us say that a hypothetical
person, named Alice, would like to send a message to another hypothetical person,
named Bob. If Alice and Bob had a way to communicate in such a way that no one else
could overhear their conversation, then this would be easy; they could just converse
in plain text. However, in the real world, a perfectly secure channel of communication
is virtually impossible to guarantee, especially when communication happens over the
internet. Somehow, Alice and Bob have to agree on some sort of code language. But
how can they do that, if we assume malicious entities can listen in on all of their
conversations? One way, is through something called a Diffie–Hellman key exchange;
a method for two parties to establish a shared secret over a public communication
channel. A common way, used by many end-to-end encrypted messaging applications,
is based on mathematical objects called elliptic curves. An example of an elliptic curve
is the collection of points (x, y) in the plane satisfying the equation y2 = x3+3x2−x−3;
see Figure 9.5.

x

y

Figure 9.5: An elliptic curve given by the
equation y2 = x3 + 3x2 − x− 3.

P

Q

P +Q

x

y

Figure 9.6: Adding two points on an ellip-
tic curve.

What is special about elliptic curves, is that there is a geometric recipe to add points
on the curve to each other, which is described as follows. When we would like to
add two points P and Q on the curve, we draw the line connecting P and Q, which
intersects the curve in exactly one other point.3 The vertical line through this latter

3Unless the line is vertical; then we say P +Q = O, where O is called the point at infinity. If the
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point intersects the curve in exactly one other point, which is P +Q; the sum of P and
Q. In the case that P = Q, then we say that the line connecting P and Q is the tangent
to the curve at P . This way, we have a recipe to compute n · P = P + P + . . .+ P︸ ︷︷ ︸

n times P

for any integer n > 0. Such multiples can be computed in a faster way than just
adding the point to itself n− 1 times, through a procedure called double-and-add. For
example, we can compute 20 · P = 2 · (2 · ((2 · (2 · P )) + P )) by just five additions (of
which four are a doubling; i.e. adding a point to itself). Now, if Alice and Bob would
like to establish a common secret, they could execute the following procedure.

(i) Alice and Bob agree publicly on a point P on an elliptic curve.

(ii) Alice and Bob generate (large) secret integers a and b.

(iii) Alice computes the point PA = a · P and sends the result to Bob.

(iv) Bob computes the point PB = b · P and sends the result to Alice.

(v) Using her secret and the point from Bob, Alice computes a · PB = (a · b) · P .

(vi) Using his secret and the point from Alice, Bob computes b · PA = (a · b) · P .

Since Alice and Bob both end up at the same point on the elliptic curve, they have
successfully established a shared secret; that is, the key echange is complete. This
common key can then be used to encrypt messages they would like to send to each
other securely.

(a · b) · P (a · b) · P

a · P

b · P

a b
Alice Bob

PublicPrivate Private

P

Figure 9.7: An Elliptic Curve Diffie–Hellman key exchange.

The security of this protocol relies on the assumption that it is impossible to recover
Alice’s secret a only using the publicly available information of P and a · P . This is
called the discrete logarithm problem. Theoretically, one would eventually be able to
find a by computing 2 · P = P + P , 3 · P = P + P + P , 4 · P = P + P + P + P ,
and so on, until one eventually runs into a · P . However, this is infeasible when a is
really large; much slower than computing a ·P given a and P by using the double-and-
add method. Currently, no fast algorithms to solve the discrete logarithm problem

line is tangent to the curve in one of the points, then we count that intersection twice. In this way
“the line through P and P” is the tangent to the curve at P .
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Summary

in general are known. That is, unless we take into account quantum computers. A
quantum computer is a special type of device that bases its computational power
on the remarkable physical properties of subatomic particles. On such computers,
there are known to exist fast algorithms to solve the discrete logarithm problem. To
date, as far as we know, no one was able to build a quantum computer powerful
enough to break any practically used cryptographic protocol. However, it is unclear
whether such a device will be constructed in the near future. This has sparked a new
area of research called post-quantum cryptography, which searches for ways to encrypt
information that are secure against attacks by quantum computers. One such proposal
is called isogeny-based cryptography. Isogenies are maps between elliptic curves; a type
of transformation that takes you from one elliptic curve to the other. When chosen
in a smart way, such maps can be used to establish a key exchange as before. This
time, Alice and Bob publicly agree, not on a point on an elliptic curve, but on an
elliptic curve itself. They apply successive transformations to the curve in such a way
that they end up at the same elliptic curve, which then forms their shared secret.
Abstractly, this is pictured in Figure 9.8.

[ab]E [ab]E

[a]E

[b]E

[a] [b]

Alice Bob

PublicPrivate Private

E

Figure 9.8: An isogeny-based key exchange protocol.

The assumption underlying the security of isogeny-based cryptography, is that it is
difficult, given two elliptic curves E1 and E2, to find a transformation from E1 to E2.
This is called the isogeny path problem. It is assumed that this problem is difficult
even for quantum computers.

In this thesis, we consider several computational problems associated to isogenies
between elliptic curves.

Chapters 1, 2, and 3 are introductory and end with a high-level overview of the
main results presented in later chapters.

In Chapter 4 and 5, we show how, in certain instances, maps on elliptic curves
called pairings can be used to disprove computational hardness assumptions related to
isogeny-based cryptography. In special cases, we find efficient solutions to the isogeny
path problem, as well as to a weaker problem known as the Decisional Diffie–Hellman
Problem.

In Chapter 6, we develop a multivariate generalization of Hilbert class polynomials;
polynomials that encode elliptic curves with a certain structure (given by their endo-
morphism ring). We in particular discuss the computational benefits of these novel
polynomials compared to previously known class polynomials.
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In Chapter 7, we study a method to compute chains of isogenies efficiently through
equations called radical isogeny formulae. We develop a new method to obtain such
formulae, and improve on the efficiency of their evaluation. This leads to a speed-up
in the execution of certain isogeny-based cryptographic protocols.
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