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Highlights
Microbial functioning is intrinsically
linked to the resistance and resilience
of ecosystems.

Microbes drive and regulate distur-
bance feedbacks that impact ecosys-
tem stability.

Functional traits from delineated geno-
types to community-wide traits mediate
the intensity and direction of feedbacks.

Feedbacks can be positive (amplifying)
or negative (dampening) and emerge
Microbes are key biodiversity components of all ecosystems and control vital
ecosystem functions. Although we have just begun to unravel the scales and
factors that regulate microbial communities, their role in mediating ecosystem
stability in response to disturbances remains underexplored. Here, we review
evidence of how, when, and where microbes regulate or drive disturbance feed-
backs. Negative feedbacks dampen the impacts of disturbance, which maintain
ecosystem stability, whereas positive feedbacks instead erode stability by am-
plifying the disturbance. Here we describe the processes underlying the re-
sponses to disturbance using a hierarchy of functional traits, and we exemplify
how these may drive biogeochemical feedbacks. We suggest that the feedback
potential of functional traits at different hierarchical levels is contingent on the
complexity and heterogeneity of the environment.
from altered biogeochemical cycling
related to microbial disturbance
responses.

Generalizable frameworks for how mi-
crobes adapt to disturbances in time
and space are needed to increase the
understanding and predictability of
feedbacks and the temporal stability of
ecosystems.
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Microbes regulating disturbance feedbacks
Microorganisms such as archaea, bacteria, fungi, microplankton, and protists (hereafter
microbes), play vital roles in driving ecosystem processes and in regulating community
dynamics across terrestrial and aquatic food webs [1–4]. Microbes also continually respond
and adapt to disturbances (see Glossary), through altered patterns of assembly and func-
tioning, in ways that can cascade into the wider ecosystem and affect important ecosystem
properties [5] (Box 1). In particular, feedbacks driven by altered microbial functioning may
cause nonlinear dynamics that can affect the stability of ecosystems and trigger regime
shifts between stable states [6]. For instance, recent evidence indicates that accelerated
fluxes of N2O, from the decomposition of nitrogen-rich organic matter in drought-impacted
soils [7], are driven by altered functioning of nitrifying and denitrifying bacteria and archaea
[8,9]. As N2O is a powerful greenhouse gas, microbial disturbance responses that increase
its production are a source of positive feedbacks that amplify the impacts of climate change
through further warming and droughts [10]. At the same time, the direct impacts of drought
on plant communities can be dampened by root-associated mycorrhizal fungi and
rhizobacteria through negative feedbacks that alleviate heat stress impacts on their host
plant communities, by, for example, distributing water between drought-stressed plants
through common mycelial networks [11]. Although negative and positive feedbacks play a
natural part in regulating disturbance impacts and underpin seasonal regime shifts in
ecosystems at a local scale [12], climate change and anthropogenic activities are changing
the frequency and intensity of disturbances, and there are growing concerns about how
this could affect microbial functioning and the potential feedbacks induced [13–16]. Here
we review the how, where, and when of microbially mediated feedbacks and their implica-
tions for ecosystem stability and regime shifts under climate-change disturbances. We
conceptualize the mechanisms underpinning disturbance responses and functioning across
a hierarchy of functional traits, and exemplify how these underpin feedbacks in the context
of biogeochemical cycling.
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Box 1. Disturbance and ecosystem stability in the microbial world

What is a disturbance in the world of microbes? Disturbances can be defined as ‘A discrete, unpredictable event that
causes direct removal of living biomass, thereby altering community structure’ [17] and conceptually distinguished from
environmental stress, which is then taken as a chronic negative debilitating impact [18]. This definition emphasizes the
transient and discrete nature of a disturbance, typically expressed as pulses, in contrast to the chronic nature of a stress.
Biotic and abiotic stresses could also be seen as long-term or continuous press disturbances (sensu [19]) directly or indi-
rectly altering community structure over time. As pointed out by Shade et al. [20], a tree falling in a forest may therefore
constitute a pulse disturbance to the nearby understory vegetation while at the same time constituting a press disturbance
to the underlying soil microbes. In line with this latter perspective, we here adopt the Shade et al. [20] definition of distur-
bances as ‘causal events that either (1) alter the immediate environment and have possible repercussions for a community,
or (2) directly alter a community’, by which we also use the term ‘stress’ in the meaning of a press disturbance.

Ecosystem stability is a multifaceted concept encompassing related concepts such as resistance, resilience, stable states,
and temporal stability, but also comprises the idea of a temporal continuity, as in the persistence of populations, diversity,
or other ecological attributes through time [21]. In practice, ecosystem stability is often measured as the capacity of an eco-
system to absorb disturbance before undergoing a regime shift from one stable state to another [22], or by building on some
measurement of the ecosystem’s net primary productivity (NPP), as most aboveground and belowground life forms can be
related back to this [23]. This latter notion of stability has the advantage that it is possible to evaluate before any regime shift
occurs, by for example relating the mean annual NPP to its variation across a given time period, including disturbance events
such as droughts, and relating this to microbial functioning or diversity [3]. Similarly, recent developments in the assessment
of multiple ecosystem functions driven by soil microbes have opened a new avenue of inferring how disturbances affect the
temporal stability of ecosystems [24]. Here, we define a stable ecosystem as one that, over a normal cycle of disturbance
events, maintains its characteristic diversity ofmajor functional groups, productivity, fertility, and rates of ecosystem functions.
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Glossary
Carbon use efficiency (CUE): the
ratio of organic carbon allocated for
biomass growth to the organic carbon
taken up.
Collective phenotype: population or
community-level traits that emerge from
the interaction of multiple individual
organisms, and that typically enhance
functioning compared to individual
microbes.
Disturbance: a causal event that either
(i) alters the immediate environment and
has possible repercussions for a
community, or (ii) directly alters a
community.
Ecosystem stability: the capacity of
an ecosystem to maintain its
characteristic diversity of major
functional groups, productivity, fertility,
and rates of ecosystem functions over a
normal cycle of disturbance events.
Effect traits: traits that determine the
effect of organisms on the ecosystem
processes (e.g., litter decomposition).
Functional trait: a measurable
genotypic or phenotypic characteristic of
microbes related to their fitness and
functioning.
Hysteresis: the retardation of an effect
when the forces acting upon a system
are changed. Here we refer to hysteresis
as the lag in response an ecosystem
shows in response to environmental
changes that can be attributed to soil
microbial functioning.
Legacy effect: an indirect effect
stemming from past microbial
disturbance responses that impacts the
current state of an ecosystem.
Microbiome: the sum of the microbes
and their genomic elements in a
particular environment. The microbiome
can thus comprise one or several
communities of microbes.
Negative feedback: feedback that
reduces or counteracts the changes in
conditions caused by a disturbance.
These feedbacks provide resistance to
natural or anthropogenic changes and
maintain the ecosystem in a stable state.
Positive feedback: feedback that
amplifies an initial change in conditions
caused by a disturbance and may push
the ecosystem towards a new state.
Regime shift: a sudden and often
irreversible shift of an ecosystem from
one stable state to another.
Response traits: traits delineating how
a microbe responds to changing
environments and perturbations
(e.g., dormancy).
Understanding feedbacks from functional traits
Historically, much focus in microbial ecology has been dedicated to assessing how disturbances
impact on the taxonomic composition of populations or communities of microbes [20], and by
inferring effects on ecosystem processes through putative links between taxonomy and func-
tioning. However, more recently, research has shown various degrees of decoupling between
taxonomy and functioning [25–27], and a growing focus among microbial ecologists is there-
fore to determine whether, and to what extent, disturbance responses can be deduced and
predicted from functional traits [20,26,28]. At its core, a functional trait represents a single
gene-encoded pathway that confers improved fitness to a given environmental stressor
(response trait), or the capacity to produce enzymes that break down specific molecular
compounds (effect trait) [29]. However, many aspects of functioning and disturbance re-
sponse typically involve complex sets of interrelated response and effect traits [30] rather
than single gene-encoded pathways. Indeed, evolutionary adaptations tend to blend genetic
and phenotypic traits into sets of correlated traits that collectively govern how microbial com-
munities respond to and function under disturbances [31]. Conceptually, disturbance re-
sponses can therefore be seen as operating across a hierarchy of levels, spanning from
clearly delineated individual genes within individual microbes to the functioning of whole micro-
bial communities or microbiomes, with the potential to drive and regulate feedbacks at every
level. This implies the autonomy of microbiomes under disturbances, which can lead to their
versatile mediating roles in feedback responses as discussed in the following text.

Predicting feedbacks from genotype traits
Under what circumstances could feedbacks be predicted by the quantification or expression of
delineated genotype traits? A crucial issue relates to how measuring gene abundances can im-
prove predictions of functioning and feedbacks under disturbances. For some genotype-level
traits, direct linkages betweenmetabolic pathways and functioning exist and can be used directly
to inform altered biogeochemical cycling under perturbations, including feedback effects. For
example, warming of coastal seawater increases the genetic pathways needed for degradation
of complex biomolecules [32], which is likely to increase productivity and respiration at the expense
of C-sequestration, and thereby contribute to a positive carbon feedback. Because environmental
Trends in Microbiology, January 2024, Vol. 32, No. 1 69
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Figure 1. Example of negative feedbacks maintaining bistability patterns in a lake ecosystem. Microbial
disturbance feedbacks can trigger regime shifts (i.e., large and persistent changes in the ecosystem structure) but also
maintain stable states in ecosystems. In model and real lake ecosystems, the initial composition of three groups of
bacteria with distinct redox-controlling metabolic pathways regulates the stability and shifts to oxic or anoxic states [35].
High densities of photosynthesizing cyanobacteria (CB) entail metabolic oxygenation of the lake despite gradual changes
in the inflow of nutrients and oxygen diffusion, and thereby drive a negative disturbance feedback that maintains the lake in
an oxic stable state. When the system reaches a critical level of disturbance and shifts into the anoxic stable state, a build-
up of sulfate-reducing (SR) and phototrophic sulfur bacteria (PB) inhibit re-oxygenation by producing sulfites (SO3

–2), and
thereby driving a negative feedback that maintains the system in an anoxic state despite subsequent vertical mixing and
oxygen diffusion. Disturbances such as rising temperatures and eutrophication, which affect the balance between
photosynthesis and respiration and alter the rate of organic matter production and degradation, can lead to abrupt
changes in the composition of SR, PB, and CB controlling the redox state of the lake’s biogeochemical cycling (positive
feedback), and push the ecosystem past a tipping point and into a new stable state [12,108].
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Stable state: an ecosystem
characterized by temporal stability, in
which populations and ecosystem
functions fluctuate around some trend or
stable average (Box 1).
heterogeneity is a strong driver of both taxonomic and functional diversity of microbes [33,34], we
can expect clearer signals of genotype-driven feedbacks in more secluded and well-structured
ecosystemswhere biogeochemical cycling is driven by functionally differentiated pathways. Recent
evidence from model and real freshwater ecosystems provides an elegant example of this. In a
modeled lake ecosystem, Bush et al. [35] saw that shifts between stable states of the lake ecosys-
tem were contingent on the composition of three dominant groups of bacteria exhibiting different
metabolic pathways [35] (Figure 1). When they subsequently modeled the impact that gradual in-
creases in stressors (oxygen influx, vertical stratification, and nutrient levels) had on the system,
they found that a bistability pattern of either oxic or anoxic stable states bolstered by abrupt tran-
sitional shifts (i.e., regime shifts) governed the system. The main driving factor underpinning the
bistability pattern was the buffering effect of the residing microbial communities and their differing
metabolic pathways. In particular, high prevalence of photosynthesizing cyanobacteria effectively
constituted a negative feedback that buffered the system through metabolically induced oxygena-
tion, even at very low oxygen diffusion levels [35]. Conversely, when oxygen levels had reached a
tipping point of critical depletion, and the lake abruptly shifted into an anoxic state, sulfate reduction
replaced photosynthesis as the main metabolic pathway in the system and was accompanied by a
shift to sulfur-reducing and phototrophic bacteria. Subsequent tests in a real-world lake ecosystem
showed that the state of the system – that is, oxic or anoxic –was contingent on the initial densities
of the differing metabolic pathways [35].

The example pinpoints how single microbial metabolic pathways, readily predicted from geno-
type traits, can underpin feedbacks that maintain spatially structured ecosystems in a stable
70 Trends in Microbiology, January 2024, Vol. 32, No. 1
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state. The stability of the ecosystem in this example is thus contingent on negative feedbacks, in-
dependently of whether that state is oxic or anoxic. Studies of coastal shallow waters subjected
to the same type of regime shifts [36,37] have also shown that experimental warming increases
the expressed sulfate-reducing and methane-production pathways in sediment microbial com-
munities, thus possibly extending and prolonging anoxic conditions in the way described by
Bush et al. [35]. Moreover, the example also points to a more general function of negative feed-
backs as a biotic component underpinning hysteresis, that is, the dependence of a system’s
current state that can be attributed to its history [38], as we discuss further. Naturally,
genotype-based predictions could be equally valuable in predicting positive feedbacks in similarly
secluded ecosystems. A recent study from globally distributed wetland sites found that the rela-
tive abundance of a single archaeal nitrification pathway (amoA) explained 62% of N2O emissions
[39] and is therefore most likely to be the single most important gene to quantify when assessing
the feedback loop of increasing N2O emissions from wetlands under warming [40]. Most bio-
chemically underpinned feedbacks are nevertheless likely to play out at larger scales spanning
more heterogeneous environments, involving domino effects and hidden feedbacks that work
across ecosystems [41], which renders genotype-based predictions considerably more chal-
lenging. It is further difficult to link genotype traits and disturbance responses acrossmultiple sep-
arate or compounded disturbances because they tend to vary according to the disturbance type
and intensity. For example, linkingmicrobially mediated shifts in nitrogen cycling from drought and
rewetting disturbances is relatively straightforward because the gene-encoded pathways that
correlate well with observed process rates of nitrification and denitrification are critically controlled
by soil moisture [42]. Nevertheless, the same groups of bacteria show a highly varying response
to nitrogen addition across environments [43], which indicates that a mixture of different effect
and response traits determines the overall community response. Therefore, to understand
the feedback potential of microbial functioning across larger spatiotemporal scales and more
complex sets of disturbances, we need to broaden the perspective of functional traits to a pop-
ulation or community level.

Community-level functional traits
Expanding upon the view of functional traits as gene-encoded pathways, it is evident that many
traits comprise multiple gene interactions that cannot be readily predicted from individual or even
multiple gene expressions or quantifications alone [25]. At the organismal level, phenotype traits
such as cell shape, pH tolerance, dispersal mode, and growth rate [44–46] constitute important
effects and response traits that could potentially affect disturbance feedbacks. However, an array
of traits exceed genotype and organism levels altogether and are instead located at population,
community- or whole-microbiome level, operating as a collective phenotype [28]. It is likely
that traits located at this super-organismal level would enhance a community’s disturbance re-
sponse compared to those of an individual microbe. For example, yeast populations can extend
their heat tolerance through collective secretion and coating with the heat-damage-preventing
antioxidant glutathione [47], despite exceeding critical heat levels for individual cells. As collective
phenotypes are emergent traits resulting from the interaction of multiple individual microbes, they
are also likely to show higher feedback potential compared to the aggregated sum of individual
genotype responses in both well-structured and more heterogeneous environments (Figure 2).

The formation of relatively stationary but resilient aggregates (biofilms) is an example of a collective
phenotype trait that has direct consequences for the turnover of marine organic matter, which con-
stitutes the largest sink of carbon on the planet. Biofilms are formed as consortia of microbial cells
attach to abiotic surfaces through a cohesive polymeric matrix that coats the residing community
and reduces the individual cell’s exposure to toxicity and stress. While biofilm formation provides
enhanced protection from a range of disturbances – including physical stress, desiccation, toxic
Trends in Microbiology, January 2024, Vol. 32, No. 1 71
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Figure 2. The feedback potential of microbial functional traits related to environmental heterogeneity. Microbial
traits can be situated in a framework (A) encompassing three hierarchical levels that all differ in their potential to regulate
biogeochemical feedbacks depending on the heterogeneity of the surrounding environment (B). In well-structured habitats
with low environmental heterogeneity and high filtering, specialized genotype traits needed for the breakdown of organic
matter can drive much of the feedback potential in the system. For example, the bacterial mcrA and archaeal amoA genes
that encode enzymes driving methanogenesis and nitrification respectively, can be used as proxies for methane and
nitrous oxide emissions because of their strong correlations with these processes in secluded environments [39,109]. At
microbial population level, collective phenotype traits, such as biofilm formation, can increase the feedback potential in
environments characterized by relative spatial homogeneity but increasing resource complexity [32]. Environments
characterized by high spatial and resource complexity also have higher functional diversity [52,53], and as a result the
importance of genotype traits for predicting the system’s feedback potential decreases due to multiple performance
optima and asynchrony of species' intrinsic responses to environmental perturbation [105]. We therefore expect
community-level traits such as life history strategies to become increasingly important to determine the feedback potential
as the heterogeneity of the system increases.
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compounds and grazing [48] – it can also enhance the breakdown of recalcitrant forms of organic
matter through increased enzymatic concentrations in the boundary layer between the microbial
aggregate and the substrate [49]. Recent experimental evidence from marine and model ecosys-
tems shows that warming waters tend to increase biofilm formation and thereby also speed up
rates of carbon degradation and respiration, as more bacterial cells gain surface access to the car-
bon compound [32,50]. In addition, marine biofilms formed between phytoplankton and bacteria
increase the surface area and reduce the sinking velocity of biofilm particles [51], and are therefore
likely to decrease the net export of carbon to the deeper oceanic layers, further exacerbating pos-
itive feedbacks related to marine carbon cycling with warming waters.

A framework relating community-wide functioning to disturbance feedbacks
Complex and heterogeneous environments are often characterized by higher levels of functional
diversity than more well-structured and homogeneous environments because they typically
constrain trophic interactions and increase microhabitat diversity [52,53]. As a consequence,
individual- or population-level microbial disturbance responses are often masked or ‘flattened’
compared to community-level responses, as complex communities comprise an array of individ-
ual genotypes with multiple performance optima [54]. It is therefore plausible that the feedback
potential of a given functional trait at a given hierarchical level is directly linked to the heterogeneity
(complexity) of the ecosystem at hand (Figure 2), in ways that could facilitate predictions. At the
higher levels of the trait hierarchy, correlated sets of traits that together define how a community
or whole microbiome adapts to and functions can be classified into different life history strategies
based on key variations in traits at cellular level [31]. Thus, in contrast to delineated metabolic
pathways that are largely controlled by a single gene, or by a set of a few key genes, the cellular
72 Trends in Microbiology, January 2024, Vol. 32, No. 1
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traits that underpin life history strategies typically involve multiple correlated genes with shallow
phylogenetic conservation [25] that are aggregated to community level to infer community-wide
functioning. Similar concepts of strategies underpinning community-wide niche differentiations
and trade-offs in resource acquisition in relation to differing environmental pressures are key fea-
tures of, for example, plant and animal ecology [55,56], and their recent adoption into microbial
ecology has been greatly facilitated by advances in high-throughput molecular methods such
as metagenomics. For example, the number of ribosomal RNA operon copies in bacterial ge-
nomes is intrinsically linked to two reproductive strategies, growth rate and growth efficiency
[57]. Communities with higher weighted operon copy numbers are thought to reflect generalist
bacteria with a high-yield strategy, which typically thrive in the early stages following recovery
from severe disturbances [58] but are also susceptible to chronic stresses such as long-term
warming [59]. Conversely, stress-tolerant communities resilient to extreme or compounded dis-
turbances survive by allocating much of their consumed resources to maintaining cellular integrity
andmechanisms that minimize or mitigate biomolecular damage [60]. Building on this, Malik et al.
[60] recently developed the Yield-Acquisition-Stress (Y-A-S) framework on the basis of trade-offs
between three well-known life history strategies and their implications for carbon cycling.
Microbes with a high carbon use efficiency (CUE), that is, the amount of biomass produced
per unit of resource consumed, are thus characterized as growth-yield strategists (Y-strategists),
whereas microbes with a resource acquisition strategy (A-strategists) invest more in enzyme
production needed to break down complex substrates [60]. Lastly, stress-tolerant (S-strategist)
microbes are characterized by a high allocation of resources for maintaining cellular integrity
and osmotic balance. The Y-A-S framework could be seen as mirroring important biogeo-
graphical findings of disturbance-like thresholds in the distribution of important groups of mi-
crobial decomposers in relation to temperature [61], pH [62], and moisture [63], and provide
a lens through which community-level functioning can be understood in more heterogeneous
and complex environments.

In the following section, we build on the hierarchy of functional traits ranging from delineated
genotype-level traits to the collective phenotypes and life history strategies which we have
presented, to examine more closely where and when these traits could mediate climate feed-
backs from warming in terrestrial and marine environments.

Where and when do microbial feedbacks regulate climate change?
By decomposing organic matter, microbes account for a major fraction of the thermal response
of ecosystem-level respiration [64], and even relatively small changes in the thermal sensitivity of
microbial community respiration may constitute powerful feedback mechanisms in the context of
climate change [65]. A recent study examining changes in global soil respiration between 1987
and 2016 showed that, although overall soil respiration has remained stable during the last two
decades, the heterotrophic respiration attributed to microbial decomposition of organic matter
has increased in the same period [66]. If this trend remains intact, and rising temperatures indeed
continue to increase soil microbial heterotrophic respiration, it will likely constitute one of the most
important positive climate feedbacks in terms of sheer magnitude [67]. By contrast, the seques-
tration and long-term stabilization of carbon is also a function largely driven by microbes, and
mechanisms that enhance sequestration are therefore increasingly advocated as key to
climate-change mitigation strategies [68]. The direction and magnitude of the microbially mediated
carbon feedback could ultimately be inferred from the net outcome of respiration and sequestration
as microbes across the biosphere adapt their functioning to climate-change disturbances, but
there are so far no encompassing ways of predicting the net outcome of various interrelated
positive and negative feedbacks, and more research is needed to conceptually integrate local
disturbances and altered functioning to planetary feedbacks, and vice versa.
Trends in Microbiology, January 2024, Vol. 32, No. 1 73
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Positive feedbacks amplifying climate change
In terrestrial environments, the CUE of microbial communities is likely to constitute a key mecha-
nism that determines whether warming will increase heterotrophic respiration or not [69].

Microbes with high CUE are intrinsically linked to growth-yield strategy (Y) and thought to be im-
portant for soil organic matter production and persistence, while microbes with low CUE are typ-
ically either A- or S-strategists and more likely to be drivers of higher soil respiration because
relatively fewer resources are allocated to biomass growth [70]. Globally, soil heterotrophic respi-
ration has increased over the last three decades [66], despite concomitant increases in primary
production stemming from CO2 fertilization [67]. There is accumulating evidence that CUE is in-
trinsically linked to the levels and variability of soil moisture [71,72], and we could therefore expect
that microbial adaptations to drought and precipitation variability through changes in life history
strategy will be a main driver of positive feedbacks in increasingly drought-affected regions and
ecosystems [73,74]. Recent findings from a tropical forest soil in Panama [75] provide fine-level
details of this, in showing that warming lead to a decrease in bacterial diversity accompanied
by a shift fromBacteroidetes, a phylum characterized by its capacity to degrade polysaccharides,
to stress-tolerant Firmicutes and species of thermotolerant saprophytic fungi, coinciding with
sharp increases in respiration and CO2 emissions [75]. In high-latitude regions where warming
proceeds twice as fast as the global average, a driving mechanism of positive feedbacks could
be the introduction of more functionally versatile and specialized microbes into ecosystems
where decomposition has been limited and large stocks of organic matter has accumulated.
For example, permafrost and peatland soils each store more carbon than the atmosphere
alone [76,77], and accelerated decomposition of these stocks would constitute major sources
of positive feedbacks. Recent evidence from thawing permafrost soils show that freezing condi-
tions and dispersal limitations over long timescales have exerted a strong filtering toward func-
tionally limited microbial taxa, which alter the composition of the permafrost soil organic matter
[78], and limit its decomposition [79]. As environmental filters collapse with thawing permafrost,
more functionally versatile microbes gain access to exposed stocks of organic matter and rapidly
increase decomposition rates [79]. Similar patterns of positive feedbacks from warming
peatlands [80] could also be at least partially attributed to the establishment of novel groups of
functionally specialized microbes [81].

Predicting feedbacks in aquatic ecosystems could be more straightforward than in terrestrial
ecosystems because of the more homogeneous abiotic structuring and more size-structured
food webs in these environments [82]. Moreover, as the link between microbial community
composition and functioning appears to be relatively strong in marine environments [83], the
feedback potential could be inferred directly from changes in community composition of key
functional groups based on metabolism, or through genotype-based predictions [84]. At the
base of the marine food web, unicellular eukaryotic phytoplankton produce around half of
the biosphere’s net primary productivity and play a fundamental role in setting the productivity
of the entire marine ecosystem [85]. Several recent modeling studies project major reorganiza-
tions in the composition and distribution of phytoplankton communities with warming oceans,
which are likely to amplify carbon-related feedbacks [86–88]. For example, rising ocean tem-
peratures could entail a shift from larger to smaller warm-water diatoms in high-latitude oceans
accompanied by decreased rates of carbon sequestration due to differences in their functional
capacity to export carbon to the deep ocean layers [89]. Moreover, the interrelated processes
of acidification, warming, stratification of density gradients, and deoxygenation are likely to
constitute major disturbances driving altered redox pathways driving microbial metabolism.
For instance, increased ocean acidification and stratification has an inhibitory effect on ammo-
nia oxidation and could cause a net shift from oxidized to reduced forms of nitrogen [90], which
74 Trends in Microbiology, January 2024, Vol. 32, No. 1
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in combination with deoxygenation drives powerful feedbacks that both reduce carbon se-
questration to deeper ocean layers and emit N2O [91].

Negative feedbacks dampening ecosystem change
As elevated temperature and CO2 is expected to increase the primary productivity in both terres-
trial and marine environments, negative climate-change feedbacks could be driven by the trans-
formation of increased plant or algal residue into long-term buried or stable forms of organic
carbon. In terrestrial environments, physical protection, chemical stabilization, and enzymatic
processes contribute to the sequestration potential and the stabilization of soil organic matter,
which are mainly mediated by microbes. Sequestration potential is jointly driven by increased
sorption of root exudates and microbial necromass to mineral surfaces in the soil, where they re-
main physically protected from decomposition. A recent study by Witzgall et al. [92] – combining
chemical profiling of particulate organic matter with electron microscopy techniques on the sur-
face of decaying plant residues – shows how fungal hyphae operating in the plant–soil interface
control the production of organic, long-term stable aggregates in the soil matrix from freshly
translocated plant residues. As fresh litter input is typically accounted for as easily degradable
compounds with short turnover times in most carbon cycling models [93], its transformation
into stable forms with long turnover times could counterbalance some of the warming-induced
increases in heterotrophic respiration. There is also increasing evidence that warming, particularly
during winters in high-latitude regions, may increase carbon sequestration through both reduced
heterotrophic respiration [94] and necromass accrual as bacterial growth outcompetes fungi
across many ecosystems [95].

In aquatic ecosystems, the carbon sequestration potential is tightly connected to the redox cycle
that regulates microbial metabolic pathways, as depicted in Figure 1. While climate change is rap-
idly reducing oxygen saturation in marine environments [96], complete deoxygenation entails a
redox shift in microbial metabolism where sulfate or nitrate replaces oxygen as the electron ac-
ceptor for oxidative reactions. Isotopic evidence of anaerobic ammonia oxidizing bacteria
(anammox) in marine sediments suggests that limited nitrogen availability triggered the prolifera-
tion of diatom–diazotroph symbiosis into fast-growing and rapidly sinking consortia, leading to
greatly increased organic carbon burial fluxes [97]. Similarly, recent evidence from experiments
in oxygen-depleted water columns shows a switch to sulfate-reduction pathways, resulting in
the production of sulfide products that react with sinking organic detritus to forms of organic sul-
fur that are both resistant to further hydrolysis [98] and accumulate in the sediments [99]. How-
ever, although both the redox-shifting mechanisms described are likely to constitute powerful
negative carbon feedbacks, they would also contribute to and sustain anoxic conditions that,
over larger scales, would lead to mass extinctions [96].

Functional adaptations in an ecosystem’s microbiome can also form legacy effects that buffer
against climate-change disturbances and increase the overall stability of the ecosystem.
Accumulating evidence shows that drought can change the life history strategies of microbial
communities in ways that impact their functioning also to future drought events [100,101]. For ex-
ample, by simulating physiological allocation mechanisms under ambient and different drought
severity scenarios, Wang and Allison [101] found indications that both transient and persistent
drought legacy effects on litter decomposition could be related back to trade-offs between en-
zyme production and stress tolerance, in line with the Y-A-S framework. Legacy effects of micro-
bial functioning can be an important component of an ecosystem’s resilience to change, and can
provide a powerful biotic mechanism for the often observed hysteresis effect in disturbed or
changing ecosystems [102]. However, it is not yet clear whether chronic stress disturbances
related to climate change are enough to form legacy effects that buffer ecosystem stability
Trends in Microbiology, January 2024, Vol. 32, No. 1 75
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Outstanding questions
What factors define the direction and
magnitude of microbially mediated
disturbance feedbacks?

What is the relationship between the
diversity of functional traits and
disturbance feedbacks?

Do negative or positive feedbacks
change over time in response to
microbial community turnover?

Does environmental and biodiversity
homogenization shift the feedback
potential from community traits to
genotype traits?

How do community dynamics such as
competition and facilitation regulate
disturbance feedbacks?

How are disturbance feedbacks
affected by multiple compounded
disturbances?
(see Outstanding questions). A recent modeling study suggests that disturbance intensity rather
than frequency is key to the creation of persistent legacy effects [103], but recurring low-intensity
droughts have also been shown to create legacy effects in the soil microbiome that significantly
reduced the overall multifunctionality of ecosystems to further drought events [100].

Feedbacks mediated by biotic interactions
We have here focused almost exclusively on microbe-mediated feedbacks related to altered bio-
chemical cycling, as most literature examining microbial disturbance responses in the framework
of traits is found in this area. However, this largely ignores the effects that biotic interactions, such
as changing patterns of competition and facilitation under changing disturbances, will have on geno-
type and community traits thatmediate feedbacks [104]. Interactions such as competition and asyn-
chronous disturbance responses are intrinsically linked to ecosystem stability [105], and the ways in
which altered microbial community dynamics under disturbances could generate positive or nega-
tive feedbacks merit further interest and conceptualization. Moreover, as climate change is rapidly
altering symbioses between microbes and their hosts [106,107], we would expect this to lead to
a range of feedbacks that should similarly be the scope of further investigations.

Concluding remarks
Microbial functioning is key to understanding the feedbacks that drive and restrict disturbances in
general, and climate change in particular. Several lines of evidence point at the mediating roles of
microbes in ecosystem-disturbance feedbacks; yet, there is a great variability in the direction and
magnitude of effect and response of different microbial groups to disturbances, rendering nega-
tive, neutral, and positive feedbacks. What mechanisms underlie microbial mediated feedbacks
remain to be established, but how microbes adapt to disturbances and their community func-
tional traits could be a key regulating factor in this respect. Recent decades have seen intensive
research studying microbial disturbance responses across spatiotemporal contexts, and how
this in turn affects ecosystem functioning and stability. While we are still far away from a detailed
knowledge of how, where, and when these feedbacks emerge, a hierarchical view of microbial
functional traits ranging from genotype traits to collective phenotypes and life history strategies
across gradients of environmental complexity could be a useful framework for building an under-
standing of their fundamental mechanisms. We envision that the accumulating data on
microbiomes and advances in their functional assessments in the coming years, integrated
with a trait-based framework, may allow us to better unravel the mechanisms and drivers of dis-
turbance feedbacks both within and outside the context of climate change.
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