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2. 3D CSI-EPT

ABSTRACT

CONTRAST source inversion – electrical properties tomography (CSI-EPT) is an it-
erative reconstruction method to retrieve the electrical properties (EPs) of tissues

from MR data. The method is based on integral representations of the electromagnetic
(EM) field and has been shown to allow EP reconstructions of small structures as well
as tissue boundaries with compelling accuracy. However, to date CSI-EPT has been
implemented for two-dimensional (2D) configurations only which limits its applica-
bility. In this paper, a full three-dimensional (3D) extension of the CSI-EPT method is
presented, to enable CSI-EPT to be applied to realistic 3D scenarios. Here, we demon-
strate a proof-of-principle of 3D CSI-EPT and present reconstructions of a 3D abdom-
inal body section and a 3D head model using different settings of the transmit coil.
Numerical results show that the full 3D approach yields accurate reconstructions of
the EPs, even at tissue boundaries and is most accurate in regions where the absolute
value of the electric field is highest.
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2.1. INTRODUCTION

2.1. INTRODUCTION

ELECTRICAL properties tomography (EPT) is a non-invasive reconstruction tech-
nique to retrieve the tissue-dependent electrical properties (EPs) (conductivity σ

and permittivity ε) of biological tissue from magnetic fields generated by radiofrequency
(RF) coils in a magnetic resonance imaging (MRI) scanner. The EPs of tissue are of great
interest, since these properties contribute to specific absorption rate (SAR) [1], they can
be used to aid the discrimination of cancerous tissue from benign tissue [2], and they
can also be used for the modeling of electromagnetic (EM) fields that are used in hyper-
thermia treatment planning [3]. The main benefits of EPT over other EP reconstruction
modalities is that it uses the RF fields of an MRI system, which can penetrate biologi-
cal tissues and it does not make use of surface electrode mounting, current injection,
additional hardware or physical rotation of the imaged object [4, 5].

The introduction of what is nowadays called EPT was by Haacke et al. in 1991 [6]
and the first application of this method was in 2003 by Wen [7]. In this method, the
transmit magnetic field, the B+

1 field, is used to directly reconstruct the EPs based on
local field equations. The introduced homogeneous Helmholtz equation is still very
frequently used as a starting point in EPT, since it is fast and easy to implement [1, 8–
13]. However, in this method a higher order spatial differentiation operator acts on
the measurement data. This introduces erroneous behavior around tissue interfaces
and makes the method sensitive to noise, leading to long acquisition times to meet the
input signal-to-noise ratio requirements. Attempts to improve the boundary artifact
by including the spatial gradient of the EPs in the algorithm still suffer from the noise
sensitivity [14–16], while recent EPT approaches that avoid differentiation of the mea-
surement data lack accuracy near tissue boundaries [17, 18].

Contrast source inversion (CSI)-EPT is a reconstruction method that avoids the as-
sumption of locally homogeneous media by making use of a global integral approach
instead of a local differential approach. This makes the method more reliable near
tissue boundaries and, due to the smoothing effect of the integrals, less sensitive to
noise [19, 20]. To date, however, CSI-EPT has been implemented for two-dimensional
E-polarized RF fields only, which assumes longitudinal invariance of both the sources
and the object. The RF coil in such a configuration excites E-polarized RF waves char-
acterized by a magnetic field that is purely transverse and an electric field that has a
longitudinal component only. This limits the applicability of CSI-EPT in experimental
conditions where longitudinal tissue interfaces as well as the finite longitudinal cover-
age of the RF transmit coil violate these assumptions. The issue is illustrated by Balide-
maj et al. [21], where the RF fields present in a 3 T system show distinct differences
than those obtained in the corresponding 2D model, which would lead to erroneous
reconstructions when used as an input to 2D CSI-EPT.

In this paper, we present a three-dimensional implementation of CSI-EPT in which
all EM field components are taken into account. Consequently, we work with the global
Green’s tensor field representations instead of the scalar integral field representations
used in the two-dimensional E-polarized case. The basic algorithm used in 2D and
3D are very similar, but the form of the operators are specific to the dimensionality.
As the discretization of the 3D operators is obviously more involved, details about the
discretization procedure are presented as well as a Kronecker product formulation of
the resulting discretized operators, which allows for a straightforward implementation.
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2. 3D CSI-EPT

A 3D volumetric integral equation approach is also presented in [22], using the varia-
tional Born iterative method, but using CSI-EPT has the advantage that it does not have
to solve a computationally expensive forward problem at every iteration. Furthermore,
we focus on inverting B+

1 data collected at 3 T, since in practice EPT is usually applied
at higher field strengths (3 T and above). Moreover, we only use volumetric B+

1 data col-
lected on the body part of interest. We present three-dimensional CSI-EPT reconstruc-
tions of the abdomen and head of a female body model. The influence of the magni-
tude of the electric field strength within the domain of interest on the reconstructions
is also studied by comparing different excitation settings. Finally, we present a com-
parison between two- and three-dimensional CSI-EPT reconstructions using 3D input
data with different levels of longitudinal invariance, to demonstrate the relevance of
the 3D formulation.

This paper is organized as follows. In Section 2.2 we present the basic integral rep-
resentations of the RF field. The discretization of these representations is discussed in
the Appendix. In Section 2.3 we briefly review the basic CSI-EPT method, while in Sec-
tion 2.4 we illustrate the performance of 3D CSI-EPT through a number of numerical
experiments using volumetric B+

1 data collected inside a female body model. Finally,
the conclusions and a discussion can be found in Section 2.5.

2.2. INTEGRAL REPRESENTATIONS OF THE RF FIELD
In this section, we briefly review the basic CSI-EPT integral representations of the elec-
tromagnetic field. Our discussion will be brief, since formulating these representations
is well documented in the literature (see [23], for example). The discretization of these
representations is discussed in the Appendix, where we present a Kronecker product
formulation that can be conveniently implemented in Matlab using the kron com-
mand. We assume that the conductivity and permittivity are isotropic at the Larmor
frequency ω, we ignore spatial permeability variations

(
µ=µ0

)
, since they are consid-

ered small for biological tissue, and we use the time factor convention exp
(
jωt

)
, with j

the imaginary unit.
Let the antenna (coil) that generates the RF field occupy a bounded source do-

main and let an object (e.g. a person) that is present inside the MR scanner occupy
the bounded object domain Dobj. Both domains are obviously disjoint, since the an-
tenna is not placed inside the object of interest.

The total electromagnetic field {E , H } that is present in such a configuration is writ-
ten as a superposition of an incident and a scattered field as

E = E inc +E sca and H = H inc +H sca, (2.1)

where {E inc, H inc} is the incident electromagnetic field that is present inside the scan-
ner in the absence of the object, and {E sca, H sca} is the scattered field due to the pres-
ence of the object. For this scattered field, we have the integral representations

E sca(x) = (k2
b +∇∇∇∇∇∇·)A(x) (2.2)

and

H sca(x) = ηb∇∇∇× A (x) , (2.3)
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2.3. 3D CSI-EPT

where A is the vector potential given by

A(x) =
∫

x ′∈Dobj
G(x −x ′)χ(x ′)E (x ′)dV (2.4)

with

G(x) = exp(−jkb|x |)
4π|x | , x 6= 0, (2.5)

the scalar Green’s function of the homogeneous background medium (air) and χ the
contrast function defined as

χ (x) = η (x)

ηb
−1. (2.6)

In the above equations, η = σ+ jωε is the per-unit-length admittance of the object,
with σ and ε the spatially varying conductivity and permittivity profiles of the object,
respectively. Finally, kb = ω/c0 is the wavenumber of the background medium and
ηb = jωε0 with c0 and ε0 the electromagnetic wave speed and permittivity in vacuum,
respectively.

By restricting the position vector x in the integral representations of Equations (2.2)
and (2.3) to the object domain Dobj, we obtain integral representations of the RF field
inside the object of interest. In particular, Equation (2.3) relates the scattered magnetic
field strength to the contrast and electric field strength via the vector potential A, while
the electric field strength and the contrast function inside the object have to satisfy
Equation (2.2). Consequently, the field representation of Equation (2.3) for the x- and
y-components of the magnetic field strength can be used to model B+

1 = (Bx + jBy )/2
data collected inside the body, while Equation (2.2) serves as a consistency equation
that provides a relation between the contrast function and the corresponding electric
field strength. Explicitly, by substituting the x- and y-components of the field repre-
sentation of Equation (2.3) in the definition of the scattered B+

1 field, we obtain

B+;sca
1 (x) = ω

c2
0

(
∂+Az −∂z A+)

, (2.7)

where ∂+ is the so-called del-operator defined as ∂+ = 1
2 (∂x+j∂y ), and A+ = 1

2 (Ax+jAy ).
We observe that the scattered B+

1 field is given by the difference between transverse
variations of the longitudinal component of the vector potential (∂+Az ) and longitudi-
nal variations of the transverse A+ field (∂z A+).

To summarize, by restricting x to Dobj, Equation (2.7) provides a data model for the
scattered B+

1 field inside the object of interest and even though the contrast χ and the
electric field strength E are unknown, we do know that Equation (2.2) has to be satisfied
as well.

2.3. 3D CSI-EPT
The CSI method is well described in the literature [24–26] and we therefore only give a
brief discussion of this method in the EPT context.

As a first step, we introduce the contrast source

w (x) =χ(x)E (x) (2.8)
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and use the expression for the total electric field as given in Equation (2.1) to write the
integral representation for the scattered electric field strength as

E (x)− (k2
b +∇∇∇∇∇∇·)A(x) = E inc(x). (2.9)

Multiplying this equation by the contrast function χ, we obtain the so-called object or
state equation

w (x)−χGobj{w }(x) =χ(x)E inc(x), (2.10)

where we have introduced the object operator

Gobj{w }(x) = (k2
b +∇∇∇∇∇∇·)

∫
x ′∈Dobj

G(x −x ′)w (x ′)dV. (2.11)

If χ and w are approximations for the contrast function and the contrast source, re-
spectively, we introduce the residual of the object equation that corresponds to these
approximations as

r =χE inc −w +χGobj{w }, (2.12)

and measure its size through the standard L2-norm on Dobj as

‖r ‖D =
(∫

x∈Dobj
|r (x)|2 dV

)1/2

. (2.13)

Similarly, by substituting the vector potential of Equation (2.4) in Equation (2.7), we
obtain the data equation

B+;sca
1 (x) =Gdat{w }(x), (2.14)

where we have introduced the data operator

Gdat{w }(x) = ω

c2
0

∇̃∇∇·
∫

x ′∈Dobj
G(x −x ′)w (x ′)dV (2.15)

with ∇̃∇∇ = − 1
2 (ix + jiy )∂z + iz∂

+ and {ix , iy , iz } the standard basis for 3D space. If w is
an approximation of the contrast source, then the residual of the data equation that
corresponds to this approximation is introduced as

ρ = B+;sca
1 −Gdat{w } (2.16)

and its magnitude is also measured using the L2-norm on Dobj. Note that the incident
B+

1 field is simulated from the known coil geometry and that subtraction of this field
from the measured B+

1 field gives the B+;sca
1 as presented in Equation (2.16).

In CSI-EPT, we now introduce the objective function

F (w ,χ) = ‖r ‖2
D∥∥χE inc
∥∥2
D

+
∥∥ρ∥∥2

D∥∥B+;sca
1

∥∥2
D

. (2.17)

to measure the discrepancy in satisfying the object and data equations and we attempt
to find a minimum of this function by constructing a sequence of contrast functions
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2.3. 3D CSI-EPT

and a sequence of contrast sources that converge to a minimum of the objective func-
tion F . Specifically, let χ[n−1] and w [n−1] be given approximations of the contrast func-
tion and contrast source, respectively. As a first step in CSI-EPT, we keep the contrast
function χ[n−1] fixed and update the contrast source according to the update formula

w [n] = w [n−1] +α[n]v [n], (2.18)

whereα[n] is the step length and v [n] the update direction. For these update directions,
one usually takes Polak-Ribière update directions, but other choices (Fletcher-Reeves,
Hesteness-Stiefel) are possible as well [27]. To compute the update directions, the gra-
dient of F (w ,χ[n−1]) with respect to w is required. Explicit expressions for this gradient
and the step length α[n] can be found in [24], for example.

Having updated the contrast source, we subsequently compute the corresponding
electric field strength according to (cf. Equation (2.9))

E [n](x) = E inc(x)+Gobj
{

w [n]} (x) (2.19)

and, finally, update the contrast function using the formula [24]

χ[n] = w [n] ·E [n];∗∣∣E [n]
∣∣2 (2.20)

which holds locally at every point inDobj and where the asterisk denotes complex con-
jugation. Note that CSI-EPT attempts to reconstruct the electric field strength (see
Equation (2.19)) and therefore allows SAR estimations as well.

Having found an updated contrast function, the above process can now be repeated
and we arrive at the standard CSI-EPT method:

CSI-EPT

• Given an initial contrast function χ[0] and contrast source w [0]

• For n = 1,2, . . .

1. If F (w [n−1],χ[n−1]) < tolerance then stop

2. Update the contrast source according to Equation (2.18)

3. Compute the electric field strength corresponding to the updated contrast
source via Equation (2.19)

4. Update the contrast function according to Equation (2.20)

The initial guesses in the above algorithm have to be provided, of course. Many choices
are possible and any a priori information about the dielectric properties can be in-
cluded. A general approach that does not take such information into account is to first
determine an initial contrast source w [0] via backprojection [24] and subsequently de-
termine the electric field strength and initial contrast via Equations (2.19) and (2.20)
with n = 0.

By carrying out the above CSI-EPT algorithm, a sequence of the contrast sources
and a sequence of contrast functions is generated. These sequences terminate as soon

2
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2. 3D CSI-EPT

as a predefined tolerance level of the objective function (or a specified number of iter-
ations) is reached. At iteration n, the dielectric tissue parameters can be retrieved from
the reconstructed contrast function χ[n] as

σ= Re
[(
χ[n] +1

)
ηb

]
and ε= Re

[(
χ[n] +1

)
ε0

]
, (2.21)

where Re denotes the real part and ε the absolute permittivity, which is related to the
relative permittivity via ε= ε0εr.

2.4. NUMERICAL RESULTS
To test the 3D CSI-EPT algorithm, we reconstruct the dielectric tissue maps of different
parts of the female body model Ella from the IT’IS Foundation with an isotropic voxel
size of 2.5 mm [28]. In our first 3D simulation, we select a region of 72-by-124-by-
41 voxels around the pelvis region from which we compute B+

1 data. The size of this
domain can be chosen as large as desired, but the computational costs will increase
with larger data domains. Furthermore, we use 16 z-directed short dipoles uniformly
positioned on a circle, with a radius of 0.2 meters, that is situated around the center of
the object. The dipoles are 0.3 meters long, infinitely thin, have a trapezoidal current
distribution, and operate in quadrature (circularly polarized) mode driven at 128 MHz
(corresponding to the operating frequency of a 3 T MRI system). The centers of the
dipoles are positioned next to the transverse midplane of the domain of interest as
shown in the top row of Figure 2.1. With this dipole arrangement, we aim to mimic the
integrated body coil of a 3 T MR system, while at the same time such a setup allows for
an easy comparison with 2D reconstruction and for flexible driving conditions. We
stress that our 3D CSI-EPT method is not restricted to this chosen setup and other
antenna configurations can be implemented as well.

To obtain the initial contrast source and contrast function, we start the CSI-EPT re-
construction with the backprojection procedure as described in Section 2.3, followed
by the computation of the contrast source via Equation (2.8) and the electric field again
via Equation (2.19), since this improves the reconstruction results at the first few it-
erations. Furthermore, during the reconstruction we take a priori information into
account as well. Specifically, since the position of the body is known, we set the con-
trast function to zero outside its support at every iteration. Moreover, during the re-
constructions we set the minimum conductivity and relative permittivity to 0 and 1,
respectively, and the maxima slightly higher than the values that can be found in the
body part of interest.

Figure 2.2 compares the actual female contrast model with the reconstruction of
the contrast function at different iteration counts. The first row of Figure 2.2 shows
a section of the 3D reconstruction, cut off for illustration purposes at sagittal plane
position 36 of 124. We observe that increasing the number of iterations results in a
closer agreement with the actual model. Moreover, we observe that more iterations
are required to retrieve the tissue maps of the center slices than for slices further away
from the center.

The second row shows the sagittal plane from the top row. From these subfigures
we can more clearly observe the difference in reconstruction accuracy of the different
slices. It shows that there are large deviations from the actual model around the cen-
ter slices, while the reconstruction is more accurate in slices away from the transverse
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y

z

xy

x

z

Figure 2.1: Representation of the antenna positions around the objects of the two studied configurations.

Transversal (left) and coronal view (right). The rectangular box is the object domain Dobj, the dots and lines
represent the dipoles.

midplane. The third and fourth rows show the reconstruction values over a single hori-
zontal and vertical line in the sagittal plane, respectively, again after a different number
of iterations. In the third row we observe that the reconstruction results improve when
the number of iterations is increased and that the reconstruction is very accurate at
edges and at transitions between different tissue interfaces. In the fourth row we ob-
serve similar results again, however, with a large deviation around the center slice.

From the above reconstruction results we observe that, given our antenna setup,
the tissue maps of the center slices are difficult to retrieve and require the largest num-
ber of CSI-EPT iterations. To investigate this issue further, we show the magnitude of
the original contrast function (Figure 2.3a) and the magnitude of its reconstruction af-
ter 10000 iterations (Figure 2.3b) in the coronal plane at the center of the object, along
with the absolute error (Figure 2.3d). Also shown is the magnitude of the electric field
(Figure 2.3f). These figures illustrate the correspondence between the magnitude of
the electric field and the quality of the contrast reconstructions in the coronal plane
throughout the center of the object. The error in the reconstruction is the largest at the
center in the longitudinal direction, which corresponds to locations with low |E |.

To further illustrate the influence of the electric field on the reconstruction, we
change the antenna settings by removing the phase shift between the sources. The
sources no longer operate in quadrature mode and have an equal phase. This adjust-
ment eliminates the low electric field strength in the transverse midplane as shown
in Figure 2.3g and its effect on the reconstruction is shown in Figure 2.3b. From Fig-
ure 2.3e we observe that equal phase excitation improves the reconstruction around
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Original

(a)

100

(b)

1000

(c)

10000

(d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.2: Different representations of the three-dimensional reconstruction results of the abdominal re-
gion of Ella at different number of iterations. Original contrast (first column), reconstruction after 100 iter-
ations (second column), after 1000 iterations (third column), and after 10000 iterations (last column). (j)-(l)
show the magnitude of the contrast along the line indicated in (i), while (n)-(p) show the magnitude along
the line indicated in (m).

the center, however, at the cost of a slight degradation of the reconstruction at slices
away from the transverse midplane.

In our second numerical experiment we select an object domain of 87-by-71-by-73
voxels containing the upper part of the head of the Ella body model, which is strongly
inhomogeneous and has many small tissue interfaces. In this configuration we place
the center of the dipoles at the lower end of the object domain, next to the nose (see Fig-
ure 2.1). Figure 2.4 shows a 3D visualization of a section of the contrast reconstructions
obtained after 100, 1000, and 10000 CSI-EPT iterations, together with the conductivity
and relative permittivity maps of slice 45 (at the higher end of the object domain) of a
total of 73 slices. The 3D representation of the reconstruction of the head of Ella after
100 iterations clearly shows that the slices behind the eyes and nose are the most dif-
ficult to reconstruct, again corresponding to low electric field (not shown). Note that
the air in the nasal cavity gives no B+

1 data and therefore leaves a gap in the 3D visu-
alization. After 1000 iterations, we observe that the tissue structures become visible in
the reconstruction of the contrast function. Extracting the dielectric tissue maps from
the reconstructed contrast function provides us with a fairly good reconstruction of the
conductivity profile, while the relative permittivity profile is of a lower quality. Increas-
ing the number of iterations to 10000, however, we obtain a good overall agreement
with the true model, in which the small tissue transitions are clearly visible. Further-
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Coronal

(a)
0

100

200

300

Quadrature

(b)

Equal phase

(c)
0

100

200

300

(d) (e)
0

100

200

300

(f) (g)
0

50

100

150

Figure 2.3: Magnitude of the contrast of the model (a), the reconstruction after 10000 iterations (b,c), the
corresponding absolute error (d,e) and the magnitude of the electric field strength (f,g) in the coronal plane
at the center of the object with the sources operating in quadrature (left column) and operating with equal
phase (right column).

more, we observe from Figure 2.4h and Figure 2.4l that the quality of the conductiv-
ity reconstruction is higher than the quality of the relative permittivity reconstruction,
which might be due to a larger influence of the conduction current (σE ) to the B+

1 field
than the displacement current (jωεE ) at 3 T.

Finally, in the third experiment we return to the first experimental setup with the
transmit antennas operating in quadrature mode. We compare reconstruction results
of a single slice obtained with 3D CSI-EPT with reconstruction results obtained via the
2D CSI-EPT algorithm of [19]. For the 3D algorithm, we shift the object domain, such
that the transversal slice is 4.5 cm away from the transversal midplane. For the 2D algo-
rithm, we increase the object domain with 15 cm on the top and bottom of the model,
and we simulate 3D B+

1 data in the transverse midplane, which we use together with
2D incident fields for the reconstructions. The original profile is shown in Figure 2.5a,
the reconstruction result of this slice with 3D CSI-EPT after 10000 iterations is shown
in Figure 2.5b and the 2D CSI-EPT reconstruction result obtained after 1000 iterations
is shown in Figure 2.5c. The 2D reconstruction shows large artifacts at the center and
also at tissue transitions, especially at the outer edge. Since the 2D algorithm assumes
that the sources and object are invariant in the longitudinal direction, we first replace
all slices of the object in this longitudinal direction by the transverse midplane. By
simulating B+

1 data in the midplane of the resulting cylindrical object and using this
data as input for 2D CSI-EPT, we obtain the reconstruction result shown in Figure 2.5d,
which slightly improves the reconstruction. A further improvement is observed if the
currents in the z-direction are also set to be uniform (Figure 2.5e), and reconstructions

2
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Original

(a)

100

(b)

1000

(c)

10000

(d)

0

100

200

300

[S/m]

(e) (f) (g) (h)
0

1

2

(i) (j) (k) (l)

50

100

Figure 2.4: Reconstruction of the conductivity and relative permittivity maps of the Ella head model. The
top row shows a section of the three-dimensional representation of the magnitude of the contrast, and the
second and third row show the corresponding conductivity and relative permittivity maps of slice 45, respec-
tively. The original contrast is shown in the first column, the CSI-EPT reconstructions after 100 iterations
in the second column, reconstructions after 1000 iterations in the third column, and reconstructions after
10000 iterations in the fourth column.

improve even further if we increase the voxel length in the z-direction from 2.5 mm
to 5 mm (Figure 2.5f). We stress that Figure 2.5c is obtained by applying 2D CSI-EPT
on 3D data, while Figures 2.5d-f are only included to demonstrate that the 2D CSI-EPT
reconstructions improve as the complete configuration approaches an idealized 2D
implementation. From these experiments we conclude that 2D CSI-EPT is appropriate
under very specific conditions only, while 3D CSI EPT is not based on any invariance
assumptions and generally applicable.

2.5. DISCUSSION AND CONCLUSION

In this paper we have presented a proof of principle of three-dimensional CSI-EPT.
The method takes the volumetric integral representations for the RF field as a starting
point and is able to successfully reconstruct strongly inhomogeneous 3D tissue profiles
based on B+

1 data collected within the domain of interest. The method does not rely on
any particular field structure and, as opposed to the two-dimensional implementation
presented in [19], invariance in the longitudinal direction is not assumed. However,
the current 3D method is computationally much more intensive than its 2D counter-
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(a) (b)

0

100

200

300

(c) (d)

0

100

200

300

(e) (f)

0

100

200

300

Figure 2.5: Illustration of the shortcomings of a 2D reconstruction based on 3D B+
1 data due to longitudinal

invariance assumptions. The magnitude of the original contrast of the transverse midplane (a), the recon-
struction of the same slice with 3D CSI-EPT after 10000 iterations with the slice away from the midplane
(b) and the reconstruction with 2D CSI-EPT after 1000 iterations using the B+

1 field of the transverse mid-
plane (c). Furthermore, the results after increasing the longitudinal invariance in the model step-by-step by
first making the object homogeneous in the longitudinal direction (d), second by applying a uniform current
distribution on the sources (e), and third by changing the length of the object from 40 to 80 cm (f).

part, since full 3D structures are inverted based on volumetric B+
1 data. Moreover, the

number of iterations required to arrive at a reconstruction of sufficient quality is gen-
erally fairly large, which is characteristic for gradient methods such as CSI-EPT. Typical
run times of a Matlab implementation of 3D CSI-EPT take several hours for large voxel
sizes, while the computation times increases for more refined models. For example,
10000 iterations of the fine-scaled head model of Figure 2.4 requires around 11 hours
on a standard laptop or pc. Future work will therefore focus on preconditioning tech-
niques that reduce the number of CSI iterations without significantly increasing the
total computational costs. Including a priori information through constraints or using
this information to construct an improved initial guess will also be investigated. Re-
constructions obtained from other EPT methods (such as the direct EPT method from
Haacke [6]) can be used as an initial guess for CSI-EPT as well.

Our reconstruction results indicate that accurate conductivity and relative permit-
tivity reconstructions are most difficult to obtain in regions where the magnitude of the
electric field is relatively low. The normalized root-mean-square error of the dielectric
reconstructions (normalized over the range of the dielectric properties), correspond-
ing to the 25% of voxels with the lowest up to the 25% of voxels with the highest electric
field magnitude in quadrature setting inside the object corresponding to Figure 2.3,
are 0.23, 0.13, 0.10 and 0.06 for the conductivity and 0.39, 0.25, 0.20 and 0.10 for the
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relative permittivity reconstruction, respectively. Similar results were obtained for 2D
CSI-EPT in [19], and it shows similarities with the problem of low convection field dis-
cussed in [14], which corresponds to regions with low conduction and displacement
current. Low electric fields amplitudes result in low induced electric currents and the
impact of these currents on the total B+

1 field is small. Our CSI-EPT reconstruction
technique therefore requires many iterations to reconstruct the dielectric tissue maps
of regions with a low E-field amplitude. Removing the phase shift between the sources,
even though this is not a realistic setting in practice due to nulling of the magnetic
field, clearly shows the influence of the antenna settings and the electric field strength
on the reconstructions again indicating that the magnitude of the electric field strength
should be sufficiently large to readily reconstruct the local dielectric tissue maps. Re-
constructions in low E-field regions can be improved by incorporating complementary
antenna settings or through active or passive shimming [19, 29].

In this paper, we have assumed noiseless B+
1 data. In a real experiment, however,

the amplitude and phase of the B+
1 field are measured separately and each is con-

taminated by noise and other perturbations in the data. To take perturbations due
to noise into account, noise suppression techniques such as total variation can be in-
cluded [19, 30]. Moreover, in phase measurements, only the transceive phase can be
measured, which is the superposition of the phase of the B+

1 field and the phase of the
B−

1 field. To obtain an estimate of the B+
1 phase, the transceive phase approximation

can be implemented [4, 5]. However, this approximation does not always produce an
accurate B+

1 phase and leads to reconstruction artifacts [31]. In future work we will
therefore also focus on handling transceive phase along with total variation noise sup-
pression techniques.

Finally, we address the fact that the iterative method requires the incident field to
be known. In this work we considered this field to be determined solely by the known
coil geometry. In practice, the loading from a human subject inside the RF coil slightly
influences the incident, and thus the scattered and total fields. Any difference between
the modeled and actual applied incident field will result in distortion in the recon-
structed EP maps. An extreme example of the effects of an incorrect incident field is
shown in [20]. The loading effect on the incident field can easily be estimated from
more thorough simulations, such as finite-difference time-domain methods, based on
a few different loading conditions. In this paper, we presented a dipole antenna config-
uration, but other antenna arrangements can also be implemented, such as the in-built
birdcage body coil that is used on practically every MRI system. In practice, one would
use the antenna configuration that resembles the actual setup as closely as possible.
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APPENDICES

A1. DISCRETIZATION
The spatial discretization of the integral representations for the RF field closely follows
[32] except that here we present the discretized equations in Kronecker product form
to obtain global discretized representations for the fields.

We start by extending the object domain to a rectangular computational domain
Dcmp with side lengths `i > 0, i = x, y, z, such that Dobj ⊆ Dcmp. This can always be
achieved, since the contrast function vanishes outside the object domain Dobj. Subse-
quently, the computational domain is subdivided into nonoverlapping discretization
cells

Dpqr = {pδx <x < (
p +1

)
δx ,

qδy <y < (
q +1

)
δy ,

rδz <z < (r +1)δz },

(2.22)

for p = 0,1, . . . ,P + 1, q = 0,1, . . . ,Q + 1, and r = 0,1, . . . ,R + 1, where P ≥ 1, Q ≥ 1, and
R ≥ 1 are integers. Cells with an index p = 0, p = P + 1, q = 0, q = Q + 1, r = 0, or
r = R +1 are referred to as boundary cells, while all other cells are called interior cells.
Obviously, the side lengths of a discretization cell are given by

δx = lx

P +2
, δy =

ly

Q +2
, and δz = lz

R +2
, (2.23)

and the position vector of the midpoint of a discretization cell is given by

xpqr = xp ix + yq iy + zr iz , (2.24)

with

xp = δx

2
+pδx for p = 0,1, . . . ,P +1, (2.25)

yq = δy

2
+qδy for q = 0,1, . . . ,Q +1, (2.26)

and

zr = δz

2
+ rδz for r = 0,1, . . . ,R +1. (2.27)

Note that the total number of discretization cells is (P +2)(Q +2)(R +2).
Having introduced our computational grid, we now discretize the integral repre-

sentations of Equations (2.2) and (2.3). Using the definition of the scattered field and
writing these equations out in components, we have

Ex = E inc
x +k2

b Ax +∂2
x Ax +∂x∂y Ay +∂x∂z Az , (2.28)

Ey = E inc
y +k2

b Ay +∂y∂x Ax +∂2
y Ay +∂y∂z Az , (2.29)

Ez = E inc
z +k2

b Az +∂z∂x Ax +∂z∂y Ay +∂2
z Az , (2.30)
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and

Hx = H inc
x +ηb

(
∂y Az −∂z Ay

)
, (2.31)

Hy = H inc
y +ηb (∂z Ax −∂x Az ) , (2.32)

Hz = H inc
z +ηb

(
∂x Ay −∂y Ax

)
. (2.33)

We only discuss the discretization of Equation (2.28), since all other equations can be
handled in a similar manner.

As a first step, we require that Equation (2.28) holds at the midpoints of the inner
discretization cells, that is, for x = xpqr with p = 1,2, . . . ,P , q = 1,2, . . . ,Q, and r =
1,2, . . . ,R. In other words, we require that

Ex
(
xpqr

)= E inc
x (xpqr )+k2

b Ax (xpqr )

+ ∂2
x Ax

∣∣∣∣x=xp
y=yq
z=zr

+∂x∂y Ay

∣∣∣∣x=xp
y=yq
z=zr

+∂x∂z Az

∣∣∣∣x=xp
y=yq
z=zr

,

(2.34)

for p = 1,2, . . . ,P , q = 1,2, . . . ,Q, and r = 1,2, . . . ,R. Second, we follow [32] and ap-
proximate the spatial derivatives by second-order central finite-difference formulas.
To implement these formulas using Kronecker products, we introduce the first-order
differentiation matrix with respect to the x-coordinate as

X= 1

2δx


−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

 , (2.35)

where the elements that are not shown are zero. First-order differentiation matrices
Y and Z with respect to the y- and z-coordinate are defined in a similar manner, but
with δx replaced by δy and δz , respectively. Furthermore, second-order differentiation
matrices are introduced as

Li = 1

(δi )2


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

 , (2.36)

for i = x, y, z. The matrices Lx and X are P-by-(P +2), Ly and Y are Q-by-(Q +2), and
Lz and Z are R-by-(R +2). Note that larger or filter kernels could also be introduced, for
example for noisy data [4]. Subsequently, for each slice in the z-direction we introduce
a (P +2)-by-(Q +2) matrix A[r ]

x with elements given by(
A[r ]

x

)
pq = Ax

(
xp , yq , zr

)
, r = 0,1, . . . ,R +1. (2.37)
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The above formula defines a collection of R+2 matrices A[0]
x , A[1]

x , . . . , A[R+1]
x containing

the x-component of the vector potential at the midpoints of all discretization cells.
These matrices can be turned into vectors by stacking their columns from left to right
using the vec-operation [33]. We write

a[r ]
x = vec

(
A[r ]

x

)
, (2.38)

for r = 0,1, . . . ,R +1. Matrices and vectors for the y- and z-components of the vector
potential as well as for all components of the electric field strength are defined similarly.
Finally, we introduce the restriction operators in each Cartesian direction as

Rk = [
0 Ik 0

]
, k = P,Q,R, (2.39)

of sizes P-by-(P +2), Q-by-(Q +2), and R-by-(R +2) for RP , RQ , and RR , respectively
and with Ik the identity operator of order k.

Having introduced all these matrices, the discretized form of Equation (2.34) can
be written for every slice r = 1,2, . . . ,R in the z-direction as

RP E[r ]
x RT

Q =RP Einc;[r ]
x RT

Q +k2
bRP A[r ]

x RT
Q

+LxA[r ]
x RT

Q +XA[r ]
y YT

+
[

1

2δz
XA[r+1]

z RT
Q − 1

2δz
XA[r−1]

z RT
Q

]
.

(2.40)

Applying the vec-operation to this equation, using the linearity of this operator, and
the property [33]

vec
(
AXBT)= (B⊗A)vec(X) , (2.41)

where ⊗ denotes the Kronecker product, we obtain

(RQ ⊗RP )e[r ]
x = (RQ ⊗RP )einc;[r ]

x +k2
b(RQ ⊗RP )a[r ]

x

+ (RQ ⊗Lx )a[r ]
x + (Y⊗X)a[r ]

y

+
[

1

2δz
(RQ ⊗X)a[r+1]

z − 1

2δz
(RQ ⊗X)a[r−1]

z

]
,

(2.42)

for r = 1,2, . . . ,R. Finally, we stack the vectors a[0]
x , a[1]

x , . . . , a[R+1]
x of all slices in one large

total vector for the x-component of the vector potential. This defines the
(P +2)(Q +2)(R +2)-by-1 vector

ax =
[(

a[0]
x

)T
,
(
a[1]

x

)T
, . . . ,

(
a[R+1]

x

)T
]T

(2.43)

and total vectors for the y- and z-components of the vector potential and all compo-
nents of the electric field strength are defined similarly. With the introduction of these
total vectors and using the properties of the Kronecker product, the R equations of
Equation (2.42) can be written as a single global equation

Ĩex = Ĩeinc
x +k2

b Ĩax

+ (RR ⊗RQ ⊗Lx )ax + (RR ⊗Y⊗X)ay

+ (Z⊗RQ ⊗X)az ,

(2.44)
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with Ĩ = (RR ⊗RQ ⊗RP ). Notice that the sparse restriction matrices Rk , k = P,Q,R, and
the sparse differentiation matrices X, Y, Z, and Li , i = x, y, z are easily implemented in
any programming language, while the Kronecker products can be carried out using any
Kronecker product routine such as the kron command in Matlab. Finally, we note that
the global discretized equation (Equation (2.44)) is similar in form as its continuous
counterpart as given by Equation (2.28).

A1.1. WEAKENED VECTOR POTENTIAL
The final step in our discretization procedure consists of relating the vector potential
to the electric field strength at the midpoints of the discretization cells. Recall that in
a continuous setting this relation is given by Equation (2.4). With x ∈Dobj, the Green’s
function is singular when x ′ = x , which may lead to difficulties when discretizing the
integral on a computational grid. To circumvent this problem, we follow [34] and re-
place the Green’s function by the weakened Green’s function Gw that satisfies the equa-
tion

(∇2 +k2
b)Gw =− f (x), (2.45)

where

f (x) =
{

3
4πa3 , if x ∈Dball,

0, if x 6∈Dball,
(2.46)

with Dball a ball of radius a = min
{
δx ,δy ,δz

}
/2 centered at the origin. In addition to

Equation (2.45), Gw is required to satisfy the Sommerfeld radiation condition [35].
The weakened Green’s function can be computed explicitly for x 6= 0 as

Gw(x) = exp(−jkb |x |)
4π|x |

3

(kba)2

[
sin(kba)

kba
−cos(kba)

]
, (2.47)

and for x = 0 as [34]

Gw(0) = 3

4πk2
ba3

[
(1+ jkba)exp(−jkba)−1

]
. (2.48)

Note that
Gw(x) =G(x)

{
1+O[(kba)2]

}
for x 6= 0 as kba ↓ 0, (2.49)

showing that with the particular choice for the radius a, the weakening procedure
is consistent with the second-order accurate finite-difference approximations for the
spatial derivatives.

Replacing the Green’s function in the expression for the vector potential by its weak
form, we arrive at the weakened vector potential

Aw(x) =
∫

x ′∈Dobj
Gw(x −x ′)χ(x ′)E (x ′)dV (2.50)

and if we assume that the contrast function is constant within each discretization cell,
that is, χ(x) =χpqr if x ∈Dpqr , then we can write

Aw(x) =
P+1∑
p=0

Q+1∑
q=0

R+1∑
r=0

χpqr

∫
x ′∈Dpqr

Gw(x −x ′)E (x ′)dV. (2.51)
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Finally, the remaining integral can be approximated by the midpoint rule, which results
in

Aw(x) ≈ δxδyδz

P+1∑
p=0

Q+1∑
q=0

R+1∑
r=0

χpqr Gw(x −xpqr )E (xpqr ) (2.52)

and since the vector potential is required at the midpoints xi j k , we arrive at

Aw(xi j k ) = δxδyδz

P+1∑
p=0

Q+1∑
q=0

R+1∑
r=0

Gw(xi j k −xpqr )χpqr E (xpqr ), (2.53)

for i = 0,1, . . . ,P +1, j = 0,1, . . . ,Q+1 and k = 0,1, . . . ,R+1. Storing the vector potential
and electric field strength approximations in the previously introduced vectors ai and
ei , i = x, y, z, we arrive at the discretized counterpart of the weakened vector potential

ai =GCei , i = x, y, z, (2.54)

where G is a square matrix of order (P +2)(Q +2)(R +2) representing the summations
with the weakened Green’s function in Equation (2.53) including multiplication by
δxδyδz and C is a diagonal matrix with the contrast values of the discretization cells on
its diagonal. Finally, we note that the electric field strength approximations are defined
on interior discretization cells only (note the range of the indices in Equation (2.34)),
while the vectors ei contain elements corresponding to boundary cells as well. These
elements are included so that the vectors ai and ei have the same number of elements
and the action of matrix G on a vector can be computed using the Fast Fourier Trans-
form (FFT).

Putting everything together, we arrive at the discretized counterpart of
Equation (2.28) as

Ĩex = Ĩeinc
x +k2

b ĨGCex

+ (RR ⊗RQ ⊗Lx )GCex + (RR ⊗Y⊗X)GCey

+ (Z⊗RQ ⊗X)GCez .

(2.55)

Equations (2.29) and (2.30) can be discretized in a similar manner and combining the
resulting discretized equations with Equation (2.55), the discretized counterpart of the
object operator can be identified as

Gobj =
[
k2

b

(
I3 ⊗ Ĩ

)+D
]

(I3 ⊗G) , (2.56)

where D is the discretized gradient-divergence operator given by

D=
RR ⊗RQ ⊗Lx RR ⊗Y⊗X Z⊗RQ ⊗X

RR ⊗Y⊗X RR ⊗Ly ⊗RP Z⊗Y⊗RP

Z⊗RQ ⊗X Z⊗Y⊗RP Lz ⊗RQ ⊗RP

 . (2.57)

The discretized counterpart of the data operator can be obtained by following similar
steps as above.
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