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3. DEVELOPMENTS IN EPT BASED ON THE CSI METHOD

ABSTRACT

THE main objective of electrical properties tomography (EPT) is to retrieve the di-
electric tissue parameters from B+

1 data as measured by a magnetic resonance
(MR) scanner. This is a so-called hybrid inverse problem in which the data is defined
inside the reconstruction domain of interest. In this paper, we discuss recent and new
developments in EPT based on the contrast source inversion (CSI) method. After a
short review of the basics of this method, two- and three-dimensional implementa-
tions of CSI-EPT are presented along with a very efficient variant of 2D CSI-EPT called
first-order induced current EPT (foIC-EPT). Practical implementation issues that arise
when applying the method to measured data are addressed as well, and the limita-
tions of a two-dimensional approach are extensively discussed. Tissue parameter re-
constructions of an anatomically correct male head model illustrate the performance
of two- and three-dimensional CSI-EPT. We show that a 2D implementation produces
reliable reconstructions under very special circumstances only while accurate recon-
structions can be obtained with 3D CSI-EPT.3
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3.1. INTRODUCTION

3.1. INTRODUCTION

THE conductivity and permittivity values of different tissue types are of great impor-
tance in a variety of medical applications. In magnetic resonance (MR) safety [1]

and hyperthermia treatment planning [2], for example, the conductivity tissue profiles
are required to determine the specific absorption rate (SAR). The conductivity may also
serve as a bio-marker in oncology or in acute stroke imaging [3]. The permittivity is im-
portant since it affects the spatial distribution of the transmitted electromagnetic field
responsible for spin excitation.

Typically, the conductivity and permittivity values of tissue are measured ex
vivo for a particular range of frequencies [4]. Other methods require elaborate hard-
ware such as electrical impedance tomography (EIT) [5] or microwave imaging meth-
ods [6]. The objective of electrical properties tomography (EPT) is to retrieve these
dielectric tissue values in vivo using an MR scanner and standard measurement pro-
tocols [3, 7]. Specifically, with an MR scanner, the so-called B+

1 -field, defined as B+
1 =

(Bx + jBy )/2, can be measured at a particular frequency of operation called the Larmor
frequency. This frequency is proportional to the magnitude of the static background
field B0 via the relation f = γ B0, where γ = 42.577 MHz T−1 is the proton gyromag-
netic ratio divided by 2π, leading to MR operating frequencies of 128 MHz and 298 MHz
for a 3 T and 7 T scanner, respectively.

Reconstruction of the dielectric tissue parameters is based on the measured B+
1 -

field and what sets EPT apart from other more common inversion and imaging prob-
lems is that the measured B+

1 -field has its support inside the reconstruction domain.
The EPT reconstruction problem therefore belongs to the class of so-called hybrid in-
verse problems [8] and several EPT techniques have been proposed to reconstruct the
conductivity and permittivity profiles based on this internal B+

1 data. Loosely speaking,
these techniques can be divided into local differential-based approaches (see e.g. [9–
12]) and global integral-based approaches (see e.g. [13–18]). Combinations of local and
global methods have been developed as well [19, 20].

In this paper, we focus on a global integral-based EPT reconstruction method,
called CSI-EPT, where a contrast source inversion (CSI) approach [21–23] is taken to
solve the EPT reconstruction problem. In particular, in CSI-EPT the reconstruction
problem is formulated as an optimization problem in which an objective function is
iteratively minimized. This objective function consists of a term that measures the
mismatch between modeled and measured data (data mismatch) and a term that mea-
sures the discrepancy in satisfying Maxwell’s equations within the reconstruction do-
main using a global integral field representation (consistency mismatch). Including
the second consistency term in the objective function is crucial to the performance of
CSI as shown in [24].

Minimization of the objective function is carried out by iteratively updating a con-
trast function, which describes the dielectric constitution of the body part of interest,
and a so-called contrast source, which is the product of the contrast function and the
electric field strength. Updating takes place by fixing one variable and updating the
other. More precisely, first the contrast function is fixed and the contrast source is up-
dated and subsequently the contrast source is fixed and the contrast function is up-
dated.

The CSI-EPT method was originally introduced in [14], where it was shown that

3
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3. DEVELOPMENTS IN EPT BASED ON THE CSI METHOD

CSI-EPT is able to reconstruct strongly inhomogeneous conductivity and permittivity
profiles within the center slice of an object placed in the center of a body coil in a 3 T MR
scanner. The method was initially implemented for E-polarized electromagnetic fields
in two-dimensional (2D) configurations in which the electric field is parallel to the bore
axis (z-axis) and the magnetic field is purely transverse, because it is significantly less
complex than a full three-dimensional implementation. The use of a 2D approach was
justified, since it was shown that the electromagnetic field in the midplane of a birdcage
coil essentially has an E-polarized field structure [25]. An efficient alternative to CSI-
EPT, called first-order Induced Current EPT or foIC-EPT, has been presented as well
in [20]. This method exploits the structure of the two-dimensional E-polarized field
to efficiently reconstruct the tissue profiles in the midplane of the transmit coil. The
foIC-EPT method is significantly faster than CSI-EPT and produces reconstructions in
real time with essentially the same quality as 2D CSI-EPT.

The CSI-EPT method has recently been extended to three-dimensional (3D) config-
urations in [26]. With this 3D implementation of CSI-EPT, volumetric conductivity and
permittivity profiles are obtained, and it is no longer necessary to restrict the recon-
struction domain to the midplane of a transmit coil. Moreover, 3D CSI-EPT is based on
the vectorial 3D Maxwell equations and no (E-polarized) field structure is assumed to
be present as is the case in a 2D approach. Unfortunately, computation times dramat-
ically increase compared with 2D CSI-EPT and foIC-EPT and, depending on the con-
figuration, it may take 3D CSI-EPT hours or even days to converge even on dedicated
high-performance computers or servers. Apart from possible preconditioning tech-
niques that may be applied to accelerate the convergence of 3D CSI-EPT, 2D CSI-EPT
or foIC-EPT may be preferable in practice, since reconstruction times are significantly
shorter compared with 3D approaches.

In this paper, we thoroughly investigate this issue and compare reconstructions
obtained with 2D CSI-EPT, foIC-EPT, and 3D CSI-EPT. Reconstruction artifacts in the
conductivity and permittivity profiles, the modeled B+

1 -field, and the internal electric
field are carefully studied. Our analysis shows that only under very special conditions
is a 2D approach justified. Even if the electromagnetic field has an E-polarized field
structure in the midplane of the transmit coil, imposing a two-dimensional field struc-
ture is generally too limiting an approximation unless the body part of interest and
transmit coil strictly satisfy the longitudinal invariance condition.

This paper is organized as follows. In Section 3.2, the 2D and 3D CSI-EPT method
is briefly reviewed and the governing integral representations are presented as well. A
variant of 2D CSI-EPT, called foIC-EPT, is also presented and a detailed analysis of the
performance of all three reconstruction methods is presented in Section 3.3 using a
realistic head model from the Virtual Family [27]. A discussion with conclusions can
be found in Section 3.4. Finally, we note that the position vectors in 2D and 3D are
denoted by ρ and x , respectively, and we use an exp(+jωt ) time convention.

3.2. THEORY
As mentioned above, the CSI-EPT algorithm operates on two unknowns and is based
on two fundamental equations. Specifically, the unknowns in CSI-EPT are the con-
trast function χ and the contrast source w and the fundamental equations are the data

3
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equation and object or state equation.
The contrast function describes the dielectric contrast of the body with respect to

free space and is given by χ(x) = εr(x)−1− jσ(x)/ωε0, where εr(x) andσ(x) are, respec-
tively, the unknown relative permittivity and conductivity profiles of the body, ε0 is the
permittivity of free space, and ω is the Larmor frequency of operation. The contrast
function has the bounded domain D that is occupied by the body as its support, that is
the contrast function vanishes for x ∉ D. Finally, we note that the contrast function is
dimensionless and that its real part is determined by the permittivity profile, while its
imaginary part is determined by the body’s conductivity profile.

The contrast source in CSI-EPT is defined as w =χE , where E (x) is the electric field
strength. Note that it is common to refer to w as a contrast source even though it is
expressed in volt per meter and is actually a scaled electric field strength. The electric
field strength is obviously also unknown, since the dielectric constitution of the body is
unknown. Even though this field is not of primary interest in EPT, CSI-EPT does provide
electric field reconstructions that may be used to reconstruct the local time-averaged
power density that is dissipated into heat [1].

To arrive at the two fundamental equations of CSI-EPT, we set up a scattering for-
malism in which we make use of the linearity of Maxwell’s equations and exploit the
fact that the body occupies a bounded domain D. In particular, we first determine the
electromagnetic field that is present inside an empty birdcage coil. In practice, this so-
called background field is computed using electromagnetic simulation software and
we denote it by {E bkg,B bkg}. We note that here the assumption is made that the ex-
ternal currents are impressed and field independent. Consequently, antenna loading
is not directly taken into account. The total electromagnetic field in presence of the
body is denoted by {E ,B } and using the linearity of Maxwell’s equations this field can
be written as

{E ,B } =
{

E bkg,B bkg
}
+{

E sca,B sca} , (3.1)

where {E sca,B sca} is the scattered electromagnetic field due to the presence of the body.
For this field we have the integral representations

B sca(x) =
∫

x ′∈D
GBJ(x , x ′) ·w (x ′)dV and E sca(x) =

∫
x ′∈D

GEJ(x , x ′) ·w (x ′)dV , (3.2)

where GEJ and GBJ are essentially the electric-current to electric field and electric-
current to magnetic field Green’s tensors of the background medium. Note that these
are the Green’s tensors of a homogeneous background medium and the presence of the
coil is not taken into account. Explicit expressions for these tensors are given below.

Having these integral representations at our disposal, we can now present the basic
CSI-EPT equations. We start with the equation that relates the measured B+

1 -field to
the contrast source. In particular, using the integral representation for the scattered
magnetic field of Crefeq:intrep, we have

B+;sca
1 (x) =

B sca
x + jB sca

y

2
= 1

2

∫
x ′∈D

∑
k=x,y,z

[
GBJ

xk (x , x ′)+ jGBJ
yk (x , x ′)

]
wk (x ′)dV , (3.3)

3
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3. DEVELOPMENTS IN EPT BASED ON THE CSI METHOD

which can be written more compactly as

B+;sca
1 (x) =Gdat{w }(x) for x ∈D, (3.4)

where the linear data operator Gdat is implicitly defined in Equation (3.3).
Equation (3.4) is known as the data equation and relates the unknown contrast source
w to the scattered B+

1 -field. Note that this scattered field is known, since B+;sca
1 (x) =

B+
1 (x) − B+;bkg

1 (x) and the total B+
1 -field is known through measurements, while the

background field B+;bkg
1 (x) is known through simulations. The real phase is generally

not known in practice, and the transceive phase approximation is often used, which
can lead to reconstruction artefacts at higher frequencies [28].

The second basic CSI-EPT equation, called the object or state equation, is obtained
from the integral representation for the scattered electric field as given by the second
equation of Equation (3.2). Using the definition of the scattered electric field E sca =
E −E bkg, this integral representation can be written as

E (x)−
∫

x ′∈D
GEJ(x , x ′) ·w (x ′)dV = E bkg(x) (3.5)

and multiplying the above equation by the contrast function χ we arrive at

w (x)−χ(x)
∫

x ′∈D
GEJ(x , x ′) ·w (x ′)dV =χ(x)E bkg(x) for x ∈D, (3.6)

which can be written more compactly as

w (x)−χ(x)Gbdy{w } =χ(x)E bkg(x) for x ∈D, (3.7)

where the linear operator Gbdy is implicitly defined in Equation (3.6).
To summarize, the two fundamental unknowns in CSI-EPT are the contrast func-

tionχ and the contrast source w and the basic CSI-EPT equations are the data equation
(Equation (3.4)) and the object equation (Equation (3.7)).

Now suppose we have an approximation for the contrast function and contrast
source available. We denote these approximants by χ̃ and w̃ , respectively, and in order
to measure how well these approximations satisfy the data and object equations, we
introduce the data and object residuals as

rdat(x) = B+;sca
1 (x)−Gdat{w̃ }(x) for x ∈D, (3.8)

and

robj(x) = χ̃(x)E bkg(x)− w̃ (x)+ χ̃(x)Gbdy{w̃ }(x) for x ∈D, (3.9)

respectively, and measure their magnitudes using the L2-norms

‖rdat‖2
D =

∫
x∈D

|rdat(x)|2 dV and ‖robj‖2
D =

∫
x∈D

|robj(x)|2 dV. (3.10)

In CSI-EPT, these norms are used to define the objective function

3
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Listing 3.1. Contrast Source Inversion - EPT (CSI-EPT)

• Given initial guesses χ̃[0] and w̃ [0] for the contrast function and contrast source,
respectively

• For k = 1,2, ...

1. Fix the contrast to χ̃[k−1] and update the contrast source according to the
update formula

w̃ [k] = w̃ [k−1] +α[k]v [k].

2. Compute the corresponding electric field strength E [k] according to (cf.
Equation (3.5))

Ẽ [k](x) = E bkg(x)+Gbdy{w̃ [k]}(x).

3. Knowing the contrast source w̃ [k] and the corresponding electric field
strength Ẽ [k], determine the contrast function χ̃[k] from the constitutive
relation w̃ [k] = χ̃[k]Ẽ [k] by solving the least-squares problem ‖χ̃Ẽ [k] − w̃ [k]‖2

D

for the minimum norm contrast function χ̃.

4. Stop if objective function is smaller than user specified tolerance level, or if
maximum number of iterations has been reached.

• End

F (χ̃, w̃ ) = ‖rdat‖2
D

‖B+;sca
1 ‖2

D

+ ‖robj‖2
D

‖χ̃E bkg‖2
D

(3.11)

and the goal is to find a contrast function and contrast source that minimizes this ob-
jective function. We note that including the 2-norm of the object residual in the ob-
jective function (second term on the right-hand side of Equation (3.11)) is crucial to
the success of CSI, since it has been shown that a contrast source inversion approach
without this term produces unsatisfactory results in general [24].

In CSI-EPT, finding the desired contrast function is now realized by minimizing the
objective function in a “fix-one-minimize-for-the-other” approach. The iterative pro-
cess is continued until a predefined maximum number of iterations or specified toler-
ance level of the objective function has been reached. Specifically, the basic CSI-EPT
algorithm is as shown in Listing 3.1.

Polak-Ribière update directions are usually taken for the update direction v [k] in Step 1
of the algorithm, but Fletcher-Reeves or Hesteness-Stiefel update directions may be
used as well. To determine these update directions, the gradient of F (χ̃[k−1], w̃ ) with
respect to w̃ at w̃ = w̃ [k−1] is required. Explicit expressions for this gradient and the

3
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3. DEVELOPMENTS IN EPT BASED ON THE CSI METHOD

corresponding step length α[k] can be found in [23], for example.
Also note that with Equation (3.5), the object residual can be written as robj = χ̃Ẽ −

w̃ and in Steps 2 and 3 we find the minimum-norm contrast function χ̃ for which
‖robj‖2

D
is minimized. This contrast function is generally sensitive to small perturba-

tions in w̃ at locations where the magnitude of the electric field strength is “small.” To
suppress this effect, we can alternatively update the contrast function at every iteration
according to the update formula

χ̃[k] = χ̃[k−1] +β[k]d [k], (3.12)

with d [k] the Polak-Ribière update direction for the contrast function and β[k] its cor-
responding update coefficient. Such an approach usually has a regularizing effect and
typically leads to smoother reconstructions.

3.2.1. THE OBJECT AND DATA OPERATORS IN THREE-DIMENSIONAL CSI-
EPT

In three dimensions and with air as a background medium, the integral representations
for the scattered fields as given by Equation (3.2) take on the form

B sca(x) = j
ω

c2
0

∇∇∇× Asca(x) and E sca(x) = (k2
0 +∇∇∇∇∇∇·)Asca(x), (3.13)

where c0 is the electromagnetic wave speed in vacuum, k0 =ω/c0 the wave number in
vacuum, and Asca is the vector potential given by

Asca(x) =
∫

x ′∈D
G(x −x ′)w (x ′)dV , (3.14)

with G the three-dimensional Green’s function of the vacuum background domain
given by

G(x) = exp(−jk0|x |)
4π|x | . (3.15)

Note that the nabla-operators act on the position vector x and not on the integration
variable x ′. The 3D object operator Gbdy can be easily identified from the second equa-
tion in Equation (3.13). For the data operator Gdat, however, we have to substitute the
x- and y-components of the scattered magnetic flux density in Equation (3.3) to obtain

B+;sca
1 = ω

c2
0

(
∂+Asca

z −∂z A+;sca) , (3.16)

where ∂+ = 1
2 (∂x + j∂y ) and A+;sca = 1

2 (Asca
x + jA+;sca

y ). From the above expression for
the scattered B+

1 -field, the 3D data operator Gdat can be identified. Note the particular
structure of this operator: the scattered B+

1 -field originates from a difference between
the transverse variations of the longitudinal vector potential (∂+Asca

z ) and the longitu-
dinal variations of the transverse vector potential (∂z A+;sca).

3
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3.2.2. THE OBJECT AND DATA OPERATORS IN TWO-DIMENSIONAL CSI-
EPT

In various papers (see [25], for example) it has been reported that the radiofrequency
(RF) field in the midplane of a birdcage coil is essentially E-polarized, meaning that the
electric field strength has a longitudinal component only (E = Ez iz ), while the mag-
netic flux density has only x- and y-components (B = Bx ix +By iy ). Additionally, in
a two-dimensional configuration that is invariant in the z-direction, external electric
current densities with longitudinal components only generate E-polarized fields. Iden-
tifying the currents in the rungs of the birdcage coil with these z-directed external cur-
rent sources and denoting the slice through the object that coincides with the mid-
plane of the birdcage coil byA, it makes sense to assume that within this midplane the
RF field is essentially two-dimensional and E-polarized with integral representations
for the scattered fields given by

B sca(ρ) = j
ω

c2
0

∇∇∇T × Asca(ρ), and E sca(ρ) = k2
0 Asca(ρ), (3.17)

where ρ is the position vector in the midplane of the birdcage coil, ∇∇∇T = ix∂x + iy∂y is
the transverse nabla-operator, and

Asca(ρ) =
∫
ρ′∈A

G(ρ−ρ′)w (ρ′)dS (3.18)

is the vector potential in two dimensions (and is thus expressed as a two-dimensional
integral as opposed to the three-dimensional integral in the 3D case) with

G(ρ) =− j

4
H (2)

0 (k0|ρ|) (3.19)

the Green’s function of the two-dimensional homogeneous background medium (air)
and H (2)

0 is the Hankel function of the second kind and order zero. In this two-dimen-
sional case, the object operator Gbdy can be easily identified from the second equa-
tion of Equation (3.17) and does not contain a gradient-divergence operator as in the
three-dimensional case. For the 2D data operator Gdat, we have to substitute the x-
and y-components of the magnetic flux density as given by the first equation of Equa-
tion (3.17) in the definition of the B+

1 -field to obtain

B+;sca
1 = ω

c2
0

∂+Asca
z . (3.20)

From this expression, the 2D data operator Gdat can now easily be identified. Compar-
ing the two-dimensional field representation of Equation (3.20) with its three-dimen-
sional counterpart of Equation (3.16), we observe that longitudinal spatial variations
are absent in the two-dimensional case. Moreover, the vector potentials in both ex-
pressions are different as well, since this quantity is computed using Equation (3.18)
in the two-dimensional case, while the three-dimensional vector potential is given by
Equation (3.14). The differences between two- and three-dimensional CSI-EPT recon-
structions will be discussed further in Section 3.3.

3
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3.2.3. TWO-DIMENSIONAL CSI-EPT SIMPLIFIED – FIRST-ORDER INDUCED

CURRENT EPT (FOIC-EPT)
In two dimensions, the CSI-EPT algorithm can be simplified by exploiting the partic-
ular structure of E-polarized RF fields. To make this simplification explicit, we first
introduce the differentiation operator ∂− = 1

2 (∂x − j∂y ) and note that the operators ∂−
and ∂+ essentially factor the two-dimensional Laplacian ∆= ∂2

x +∂2
y as

∆= 4∂−∂+ = 4∂+∂−. (3.21)

Now as a first step, we substitute the second equation of Equation (3.17) in Equa-
tion (3.20) to obtain

B+;sca
1 (ρ) = 1

ω
∂+E sca

z (ρ). (3.22)

Subsequently, we use the definition of the scattered fields to write the above expression
as

B+
1 (ρ) = B+;bkg

1 (ρ)+ 1

ω
∂+Ez (ρ)− 1

ω
∂+E bkg

z (ρ) (3.23)

and since B+;bkg
1 (ρ) = 1

ω∂
+E bkg

z (ρ), this simplifies to

B+
1 (ρ) = 1

ω
∂+Ez (ρ). (3.24)

If we now act with the ∂− operator on this equation, we obtain

∂−B+
1 = 1

4ω
∆Ez (3.25)

and since Ez satisfies ∆Ez − jωµ0 J ind
z = 0 with

J ind
z = (σ+ jωε)Ez , (3.26)

we arrive at

J ind
z = 4

jµ0
∂−B+

1 . (3.27)

This last equation shows that in two dimensions, the induced current density is ob-
tained (accounting for multiplication by 4/jµ0) by acting with the ∂− operator on the
total B+

1 -field. The simplified CSI-EPT method is therefore called a first-order induced
current EPT method, since a first-order differentiation of the B+

1 -field essentially im-
mediately results in an image of the induced current density.

As shown in [20], after the induced current density has been obtained, the corre-
sponding electric field strength can be computed by solving a specific integral equa-
tion defined on A. With the electric field strength now known, the conductivity and
permittivity profiles within the slice can be obtained from Equation (3.26). The overall
first-order induced current density EPT algorithm can be summarized as presented in
Listing 3.2.

3
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Listing 3.2. First-Order Induced Current EPT Algorithm (foIC-EPT)

• Given the measured B+
1 -field in the midplane of the birdcage coil:

1. Determine the induced current density using Equation (3.27).

2. Determine the corresponding electric field strength by solving a specific
integral equation (Equation (12) in [20]).

3. Knowing the induced current density and the electric field strength,
determine the conductivity and permittivity profiles using Equation (3.26).

Further details about this algorithm can be found in [20]. Finally, we note that the
above algorithm is a direct non-iterative EPT method and, as opposed to CSI-EPT, re-
quires the solution of a system of equations (Step 2) to arrive at the reconstructed con-
ductivity and permittivity profiles. Fortunately, as demonstrated in [20], this system of
equations can be solved efficiently using iterative solvers such as the generalized min-
imal residual method (GMRES) [29] and typically only a small number of iterations is
required to reach a prescribed error.

3.3. METHODS AND RESULTS
To illustrate the performance of foIC-EPT and two- and three-dimensional CSI-EPT,
we reconstruct the conductivity and permittivity profiles of the head of the anatomi-
cal human body model Duke from the Virtual Family [27] (see Figures 3.1a and 3.1b),
from noise-free B+

1 -data. The head model consists of 124×100×109 isotropic voxels
with side lengths of 2 mm. The model is placed inside an ideal high-pass birdcage coil
(see Figure 3.1a) consisting of 16 rungs each having a width of 25 mm. The coil has a
radius of 150 mm, is 195 mm long, and is driven in quadrature at 128 MHz, which cor-
responds to the operating frequency of a 3 T MRI system. The shield surrounding the
coil has a radius of 180 mm and a length of 200 mm. Commercial EM simulation soft-
ware (XFdtd, v.7.5, Remcom State College, PA, USA) is used to obtain the background
field {E bkg,B bkg} as generated by the high-pass birdcage coil. Finally, to investigate the
difference between two- and three-dimensional conductivity and permittivity recon-
structions, we also consider a longitudinally uniform “head model” in which the center
slice is simply repeated in the longitudinal direction thereby creating a model with no
variations in the longitudinal z-direction within the head (see Figure 3.1c).

3.3.1. TWO-DIMENSIONAL CSI-EPT AND FOIC-EPT
The CSI-EPT method was originally implemented for two-dimensional configurations
in [14] to study its potential as an EPT reconstruction method and to test if the method
can handle strongly inhomogeneous tissue profiles. Let us therefore start with a purely
two-dimensional reconstruction problem in which we attempt to reconstruct the con-
ductivity and permittivity profiles within the center slice of the head model shown in

3
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(a) (b) (c)

Figure 3.1: Birdcage coil and head models. The high-pass birdcage coil with the head model placed inside
(a), the Duke head model from the Virtual Family [27] (b), and a longitudinally uniform head model obtained
by repeating the center slice in the longitudinal direction (c).

Figure 3.2a. In this two-dimensional setting, we take the background field in the mid-
plane of the realistic birdcage coil shown in Figure 3.1a as the 2D background field.
The reconstructed conductivity and permittivity profiles obtained after 5000 iterations
of the two-dimensional CSI-EPT method are shown in Figure 3.2b. It takes the algo-
rithm approximately 86 seconds on an Intel i7-6700 CPU operating on Windows 7 with
Matlab 2016a to arrive at these reconstructions and we terminate the algorithm after
5000 iterations, since the objective function has already dropped below a 1.53× 10−5

tolerance level at this point and essentially no significant improvements are obtained.
In addition, the foIC-EPT reconstruction profiles of the conductivity and permittivity
are shown in Figure 3.2c and the errors of CSI-EPT and foIC-EPT conductivity and per-
mittivity reconstructions are shown in Figure 3.2d and Figure 3.2e, respectively. We ob-
serve that the quality of the foIC-EPT reconstructions is similar to CSI-EPT even though
it takes foIC-EPT only a fraction of a second to produce these reconstructions (see Ta-
ble 3.1 for details).

3.3.2. THREE-DIMENSIONAL CSI-EPT
In a two-dimensional approach, the RF field is E-polarized with an electric field
strength that is longitudinal (E = Ez iz ) and a magnetic flux density that is transverse
(B = Bx ix +By iy ). Such an approach has been shown to be reasonable for a homoge-
neous cylindrical phantom in a central region of a body coil consisting of elementary
center-fed dipole antennas in [25], and indeed, when the longitudinally uniform head
model of Figure 3.1c is placed within our birdcage coil we also observe that the x- and
y- components of the electric field strength in the central transverse slice are small
compared to its z-component as illustrated in the top rows of Figures 3.3a–c and Fig-
ures 3.4a–b.

However, as we move away from the center slice in the longitudinally uniform head
model of Figure 3.1c, the magnitude of the x- and y-components of the electric field
strength starts to increase as illustrated in the top rows of Figures 3.3d–f and
Figures 3.4c–d, where the magnitude of the electric field strength components is shown
in a slice located 5 cm above the central slice. We observe that even though the trans-
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Figure 2. New Figure 2 for the revision.
Figure 3.2: Reconstruction results from 2D reconstruction methods. The true model (a), the reconstruction
obtained after 5000 iterations of 2D CSI-EPT (b) and the reconstruction from foIC-EPT (c). The respective
errors are shown in (d, e). Top row shows the conductivity and the bottom row the relative permittivity.

verse components of the electric field strength are negligible within the center slice,
they can no longer be neglected 5 cm away from it.

Furthermore, for the realistic heterogeneous head model of Figure 3.1b a two-di-
mensional E-polarized field assumption completely fails as shown in the bottom rows
of Figures 3.3a–f and 3.4a–d. In the slice 5 cm above the central slice and even within
the central slice itself the x- and y-components of the electric field strength can no
longer be neglected and have to be taken into account in the full Maxwell equations to
properly describe RF field behavior within the head model.

To study the effects of longitudinal spatial variations of the tissue parameters on
the B+

1 -field, we consider Equation (3.16) again and write it in the form

B+;sca
1 =Btra +Blon, (3.28)

where Btra = ω
c2

0
∂+Asca

z and Blon =− ω
c2

0
∂z A+;sca. The longitudinal variation term Blon is

absent in a 2D approach (see Equation (3.20)), since in a 2D setting the configuration
is assumed to be invariant in the longitudinal z-direction (∂z = 0). Figure 3.5, however,
shows that for both the longitudinally homogeneous and realistic heterogeneous head
model the longitudinal variation term is significant and cannot be ignored. Especially
near the periphery of both head models, Blon contributes to the scattered B+

1 -field.
More specifically, within a 1 cm outer boundary layer located in the center slice, the
mean of the fraction |Blon/B+;sca

1 | is 1.18 and 1.25 for the homogeneous and inhomo-
geneous head model, respectively, while in the inner region these means are 0.51 and
0.60 and similar averages are obtained for the slice located 5 cm above the center slice.
From these observations, it is clear that longitudinal variations of the transverse vector
potential A+;sca contribute to the scattered B+

1 -field and cannot be ignored.
Up to this point, we have compared 3D RF field structures with their 2D coun-
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Figure 3. New Figure 3 for the thesis.
Figure 3.3: The magnitude of the electric field strength components. The x-, y- and z-component at the
transversal midplane (a-c) and at the slice 5 cm higher (d-f), respectively. The top and bottom row show the
fields in the case of a longitudinal homogeneous and heterogeneous object, respectively.
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Figure 3.4: Ratios of the x- and y-components of the electric field strength relative to its z-component. The
relative field components at the center slice (a,b) and at the slice 5 cm higher (c,d). The top row is for the
longitudinally uniform object, the bottom row for the object with longitudinal variations.

terparts for a longitudinally uniform and a realistic heterogeneous head model. In a
two-dimensional configuration, however, the sources are invariant in the longitudinal
direction as well and we expect that due to the finite extent of the birdcage coil addi-
tional deviations in the B+

1 fields will be observed.
To investigate this issue further, we first determine the two-dimensional B+

1 -field
in the central slice as described in Section 3.3.1. The magnitude and phase of this field
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Figure 3.5: Magnitude of the scattered B+
1 terms. The transverse variation (a) and longitudinal variation

term of the scattered B+
1 (b) and the contributions of Blon w.r.t. B+;sca

1 (c) at the center slice. (d-f) show
respectively the same at a slice 5 cm higher in the head domain. Top row shows in the case of a longitudinally
uniform object, the bottom row for the head model with longitudinal variations. (b) and (e) are neglected in
the 2D approach.

are shown in the top and bottom row of Figure 3.6a, respectively. Subsequently, we
consider RF excitation by the 3D birdcage coil, but assume that the birdcage coil, in-
cluding its currents, does not vary in the longitudinal direction. For the longitudinally
uniform head model, a B+

1 -field as shown in Figure 3.6b is then obtained and we ob-
serve that this field strongly resembles the 2D B+

1 -field pattern of Figure 3.6a. Replacing
the longitudinal invariant currents in the rungs by the exact current, but keeping the
homogeneous head model, we obtain the B+

1 -field pattern shown in Figure 3.6c. The
agreement with the 2D field B+

1 -field pattern clearly deteriorates and this correspon-
dence becomes even worse for the realistic longitudinal heterogeneous head model as
shown in Figure 3.6d. Since the B+

1 -field is used as an input for the CSI-EPT method, an
accurate correspondence is obviously necessary for a proper reconstruction. The 2D
CSI-EPT algorithm expects a 2D B+

1 -field as shown in Figure 3.6a for the center head
slice, but in 3D the B+

1 -field from Figure 3.6d is present and providing this 3D field as
an input to a 2D CSI-EPT algorithm will lead to inaccurate reconstructions in general.

To illustrate how these differences in actual fields (3D) and expected fields (2D)
translate to reconstruction errors, both two-dimensional algorithms have been applied
to quasi three-dimensional data using either 3D amplitudes or phases. Note that, in
order to match 2D and 3D data, the maximum absolute value of the B+

1 -field of both
datasets is taken to be equal. The results are depicted in Figure 3.7b–e from which it
can be observed that particularly the permittivity is sensitive to 2D violations. This re-
construction difference between conductivity and permittivity is due to the fact that
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Figure 3.6: B+
1 field comparison. The total B+

1 field assumed in the 2D setting (a), the total B+
1 field obtained

in a 3D setting with longitudinal homogeneity of the object and coil (b), of longitudinal homogeneity of only
the object (c) and with longitudinal variations of also the object (d). Top row shows the B+

1 magnitude, the
bottom row the B+

1 phase.
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Figure 3.7: Reconstruction results from 2D reconstruction methods using parts of 3D B+
1 data. True model

(a), reconstruction results assuming 2D phase with 3D magnitude (b,c), and reconstruction results assuming
2D magnitude with 3D phase (d,e) of the B+

1 -field in the central transverse slice from simulations with the
longitudinal invariant head model. Top row shows the conductivity and the bottom row the relative permit-
tivity.

conduction currents (σE ) influence the B+
1 -field to a much larger extent than the dis-

placement currents (jωεE ) at 3 T.
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The reconstructions of the conductivity and relative permittivity profiles for the full
3D case without any further assumptions, using 3D magnitude as well 3D phase B+

1
data are shown for the longitudinally uniform model in Figures 3.8a–f and for the re-
alistic heterogeneous head model in Figures 3.8g–l. Reconstructions are shown for the
central slice profiles as well as for the profiles located within the slice positioned 5 cm
above the central slice. For comparison, 2D CSI-EPT reconstructions based on 3D B+

1
data are also presented. The relative residual error (norm of the difference between the
exact and reconstructed profile normalized by the norm of the exact profile, where the
norm is taken over the center slice) of Figure 3.8h is 0.7339 and 0.8263 for the conduc-
tivity and permittivity, respectively, while the relative residual error of the conductivity
and permittivity of Figure 3.8i is 0.3358 and 0.1587, respectively. Clearly, 2D CSI-EPT
is unable to accurately reconstruct the conductivity and permittivity profiles. The 2D
and 3D permittivity reconstructions are also less accurate than the conductivity recon-
structions, indicating that B+

1 -field data acquired at 3 T is less sensitive to permittivity
variations.

Finally, to emphasize that 3D CSI-EPT is a fully three-dimensional volumetric re-
construction method, we present a full 3D CSI-EPT reconstruction of the realistic head
model obtained after 50000 iterations based on 3D B+

1 data, in Figure 3.9. This number
of iterations was chosen due to time constraints, since it takes approximately 110 hours
on an Intel i7-6700 CPU operating on Windows 7 with Matlab 2016a.

3.4. DISCUSSION

We have investigated the performance of two- and three-dimensional CSI-EPT in re-
constructing dielectric tissue profiles based on B+

1 data collected inside the reconstruc-
tion slice or domain of interest. Since this data has its support inside the reconstruction
domain, EPT belongs to the class of so-called hybrid inverse problems [8]. In CSI-EPT,
reconstructing the tissue parameters is posed as an optimization problem in which
an internal objective function, that is an objective function that measures both field
and model discrepancies within the domain of interest, is minimized in an iterative
manner. Field discrepancies are measured by considering the L2-norm of the differ-
ence between modeled and measured data, while model discrepancies are measured
by an L2-norm that tells us how well a conductivity and permittivity tissue profile and
corresponding contrast source satisfy Maxwell’s equations. Including model discrep-
ancies in the objective function is crucial to the performance of CSI-EPT, since it has
been shown that without this term unsatisfactory reconstruction results may be ob-
tained [24]. In addition to the tissue profiles, CSI-EPT reconstructs the electric field
strength as well, and may therefore also be used to predict the SAR that is induced
inside the body or a body part of interest [30], which is important for MR safety and
hyperthermia treatment planning, for example. Finally, we have also shown that in
two dimensions an alternative non-iterative and integral-based reconstruction algo-
rithm called foIC-EPT may be employed. This method is significantly faster than 2D
and 3D CSI-EPT and reconstructs the tissue profiles and the corresponding electric
field strength essentially in real-time on a present day standard laptop or PC (Intel
i5-i7 or similar). However, foIC-EPT is restricted to two-dimensional configurations,
since it exploits two-dimensional E-polarized field structures. CSI-EPT, on the other
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Figure 3.8: Reconstruction comparison of 2D and 3D CSI-EPT on 3D B+

1 fields after 5000 and 50000 iter-
ations, respectively. (a-c) show the true object, the reconstruction with 2D CSI-EPT and the reconstruction
with 3D CSI-EPT for a homogeneous object and for the center slice. (d-f) show respectively the same, but
for a slice five centimeter higher. (g-l) show respectively the same as (a-f), but in the case of a longitudinal
inhomogeneous object. The top row depicts the conductivity, the bottom row the permittivity.

hand, does not exploit any particular field structure and can be extended to the vec-
torial three-dimensional case turning CSI-EPT into a volumetric EPT reconstruction
method.

We have carried out several comparisons between reconstructions obtained with
2D CSI-EPT, foIC-EPT, and 3D CSI-EPT. Our simulations show that care needs to be
exercised when a 2D reconstruction approach is followed, otherwise reconstruction
artifacts are obtained in the reconstructed dielectric tissue profiles. Specifically, we
have shown that using 2D methods erroneous reconstructions may be obtained, since
the longitudinal variations of the transverse vector potential are completely ignored
in the data model for the B+

1 field. Moreover, the vector potential itself is computed
differently in 2D and 3D, since longitudinal invariance is assumed in the 2D case. In
fact, the transverse electric field and the longitudinal magnetic field vanish in 2D as
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Figure 3.9: Three-dimensional visualization of a section of the 3D CSI-EPT reconstruction of the heteroge-
neous Duke head model (Figure 3.1b) after 50000 iterations. The true and reconstructed conductivity (a,b)
and the true and reconstructed relative permittivity (c,d). The top slice that is visible is the slice 5 cm above
the transverse midplane.

a consequence of the (assumed) invariance of the object and external sources along
the longitudinal direction. In 3D, however, all components of the electromagnetic field
are present and their contributions to the measured data and object equations have
to be taken into account. Of course, in some situations an E-polarized field structure
may be present in the midplane of a birdcage coil, but the scattered B+

1 -field is also
influenced by longitudinal variations of the transverse vector potential (∂z Az ). These
equations can only be simplified to 2D if we can guarantee that longitudinal invariance
or smoothness of certain field components can be imposed before any reconstruction
algorithm is applied to the measured data. Therefore cylindrical body parts such as the
legs or arms might be reliably reconstructed via 2D CSI-EPT, but this at least requires
further validation through simulations and measurements using cylindrical phantom
models with known dielectric characteristics.

No assumptions on the fields are imposed in 3D CSI-EPT and reconstruction errors
due to such assumptions are therefore avoided. Moreover, 3D CSI-EPT is a volumetric
reconstruction method and is not restricted to a specific plane within the configura-
tion. Reliable reconstructions can be obtained within any desired domain of interest
provided that B+

1 data is available within this domain. Unfortunately, computation
times significantly increase when applying 3D CSI-EPT. Depending on the number of
unknowns in the EPT reconstruction problem, 3D CSI-EPT may take many iterations
to converge to the desired error tolerance, with total computation times of hours or
days even on dedicated computers or servers. In future research, we focus on accel-
erating the convergence rate of 3D CSI-EPT by including preconditioning techniques
in CSI-EPT (as described in [23], for example) that exploit all a priori knowledge we
have about the object or body part that needs to be reconstructed. This knowledge can
also be used to construct an accurate initial guess thereby possibly further accelerating
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CSI-EPT.
In our experiments, we have used simulated B+

1 -field data to test the performance
of 2D and 3D CSI-EPT on strongly inhomogeneous structures and to study the differ-
ences between two- and three-dimensional CSI-EPT approaches. In real-world mea-
surements, the data obviously differs from simulated data and CSI-EPT should be
adapted so that it can handle measured B+

1 data. In this respect, we have identified
three practical issues that need to be addressed, which are part of our current CSI-EPT
research.

First, in practice the B+
1 -field is obtained in polar form through separate amplitude

and phase measurements. In both cases, the collected data is contaminated with noise
and therefore filtering or regularization techniques that suppress the effects noise
should be incorporated in CSI-EPT. Initial studies show that filtering of the data allows
us to handle measured data in foIC-EPT [20] and, as demonstrated in [14], total vari-
ation (TV) regularization may suppress noise effects in CSI-EPT. However, due to the
many possible choices for the regularization parameter in this method, it is presently
not clear for which parameter or parameter range the TV-CSI-EPT scheme is most ef-
fective.

Second, the phase that is measured in practice is not the phase of the B+
1 -field, but

the so-called transceive phase from which the B+
1 -phase can be extracted. To this end,

the transceive phase approximation is often applied, but the validity of this approxima-
tion is not fully understood and may lead to reconstruction errors in the conductivity
and permittivity profiles [28]. Fortunately, it is shown in [31] that improved B+

1 -phase
approximations can be obtained from the transceive phase by incorporating an itera-
tive phase correction scheme in the CSI-EPT reconstruction algorithm. This correction
scheme seems to reliably retrieve B+

1 -phase maps from the measured transceive phase
and leads to improved conductivity and permittivity reconstructions compared with
reconstructions that are obtained when the transceive phase approximation is applied.
We will include this phase correction mechanism in future CSI-EPT implementations
as well. Another option is to opt for phaseless approaches as, for example, proposed
in [32, 33].

Finally, in practice the current densities in the transmit coil that generate the inci-
dent field depend on the object present, and we must account for this loading effect
as well. Specifically, the integral representations for the fields in CSI-EPT are obtained
using a scattered field formalism, in which it is assumed that the current density in
the transmitting antenna is impressed and independent of the scatterer that may be
present in the configuration. In practice, however, these currents do depend on the
object and consequently care must be taken when we compute the background field
in CSI-EPT. One approach is therefore to simulate this loading effect using a suitable
coil and body model in a commercial field solver and to extract the current densities
in the coil from this solver. The background field in CSI-EPT (the field without any
load) can then computed using these extracted currents. In this way, the loading effect
encountered in practice can be incorporated in our CSI-EPT reconstruction algorithm.

Our final aim is, of course, to turn CSI-EPT into a practical reconstruction method
to obtain accurate and reliable conductivity and permittivity tissue maps of an interior
part of the human body at MR frequencies of operation. Reconstruction results based
on simulated data are very promising and we think that by addressing the practical is-
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sues discussed above, we will indeed make significant progress towards a reliable EPT
reconstruction method that provides us with accurate dielectric tissue maps in prac-
tice.

ACKNOWLEDGEMENT
The authors thank dr. Nico van den Berg of the Imaging Division of the University
Medical Center Utrecht for many valuable discussions and support.

REFERENCES
[1] V. Hartwig, Engineering for safety assurance in MRI: analytical, numerical and ex-

perimental dosimetry, J. Magn. Reson. Imaging 33, 681 (2015).

[2] J. Lagendijk, Hyperthermia treatment planning, Phys. Med. Biol. 45, R61 (2000).

[3] U. Katscher and C. A. T. van den Berg, Electric properties tomography: Biochemi-
cal, physical and technical background, evaluation and clinical applications, NMR
Biomed. 30, e3729 (2017).

[4] S. Gabriel, R. Lau, and C. Gabriel, The dielectric properties of biological tissues:
Ii. measurements in the frequency range 10 hz to 20 ghz, Phys. Med. Biol. 41, 2251
(1996).

[5] B. H. Brown, Electrical impedance tomography (EIT): a review, J. Med. Eng. Tech-
nol. 27, 97 (2003).

[6] R. Chandra, H. Zhou, I. Balasingham, and R. M. Narayanan, On the opportunities
and challenges in microwave medical sensing and imaging, IEEE. Trans. Biomed.
Eng. 62, 1667 (2015).

[7] X. Zhang, J. Liu, and B. He, Magnetic-resonance-based electrical properties tomog-
raphy: a review, IEEE Rev. Biomed. Eng. 7, 87 (2014).

[8] G. Bal, Hybrid inverse problems and internal functionals, Inverse problems and
applications: inside out. II 60, 325 (2013).

[9] E. M. Haacke, L. S. Petropoulos, E. W. Nilges, and D. H. Wu, Extraction of conduc-
tivity and permittivity using magnetic resonance imaging, Phys. Med. Biol. 36, 723
(1991).

[10] U. Katscher, T. Voigt, C. Findeklee, P. Vernickel, K. Nehrke, and O. Doessel, Deter-
mination of electric conductivity and local SAR via B1 mapping, IEEE Trans. Med.
Imag. 28, 1365 (2009).

[11] T. Voigt, U. Katscher, and O. Doessel, Quantitative conductivity and permittivity
imaging of the human brain using electric properties tomography, Magn. Reson.
Med. 66, 456 (2011).

[12] A. L. van Lier, D. O. Brunner, K. P. Pruessmann, et al., B+
1 phase mapping at 7 T and

its application for in vivo electrical conductivity mapping, Magn. Reson. Med. 67,
552 (2012).

3

58



REFERENCES

[13] F. S. Hafalir, O. F. Oran, N. Gurler, and Y. Z. Ider, Convection-reaction equa-
tion based magnetic resonance electrical properties tomography (cr-MREPT), IEEE
Trans. Med. Imaging 33, 777 (2014).

[14] E. Balidemaj, C. A. T. van den Berg, J. Trinks, et al., CSI-EPT: a contrast source inver-
sion approach for improved MRI-based electric properties tomography, IEEE Trans.
Med. Imaging 34, 1788 (2015).

[15] J. E. Serrallés, L. Daniel, J. K. White, D. K. Sodickson, R. Lattanzi, and A. G.
Polimeridis, Global Maxwell tomography: A novel technique for electrical prop-
erties mapping based on MR measurements and volume integral equation formu-
lations, in 2016 IEEE International Symposium on Antennas and Propagation (AP-
SURSI) (IEEE, 2016) pp. 1395–1396.

[16] R. Hong, S. Li, J. Zhang, et al., 3-D MRI-based electrical properties tomography us-
ing the volume integral equation method, IEEE Trans. Microw. Theory Tech. 65,
4802 (2017).

[17] A. Arduino, L. Zilberti, M. Chiampi, and O. Bottauscio, CSI-EPT in presence of RF-
shield for MR-coils, IEEE Trans. Med. Imag. 36, 1396 (2017).

[18] A. Rahimov, A. Litman, and G. Ferrand, MRI-based electric properties tomography
with a quasi-newton approach, Inverse Probl. 33, 105004 (2017).

[19] N. Gurler and Y. Z. Ider, Gradient-based electrical conductivity imaging using MR
phase, Magn. Reson. Med. 77, 137 (2017).

[20] P. S. Fuchs, S. Mandija, P. R. Stijnman, W. M. Brink, C. A. van den Berg, and R. F.
Remis, First-order induced current density imaging and electrical properties to-
mography in MRI, IEEE Trans. Comput. Imaging 4, 624 (2018).

[21] P. M. van den Berg and A. Abubakar, Contrast source inversion method: State of art,
Progress in Electromagnetics Research 34, 189 (2001).

[22] P. M. van den Berg and R. E. Kleinman, A contrast source inversion method, Inverse
Problems 13, 1607 (1997).

[23] P. M. van den Berg, A. L. van Broekhoven, and A. Abubakar, Extended contrast
source inversion, Inverse Probl. 15, 1325 (1999).

[24] P. M. van den Berg and K. F. Haak, Profile inversion by error reduction in the source
type integral equations, in Wavefields and Reciprocity–Proceedings of a Symposium
Held in Honour of Professor dr. AT de Hoop (Citeseer, 1996) pp. 87–98.

[25] B. van den Bergen, C. C. Stolk, J. B. van den Berg, J. J. Lagendijk, and C. A. van den
Berg, Ultra fast electromagnetic field computations for RF multi-transmit tech-
niques in high field MRI, Phys. Med. Biol. 54, 1253 (2009).

[26] R. L. Leijsen, W. M. Brink, C. A. van den Berg, A. G. Webb, and R. F. Remis, 3-D con-
trast source inversion-electrical properties tomography, IEEE Trans. Med. Imaging
37, 2080 (2018).

3

59



REFERENCES

[27] A. Christ, W. Kainz, E. G. Hahn, et al., The virtual family – development of surface-
based anatomical models of two adults and two children for dosimetric simula-
tions, Phys. Med. Biol. 55, N23 (2009).

[28] A. L. H. M. W. van Lier, A. Raaijmakers, T. Voigt, et al., Electrical properties tomog-
raphy in the human brain at 1.5, 3, and 7 T: a comparison study, Magn. Reson.
Med. 71, 354 (2014).

[29] Y. Saad, Iterative methods for sparse linear systems (SIAM, 2003).

[30] E. Balidemaj, C. A. T. van den Berg, A. L. H. M. W. van Lier, et al., B1-based SAR
reconstruction using contrast source inversion-electric properties tomography (CSI-
EPT), Med. Biol. Eng. Comput. 55, 225 (2017).

[31] P. R. S. Stijnman, S. Mandija, P. S. Fuchs, R. F. Remis, and C. A. T. van den Berg,
Transceive phase corrected contrast source inversion-electrical properties tomogra-
phy, in Proc. 27th Annu. Meeting ISMRM (2018) p. 5087.

[32] A. Arduino, O. Bottauscio, M. Chiampi, and L. Zilberti, Magnetic resonance-based
imaging of human electric properties with phaseless contrast source inversion, In-
verse Probl. 34, 084002 (2018).

[33] M. T. Bevacqua, G. G. Bellizzi, L. Crocco, and T. Isernia, A method for quantitative
imaging of electrical properties of human tissues from only amplitude electromag-
netic data, Inverse Probl. 35, 025006 (2019).

3

60






