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1 BMW AG, Munich, Germany
{andre.thomaser,marc-eric.vogt}@bmw.de

2 LIACS, Leiden University, Leiden, The Netherlands
{a.m.thomaser,a.kononova,t.h.w.baeck}@liacs.leidenuniv.nl

Abstract. The conflict between computational budget and quality of
found solutions is crucial when dealing with expensive black-box optimiza-
tion problems from the industry. We show that through multi-objective
parameter tuning of the Covariance Matrix Adaptation Evolution Strat-
egy on benchmark functions different optimal algorithm configurations
can be found for specific computational budgets and solution qualities.
With the obtained Pareto front, tuned parameter sets are selected and
transferred to a real-world optimization problem from vehicle dynamics,
improving the solution quality and budget needed. The benchmark func-
tions for tuning are selected based on their similarity to a real-world prob-
lem in terms of Exploratory Landscape Analysis features.

Keywords: Multi-objective · Parameter tuning · CMA-ES · Transfer
learning · Vehicle dynamics · Exploratory landscape analysis

1 Introduction

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [16,18] is
a class of iterative heuristic algorithms for solving generally non-linear, non-
convex, single objective, continuous optimization problems by finding a solution
within the feasible set X ⊂ R

n that minimizes the objective function f [27]
(Sect. 2). CMA-ES has been successfully applied to many real-world optimization
problems including topology optimization [13] and hyperparameter optimization
of neural networks [30].

Apart from the landscape of the objective function, the performance of CMA-
ES on a specific optimization problem is determined by several parameters, and
also, by the variant of CMA-ES [5]. In order not to concern the user with the
task of selecting the appropriate parameters of an algorithm from a wide range
of different settings and variants, automatic parameter tuning as an optimiza-
tion problem itself was proposed [4,14]. Hence, two optimization problems can
be distinguished: solving the original problem and parameter tuning [12]. Com-
ponents of the former optimization problems are the original problem and the
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algorithm to find an optimal solution for this problem; while the latter consists
of the algorithm and a meta-algorithm to find optimal parameters for the algo-
rithm to solve the original problem. The quality of solutions for the original
problem is called fitness and the quality of the parameters of the algorithm is
called utility [12].

When measuring the utility two main metrics can be formulated: finding the
best possible solution within a given budget (fixed-budget) and finding a solution
as quickly as possible with a given target quality (fixed-target) [6]. In this paper
we investigate the conflict of these two objectives when tuning the parameters
of an algorithm: solution quality and used budget. We perform multi-objective
parameter tuning to obtain a Pareto front, also called “performance front” [11],
consisting of non-dominated parameter sets that satisfy both the quality and
budget objective (Sect. 5). Since the real-world black-box optimization problem
from vehicle dynamics design (Sect. 3) is computationally expensive to evaluate,
we conduct and investigate the parameter tuning on similar functions from the
black-box optimization benchmark (BBOB) [17].

Relating the performance of an algorithm on synthetic benchmark functions
to real-world optimization problems for transfer learning is a difficult task [41].
One way is to assess the similarity between the real-world problem and the bench-
mark functions. Therefore, we use the same approach as in previous work [45]
by performing Exploratory Landscape Analysis (ELA) [32] (Sect. 4).

2 Covariance Matrix Adaptation Evolution Strategy

In every generation g of the CMA-ES [16], a population x consisting of λ offspring
is sampled from a multivariate normal distribution with mean value m(g) ∈ R

n,
covariance matrix C(g) ∈ R

n×n and standard deviation σ(g) ∈ R>0:

x
(g+1)
k ∼ m(g) + σ(g)N (0, C(g)) ∀ k = 1, ..., λ. (1)

Moreover, the mean value m(g), the covariance matrix C(g) and the standard
deviation σ(g) are adapted in each generation as described below. With the given
weights wi, the new mean value m(g+1) is calculated as the weighted average of
μ selected parents from the population:

m(g+1) = m(g) + cm

μ∑

i=1

wi(x
(g+1)
i:λ − m(g)). (2)

The covariance matrix C(g) is updated with the evolution path p
(g)
c ∈ R

n:

C(g+1) = (1 − c1 − cμ

λ∑

i=1

wi)C(g)

+ c1 p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+cμ

λ∑

i=1

wi y
(g+1)
i:λ (y(g+1)

i:λ )T

︸ ︷︷ ︸
rank-μ update

, (3)
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p(g+1)
c = (1 − cc)p(g)c +

√
cc(2 − cc)μeff

m(g+1) − m(g)

σ(g)
, (4)

μeff = (
μ∑

i=1

w2
i )−1, y

(g+1)
i:λ =

x
(g+1)
i:λ − m(g)

σ(g)
, (5)

and the standard deviation σ(g) is updated with the conjugate evolution path
p
(g)
σ ∈ R

n:

σ(g+1) = σ(g) exp

⎛

⎝ cσ

dσ

⎛

⎝

∥∥∥p
(g+1)
σ

∥∥∥
E ‖N (0, I)‖ − 1

⎞

⎠

⎞

⎠ , (6)

p(g+1)
σ = (1 − cσ)p(g)σ +

√
cσ(2 − cσ)μeffC(g)−

1
2 m(g+1) − m(g)

σ(g)
. (7)

The strategy parameters λ, μ, c1, cc, cmu, cσ define the optimization behavior
of CMA-ES and can themselves be optimized for specific functions or groups of
functions [3,51].

Several CMA-ES variants have been developed so far. In this paper the fol-
lowing variants are considered [36,46]:

1. Active Update [23]: Extends the adaptation of the covariance matrix with
the most successful individuals by also considering the least successful indi-
viduals with a negative factor and therefore actively reducing the probability
of searching in unpromising directions.

2. Elitism [46]: In the standard (μ, λ)-CMA-ES the μ children replace the λ
parents. In the (μ + λ)-CMA-ES the children and parents together form the
next population.

3. Mirrored Sampling [8]: Only half of the search points of a new popula-
tion are sampled from a multivariate normal distribution, the other half is
the mirror image of the first one. Mirrored sampling increases the uniform
distribution of the search points.

4. Orthogonal Sampling [48]: Orthonormalizes the vectors of the search
points with the Gram-Schmidt process [7].

5. Threshold Convergence: [39]: Prevents the algorithm from getting stuck in
a local optimum by requiring the mutation vectors to reach a length threshold.
The threshold decreases after each generation.

6. Step-Size Adaptation: The standard step-size control in CMA-ES is Cumu-
lative Step-Size Adaptation (CSA) [16]. Two-Point Step-Size Adaptation
(TPA) [15] uses two search points from the population and Median Success
Rule (MSR) [1] uses the median fitness of the offspring to an individual from
the previous iteration to adjust the step-size.

7. Weighted Recombination [19]: Recombination is accomplished in CMA-
ES by adjusting the mean values m with a weight vector wi.

The combination of the different variants with respect to the optimization prob-
lem can improve the performance of CMA-ES [46,47].
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3 Real-World Problem Description

The anti-lock braking system (ABS) [26] and the variable damper control (VDC)
[35] can significantly improve driving safety by reducing the braking distance.
The ABS adjusts the brake pressure so that the brake slip remains within the
optimal range, thus preventing the wheels from locking and increasing the brake
performance. The VDC improves brake performance by adjusting the damper
constants of the shock absorbers, which influence the wheel load and, therefore,
the braking force.

The emergency straight-line full-stop braking maneuver with ABS fully
engaged [21] is a standard maneuver in the automotive industry for assessing
the braking performance of a vehicle. The braking distance y is defined as the
integral of the vehicle longitudinal velocity over time from velocity vs = 100 km/h
at time ts to ve = 0 km/h at time te:

y =
∫ te

ts

v(t) dt. (8)

Mechanical vehicle and its control systems, the driver and the environment
can be simulated via a two-track model implemented in Simulink [44]. To accu-
rately model the steady-state and transient behavior of the tires under slip condi-
tions the MF-Tyre/MF-Swift tire model [42], which is based on Pacejka’s Magic
Formula [38] is used. On a standard workstation1, one full simulation run takes
about 15 to 20 min.

The objective is to find a parameter setting x within the lower bound Blb

and upper bound Bub that minimizes the braking distance y(x). In total 28 ABS
and two VDC parameters are considered.

4 Exploratory Landscape Analysis for Transfer Learning

Exploratory Landscape Analysis. (ELA) [32] quantifies high-level properties of
the landscape of an optimization problem [33]. The flacco package provides a
wide collection of ELA features [25]. The total of 68 single features, structured in
six sets, are appropriate for the considered real-world problem (Sect. 3): classical
ELA (distribution, level, meta) [32], information content [34], dispersion [31],
linear model, nearest better clustering [24,40] and principal component.

We use the instance-generating mechanism of the BBOB function suite [17]
and consider five instances of each function. To calculate the features, a Sobol’
design [37,43] with 16384 samples in [−5, 5]30 is used. The resulting set of com-
puted features is filtered [29] to exclude features with zero standard deviation
across all problems and feature pairs with Spearman’s rank correlation [28] above
0.99. This leaves 39 features. The feature values are then min-max-scaled to [0, 1]
for equal weighting.

1 HP Workstation Z4 G4 Intel Xeon W-2125 4.00 GHz/4.50 GHz 8.25MB 2666 4C
32 GB DDR4-2666 ECC SDRAM.
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Fig. 1. Euclidean distances in the 39-dimensional ELA feature space between the con-
sidered real-world problem and 24 BBOB functions. The five instances {0, 1, 2, 3, 4}
of each BBOB function are considered.

We define the similarity of two problems p1 and p2 as the Euclidean distance
d between their feature vectors Fp1 and Fp2 :

d(p1, p2) = ‖Fp1 − Fp2‖2 . (9)

Using such distance, we investigate the similarity between the real-world problem
and the five instances of each BBOB function based on the 39-dimensional fea-
ture vectors and conclude that such distances vary across functions and instances
(Fig. 1). BBOB functions f17, f21 are selected as similar to the considered real-
world problem. Furthermore, to test the transferability of optimal parameters
across functions, we augment the tuning reference with BBOB’s sphere function
f1 as an example of a dissimilar reference.

5 Multi-objective Tuning of Algorithm’s Parameters
on Reference Functions

We define as a meta-algorithm an algorithm used to find the optimal set of
parameters θ∗ for an optimization algorithm A to solve the original real-world
problem. Since the real-world problem is computationally expensive to evaluate,
such meta-optimization can be performed on another (similar) problem or to
increase generalisability on a set of problems – both such tasks exemplify transfer
learning. In the following, we call such a function set a tuning reference Π. For
each considered BBOB function fj we use the five instances i ∈ {0, ..., 4} as a
tuning reference: Πfj

= {fj0 , ..., fj4}.
To compare the quality of a solution found by an algorithm across different

problem instances and functions, we consider the distance Δf = f − f∗ to the
known optimum f∗ of a BBOB function f as cost function C:
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C = Δf = f − f∗. (10)

Considering the probabilistic nature of the algorithms, to obtain statistically
meaningful results, we conduct nopt = 100 optimization runs on each problem
of the tuning reference Π. A performance measure over the obtained cost val-
ues (c1, ..., cnopt

) can then be calculated by a statistic h (e.g., mean, median).
To focus more on average performance than peak performance and reduce the
variance, we consider the median and the standard deviation across the nopt

optimization runs for each problem in the tuning reference:

h(c1, ..., cnopt
) = median(c1, ..., cnopt

) + std(c1, ..., cnopt
). (11)

The quality of a parameter set θ for an algorithm A on the tuning reference Π,
in the following referred to as utility u(θ,Π), is then assessed as the average
performance measure h over the np problems in the tuning reference Π:

u(θ,Π) =
1
np

np∑

i=1

h(C(A(θ),Πi)). (12)

In addition to the quality of the solution found across several optimization
runs, the wall-clock time spent to find this solution is another crucial performance
criterion of an optimization algorithm. On the real-world problem, the wall-clock
time needed by the algorithm to generate the next population is negligible. The
wall-clock time can be reduced mainly by running several simulations in parallel.
Thus, the time for an optimization run correlates not directly with the evaluation
budget neval, but with the number of serial iterations niter. In each iteration
nparallel solution candidates can be evaluated simultaneously. The number of
iterations depends on the population size λ, if λ = nparallel, niter is equal to the
number of generations neval

λ :

niter =
neval

λ

⌈
λ

nparallel

⌉
. (13)

We assess a parameter set of CMA-ES based on two conflicting objectives:
the utility u (Eq. 12) as a measurement of the quality of found solutions and
the iteration budget niter (Eq. 13). Many algorithms exist for multi-objective
hyperparameter optimization [20]. We employ the NSGA-II [10] implementation
from the hyper-parameter optimization tool Optuna [2] as the meta-algorithm.
To find a so-called performance front of Pareto optimal parameter sets for the
CMA-ES algorithm, the meta-algorithm has a budget of 10,000 evaluations.

The set of algorithm’s parameters being searched and assessed via multi-
objective parameter tuning is specified in Table 1, based on the modular CMA-
ES implementation [36,46]. Because of practical limitations in software licenses
and computational resources required for the considered real-world problem, a
maximum of 30 simulations can be executed in parallel. Therefore, only pop-
ulation sizes which are multiples of 30 are considered for CMA-ES. Infeasible
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Table 1. Parameters and variants of CMA-ES with their value space for multi-objective
parameter tuning with NSGA-II.

Hyperparameter Description Space

λ Number of children derived from parents {30, 60, 90}
μr Ratio of parents selected from population [0.2, 0.8]

σ0 Initial standard deviation ]0, 1]

C1 Learning rate rank-one update ]0, 1]

Cc Learning rate covariance matrix adaption ]0, 1]

Cμ Learning rate rank-μ update ]0, 1]

Cσ Learning rate step size control ]0, 1[

Active update Covariance matrix update variation {on, off}
Elitism Strategy of the evolutionary algorithm {(μ, λ), (μ + λ)}
Mirrored sampling Mutations are the mirror image of another {on, off}
Orthogonal Orthogonal sampling {on, off}
Threshold Length threshold for mutation vectors {on, off}
Adaptation σ How to adapt the step size σ {CSA, TPA, MSR}
Weights Weights for recombination {default, equal, 1

2

λ}

solutions generated during the run of CMA-ES are corrected using the “satu-
rate” method [9].

We set the iteration budget to 4200 function evaluations to practically be able
to use the same budget once optimized parameters are transferred to the real-
world problem (where such budget translates to about two days of simulations
for one optimization run). The meta-algorithm can select the following iteration
budgets: {10, 20, 30, 40, 60, 80, 100, 140}.

5.1 Results

A set of parameters θ is tuned based on the quality of found solutions u(θ,Π)
on the tuning reference Π and the iteration budget niter. We obtained k Pareto
optimal parameter sets θ∗

Πfj
,i, i ∈ {1, ..., k} from each tuning reference Πfj

,
j ∈ {1, 17, 21}. For further investigations, we assess these parameter sets on the
tuning references Πf17 and Πf21 (Fig. 2).

The resulting tuned parameter sets are shown in Table 2. It is important
to mention that across all tuned parameter sets CSA is used, mirrored and
orthogonal sampling are on and “elitist” is off.

Optimal parameter sets for 140 and 10 iterations on Πf17 and Πf21 are addi-
tionally assessed for all considered intermediate iteration budgets (marked with
circles in Fig. 2). If the optimization run is stopped earlier or continued beyond
the optimal iteration budget, another tuned parameter set would have performed
better on average. It turns out that performance of the tuned parameter sets is
very sensitive to the iteration budget – runs of the algorithm with parameters
tuned for one budget result in significantly worse performance on other budgets.
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Fig. 2. Values of the quality of found solutions u(θ, Π) (Eq. 12) and the iteration bud-
gets niter on the tuning references Πf17 (left) and Πf21 (right) for the obtained k
Pareto optimal parameter sets θ∗

Πfj
,i, i ∈ {1, ..., k} from each tuning reference Πfj ,

j ∈ {1, 17, 21} (Table 2). Each tuning reference consists of five instances of the corre-
sponding BBOB function. Setting θdefault refers to a default parameter set (not tuned)
recommended in the modular CMA-ES implementation with an adjusted population
size of 30. The optimal parameter sets for 140 and 10 iterations on Πf17 , Πf21 and
θdefault are assessed for all considered iteration budgets. Symbols are connected with
dotted lines when the same CMA-ES parameter set is used.

For example, θ∗
Πf17 ,8 (marked with yellow circles in Fig. 2, left) is tuned for 10

iterations and performs worse than the default parameters for iteration budgets
grater than 30 (shown as rhombi). The other way around, θ∗

Πf21 ,1 (marked with
silver circles in Fig. 2, right) is tuned for 140 iterations and is worse than the
default parameters (shown as rhombi) for iteration budgets less than 80. Thus,
a tuned parameter set performs better only for a specific iteration budget.

The obtained Pareto front from the multi-objective parameter tuning in Fig. 2
shows the conflict between the budget spent and the solution quality found on a
set of optimization problems. With increasing the number of iterations the qual-
ity of the found solutions generally increases, exceptions can occur because of the
variance across the nopt optimization runs. However, the improvement decreases
as the number of iterations increases. In particular, on Πf21 , the quality of the
solutions found does not increase significantly beyond 60 iterations, both for
the tuned parameter sets and for the default parameter set. Thus, the obtained
Pareto front indicates which number of iterations is suitable and at what point
even a tuned parameter set for a larger iteration budget is not recommended.

Despite the dissimilarity of the landscapes of f1, f17 and f21, a transfer
of CMA-ES parameters tuned on reference Πf1 improves the performance of
CMA-ES compared to the default parameter set on Πf17 and Πf21 (marked
with triangles and diamonds in Fig. 2). Also, transferring the parameter sets
tuned on Πf17 improves the performance of CMA-ES on Πf21 and vice versa,
except for θ∗

Πf21 ,1 on Πf17 (marked with crosses and stars in Fig. 2).
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Table 2. Parameter values for CMA-ES of the default parameter set θdefault and
Pareto optimal parameter sets θ∗

Πfj
,i on the tuning references Πfj , j ∈ {1, 17, 21}.

Each tuning reference consists of five instances of the BBOB function fj . The search
space of the parameters is given in Table 1. CSA, mirrored, orthogonal sampling is used
and elitist is not across all tuned parameter sets. In the default settings these variants
are all off. For parameter values between zero and one, higher values are shaded darker.

CMA-ES niter λ μr σ0 c1 cc cμ cσ active threshold weights
θdefault - 30 0.5000 0.2000 0.0020 0.1208 0.0049 0.1600 off off default
θ∗

Πf17 ,1 140 30 0.4506 0.3151 0.0038 0.0060 0.0241 0.3038 off on default

θ∗
Πf17 ,2 100 30 0.5282 0.3277 0.0038 0.0060 0.0241 0.4072 off on default

θ∗
Πf17 ,3 80 30 0.4506 0.3249 0.0038 0.0060 0.0241 0.4502 off on default

θ∗
Πf17 ,4 60 30 0.4506 0.2819 0.0038 0.0060 0.0241 0.6545 off on default

θ∗
Πf17 ,5 40 30 0.4506 0.4409 0.0038 0.2904 0.0246 0.9613 on off default

θ∗
Πf17 ,6 30 30 0.4506 0.4409 0.0038 0.2904 0.0246 0.9613 on off default

θ∗
Πf17 ,7 20 30 0.7140 0.5780 0.0852 0.0060 0.0246 0.9712 on off default

θ∗
Πf17 ,8 10 30 0.7140 0.7145 0.2886 0.0060 0.0246 0.9327 on off default

θ∗
Πf21 ,1 140 60 0.7208 0.8618 0.0026 0.7898 0.1301 0.1266 on on default

θ∗
Πf21 ,2 80 60 0.7208 0.8618 0.0026 0.7133 0.1254 0.5105 off on default

θ∗
Πf21 ,3 60 60 0.7208 0.8618 0.0026 0.7898 0.1301 0.8456 on on default

θ∗
Πf21 ,4 40 30 0.7208 0.7145 0.0852 0.0135 0.0173 0.9817 off on default

θ∗
Πf21 ,5 30 30 0.7751 0.7145 0.0852 0.0135 0.0173 0.9817 off on default

θ∗
Πf21 ,6 20 30 0.7208 0.7145 0.0852 0.0135 0.0173 0.9448 off on default

θ∗
Πf21 ,7 10 30 0.7208 0.2824 0.2761 0.0060 0.0173 0.9145 off on 1

2

λ

θ∗
Πf1 ,1 140 30 0.4651 0.6867 0.0096 0.5414 0.0056 0.7292 off off default

θ∗
Πf1 ,2 100 30 0.4651 0.4948 0.0096 0.0021 0.0056 0.9712 off off default

θ∗
Πf1 ,3 80 30 0.4651 0.4948 0.0096 0.0021 0.0056 0.9712 off off default

θ∗
Πf1 ,4 60 30 0.4651 0.4948 0.0330 0.0021 0.0056 0.9712 off off default

θ∗
Πf1 ,5 40 30 0.4651 0.4948 0.0429 0.0021 0.0056 0.9712 on off default

θ∗
Πf1 ,6 30 30 0.4651 0.5557 0.1044 0.0021 0.0056 0.9712 on off default

θ∗
Πf1 ,7 20 30 0.4651 0.5557 0.1044 0.0021 0.0056 0.9712 on off default

θ∗
Πf1 ,8 10 30 0.4651 0.5852 0.3947 0.0021 0.0056 0.9712 off on default

Looking at individual values in the tuned parameter sets, the used variants
mirrored and orthogonal sampling across all tuned parameter sets indicate a
general increase in utility of CMA-ES for different problems. The population
size was increased from the default value of 14 to at least 30 because of the num-
ber of parallel evaluations. In accordance with [48,49], mirrored and orthogonal
sampling especially improves the exploration effects of a large population. The
initial step size σ0 is higher than the default step size for all tuned parameter
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sets using the larger population size for an initial higher exploration. The tuned
parameters are also adjusted to features of the problem and the algorithm that
are identical or similar on the other problems like dimension and population size.
Transfer learning thus can improve the performance of the algorithm.

A major difference between Πf17 and Πf21 is the comparatively worse utility
of the solutions found regardless of the parameter set. On Πf21 the algorithm
often gets stuck in a local optimum and does not find a solution near the global
optimum. Therefore, exploration is especially important on Πf21 , resulting in
significant differences in parameter values of θ∗

Πf21 ,i to θ∗
Πf1 ,i and θ∗

Πf17 ,i. An
open question is whether, instead of one single long run, two or three shorter
runs result in better peak performance.

It is of interest to note that the learning rates mostly decrease or increase
constantly across the iterations for the tuned parameter sets, especially cσ. Also
active covariance matrix update variation is mostly on for lower number of iter-
ations and length threshold for mutation vectors is set to on for higher numbers
of iterations. This highlights the need to conduct more research in the direction
of landscape-aware adaptive parameter tuning [22].

5.2 Transfer of Tuned Parameters to the Real-World Problem

We transfer parameter sets obtained from the tuning references to the real-world
problem from vehicle dynamics design and analyze whether they also improve
the search performance of CMA-ES compared to the default parameter set.
One optimization run with 140 iterations on the real-world problem takes about
two days. Therefore, only two optimization runs for the same parameter set
are conducted and only 40 and 140 iterations are considered as budget for one
optimization run. Thus, we transfer the optimal parameter sets on the considered
tuning references Πf1 , Πf17 , Πf21 for 140 iterations θ∗

Πf1 ,1, θ∗
Πf17 ,1, θ∗

Πf21 ,1 and
for 40 iterations θ∗

Πf1 ,5, θ∗
Πf17 ,5, θ∗

Πf21 ,4 to the real-world problem (Fig. 3). The
initialization of the mean value m(0) is set to the default parametrization of the
control parameters for all optimizations runs.

Overall, small differences between the curves can be observed. For an itera-
tion budget of 140 (Fig. 3, left), the solutions found with θ∗

Πf21 ,1 tend to be worse
compared to the other parameter sets, especially at the beginning of the opti-
mization run. This is the price for the higher exploration of the search-space.
Unexpectedly, by far the shortest braking distance is found by the first run
of CMA-ES with the parameter set θ∗

Πf1 ,1 (tuned on a dissimilar function f1)
within only 41 iterations and the second run can compete with the others as
well. This confirms the observations on the tuning references (Sect. 5.1), where
a transfer of θ∗

Πf1 ,i also improved the performance of CMA-ES compared to the
default parameter set. Tuning the parameters of CMA-ES to general problem
characteristics and algorithm settings like problem dimension and population
size improves the search behavior.

With an iteration budget of only 40, the variance across the found braking
distances increases compared to 140 iterations. Overall, the best parameter sets
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Fig. 3. Distance to the best known braking distance attainable on the considered real-
world problem within intermediate computational budgets by CMA-ES configurations
tuned for iteration budgets of 140 (left) and 40 (right). Line colours define the tuning
reference Πfj (where index j ∈ {1, 17, 21} defines the BBOB function, five instances
were considered) on which CMA-ES (Table 2) has been tuned. Two independent runs
are shown for each CMA-ES parameter set. Setting θdefault refers to a default param-
eter set recommended in the modular CMA-ES implementation with an adjusted pop-
ulation size of 30 (not tuned). (Color figure online)

for 40 iterations tend to find shorter braking distances faster than the default
parameter set θdefault.

In summary, similar phenomena in the performance of CMA-ES on bench-
mark functions can also be observed on the real-world problem, encouraging
further investigation of transfer learning.

6 Conclusion

In this paper, we tuned different parameters and variants of CMA-ES with the
two objectives of computational budget needed and quality of the solution found
on functions taken from the BBOB benchmark test set. A tuned parameter
set is only optimal for a given budget and problem or set of problems, so a
Pareto front consisting of different parameter sets for each set of problems was
derived. In order not to tune the parameters to a specific budget, the area under
the empirical cumulative distribution function curve could be an alternative
objective [50].

The use of certain variants of CMA-ES results in an improvement across all
problems considered. One reason for this is the adaptation to general problem
characteristics and algorithm settings. For example, orthogonal and mirrored
sampling generally improve search performance for relatively large populations,
while a higher initial step size and “threshold” improve exploration of the large
search space. A simple solution besides tuning variants of CMA-ES would be to
provide simple heuristics and recommendations (rules of thumb).
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The values of the parameter sets tuned on different sets of problems differ
significantly, but lead to similar results on the real-world problem from vehicle
dynamics. A new best solution on the real-world problem was found by a tuned
parameter set on the sphere function f1. The improvement of this solution is
1.8 times better than the improvement of the best solution in a Sobol’ design
with 16384 samples compared to the default parameterization of the real-world
problem.

The similarity of the considered benchmark functions to the real-world prob-
lem was quantified by the Euclidean distance of Exploratory Landscape Analysis
feature values. The assumption of correlation between similarity of two problems
quantified by ELA features and the difficulty for an algorithm configuration of
solving them needs further investigations.
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vehicle dynamics control systems: towards benchmarking and exploratory land-
scape analysis. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, pp. 2036–2045. Association for Computing Machinery, New
York (2022). https://doi.org/10.1145/3520304.3533979

46. van Rijn, S., Wang, H., van Leeuwen, M., Bäck, T.: Evolving the structure of evo-
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