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Manolis Fragkiadakis is a PhD candidate at the Leiden University Centre for 
Linguistics with a research focus on sign language recognition.

MANOLIS FRAGKIADAKIS

Assessing an Automated  
Tool to Quantify Variation  
in Movement and Location:  
A Case Study of American 
Sign Language and Ghanaian 
Sign Language

ABSTRACT
Signs in sign languages have been mainly analyzed as composed of 
three formational elements: hand configuration, location, and move-
ment. Researchers compare and contrast lexical differences and simi-
larities among different signs and languages based on these formal 
elements. Such measurement requires extensive manual annotation 
of each feature based on a predefined process and can be time con-
suming because it is based on abstract representations that usually do 
not take into account the individual traits of different signers. This 
study showcases a newly developed tool named DistSign, used here 
to measure and visualize variation based on the wrist trajectory in 
the lexica of two sign languages, namely American Sign Language 
(ASL) and Ghanaian Sign Language (GSL), which are assumed to be 
historically related (Edward 2014). The tool utilizes the pretrained 
pose estimation framework OpenPose to track the body joints of 
different signers. Subsequently, the Dynamic Time Warping (DTW) 
algorithm, which measures the similarity between two temporal se-
quences, is used to quantify variation in the paths of the dominant 
hand’s wrist across signs. This enables one to efficiently identify cog-
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nates across languages, as well as false cognates. The results show that 
the DistSign tool can recognize cognates with a 60 percent accuracy, 
using a semiautomated method that utilizes the Levenshtein distance 
metric as a baseline.

To date, there are more than 200 sign languages documented 
in the world (Hammarström et al. 2021). However, little is known 
about the possible genealogical connections between different sign 
languages, and many assertions on this topic are based purely on his-
torical records of language contact (Börstell, Crasborn, and Whynot 
2020). As Abner et al. (2020, 18) point out, “[S]cant research exists 
on historical change and historical relations among sign languages.” 
Moreover, there has not been a methodical and large-scale study 
concerned with families of sign languages yet.

Typically, historical-comparative research on sign languages uses 
lexical comparison and lexicostatistics to measure similarity in param-
eter values among various sign languages (Woodward 1991; Wood-
ward 1993; Johnston 2003; Bickford 2005; McKee and Kennedy 
2000). As Börstell, Crasborn, and Whynot (2020) highlight, these 
studies measure the amount of lexical overlap on a predefined list of 
concepts to account for the probability of two languages being related. 
Lexical similarity is often accounted to form similarity between signs 
that share the same meaning (Börstell, Crasborn, and Whynot 2020). 
Each sign is annotated based on its four (sometimes three) basic form 
parameters: location, handshape, orientation, and movement. If all 
four parameters between a set of signs are exactly the same, the signs 
are counted as “identical.” Two matching parameters result in “simi-
lar” signs; otherwise, they are considered different forms (Börstell, 
Crasborn, and Whynot 2020). However, there is inconsistency in how 
scoring criteria are used to account for sign similarity (Parks 2011). 
The result of this approach, as discussed by Power, Quinto-Pozos, and 
Law (2021), is that sign languages with an associated history yield a 
higher percentage of similar signs, but sign languages that do not share 
a related history might do so too.

Admittedly, the use of lexicostatistics in sign languages raises sev-
eral issues. As highlighted by Parks (2011), many studies do not share 
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100  |  Sign Language Studie s

a common set of similarity criteria. As a result, by virtue of using 
different benchmarks, each comparison may lead to a different result. 
Moreover, as sign languages do not share an official transcription 
system, different studies have used disparate annotation systems to 
encode the sign form parameters. Some of them used SignWrit-
ing (Sutton 2009) and HamNoSys (Hanke 2004) while others have 
used independently developed annotation systems (Abner et al. 2020; 
Börstell, Crasborn, and Whynot 2020; Yu, Geraci, and Abner 2018). 
Consequently, it is not possible to directly compare signs encoded in 
different formats without translating one transcription system to an-
other. Although partial overlap between some of these annotation sys-
tems exists, this is not always the case (Power, Quinto-Pozos, and Law 
2021). In addition, studies often differ in the total number of signs 
compared, which signs were compared, and how lexical categories 
were defined. For example, Yu, Geraci, and Abner (2018) compared 
100 signs in twenty-three sign languages while Börstell, Crasborn, and 
Whynot (2020) compared 301 items in three sign languages.

Furthermore, to measure similarity between sign languages, one 
has to manually annotate the form parameters for each sign. Such a 
task can be time consuming and requires a predefined set of values to 
be used. Some systems, such as the one presented by Yu, Geraci, and 
Abner (2018), separated the form parameters into more thorough sub-
features. For example, the parameter of movement was expanded into 
features such as movement direction, movement shape, and movement 
repetition. Nevertheless, regardless of the detail these features encode, 
they are still abstract representations of the actual characteristics they 
represent. Slight differences in the way signs are articulated cannot al-
ways be encoded by the transcription systems used. In addition, many 
signs tend to be annotated inconsistently, resulting in discrepancies in 
their transcriptions, even though there might be no real difference of 
articulation present in the video.

This study presents a newly developed tool, named DistSign, to 
explore variation measurement and similarity calculation between sign 
languages. By eliminating the need for manual transcription, the tool 
can work toward an automated analysis of lexical comparison.

The OpenPose pose estimation framework (Cao et al. 2017) was 
used to extract the location and movement of the dominant and 
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nondominant hands’ wrists. Subsequently, using the DTW algorithm, 
the tool quantified variation in the movement parameter. DTW is 
designed to compare sequences that evolve through time. Hence, it 
was used by the tool to compare the trajectories produced by the 
dominant hand’s wrist. Both OpenPose and DTW are further ex-
plained on pages 102–4.

There are three reasons why this study used the wrist trajectory 
as the main feature to assess lexical similarity. First and foremost, as 
Napoli and Sanders (2022, 4) discuss, “[T]he movement parameter 
has been reported by signers to be the most salient parameter for rec-
ognizing signs.” Second, the accuracy with which OpenPose predicts 
the locations of the fingers in a video can vary widely. As a result, a 
possible handshape recognition process would be vastly skewed by the 
mis-prediction of the fingers’ locations. Therefore, using these loca-
tions without an additional processing step (and possibly a dedicated 
handshape prediction step), was found not to improve sign recognition 
accuracy in an earlier study using OpenPose (Fragkiadakis, Nyst, and 
van der Putten 2020). Finally, in the present study, location is not pre-
dicted as a separate value, since the predicted feature, that is, the wrist 
trajectory, includes both the location and the movement parameters.

Overall, this study explores three applications for the DistSign tool: 
visualization of the distribution of the wrist trajectory, assessment of 
whether certain lexical fields exhibit more variation than others, and 
identification of potential cognates.

To verify the applicability of the DistSign tool, a comparison of 
two sign languages that share a common history, namely ASL and 
GSL (Edward 2014), was performed. Using the word list described 
by Parks (2011), I measured the lexical similarity between these sign 
languages by looking at signs in ten lexical fields. I examined the 
results using as a baseline a semiautomated method on manually tran-
scribed data utilizing the Levenshtein-based distance metric (further 
explained on pages 106–7).

Methods and Data

Data

The initial word list used in this study contained the 241 items utilized 
in Parks’s (2011) study, resembling the word lists by Bickford (1991) 
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102  |  Sign Language Studie s

and Swadesh (1955). These lexical items belong to various semantic 
domains and grammatical word classes such as animals, food, physical 
activities, and adjectives. ASL Signbank (Hochgesang, Crasborn, and 
Lillo-Martin 2018) and the GSL dictionary app (HANDS!Lab 2020) 
were used to collect the equivalent video sign entries. However, not 
all the items in my original list could be found in both lexica and, as 
a result, I compared 141 signs corresponding to ninety-four different 
concepts. The additional forty-seven entries were variants of some 
of the signs.

Pose Estimation

Using the video entries in their raw format would be time and com-
putationally consuming. Moreover, videos contain information that 
is not always useful for the purpose of this type of analysis, such as 
the background of the signer. As a result, different techniques have 
been developed to extract only the information that is relevant for 
further computations. A popular technique employed is the use of a 
pose estimation framework to extract the locations of the body, face, 
and fingers joints. In this study, the pose estimation framework named 
OpenPose was used. OpenPose is an open source for academic pur-
poses, a real-time 2D pose estimation framework that can detect body, 
hand, and facial key points. It is a highly accurate framework that 
has been extensively used in the sign language and gestural domains 
(Fragkiadakis, Nyst, and van der Putten 2020; Östling, Börstell, and 
Courtaux 2018; Liang et al. 2019). Its ability to run under different 
operating systems and architectures as well as its options for visual-
ization and output file generation makes it an ideal tool to process 
sign language and gestural videos. Its output consists of multiple files, 
each containing the pixel x, y coordinates of the body (shoulder, 
elbow, wrist, etc.), hand, and face joints per frame. In a recent study 
conducted by Liang, et al. (2019), the authors concluded that Open-
Pose is an accurate and robust framework when tracking the hand 
trajectories.

In the present study, each video sample for each of the two sign 
languages compared was processed with OpenPose. As described ear-
lier, outputs consist of a series of files (one for each frame of the 
video) that contain the x and y pixel coordinates for each predicted 
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body joint as well as a confidence interval referring to how certain 
that prediction is. Furthermore, an additional cleaning and normal-
ization process was applied by first removing all the predicted joints 
with low confidence (<0.2). Moreover, the preparation phase during 
the realization of each sign was removed by applying a threshold. If 
the height (y pixel coordinate) of the dominant hand’s wrist at the 
initial or ending points was lower than this threshold, the coordinate 
was removed. This step ensures that the first and last wrist locations 
of the first sign sequence being compared will match the first and last 
wrist locations of the second sign sequence being compared, which 
is required for the DTW algorithm.

As there was variation in the way people were aligned with respect 
to the video frame, a normalization process was also applied. The scale 
normalization method is based on previous studies by Fragkiadakis, 
Nyst, and van der Putten (2020), Celebi et al. (2013), Schneider et 
al. (2019), and Östling, Börstell, and Courtaux (2018), and it ensures 
that the coordinates generated by OpenPose are all roughly in the 
same position with respect to the video frame no matter how far, 
close, or to the left or to the right each signer appears in the video. 
Furthermore, an additional step was introduced to account for left-
handed signers. When the average velocity of the left hand was greater 
than that of the right hand, a horizontal flip on the video was ap-
plied. This step ensured that comparisons would always involve the 
dominant hand.

Similarity Measure

As mentioned, the main goal of this study is to explore how lexical 
similarity or distance between sign languages can be measured in a 
quantifiable and automated way. Such functionality should be ap-
plicable to any digital sign language dictionary or word list regardless 
of its size and quality. While deep learning approaches have demon-
strated accurate results in classifying and predicting signs from video 
material (Li et al. 2020), they often require a vast amount of training 
data. Moreover, such architectures are often trained in specific lan-
guages, with the need to be re-trained so as to use another language.

The proposed tool, by virtue of using the DTW algorithm, does 
not require any training whatsoever and can be applied to any sign 
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104  |  Sign Language Studie s

language dictionary and word list. Finally, to ensure that its functional-
ity can be applied in a user-friendly and inclusive manner, a Python 
Jupyter Notebook on Google’s Colab environment (Bisong 2019) has 
been created.1 In principle, such a step can ensure that anyone with 
an internet connection can use the tool no matter the computational 
power at hand.

Dynamic Time Warping.  DTW is a dynamic programming algorithm 
designed to compare time series data. It can be used as a distance 
metric between two series that may vary in speed. It has been widely 
used in the speech recognition domain (Abdulla, Chow, and Sin 2003; 
Axelrod and Maison 2004; Myers, Rabiner, and Rosenberg 1980) 
and is a reliable solution when limited training data are available, as 
it requires no training whatsoever.

Assume that we have two sequences that evolve through time, 
similarly to the ones in figure 1. In this study, these could be the wrist 
paths of two signs being compared. While the black and the gray line 
sequences in figure 1 look almost identical, the gray one is slightly 
shifted to the right. Such a pattern is quite common when comparing 
sequences that move in time, such as signs. If we were to compare 
these sequences using the Euclidean distance (figure 1b) by simply 
trying to overlap them, that is, by connecting each of the points of the 
first and the second sequences and measuring the distance between 
them, we would end up with a poor match, because the peaks of 
the sequences are not temporarily aligned. DTW allows to correct 
that behavior by dynamically warping the path, which allows us to 
compare each point of a sequence with a point that is most likely a 
better fit (as in figure 1a). In figure 1a, the peaks are aligned, yield-
ing a good match. DTW will assign 0 if the two sequences or paths 
are identical. The higher the index, the more different the paths are.

In the gestural and sign language domains, DTW has been ex-
tensively used for classification and recognition tasks to match a ges-
ture or a sign against an existing data set. (Ten Holt, Reinders, and 
Hendriks 2007; Jangyodsuk, Conly, and Athitsos 2014). Recently, 
DTW combined with the output of OpenPose has been used for the 
same kind of sign recognition tasks (Ripperda, 2020) using simple 
RGB camera material (Schneider et al. 2019). Fragkiadakis, Nyst, and 
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van der Putten (2020) compared how different configurations of the 
OpenPose output can affect prediction accuracy when a query sign 
is compared to 100 signs in a database. The goal of their study was to 
develop a reverse search functionality for sign language dictionaries 
by allowing a user to sign in front of a simple web camera and find 
possible matching signs. Overall, three different parameter configura-
tions were compared: only the dominant hand’s wrist, the trajectories 
of the fingers, and a combination of these two. Their results showed 
that using the trajectories of the fingers as well as merging them with 
the trajectory of the dominant hand’s wrist did not yield compelling 
results. Hence, using just the data from the dominant hand’s wrist is 
sufficiently adequate when it comes to matching sign retrieval.

A possible explanation for this could be that OpenPose does not 
predict the finger joints accurately and consistently when the elbow 
is not visibly present and when the source is a very low-quality video. 
In a later study, Fragkiadakis and van der Putten (2021) have fur-
ther verified the applicability of DTW in a larger lexicon. They 
experimented with different body joint combinations (upper body, 

Figure 1.  Example of how two time series can be compared using DTW (a) and 
(b) the Euclidean distance.

(b)  Euclidean distance

(a)  Dynamic Time Warping
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106  |  Sign Language Studie s

dominant hand’s arm and wrist) to a greater extent. They concluded 
that DTW performs equally well irrespectively of the body joint 
configurations selected. Hence, in the present study, only the trajec-
tory of the dominant hand’s wrist was used in order to visualize and 
quantify variation among signs based on the location and movement 
parameters. To develop such functionality, the Python package created 
by Tormene et al. (2009) and Giorgino (2009) was utilized.

Cognates.  Two signs that share the same form and meaning are consid-
ered cognates, or true-friends. In addition, the greater the number of 
shared cognates, the higher the mutual intelligibility in a cross-signing 
context is and vice versa (Börstell, Crasborn, and Whynot 2020). An 
automated way to find cognates in a set of sign languages can poten-
tially be used to efficiently and quickly predict communicative success 
in such contexts. For instance, Omardeen (2018) demonstrated that 
the degree of form overlap between a native and a foreign sign, as 
evaluated by the amount of similar phonological characteristics, can 
predict a signer’s iconicity rating for a foreign sign.

The process developed in this study in order to automatically find 
cognates between two sign languages is the following: First, I disre-
garded meaning and let DTW compare each sign from one language 
to all the signs of the other language. Subsequently, I sorted the results 
based on the output of this process that indicates how similar two signs 
are (similarity index). Finally, if the most similar match had the same 
gloss as the query sign, then the two signs were counted as cognates.

In a preliminary experiment, it was noticed that, on average, the 
similarity index of the first four most similar signs varied within the 
range of the second decimal, while the index would increase signifi-
cantly beyond the fourth most similar sign. When comparing one 
sign in one language to all the other signs in another language, it is 
possible that the first four or five most similar matches might vary 
only minimally in their degree of similarity to the query sign. As a 
result, if one of the four most similar matches also shared the same 
meaning as the query sign, I considered it a cognate to the query 
sign.

Manual Annotation.  I evaluated the performance of the automated 
process by using a semiautomated method that resembles the one 
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described by Börstell, Crasborn, and Whynot (2020) as a benchmark. 
For the semiautomated process, each sign (and its variants) was manu-
ally transcribed in terms of its initial and final handshape as well as the 
initial and final location parameter, following the Global Signbank’s 
manual (Crasborn et al. 2020). This manual explains how to encode 
a sign in terms of its phonological features in order to be submitted 
to the lexical database of Global Signbank. It contains possible encod-
ings for handedness, handshape, location, movement direction, ori-
entation, and the like. Overall, I annotated ninety-six possible values 
for the handshape parameter. For instance, the handshapes that were 
similar to the ASL handshape “B” were annotated with that value (i.e., 
“B”). Variations in the fingers’ articulation would result in a different 
annotation value such as “B_bent.” Location was categorized in four 
groups (head, body, extremities, and neutral space) with multiple 
values per group (cheek, chin, eye, for the head etc.). Subsequently, 
using a process that derives from the Levenshtein distance metric that 
is used to classify spoken languages, I calculated the similarity index 
between all possible sets of signs. This process calculates whether 
each parameter that is compared between two signs is different (0) or 
similar (1) and divides the total score by the number of parameters 
compared (in this study: 4). If all parameters are the same, then the 
two signs have a similarity index of 1, and if they also share the same 
meaning-gloss then they are counted as identical and thus cognates. 
Finally, this process was compiled into a Python Jupyter Notebook 
to allow other researchers to quickly and reproducibly calculate the 
Levenshtein-based distances between sets of sign languages.2

Lexical Fields.  Lexical variation occurs when two or more forms ap-
pear in the same conditions without a change in meaning. For exam-
ple, in GSL, food terms tend to display considerable variation (Abudu 
2019). This, according to Abudu (2019), stems from sociocultural 
differences and the situation in which the sign is realized.

In order to explore how much GSL vocabulary diverges from 
ASL vocabulary, several lexical fields were examined. In total, twelve 
categories were initially considered, based on Parks’s (2011) word list. 
However, for two of the categories, most concepts were missing from 
the sign databases that I used. Thus only ten fields were compared 
in this study.
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108  |  Sign Language Studie s

I compared all the ASL signs in each selected field to the cor-
responding GSL signs by calculating their similarity indexes based on 
the trajectory of the dominant hand. The signs were then sorted from 
most similar to most dissimilar. This process allows us to infer which 
GSL variant might have been derived (thus having low distance) from 
the equivalent ASL sign.

Additionally, the average similarity rate per field was computed. 
The purpose of this analysis was to test the hypothesis that some 
fields in GSL may have undergone more change from ASL than other 
semantic domains.

Finally, I calculated the average similarity rate among the signs of 
each field within each language. High distance would mean that the 
wrist trajectories are quite different among the signs (high intra-field 
variation), while low distance would mean that the trajectories follow 
a more similar pattern (low intra-field variation). This step could be 
used as a proxy to assess the crosslinguistic distance calculated in the 
previous step. It can provide additional information as to whether low 
or high distance is a result of degree of similarity in the movement 
parameter or just an outcome of intra-field variation. The latter could 
be caused by signs in a particular field exhibiting strong iconicity. This 
investigation, however, goes beyond the scope of this study.

Distribution and Visualization of the Wrist Trajectory

To explore lexical differences between the two languages within each 
field, visualizations of the average wrist trajectory parameter per se-
mantic field were generated.

By projecting the locations of the wrists for all the signs in both 
lexica and within each semantic field, the DistSign tool was able to 
visualize the average location. The normalized coordinates of the 
wrist trajectory per language and semantic field were projected on 
a grid on top of a silhouette used as a reference point (see figure 2). 
Filled contours indicate the locations of the nondominant hand’s wrist 
only. The darker a spot is, the more signs had wrist movement in 
that area. Signing speed was omitted for this analysis, as it is not es-
sential for the DTW algorithm as described previously. This process 
is more or less identical to the one described by Östling, Börstell, 
and Courtaux (2018), who explored iconic patters of sign locations 
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in a crosslinguistic study. In their study, sign locations were calculated 
based on the hand position, which was extrapolated by adding half 
the distance between the elbow and the hand to the wrist location in 
a straight line. However, their method did not take into account any 
possible wrist flexions, which could result in lightly altered locations. 
Hence, in the present study, only the dominant hand’s wrist was used 
to extrapolate the location parameter, as the position of the wrist is a 
direct outcome of the OpenPose framework. This means, however, 
that most outputs will be shifted compared to the actual hand loca-
tion. This shift will be mostly downward or to the center.

Wrist Locations

Figure 2 presents the average wrist location for all the signs in the 
ASL and GSL word lists. The ASL data have more wrist movement 
with the nondominant hand, as seen by the two dark spots. Moreover, 
the average wrist location is less central in the torso compared to the 
GSL wrist locations.

Figures 3 and 4 present wrist location visualizations for the se-
mantic fields of emotions and food, respectively. It is noticeable that 
for the signs within the domain of emotions, ASL wrist locations 
concentrate toward the neck, while the equivalent GSL signs are con-
centrated in the mid torso. Considering that these heat maps reflect 

Figure 2.  Visualization of the wrist location parameter for all signs in (a) the ASL and 
(b) GSL lexica. Concentrated wrist movement in an area is shown with darker color. 
Transparent contours  indicate the locations of the dominant hand’s wrist, and filled 
contours indicate the locations of the nondominant hand’s wrist.

	 (a)  asl	 (b)  gsl
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110  |  Sign Language Studie s

the locations of the wrists, not the hands, one can extrapolate that the 
actual average hand location for the ASL signs is at the general head 
area, while for GSL is at the torso and neck areas.

By contrast, signs for food (figure 4) have relatively similar loca-
tions for the dominant hand’s wrist movement in ASL and GSL, al-
though GSL shows less movements, on average, for the nondominant 
hand feature.

F igure  4.  Visualization of the wrist location parameter for the semantic field of 
food. Concentrated wrist movement in an area is shown with darker color. Transparent 
contours  indicate the locations of the dominant hand’s wrist, and filled contours 
indicate the locations of the nondominant hand’s wrist.

F igure  3.  Visualization of the wrist location parameter for the semantic field 
of emotions. Concentrated wrist movement in an area is shown with darker color. 
Transparent contours  indicate the locations of the dominant hand’s wrist, and filled 
contours indicate the locations of the nondominant hand’s wrist.

	 (a)  asl	 (b)  gsl

	 (a)  asl	 (b)  gsl
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Table 1.   Mean distance and standard deviation per lexical field between the ASL 
and GSL signs

Lexical Field Signs
Mean 

Distance
Standard 
Deviation

Time afternoon, day, monday, 
morning, night, saturday, 
thursday, tuesday, wednesday

  9.4 4.1

Food apple, banana, carrot, corn, 
grapes, onion, rice, tomato

  9.5 4.4

Physical Activities ask, buy, cook, cater, count, 
dance, die or dead, kill, laugh, 
live, meet, pay, run, sell, sit, 
sleep, stand

10.3 5.9

Environment leaf, moon, mountain, river, 
salt, star, tree, water, wind, 
wood

10.4 5.6

Family and 
Human

boy, brother, daughter, deaf, 
husband, king, man, mother, 
name, sister, son, wife, woman

10.4 3.1

Clothing and 
Household Items

bed, door, house, knife, shirt, 
shoe, window

10.5 3.5

Animal cat, chicken, dog, elephant, 
horse, lion, mouse, rabbit, 
snake, spider

11.7 5.1

Adjectives bad, beautiful, clean, dirty, 
hungry, new, old, poor, rich, 
strong, sweet, ugly

13.1 9.8

Work and 
Occupation

doctor, policeman, soldier, 
teacher

14.2 5.9

Emotions angry, dream, love, thank you, 
welcome

14.5 6.8

Distances Per Lexical Field.  As previously mentioned, each GSL and 
ASL sign was compared for each lexical field. Table 1 presents average 
crosslanguage distances, as calculated by the DistSign tool using the 
DTW algorithm, and based on the paths produced by the dominant 
hand’s wrist. The lowest distances are found in the fields of time and 
food. The highest distances are found in the categories of adjectives, 

The lower the mean distance, the more similar the signs in that field are in terms 
of wrist trajectory.
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work and occupation, and emotions. Each field contains those signs 
described in Parks’s (2011) study that I could find in both lexica.

Additionally, the standard deviation was calculated per lexical field. 
Standard deviation signifies how dispersed the data are in relation to 
the mean average distance described in the previous step. Low stan-
dard deviation means that the data are clustered around the mean, and 
high standard deviation indicates that the data are more spread out.

Table 2 presents the intra-field variation per sign language, which 
was calculated by comparing each sign to all the other signs in each 
field and within each language. As can be seen in table 2, the ASL 
semantic fields with the lowest average distances are time, physical 
activities, and food. Similarly, the GSL semantic fields with the lowest 
average distances are time, food and clothing and household items. 
On average, intra-field variation in GSL is much higher than that in 
ASL. This means that the GSL signs for each semantic field have less 
homogeneous wrist trajectories than in ASL. Furthermore, we can 
observe that the semantic fields that had lower crosslinguistic variation 
(food, time, and physical activities), as seen in table 1, were the ones 
that also had lower intra-field variation (table 2).

Table 2.   Intra-field variation per sign language

Lexical Field
ASL 

Variation
GSL 

Variation

Adjective 12.8 16.6

Animal 12.3 23.3

Emotions 13.4 20.6

Environment 10.3 20.3
Family and Human   9.4 16.3
Food   9.1 12.7
Physical Activities   8.8 18.1
Time   7.8 15.2
Work and Occupation 15 15.8
Clothing and Household Items 10.8 15.7

The higher the variation the less homogeneous the wrists 
trajectories in that field.
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Aside from calculating mean crosslanguage distances per field, the 
tool also measured the similarity index for each sign compared against 
all the signs of the other language for each category. Figure 5 shows 
how the tool outputs this comparison in the form of a heat map for 
the lexical field of food. For every ASL variant, marked by a different 
index (e.g., apple1, apple2, etc.), the tool quantifies the similarity 
between that sign and all the GSL signs in that specific field and sorts 
them from the most to the least similar. This allows us to observe 
how each sign from one sign language relates to all the other signs 
from the other language by field. An important output of this process 
is the automatic identification of which lexical variants are identical 
and which are similar. For example, in the food category, of all the 
ASL variants for apple, apple1 is the most similar to the equivalent 
GSL sign (figure 5).

Finally, the heat map indicates which signs had a completely differ-
ent trajectory (and location) than the query sign, resulting in a higher 
distance index. For example, figure 6 shows that the only GSL signs 
that are similar in wrist trajectory to the ASL variants for dream are the 

Figure 5.  Heat map representing the calculated distances for the lexical field of food. 
Transcripts (indexes) on the first column represent the ASL signs, and each row within 
the heat map represents the GSL signs that are compared to each ASL variant. The darker 
the color, the higher the distance.
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ones that convey the same concept, while all the other signs within the 
same lexical category have completely different movements (as indicated 
by the darker color, i.e., higher variation). On the other hand, some signs 
with different meaning are identified as similar in form, for example, the 
ASL sign love_2 and the GSL sign thank_you (figure 7).

Figure 6.  Heat map representing the calculated distances for the semantic field of 
emotions. Transcripts (indexes) on the first column represent the ASL signs, and each 
row within the heat map represents the GSL signs that are compared to each ASL variant. 
The darker the color, the higher the distance.

Figure 7.  (a)  The ASL sign love_2 and (b)  GSL sign thank_you as identified by 
the DistSign tool for having similar movement of the dominant hand’s wrist.

	 (a)  The ASL sign love_23	 (b)  The GSL sign thank_you
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Cognates

This section presents the results of the cognate identification task. 
Figure 8 displays the glosses for the sign pairs that were identified as 
cognates. Each line represents whether the ASL/GSL sign pairs cor-
responding to that gloss were identified as cognates by the DistSign 
tool (darker color) or by the Levenshtein distance (lighter color). 
Overall, sixty-four sign pairs were identified as cognates by aggregat-
ing the results of both tools.

The DistSign tool identified thirty-nine signs as cognates. Twenty-
eight of them were also recognized by the Levenshtein distance metric. 
However, there were twenty-five sign pairs that were not identified as 

Figure 8.  Sign pairs found to be cognates by the semiautomated method using the 
Levenshtein distance (light-gray) and the DistSign tool (dark-gray). The sign pairs 
identified solely by one technique are found at the edges.
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cognates by the DistSign tool that were recognized by the Levensh-
tein distance metric. The accuracy rate of the DistSign tool regarding 
cognate identification was at around 60 percent, while the accuracy 
of the semiautomated method using the Levenshtein distance metric 
was at around 82 percent.

As reported, there were cases where a disagreement between the 
DistSign tool and the semiautomated process using the Levenshtein 
distance could be observed. Table 3 presents the number of cognates 
that were identified by only one tool or the other and the reasons the 
other tool failed to recognize them as such.

Four cognates were not identified by the semiautomated method 
using the Levenshtein distance due to the way I annotated the param-
eters. For example, figure 9 displays a pair of signs that were identi-
fied as cognates by the DistSign tool but not by the semiautomated 
method. The reason why the semiautomated method did not recog-
nize them was that the ASL sign was coded with the “B_curved” final 
handshape, while the GSL sign was annotated with a “B” handshape. 
As a result, these two signs “matched” only in three out of the total 
four parameters required to be classified as cognates.

There were several other instances of disagreement between the 
DistSign tool and the semiautomated method. First and foremost, 
the DistSign tool recognizes a set of signs as cognates even if the final 
or initial wrist locations are slightly different as long as the trajectory 
is similar. Figure 10 displays the signs for angry as an example of 

Table 3.   Disagreements between the DistSign tool and the semi-automated process 
using the Levenshtein distance on the recognition of cognates

Reason  
of Disagreement

Number  
of Signs

Cognates identified by the Semi-
Automated Process only

Different final or initial wrist 
locations

  7

Different handshape transcription   4

Total 11

Cognates identified by the DistSign 
Tool only

Movement repetitions 16
OpenPose performance   9
Total 25
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such a set of signs. Note that while the initial realization of the GSL 
sign is at the lower part of the torso, the overall wrist trajectory is 
identical to that of the ASL sign. By contrast, these two signs were 
not recognized as cognates using the semiautomated method with 
the Levenshtein distance as they match in only two (i.e., initial and 
final handshape) out of the four manually coded parameters. This 
example demonstrates one of the core functions of the DistSign tool, 
that is, the extrapolation of the location parameter based on the wrist 
trajectory parameter.

Figure 9.  (a) The ASL sign bed (https://aslsignbank.haskins.yale.edu/dictionary/gloss 
/384.html) and (b) GSL sign bed.

	 (a)  The ASL sign bed	 (b)  The GSL sign bed

Figure 10.  (a) The ASL sign angry (https://aslsignbank.haskins.yale.edu/dictionary/gloss 
/15.html) and (b) GSL sign angry.

	 (a)  The ASL sign angry	 (b)  The GSL sign angry
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Most importantly, most of the signs that were identified as cognates 
using the semiautomated method but not using the DistSign tool were 
signs that included multiple repetitions of a specific movement. When 
the number of repetitions varies between a set of signs, the tool fails 
to correctly match the signs as possible cognates. Figure 11 shows the 
ASL and GSL signs for star(s ) , which exhibit such a pattern. In 
the ASL sign, the up and down movement of the dominant hand’s 
wrist is only repeated once, as compared to the GSL sign where the 
movement is repeated four times. One explanation for this outcome 
may be that repetitions tend to create slight variations in the move-

Figure 11.  The (a) ASL sign star and (b) GSL sign stars-1 as well as the trajectories 
of the (c) dominant- and (d) nondominant hand wrists.

	 (a)  The ASL sign star4	 (b)  The GSL sign stars-1

(c)  The trajectories of the wrists  
for the ASL sign star

(d)  The trajectories of the wrists  
for the GSL sign stars-1
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ment parameter, which leads DTW to assign a higher variation index. 
The longer and more complex a sign path is, the more probable it is 
that slight changes in movement will occur, thus resulting in a higher 
probability for the tool to fail. While repetitions, in some cases, can 
be attributed to a specific sign item or to a specific signer, they cannot 
be perceived as such by the tool.

In addition, it is worth mentioning that a small portion of the 
instances in which the DistSign tool failed to automatically identify 
cognates could be attributed to poor performance of OpenPose. Spe-
cifically, when signers crossed their arms, OpenPose failed to predict 
the location of the wrists, resulting in a distorted path.

Discussion

In this study, a method to quantify lexical similarities and differences 
among sign languages and sets of signs was introduced. By eliminat-
ing, or reducing, the need to manually annotate the form parameters, 
the tool described in this study can be used to automatically retrieve 
cognates across sign languages and to visualize the wrist location and 
trajectory parameters. I argue that the DTW algorithm is a well-suited 
method for quantifying variation among signs and sign languages. 
The movement and wrist location of the dominant hand, as predicted 
by OpenPose, have been used by several sign identification studies 
(Börstell, Crasborn, and Whynot 2020; Liang et al. 2019). However, 
to the best of my knowledge, this is the first time they have been used 
for measuring variation in a quantifiable way.

Using data from ASL and GSL word lists as a case study, I assessed 
the results of the automated tool using as a baseline a semiautomated 
method on manually transcribed data utilizing the Levenshtein-based 
distance metric. Overall, thirty-nine sign pairs out of sixty-four that 
could be potentially identified as cognates were correctly recognized 
as such by the tool, as compared to the semiautomated method, which 
recognized fifty-three. While the semiautomated method yielded 
higher accuracy, the automated tool did not involve any manual an-
notation, which significantly speeds up the process of cognate iden-
tification. Furthermore, it allows for a more large-scale comparison 
of sign language word lists.
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Nevertheless, automated processes should always be validated with 
manually transcribed data. This is in agreement with the suggestion by 
Östling, Börstell, and Courtoux (2018) that researchers should manu-
ally annotate as much data as possible in order to validate automated 
methods, which, like in the case of this study, can also be error prone.

In general, an important advantage of the DistSign tool is its abil-
ity to serve as a toolkit to support sign language linguistics research. 
The core functionality of the tool is designed so that it works on a 
folder (and subfolder) level. As such, one has to structure the data 
accordingly in order to explore additional hypotheses. For example, 
one can measure the variation among different signers by separating 
the sign videos into different folders per signer. This makes it easy to 
design new experiments for nontechnical users.

There are limitations regarding the general applicability of the tool 
to videos of low quality. First and foremost, as described on pages 
6 –7, the only normalization process applied is with regard to the 
position of the signer in the video frame. As a result, camera angle or 
rotational variance of the signer would produce less accurate results. 
In addition, the findings of this study are only transferable to videos 
of isolated signs, as opposed to multi-sign expressions, as these will be 
processed by the tool as one sign. In these cases, I would recommend 
manually splitting the videos into isolated signs or using the “manual 
activation classifier” tool described in Fragkiadakis, Nyst, and van der 
Putten (2021) prior to using the tool. On the other hand, longer ut-
terances should not influence the performance, as DTW is specifically 
designed to compare time series that vary in speed.

In addition, a major limitation of using OpenPose on sign lan-
guage video material is that it provides only information for the two-
dimensional space. Thus, a substantial source of information is lost, 
as its output does not contain depth information such as how far a 
sign has been articulated from the signer’s body. For instance, signs 
articulated in neutral space in front of the signer are confounded with 
signs articulated on the signer’s chest or torso (Östling, Börstell, and 
Courtoux 2018).

Finally, due care must be exercised in the use of the Levenshtein-
based distance metric when applied to sign language manual an-
notations. Given that the results based on the manual transcriptions 
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were obtained using only four primary parameters (i.e., initial and 
final handshape, initial and final location), its general use should be 
further investigated. It was observed that subtle changes, especially 
in the location parameter, could not be fully rendered in the manual 
annotation. As a result, signs that exhibit minor but meaningful dif-
ferences might be mislabeled as identical. This is in agreement with 
the observation by Greenhill (2011) that distance metrics, such as the 
Levenshtein distance, omit a large amount of information from the 
raw data. While a possible solution to this could be a more detailed 
annotation scheme, it would never reach the detail afforded by the 
automated method.

In other words, a disadvantage of using categorical phonological 
features is that many signs tend to be described inconsistently, resulting 
in differences in their transcriptions. To overcome that, some lexical 
comparison studies such as the ASJP database (Wichmann, Holman, 
and Brown 2020), use phonemic forms as a better approximation for 
the “raw” material for spoken languages. Nevertheless, the findings in 
this study highlight the usefulness of an automated process to mini-
mize errors due to manual annotation inconsistencies.

Conclusions

In conclusion, this work is the first attempt to quantify lexical varia-
tion among sign languages based on the movement parameter using 
an automated tool. Applying the DTW algorithm on the trajectories 
produced by the dominant hand’s wrist, as recognized by OpenPose, 
the developed tool compares the wrist trajectories of different signs 
and visualizes the average wrist location parameter.

Data from the ASL and GSL lexica were used as a case study to 
assess the automated process of the DistSign tool against a semiauto-
mated method incorporating an adaptation of the Levenshtein dis-
tance metric as a baseline. The findings of this study indicate that such 
an automatic process can be used to compare the vocabulary of two 
sign languages either comprehensively or by semantic fields. Results 
show that the tool could accurately predict around 60 percent of sets 
of signs that had the same form and meaning out of an identified set.

However, this work clearly has some limitations. For example, 
cognates that contained multiple repetitions of a movement were not 
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recognized as such by the DistSign tool. Furthermore, this study was 
specifically designed to work with videos of isolated signs and with 
signers in an upright position. Nevertheless, I believe that this study 
could be the starting point toward an accurate automatic process to 
measure similarities among sign languages. The validation of such pro-
cess, as Östling, Börstell, and Courtoux (2018) suggest, can be further 
examined with a manually annotated portion of the data compared 
against the output of the automatic tool.

Future work will concentrate on expanding the functionality of 
the developed tool to also incorporate the movement of both the 
dominant and the nondominant hand. Moreover, additional work on 
reliable handshape recognition can potentially be adapted and em-
bedded into the tool in order to raise its accuracy. On a wider level, 
research is also needed to determine the use of both the DistSign 
tool and the Levenshtein distance metric in different sign languages 
and data sets.
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