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Abstract Analysis of the transcriptomic alterations 
upon chemical challenge, provides in depth mecha-
nistic information on the compound’s toxic mode of 
action, by revealing specific pathway activation and 
other transcriptional modulations. Mapping changes 
in cellular behaviour to chemical insult, facilitates the 
characterisation of chemical hazard. In this study, we 
assessed the transcriptional landscape of mitochon-
drial impairment through the inhibition of the elec-
tron transport chain (ETC) in a human renal proximal 

tubular cell line (RPTEC/TERT1). We identified the 
unfolded protein response pathway (UPR), particu-
larly the PERK/ATF4 branch as a common cellular 
response across ETC I, II and III inhibitions. This 
finding and the specific genes elaborated may aid the 
identification of mitochondrial liabilities of chemicals 
in both legacy data and prospective transcriptomic 
studies.
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Abbreviations 
ACC   Activity concentrations at cutoff
BMD  Benchmark dose
CI  Complex I
CII  Complex II
CIII  Complex III
DEG  Differentially expressed genes
EAD  Equivalent administered dose
ETC  Electron transport chain
IVIVE  In vitro-in vivo extrapolation
LD50  Lethal dose of 50%
LOEL  Lowest observed effective level
MPP+  1-Methyl-4-phenyl-pyridinium
NAM  New approach methodology
NOEL  No observable effect level
OCR  Oxygen consumption rates
OPERA  Open (Quantitative) Structure–activity/

property Relationship App
ORA  Over representation analysis
ROS  Reactive oxygen species
UPR  Unfolded protein response
PoD  Point of departure

Introduction

The increasing demand of new chemical substances 
in the fields of agriculture, cosmetics, food and 
pharmaceutical industries of the last century, has 
stimulated extra efforts to introduce improved tech-
nologies to evaluate potential hazards to humans 
and the environment. Although, still extensively 
used, traditional animal-based assays may in cer-
tain cases be less relevant to the human situation 
(Capinha et al. 2021). The principle of the three Rs, 
proposed by Russel and Burch more than 60 years 
ago and widely accepted in the scientific commu-
nity (Russell and Burch 1959), have set the basis 
for the development of new approach methodolo-
gies (NAMs) for next generation risk assessment of 
chemicals and for regulatory purposes. NAMs have 
been defined in the EPA’s Toxic Substances Control 
Act program as “a broadly descriptive reference to 
any technology, methodology, approach, or combi-
nation thereof that can be used to provide informa-
tion on chemical hazard and risk assessment that 
avoids the use of intact animals” (US EPA 2019), 
the most representative being: in silico tools such as 

quantitative structure–activity relationship QSAR 
and read-across to estimate effect and doses, in vitro 
assays to determine mechanisms of action and point 
of departure of toxicity (PoD), in  vitro toxicoki-
netic for the in  vitro-in vivo extrapolation of data 
(IVIVE) and computer models for the integration of 
in silico, in vitro and existing toxicology data.

Part of the in  vitro sphere of NAMs are the 
“omics” technologies, in which context, transcrip-
tional evaluation of chemical induced toxicity can 
provide in depth mechanistic information (Wilmes 
et al. 2013), including mode of action, to help iden-
tify and/or quantify adverse outcome pathways (van 
der Stel et  al. 2021), specific pathway activation/
modulation in response to cellular stress and path-
way of toxicity (Jennings et  al. 2012). Moreover, 
with the advent of cost-efficient methodologies for 
transcriptional assessment, such as TempO-Seq 
assay, high throughput transcriptomic as tool for 
risk assessment of chemicals became feasible (Lim-
onciel et al. 2018).

In the last decade, evidence has accumulated for 
a repositioning of chemical induced mitochondrial 
stress for the development of several toxicologi-
cally related adverse outcomes in human populations 
(Dykens and Will 2008; Nadanaciva and Will 2009; 
Vuda and Kamath 2016). Beyond classical mitochon-
drial-specific assays which include fluorescent dyes 
and oxygen consumption rates, identification of tran-
scriptional changes associated with mitochondrial 
impairment, could provide hallmarks for the detection 
of mitochondrial liabilities of drugs.

In the current study, we investigated the transcrip-
tional landscape of mitochondrial toxicity upon cel-
lular exposure to inhibitors of ETC using RPTEC/
TERT1 as in vitro model. The human RPTEC/TERT1 
cell, is a non-cancerous telomerase immortalised cell, 
originating from a human renal proximal tubule cell 
(Wieser et al. 2008). These cells become fully contact 
inhibited, where upon glycolysis is downregulated 
and oxidative phosphorylation is utilised to fuel cel-
lular processes including water and solute transport 
from the apical side to the basolateral side of the cells 
(Aschauer et al. 2013; Wilmes et al. 2015). In addi-
tion RPTEC/TERT1 cells when differentiated exhibit 
an extremely stable phenotype and transcriptomic 
profile (Aschauer et  al. 2013) and exhibit high rates 
of basal and maximal respiration.
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We investigated the effects of acute exposure 
(24 h) to a range of concentrations of 13 direct inhibi-
tors of complex I (CI-NADH:ubiquinone oxidore-
ductase), complex II (CII-succinate dehydrogenase) 
or complex III (CIII-cytochrome bc1 complex) of the 
ETC on contact inhibited RPTEC/TERT1. Oxygen 
consumption rates were measured and transcriptomic 
profiles (TempO-Seq with 2907 transcripts) were 
generated and analysed.

Material and methods

Chemicals

All test compounds were purchased from Merck at 
one site (JRC, Ispra, Italy) and distributed to the test-
ing laboratories. The catalogue no’s are Capsaicin 
(M2028), Deguelin (D0817), Fenpyroximate (31684), 
Pyrimidifen (35999), Rotenone (R8875), Tebufen-
pyrad (46438), Carboxin (45371), Mepronil (33361), 
Thifluzamide (49792), Antimycin A (A8674), Azox-
ystrobin (3167), Cyazofamid (33874), Picoxystrobin 
(33568), Pyraclostrobin (33696). Additional com-
pounds included: CDDO-me (Selleckchem, S8078), 
tunicamycin (Tocris Bioscience, 3516) and sodium 
(meta) arsenite (Sigma-Aldrich, S7400). Test com-
pounds stock solutions between 10 and 100  mM 
were made in dimethyl sulfoxide (DMSO) and stored 
at – 20 °C or – 80 °C until use. Treatment solutions 
were prepared freshly from DMSO stocks for each 
experiment and the final concentration of DMSO in 
the systems was 0.1% (v/v).

Cell culture

The human renal proximal tubule derived cell line 
RPTEC/TERT1, is a non-cancerous cell line which 
was immortalised by introduction of the catalytic unit 
of human telomerase (hTERT) (Wieser et  al. 2008). 
Cells were obtained under licence from Evercyte 
GmBH, Vienna Austria. RPTEC/TERT1 grow in a 
monolayer and after reaching confluency become 
contact inhibited, enter cell cycle arrest and differen-
tiate into a transporting epithelium (Aschauer et  al. 
2013). RPTEC/TERT1 at passage number between 
72 and 95 were routinely cultured in 10  cm dishes 
(Sarstedt, 83.3902) at 37 ˚C in a 5%  CO2 humidified 
atmosphere. Cells were fed every second to third day 

with medium containing 1:1 mixture of Dulbecco’s 
modified Eagle’s medium (DMEM, no glucose, Inv-
itrogen, 11,966) and Ham’s F-12 nutrient mix (Invit-
rogen, 21765), with a final concentration of glucose 
5  mM and sodium pyruvate 1  mM, supplemented 
with 2  mM glutamax (ThermoFisher, 350500038), 
5 µg/L insulin, 5 µg/L transferrin and 5 ng/L sodium 
selenite (Sigma-Aldrich, I1884), 100 U/mL penicillin 
and 100 µg/mL streptomycin (Merck, P4333), 10 ng/
mL epithelial growth factor (Merck, E9644), 36  ng/
mL hydrocortisone (Merck, E9644) and 0.5% foetal 
bovine serum (Gibco, 10,720–106). For experiments 
cells were plated in required format plate, allowed to 
become contact inhibited and fed 24 h prior to treat-
ment exposure.

Oxygen consumption rates with Seahorse XFe96 
Bioanalyzer

RPTEC/TERT1 cells were seeded onto Seahorse 
XF96 V3 PS Cell Culture Microplates (Agilent, 
101085–004) at the density of 25,000 cells/well and 
allowed to differentiate for a minimum of 2  weeks. 
After differentiation cells were treated for 24 h with 
a wide range of concentration of CI, CII and CIII 
inhibitors previous to the mitostress assay performed 
as previously described in van der Stel et al. (van der 
Stel et  al. 2020). Upon assay completion, measured 
basal and maximal oxygen consumption rates (OCR) 
responses were extrapolated by subtracting the aver-
age of the positive control response (treatment with 
a mixture of antimycin A and Rotenone to shut down 
the ETC), to exclude the non-mitochondrial respira-
tion and setting as upper asymptote (100%) the aver-
age of all negative controls’ basal response (0.1% 
DMSO vehicle control). Data was further expressed 
as percentage of at least two non-effective concen-
trations (if applicable) to overcome random varia-
tions not linked to the biological effect and decrease 
the uncertainty around the benchmark concentration 
(BMC) calculations (e.g. inhibitory concentration of 
10%, IC10) (Krebs et al. 2018).

Immunofluorescence

RPTEC/TERT1 cells were seeded and differentiated 
into CellCarrier ultra-black 96-well plates (Perki-
nElmer, 6055302) and treated for 24 h with one rep-
resentative concentration (see Table 2) of each of the 
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CI, CII, and CIII inhibitors of the electron transport 
chain. After 24  h cells were fixed with 4% PFA for 
20  min, permeabilised with 0.1% Triton X-100 for 
10 min and blocked with 5% BSA for 1 h. Samples 
were incubated for 2 h at RT with rabbit α-DDIT3 pri-
mary antibody (MyBiosource, MBS9405289, 1:500), 
followed by incubation for 1  h with α-rabbit Alexa 
Fluor™ 546 secondary antibody (ThermoFisher, 
A10040, 1:1000) and Hoechst 33342 (ThermoFisher, 
H3570, 1:10.000) for 20 min. Samples were imaged 
using the Operetta CLS high content imager (Perki-
nElmer) with × 40 water objective in confocal mode. 
Images were gathered with Harmony software 4.8.

DDIT3 protein quantification analysis was per-
formed with Harmony software 4.8 using the fol-
lowing analysis pipeline: (1) nuclei were counted 
based on the Hoechst 33342 channel. (2) The mean 
of intensity signal of the Alexa Fluor™ 546 (DDIT3) 
inside each nucleus was calculated. (3) An intensity 
threshold for positivity was set based on accumula-
tion of DDIT3 in 0.1%DMSO control samples nuclei. 
(4) For each treatment condition the number of posi-
tive nuclei above the set threshold was calculated. (5) 
Results were defined as percentage of positive nuclei 
over the total number of nuclei in each sample.

Western blotting

RPTEC/TERT1 cells were seeded and differentiated 
into 6-well plates (Greiner, CELLSTAR®, CLS3516) 
and treated for 24  h with one representative con-
centration (see Table  2) of each of the CI, CII, and 
CIII inhibitors of the electron transport chain. After 
24 h, cells were washed in ice cold PBS and scraped 
in 150 µL RIPA buffer (Sigma, 0278) containing 1% 
protease inhibitor cocktail (Sigma, P8340). Protein 
fractions were centrifuged at 10.000 × g, pellets dis-
carded, and lysates stored at – 20 °C prior to use. Pro-
tein concentration was determined with the  Piercetm 
BCA Protein assay kit (Thermo scientific, 23227). 
Western blots were performed using self-made 12% 
SDS-PAGE gels and 21.4  µg of protein contain-
ing 50 mM DTT were loaded in each well. Running 
buffer consisted in 190 mM glycine, 25 mM Tris-base 
and 0.1% SDS, electrophoresis was run at 100 V for 
10–15 min and then at 200 V for 45–60 min. Proteins 
were transferred onto a methanol activated PVDF 
membranes (GE Healthcare Life Sciences, USA) 
using a transfer buffer containing 192  mM glycine 

and 25  mM Tris-base and 20% methanol for 1  h at 
600 mA. Membranes were washed in PBS-T, blocked 
for 1 h in PBST with 5% skimmed milk and incubated 
either for 1  h at RT or overnight at 4  °C first with 
the primary antibodies mouse α-actin (Santa Cruz, 
sc-47778, 1:1000) and mouse α-HMOX1 (Abcam, 
ab13248, 1:1000). After three washes in PBS-T, 
membranes were incubated with α-mouse-HRP sec-
ondary antibody (Biorad, 1706516, 1:10.000) for 1 h 
at RT. After three washes in PBS-T, the chemilumi-
nescent substrate ECL (Pierce, 32106) was added to 
the membranes for 5  min before imaging with Sap-
phire Biomolecular Imager (Azure Biosystems, 
USA). Actin and HMOX1 detection were carried out 
at different times on the same membrane due to anti-
body specie incompatibility.

TempO-Seq experiments

RPTEC/TERT1 cells were seeded and differentiated 
onto 96-well cell culture microplate (Greiner, CELL-
STAR®, 655180) and treated for 24  h with a wide 
range of concentrations of CI, CII and CIII inhibitors 
of the electron transport chain. After 24 h, treatments 
were replaced with 80 µL of lysis buffer (Byospider, 
200001) and froze at –  80  °C until shipping. Tran-
scription of a customed panel of 3256 human genes 
(Table  S1), representing the overall cellular activity 
and toxic responses, was measured using the targeted 
sequencing approach provided by BioClavis, TempO-
Seq (Limonciel et al. 2018). The gene list includes the 
“S1500 +  + ” gene list established by the EUToxRisk 
consortium (https:// www. eu- toxri sk. eu), originally set 
in the U.S. Tox21 Federal collaboration (Mav et  al. 
2018), plus a set of additional probes relevant in toxic 
treatments relative to the list of tissues used in the 
consortium. Two experiments were conducted includ-
ing treatments with different concentrations of the 
same compounds (Table S1), for the two experiments, 
two different probe panels were employed, referred 
to in this manuscript as panel v2.0 and panel v2.2 for 
the first and second experiment respectively. The two 
panels show some differences in the probes used for 
targeting the same genes (a detailed comparison is 
provided in Table S2).

Upon TempO-Seq assay completion, generated 
FASTQ files are aligned by the manufacturer and 
relative output files were delivered as row count 
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tables indicating the number of read counts of each 
probe in each sample for the two datasets.

Single dataset data analysis pipeline

Analysis was conducted in RStudio version 
1.2.5033, as quality control was excluded from the 
analysis samples with library size below 200.000. 
Filtered raw counts tables, were further processed 
using the DESeq2 v1.28.1 package (Love et  al. 
2014).

The two datasets were analysed separately run-
ning the DESeq2 independently for each treatment 
and its relative control, using the design formula 
below:

Differential expression analysis of genes, for each 
condition, was achieved by pairwise comparison 
between treatment condition and relative vehicle con-
trol group (0.1% DMSO), each of which included 
three biological replicates.

The DESeq2 method takes a table of raw counts 
as input and perform an internal normalisation cal-
culating the geometric mean for each gene across all 
samples to be used to correct the raw read counts for 
the size of the library and generate a normalised read 
counts table. Moreover, it uses shrinkage estimators 
for dispersion and fold change calculations (Anders 

DESeqDataSetFromMatrix(countData = counttable,

colData = metatable,

design =∼ treatment

Table 1  DESeq2 analysis 
outcome parameters per 
gene for each treatment 
condition (Love et al. 2014)

Parameter Description

Ctr. read counts Normalised read counts of 0.1% DMSO control samples
Treat. read counts Normalised read counts of treatment samples
baseMean Average of normalised counts taken over all samples of 

compared groups
log2FoldChange log2 fold change of treatment group over control group
lfcSE Standard error of the log2Fold change
stat Wald statistic
pvalue Wald test p value
padj Benjamini–Hochberg adjusted p value

Table 2  Toxic profile of 
reference concentrations of 
ETC inhibitors including 
relative in vivo LD50s 
and IVIVE of equivalent 
administered doses in 
humans

Data represent 24 h 
exposure of a single dose of 
the drug

Complex 
inhibited

Compound name Acute toxic-
ity category

Reference 
concentration 
(µM)

LD50 mg/kg 
(acute oral/rats)

EAD50 mg/
kg/dose 
(human)

CI Capsaicin II 1.00E + 02 148.10 3.12E + 01
CI Deguelin NA 8.00E − 02 NA 3.14E − 02
CI Fenpyroximate II 1.60E − 02 245.00 5.99E − 03
CI Pyrimidifen II 1.60E − 02 115.00 5.84E − 03
CI Rotenone I 6.40E − 04 70.75 2.38E − 04
CI Tebufenpyrad II 1.00E + 01 202.00 2.98E + 00
CII Carboxine III 2.00E + 02 2588.00 8.31E + 01
CII Mepronil IV 5.00E + 02  > 10,000 1.30E + 02
CII Thifluzamide IV 2.70E + 02  > 6500 1.28E + 02
CIII Antimycin A II 2.56E − 05 323.50 NA
CIII Azoxystrobin IV 1.00E + 01  > 5000 5.54E + 00
CIII Picoxystrobin IV 2.00E + 00  > 5000 8.31E − 01
CIII Pyraclostrobin IV 4.00E − 01  > 5000 1.49E − 01
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and Huber 2010) before testing for differential gene 
expression. A description of parameters generated 
with DESeq2 analysis for each treatment is summa-
rised in Table 1.

After normalisation with DESeq2, data was fil-
tered for baseMean > 10, to diminish low read count 
related noise and a significance cut-off was applied of 
padj < 0.05 and abs log2 fold change > 0.585.

Class-specific data analysis pipeline

For the class comparison analysis, a new DESeq2 
analysis was run for each of the three classes of 
inhibitors (CI, CII and CIII). Class-specific analy-
sis was obtained by using as countData input file 
the overall class-specific response consisting in the 
row read counts of one concentration per compound 
and relative controls. Representative concentrations 
per compound correspond to the highest response in 
terms of significantly differentially expressed genes 
(DEGs) obtained in the compound-specific analysis 
(Fig. 2, Table 2) and are represented in one of the two 
experiments depending on the compound. Due to the 
discrepancy between the two gene panels used in dif-
ferent experiments, different probes between the two 
panels were excluded for this analysis, unless giving 
similar response in the two datasets (Figure S1). The 
new obtained list includes 2907 genes (3184 probes) 
and will be referred to as class-specific gene list 
(Table S3).

As the class-specific countData file, includes 
row counts generated in the two different experi-
ments, the new DESeq2 analysis was run for each of 
the three classes using the adjusted design formula 
below, where the  expID refers to the corresponding 
experiment:

The designed formula, followed by testing of fold 
changes due to class, will account for changes in 
counts due to batch effect, and give marginal effect of 
the class across all levels (experiments).

After normalisation with DESeq2, data was fil-
tered for baseMean > 10, to diminish low read count 
related noise and a significance cut-off was applied of 
padj < 0.05 and abs log2 fold change > 0.585.

DESeqDataSetFromMatrix(countData = class specific count table,

colData = class specific meta table,

design =∼ expID + class

Pathway analysis

To find out which pathways are enriched with regu-
lated genes, an over representation analysis (ORA) of 
the datasets was performed using a double approach 
with the two bioinformatic platforms PathVisio 
(Department of Bioinformatics at Maastricht Univer-
sity, NL), and Ingenuity Pathway Analysis-IPA (QIA-
GEN Inc., https:// www. qiage nbioi nform atics. com/ 
produ cts/ ingen uityp athway- analy sis).

Pathway analysis with PathVisio

Pathways statistical analysis and pathway data visu-
alisation diagrams were generated using the software 
PathVisio 3.0.0 + (Kutmon et  al. 2015). Activated 
pathway identification in PathVisio relies on genes 
ORA. The software blasts the imported expression 
data against a collection of pathways collectively 
called the WikiPathways database (*.gpml files) 
(wikipathways.org) (Slenter et  al. 2018), bridging 
the expression data to the genes in the pathway with 
the specie-specific identifier mapping database Hs_
Derby_Ensembl_91.bridge. The PathVisio statistic 
module, computes two statistical analysis: the Z-score 
and the permuted p value.

i) The Z-score indicates the ratio of genes meeting 
given statistical criteria with the total genes pre-
sent in each pathway of a given database. It is 
used to rank the over-representation analysis and 
is calculated by a standard statistical test under 
the hypergeometric distribution with the follow-
ing equation: Z − score =

(�−�
R

N
)

√

�

(

R

N

)(

1−
R

N

)(

1−
n−1

N−1

)

 , 

where N is the total number of measured genes in 
the experiment, R is the number of genes meeting 
the selection criteria, n is the total number of 
genes in a specific pathway and r is the number of 
genes meeting the selection criteria in that spe-
cific pathway. A Z-score > 2 indicates that signifi-
cantly more genes than expected are changed in 
that pathway, a Z-score = 0 indicates that the dis-
tribution of changed genes in the pathway is the 
same as in the complete dataset and a 
Z-score <  − 2 indicates that less genes than 
expected meet the selection criteria meaning that 
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the pathway in question is very stable (Kutmon 
et al. 2015).

ii) The permuted p value  is used as statistical value 
to reject the null hypothesis.

For pathway analysis in this study, cut-offs 
of significance of padj < 0.05, abs log2 Fold 
Change > 0.585 were applied to expression data prior 
to ORA, and an in-house built database of pathways 
was used. The used pathway database consists of 109 
pathways, 94 of which were included from the WikiP-
athways database (representing the overall cellular 
physiological activity) and 15 were developed in-
house (representing mitochondrial activity and stress 
response pathways). The detailed list of pathways 
and relative node list are listed in Table S4. Further 
applied cut-off of significance included permuted p 
value < 0.05 and abs z-score > 2.

Core analysis with IPA

A gene/protein expression core analysis was per-
formed in the IPA software. Two main statistical anal-
ysis are computed in IPA: the overlap p value and an 
activation Z-score. The two measures are calculated 
independently from each other and provide insights 
into different aspects of the analysis.

i) The p-value of overlap is used to reject the null 
hypothesis, for which the overlap of genes in a 
given dataset with the ones in a particular process 
(pathway, function, disease etc.) is due to chance 
alone, it is calculated using the right-tailed Fish-
er’s exact test (p value) and can be implemented 
with the Benjamini-Hochberg (q value) correc-
tion for false positives. It is generally consid-
ered a non-random association an overlap with p 
value < 0.05.

ii) The activation z-score is used predict the activa-
tion or inhibition state of the overlap between 
the dataset and what would have been expected 
according to the Ingenuity Knowledge Data (col-
lection of data derived from different sources 
such as scientific literature, public databases and 
experimental data) using the following formula:

z − score(r) =
∑

v∈Õ wR(r,v)sR(r,v)sD(v)
�

∑

v∈Õ [wR(r,v)]
2

�

1∕2  , for details refer to 

(Krämer et al. 2014).

A z-score ≥  2 indicates a prediction of activa-
tion and a z-score  ≤  −  2 indicates a prediction of 
inhibition.

Pathway analysis with IPA

The statistical parameters of the core analysis are 
computed for Pathway analysis in IPA by associating 
the molecules of the given input dataset with the ones 
present in each of the pathways included in the IPA 
pathways list, originated from the Ingenuity Knowl-
edge Base. For specific compounds pathway analy-
sis, a cut-off of p value < 0.05 and abs i-score > 2 was 
applied, and only pathways induced in more than 4 
compounds were taken in consideration. For class-
specific pathway analysis, a cut-off of p value < 0.05 
and abs z-score > 2 was applied, and only pathways 
including a minimum of 20% of the total genes 
changed were taken in account.

Upstream regulator analysis with IPA

The upstream regulators analysis performed in IPA, 
is based on expected effects between transcriptional 
regulators and their target genes according to the 
Ingenuity Knowledge Data for the identification of 
key small molecules triggering the cascades of events 
leading to the observed effect.

The overlap p value calculates, using a Fisher’s 
exact test, whether the overlap between genes in the 
test dataset and genes regulated from a given tran-
scription factor is statistically significant, the activa-
tion z-score is used to find probable regulating mol-
ecules and to deduce the activation state of a putative 
transcription factor based on what would have been 
expected according to the Ingenuity Knowledge 
Database.

For a prediction to be made a certain number of 
downstream genes changed in the test dataset must 
overlap the transcription factor downstream gene list. 
For example, if the activation of transcription fac-
tor A is expected to induce the upregulation of a set 
of downstream genes in the dataset, it is observed 
an upregulation of those genes, transcription fac-
tor A is predicted to be activated. Whereas if in the 
dataset it is observed a downregulation of the same 
genes, transcription factor A is predicted to be inhib-
ited. The same is true for expected downregulation 
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of downstream genes. Cuts-off of significance for 
upstream regulator analysis include abs. activation 
z-score > 2 and BH corrected p-value of overlap.

Dose response analysis

To estimate the concentration at which test com-
pounds exposure starts inducing a change in gene 
expression (PoD) a dose–response modelling was 
performed using the software BMDExpress 2 (Yang 
et al. 2007; Phillips et al. 2019). Two different analy-
ses were performed for the two different experiments.

Benchmark Dose (BMD) analysis consisted in two 
steps:

1) Prefiltering of data to eliminate noise by select-
ing only probes with a statistically significant 
dose–response. After loading the normalised 
gene expression response data and application 
of annotation to probes, expression data was fil-
tered by applying a William’s trend test with a p 
value < 0.05 and abs fold change > 1.5 cut-off.

BMDs retrieval from fitted dose response curves 
using the Exp5 parametric model.

IVIVE of reference concentrations of compounds

To ensure the relevance of selected reference concen-
trations in relation to the in  vivo situation, namely, 
to determine the in  vivo toxic effect of tested com-
pounds, we have performed the in  vitro-in vivo 
extrapolation (IVIVE) of used reference concentra-
tions. IVIVE determines the exposure dose that leads 
to a plasma concentration equivalent to the tested in 
vitro concentrations (Chang et al. 2022). IVIVE was 
performed with the Integrated Chemical Environment 
(ICE) (Bell et al. 2017) (publicly accessible at https:// 
ice. ntp. niehs. nih. gov). ICE used in  vivo test data, 
chemical information, in  vitro assay data (includ-
ing Tox21TM/ToxCast™ highthroughput screening 
data) and in silico model predictions to build a com-
putational workflow for the estimation of the queried 
in vitro equivalent administered doses (EADs). Along 
with test reference concentrations, EADs relative to 
the activity concentrations at cutoff (ACC) of a series 
of in vitro relevant toxicity endpoints included in the 
ICE curated high-throughput screening (cHTS) were 
estimated using the following parameters: (1) default 

ADME source, which includes experimentally meas-
ured values when available and the Open (Quantita-
tive) Structure–activity/property Relationship App 
(OPERA) prediction when empirical data is lack-
ing. (2) Solve_3comp PK model including liver, gut, 
artery, vein, lung, and whole-body compartments. 
This model estimates the Cmax and simulates the oral 
exposure. (3) Oral exposure route. (4) 24 h exposure 
interval for 1 dose.

Class-specific mitotoxic response analysis

To extrapolate a mitochondrial-specific transcrip-
tional response, we have performed a class-specific 
mitotoxic response analysis by applying the same 
logic used for the class-specific responses. A new 
DESeq2 analysis was performed merging repre-
sentative concentrations of compounds per class. 
Mitotoxic representative concentrations were deter-
mined by a minimum of 40% decrease in OCR in 
the non-cytotoxic/subtoxic range (max IC25). These 
included 0.08 µM deguelin, 0.08 µM fenpyroximate, 
0.08 µM pyrimydifen, 0.016 µM rotenone for CI and 
0.016 µM antimycin A, 2 µM pyraclostrobin for CIII, 
and excluded capsaicin and tebufenpyrad for CI, all 
CII inhibitors and azoxystrobin and picoxystrobin for 
CIII.

Supplemental material

In the supplemental material are provided: (1) a table 
of compounds and relative concentrations used in the 
two TempO-Seq experiments (Table S1). (2) A table 
with the list of genes and probes included in panel 
v 2.0 and panel 2.2 and relative gene information 
(Table S2). (3) A table with the list of genes included 
in the class-specific analysis (Table S3) and criteria of 
selection for different probes targeting the same gene 
in the two panels (Figure S1). (4) A table indicating 
the pathways included in the PathVisio pathway anal-
ysis database, including the gene lists of the in house 
drawn pathways (Table  S4). (5) A table containing 
raw read counts of experiments 1 and 2 with relative 
annotation files (Table S5). (6) A table containing the 
significant class-specific induced gene lists indicated 
in Fig.  3B: the intersect gene list, the list of genes 
changed by two of the three classes, and the lists of 
CI, CII and CIII unique induction. All lists include 
information about FoldChange, baseMean and p-adj 
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for the three classes CI, CII and CIII (Table S6). (7) 
Viability and OCR responses to a range of concentra-
tions of the UPR activator tunicamycin (Figure S2A). 
(8) PatVisio pathway analysis of the intersect gene 
list (318 genes commonly changed by CI, CII and 
CIII inhibition) is provided in Figure  S2B. (9) The 
heatmap of the class-specific p53 induction, compar-
ing the log2 fold change over control of genes part of 
the p53 pathway induced by class I, II and III (Fig-
ure  S2C). The analysis results of the class-specific 

mitotoxic response are provided in Figure S3, includ-
ing a reduced version of Fig.  1 depicting selected 
compound and concentrations (A), volcano plots of 
CI and CIII Mitotoxic response (B) and ORA analy-
sis performed with PathVisio (C). (10) Heatmaps 
of shared genes between the two bioinformatic plat-
forms (IPA, PathVisio) for the cholesterol biosynthe-
sis and eIF2 signalling-Ribosomal proteins pathways 
(Figure  S4A, C). (11) Graphical representation in 
PathVisio of the UPR pathway induced by CII and 
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Fig. 1  Oxygen consumption rates in treated RPTEC/TERT1. 
A Diagram of the mitostress test using the Seahorse analyzer 
upon 24  h exposure to a dose range of rotenone and antimy-
cin A as representation of input data for the basal and maxi-
mal dose response curves extrapolation. B Dose dependent 
effect on basal (black) and maximal (grey) respiration rates 
extrapolated from the mitostress assay upon 24  h exposure 
to a range of concentrations (Table  S1) of CI, CII, and CIII 
inhibitors. Data represent the mean of 3–7 independent experi-

ments  ±  SEM expressed as percentage of vehicle treated 
control samples (0.1% DMSO). Statistical significance was 
computed by one-way ANOVA followed by Dunnett’s multi-
ple comparisons posttest. Asterisks indicate a p value < 0.05. 
Vertical dotted line corresponds to the reference concentrations 
of compounds inducing the highest number of DEGs and used 
in the transcriptomic analysis. Blue slopes indicate the dose 
dependent effect of compounds on viability (van der Stel et. al. 
2021)
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CIII inhibition is provided in Figure S5. (12) Repre-
sentative images of DDIT3 immunofluorescence in 

RPTEC/TERT1 upon treatment with inhibitors not 
represented in Fig. 8B are shown in Figure S6.
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Results

Effect of ETC’s complexes inhibition on 
mitochondrial respiration

To determine the level of direct mitochondrial pertur-
bation, basal and maximal OCR were measured upon 
24  h exposure with a wide range of concentrations 
of CI, CII and CIII inhibitors of the ETC in RPTEC/
TERT1 cells. All compounds, except for CI inhibi-
tor capsaicin and CII inhibitor carboxine decreased 
basal and maximal OCR in a concentration depend-
ent manner (Fig.  1). CI inhibitors deguelin, fenpy-
roximate, pyrimidifen showed an impaired respiration 
(basal, maximal or both) before the onset of cytotox-
icity, whereas for CIII inhibitors antimycin A and 
pyraclostrobin exhibit 60% and 40% decrease in basal 
and maximal OCR respectively at concentrations 
that decrease viability of about 10%. An impairment 
of mitochondrial respiration at non-cytotoxic con-
centrations suggests a direct effect of test chemicals 
on mitochondrial function possibly leading to cellu-
lar death. CII inhibitors mepronil and thifluzamide 
impair OCR only at highest tested concentrations and 
in the non-cytotoxic range, however CII tested con-
centrations were several orders of magnitude higher 
than the other inhibitors suggesting that the reduced 
OCR can be due to an off-target effect (Fig. 1). This is 
in line with experiments conducted in permeabilised 
cells and available in a previous publication from 
this group (van der Stel et al. 2020), where observed 
inhibitory concentrations of CII inhibitors were 5 µM, 
50  µM and 15.8  µM for carboxine, mepronil and 

thifluzamide respectively, highlighting the physiolog-
ical relevance of CII inhibition, negligible in the pres-
ence of functional CI. The remaining ETC inhibitors, 
tebufenpyrad, azoxystrobin and picoxystrobin showed 
a decrease in OCR starting at cytotoxic concentra-
tions, indicating a reduction in OCR probably due 
to a reduced number of live cells. However, CI and 
CIII observed inhibitory concentrations reflect those 
characterised in the complex-specific respirometry 
(permeabilised cells), corroborating the specificity 
of the effects of tested compounds on mitochondrial 
respiration and possibly explaining the non-effect of 
capsaicin which start its inhibitory activity at a higher 
concentration (158  µM) than the maximal tested in 
this study (100 µM). Collectively, the data display the 
mitochondrial toxic profile of tested compounds.

Differentially expressed genes vs mitochondrial 
perturbation and cytotoxicity

To picture the general effect of treatments on genes 
transcription in RPTEC/TERT1 cells and correlate 
the changes in gene expression to cellular and mito-
chondrial toxicity, we calculated the total number of 
significantly differentially expressed genes (DEGs) 
upon 24  h exposure of a range of concentrations 
(Table  2) of CI, CII and CIII inhibitors. All com-
pounds exhibit changes in DEGs before the onset 
of cytotoxicity, suggesting a specific transcriptional 
response to the insult. However, whereas treatment 
with most CI inhibitors (deguelin, fenpyroximate, 
pyrimidifen and rotenone) and CIII inhibitor antimy-
cin A induces DEGs in the nanomolar range, treat-
ments with CI inhibitor capsaicin, all CII inhibitors, 
and the rest of CIII inhibitors showed DEGs induction 
either at high concentrations or at doses that coincide 
with the initiation of cellular death indicating a dif-
ference in potency between the compounds (Fig. 2A). 
Transcriptional changes induced at cytotoxic concen-
trations result less specific when studying the adap-
tative response to chemical stress, therefore DEGs 
induction in the cytotoxic range have not been further 
considered in this study. We further evaluated the 
link between transcriptional induction and mitochon-
drial toxicity by comparing DEGs induction with the 
starting point of mitochondrial insult, represented by 
the LOEL of basal OCR. Strong compounds induc-
ing DEGs at low doses also decrease mitochondrial 
respiration at lower concentrations needed to induce 

Fig. 2  Differentially expressed genes. A Number of signifi-
cantly differentially expressed genes per treatment after 24  h 
exposure of RPTEC/TERT1 cells with a range of concentra-
tions of CI, CII, and CIII inhibitors of the ETC. Criteria of 
significance: padj  <  0.05, abs log2 fold change >  0.585 and 
base mean >  10. In grey the cytotoxic range, starting at the 
black dotted line, defined by the LOEL of viability response. 
Red dotted lines indicate the point of departure of mitochon-
drial toxicity, defined by LOEL in basal OCR at the same 
experimental conditions. B Accumulation plots of Best BMDs 
computed in BMDExpress2 induced by treatment of RPTEC/
TERT1 cells with a range of concentrations of CI, CII and CIII 
inhibitors of the ETC 24  h. C IVIVE of equivalent adminis-
trated doses corresponding to reference concentrations of test 
compounds performed with the ICE web resource. EADs or 
reference compounds (black dots) are compared to the in vivo 
LD50s (orange dots) and the EADs at ACC of several in vitro 
toxicological end points part of the ICE database (blue dots)

◂
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toxicity indicating a direct correlation between 
mitochondrial toxicity and transcriptional response 
(Fig.  2A, vertical red lines). Such correlation is 
probably maintained also for all the other inhibitors 
inducing mitochondrial impairment but with a lower 
degree of potency. It must be noticed that induction of 
DEGs and mitochondrial insults appear visible upon 
inhibition of the two CII blockers mepronil and thif-
luzamide only at high concentrations (hundreds in the 
µM range) implicating a possible lack of specificity.

Perturbations of biological processes induced by 
chemical application, are intrinsically dose depend-
ent. To establish a correspondence between doses 
of tested chemicals and changes in gene expression 
levels, a BMD modelling was performed in DMB-
Express2. BMD methods allow for estimation of the 
potency of a chemical in changing biological pro-
cesses as well as the dose at which such a change can 
be expected, representing the PoD of gene expres-
sion alteration. Predicted BMDs are summarised in 
accumulation plots, the lower the BMD the higher 
the potency to induce that specific gene. Compounds 
driven genes expression accumulation, mirrors the 
DEGs induction pattern, with antimycin A pre-
dicted to accumulate ~ 125 probes at concentration 
of ~ 1 ×  10−19. The rapid increase of the accumula-
tion slope, namely the concentration at which most of 
the changes in gene expression occur, resulted at low 
concentrations for antimycin A, deguelin, fenpyroxi-
mate, pyrimidifen, rotenone A and in high concentra-
tion for the other compounds (Fig. 2B).

The relationship between DEGs, OCR and cyto-
toxicity ranks antimycin A, deguelin, fenpyroximate, 
pyrimidifen, rotenone as strong compounds exerting 
their activity before inducing cytotoxicity. Higher 
deleterious effect of CI and CIII (via  Qi site inhibi-
tion–antimycin A) inhibition compared to the other 
inhibitors is corroborated by their gene accumulation 
at low concentrations. Moreover, in most of the cases 
changes in transcription initiate at lower concentra-
tions needed to induce changes in other tested end-
points, indicating a higher sensitivity of transcriptom-
ics over the other assays.

To narrow down the number of doses to be further 
analysed, we defined one reference concentration per 
compound corresponding to the highest number of 
induced DEGs outside the cytotoxic range (Table 2). 
With the awareness that in vitro systems do not reca-
pitulate human physiology and to corroborate the 

applicability of chosen reference concentrations, we 
performed and IVIVE using the ICE IVIVE tool. 
Obtained equivalent doses were compared to EADs at 
ACC of a series of in vitro toxicity endpoints avail-
able in the ICE database as well as to the LD50s 
in rats orally exposed to test compounds for 24  h 
(Fig.  2C). All used concentrations resulted lower to 
those needed to induce mortality in vivo reflecting the 
relevance of effective doses of test compounds in an 
in  vivo context. Moreover, comparison of reference 
concentrations with ACCs of other in  vitro assays 
demonstrates the increased sensitivity of transcrip-
tomic in a contest of a specific induction (e.g. induc-
tion not related to borderline toxicity) as indicated by 
rotenone in Fig. 2C.

Transcriptional evaluation of class-specific ETC 
inhibition

Exposure to all ETC inhibitors resulted in the induc-
tion of DEGs at non-cytotoxic or sub-toxic concentra-
tions and in some cases before mitochondrial insult. 
To investigate whether inhibition at different levels 
along the ETC affects the expression of the same 
genes, we performed a class comparison analysis. 
Responses of class I (CI), class II (CII) and class III 
(CIII), representative of the associated respiratory 
complexes were obtained by combining the responses 
of all compounds belonging to a class, at reference 
concentrations, for the generation of class-specific 
profile (see “Class-specific data analysis pipeline” 
section for details).

Volcano plots indicate a substantial overall activity, 
in terms of induced or inhibited transcription for the 
three classes (Fig.  3A). However, comparison in the 
number of up and down regulated genes among classes, 
identifies CIII inhibition as having the highest impact 
with a total of 511 downregulated and 412 upregulated 
genes. To obtain a general transcriptional signature 
of ETC inhibition, we wanted to identify genes com-
monly effected by all ETC inhibitors and genes spe-
cifically changed by treatment with one of the classes 
(Fig. 3B). Three hundred eighteen genes were found to 
be affected upon exposure to all three classes of inhibi-
tors, we will refer to this list of genes as the intersect 
gene list. To evaluate whether common induced genes 
are changed in the same manner, the fold change over 
control responses of the intersect genes were plotted 
in a correlation graph (Fig. 3C). The plot underlines a 
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linear correlation, with an R2 of 0.965, indicating that 
the three classes change common genes in the same 
manner. The analysis also identified a list of genes sig-
nificantly changed by only one class on inhibitors, 49, 
121 and 266 for CI, CII and CIII respectively (Fig. 3B, 
Table  S6). However, ORA analysis with PathVisio 
pathway did not reveal any pathway-specific response. 
Moreover, considering a baseMean > 50 the strongest 
response was given by MMP1 with a log2FoldChange 
of 1.1 for CI and SNAI2 with a log2foldchange of 1.8 
for CIII, considerably marginal compared to the inter-
sect gene expression. Interestingly, a few unique genes 
of CII resulted higher in expression (above 2 log-
2FoldChange), including heat-shock proteins HSPA1B 
(log2FC 3.3) and HSPA1A (log2FC 2.35) involved in 

maintaining proteostasis (Rosenzweig et al. 2019), and 
CYP2C19 (log2FC 2.6) involved in xenobiotic metabo-
lism (Sim et al. 2006).

Pathway enrichment analysis identified a common 
UPR response for ETC inhibitors

To evaluate specific pathway enrichment amongst 
altered genes per class and single compound, a sta-
tistical ORA analysis was performed using two bioin-
formatic platforms: PathVisio and IPA.

ORA analysis upon ETC inhibition identified 
the unfolded protein response (UPR) as the major 
altered pathway in both PathVisio with a Z-score of 
4.43, 4.08 and 4 for CI, CII and CIII respectively, and 
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Fig. 3  Class-specific induced DEGs. A Volcano plots iden-
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tion (318 genes). Criteria of significance: p adj < 0.05, abs fold 
change > 1.5

3043



Cell Biol Toxicol (2023) 39:3031–3059

1 3
Vol:. (1234567890)

IPA with an activation z-score of 2.67, 3.162 and 3.2 
respectively (Fig. 4A(i–ii)). Whereas IPA ORA indi-
cated the UPR as the only pathway changed by the 
three classes of inhibitors, PathVisio ORA identified 
in addition, alterations of the DNA damage response 
pathway (p53) and the cell cycle with lower Z-score 
(Fig.  4A), predominantly through the activation of 
GADD45A (Figure S2C). The same pattern of altered 
pathways was found for analysis of the intersect gene 

list (Figure  S2B), suggesting that the signature of 
ETC inhibition is not dependent on which complex 
along the chain is inhibited.

Compound-specific pathway analysis confirmed 
the induction of the UPR by all compounds at refer-
ence concentrations using both, the PathVisio and the 
IPA platforms (Fig. 4B), with exception of carboxin 
for which the activation prediction of UPR was not 
significant in the IPA analysis (Fig.  4B(ii)). Beside 
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the UPR, alteration in the cholesterol biosynthesis 
pathway was predicted to be affected with treatment 
of 9 and 11 out of 13 chemicals for PathVisio and IPA 
ORA respectively. Genes shared between pathways of 
the two platforms represent 60% and 67% of meas-
ured genes for PathVisio and IPA respectively. Inter-
estingly, although for most compounds the prediction 
state indicated an inhibition of the pathway, exposure 
to CI inhibitor capsaicin and CII inhibitor carboxin 
resulted in its activation (Fig. 4B (i–ii), Figure S4A).

Moreover, both PathVisio and IPA identified 
changes in cell cycle related genes induced by almost 
all ETC inhibitor and more specifically IPA identi-
fied a downregulation of the kinetochore signalling 
pathway. Albeit pathway clustering did not highlight 
emerging compounds based on induced pathways, 
compound clustering, encompasses tebufenpyrad, 
deguelin, fenpyroximate and thifluzamide at reference 
concentration as inducers of the eIF2 signalling path-
way (IPA) (Fig.  4B(ii)) and ribosomal protein path-
way (PathVisio) (Fig. 4B(i)). Although indicated with 
different names in the two bioinformatic platforms, 
the degree of overlapping genes identifies the eIF2 
signalling and ribosomal protein pathways as repre-
sentation of the same response, with an overlap of 29 
genes involved in ribosome synthesis: 60% and 78% 
of measured genes for eIF2 signalling pathway and 
ribosomal protein pathways respectively. Moreover, 
a more detailed analysis of this response, that is not 
limited to the single pathway genes and the applied 
cut-off, showed a homogeneous response within the 
different ETC inducers (Figure S4B).

Despite the two bioinformatic platforms rely on 
different databases for pathway activation predic-
tions, both indicated a major activation of the UPR 
pathway. Nonetheless, the use of two different bioin-
formatic tools, also introduces discrepancies given by 
the source of knowledge provided by both platform 
and for which pathway analysis is largely dependent. 
For instance, a pathway present in one database might 
not be present in another database, e.g. the kine-
tochore signalling pathway was identified by IPA but 
not by PathVisio analysis, this is due to the fact that 
the same gene set was incorporated in the cell cycle 
pathway in the latter, which comprising a much larger 
number of genes did not produce a significant Z-score 
in the statistical analysis. In a more tedious sce-
nario, pathways representing the same response are 
described with different titles in the two databases, 

e.g. the eIF2 signalling pathway and the ribosomal 
protein pathway discussed above.

Each of the two different tools provide specific 
information on transcripts behaviour, therefore a 
combined approach for the study of pathway activa-
tion that leads to robust results, is advisable. Moreo-
ver, a type of analysis that escalates different levels of 
complexity is necessary for a good interpretation of 
results.

To further evaluate the mitochondrial-specific 
effects at the transcriptional level, we performed a 
class-specific mitotoxic response analysis including 
only doses of compounds that impaired mitochon-
drial respiration (decreased OCR) without effecting 
viability (Figure S3A) (see “Class-specific mitotoxic 
response analysis” section for details). Compari-
son of the class-specific responses and class-specific 
mitotoxic responses show and overlap of signifi-
cantly changed genes of 44% and 56% for CI and 
CIII respectively. Included in this overlap are sev-
eral genes of the UPR pathway, including DDIT3, 
HSPA5, PPP1R15A, ATF3, CXCL8 and DNAJB9 
as well as predominant genes such as KRT17, 
GADD45A, AREG, ATF3 for both CI and CIII mito-
toxic responses (Figure  S3B). Pathway analysis per-
formed with PathVisio highlighted the UPR, the 
cytoplasmic ribosomal protein and the genotoxicity 
pathways as the major changed pathways for both CI 
and CII classes, followed by alteration of the choles-
terol biosynthesis and metabolism pathways for CIII 
(Figure S3C). Despite, the mitotoxic response analy-
sis showed some degree of difference in the signifi-
cant DEGs compared to the complete class-specific 
dataset, it confirmed the UPR (PERK/ATF4/CHOP) 
stress response as the main mechanism of adaptation 
upon inhibition of CI and CIII of the ETC.

Upstream regulator analysis justifies pathway analysis

To identify upstream transcriptional regulators whose 
cascade could justify the changes experimentally 
observed in gene expression, an upstream regulators 
analysis was performed in IPA for CI, CII and CIII 
inhibition.

A series of upstream regulators were identified to 
be activated with the treatment with one, two or all 
three classes of inhibitors. The predicted direction 
of the activation (induction or inhibition compared 
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to basal levels), resulted to be the same for the three 
classes of inhibitors, again indicating a similar mech-
anism of action. Most of the upstream regulators pre-
dicted to be affected are transcription factors (14 out 
of 39), followed by cytokines and kinases (6 out of 
36) (Fig. 5A(i)).

To narrow down the list of upstream regulators 
relevant to the ETC inhibition signature, we identi-
fied the molecules that were activated concomitantly 
from the three classes of treatment; the transcription 
factors ATF4, EGR1, FOS and TP53, are predicted to 
be induced, whereas the transcription factor FOXM1 
is predicted to be inhibited. The kinases MET is pre-
dicted to be induced as well as the kinase inhibitor 
CDKN1A, whereas TRIB3 is predicted to be inhib-
ited. Furthermore, general ETC inhibition induced 
the cytokine IL1A and inhibited the actin-binding 
protein ANLN (Fig. 5A(ii–iii)). The analysis of active 
upstream regulators upon treatment with individual 
compounds at reference concentrations, demonstrated 
a homogeneous response across inhibitors of different 
classes (Fig. 5B), corroborating the previous finding 
of a unique response for ETC inhibition which is not 
dependent on the complex inhibited and providing a 
mean of ranking the single compound based on their 
potency at effective concentrations.

Both class- and compounds-specific upstream 
regulator analysis demonstrated the activation of tran-
scription factors involved in the previously observed 
pathway activation. More specifically ATF3 and 
ATF4 for UPR pathway and TP53 for DNA damage 
stress responses pathway. Moreover, activation of 
cytokines indicates the induction of an inflammatory 
process beside a stress response.

Exploring the UPR stress response pathway in 
RPTEC/TERT1 cells

Pathway and upstream regulator analysis indicated 
the UPR as the most affected pathway by ETC inhi-
bition. To examine the effect of ETC inhibition on 
the individual components of the UPR pathway, we 
used the graphical representation feature of Path-
Visio to generate a complete overview of the path-
way, including the list of genes involved in the three 
separate branches (ATF6, PERK, IRE1), their links 
and their regulation based on the literature (Fig. 6A, 
Figure S5). The well-known UPR inducer tunicamy-
cin used as positive control, induces the expression 

of all 3 branches of the UPR and related downstream 
genes including ATF6 and the downstream chaperone 
P4HB (Fig.  6C). In contrast, although ETC inhibi-
tion upregulated many UPR genes, the transcription 
factor ATF6 was not induced, nor P4HB, indicating a 
favoured response from the PERK and IRE1 branches 
through the effect of the transcription factors AFT4 
and XBP1 respectively (Fig.  6B, C). However, the 
nature of pathway analysis is that they are inherently 
biased to the number of entities appearing and there-
fore ATF6 activation cannot be ruled out, particularly 
since XBP1 mRNA was induced which is under ATF6 
downstream control. Comparison of significant UPR-
associated genes induction indicates that the three 
classes of inhibitors share the same expression pat-
tern for 2/3 of the induced genes, whereas the expres-
sion pattern was comparable to the one of tunicamy-
cin only for about a third (12/29 for CII and 14/29 for 
CI and CIII) (Fig.  6B). Despite class-specific analy-
sis demonstrated a set of UPR genes induced by the 
three classes of inhibitors, analysis at the compound 
level showed significant induction at relevant con-
centrations for all compounds only for ATF4, DDIT3, 
DNAJB9 and CXCL8, key genes such as HSPA5 and 
XBP1 resulted activated from 12 and 11 out of 13 
compounds respectively (Fig. 6C).

To evaluate the dose dependency of the major 
players of the UPR induction by the individual inhibi-
tors, we assessed the concentration–response relation-
ship for ATF4, ATF6, DDIT3, HSPA5 and XBP1 in 
the non-cytotoxic range. As shown previously in this 
study ATF6 was not induced by reference concentra-
tions of compounds nor by any other compound-con-
centration combinations, but only from tunicamycin. 
All compounds exhibited a dose dependent increase 
in UPR gene induction (Fig. 7). Most of CI inhibitors 
exhibited a dose dependent increase in gene induc-
tion starting at the nanomolar range and before the 
onset of mitochondrial toxicity (Fig. 7 vertical lines), 
excluding capsaicin which shows a weak induction 
at 100  µM. Similarly, CII inhibitors showed dose 
dependency starting at highest tested concentrations. 
Most of CIII inhibitors were active at sub-toxic con-
centrations at the starting point of mitochondrial 
insult. In contrast, antimycin A peak of activity was 
detected at the lowest concentration tested and the 
response decreased in a dose dependent manner.

The study of the dose response of UPR genes, 
corroborated higher potency of pyrimidifen, 
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rotenone, deguelin, fenpyroximate and antimycin A 
compared to the other tested inhibitors. For those 
compounds induction of the biological response 
starts at the lowest tested concentration, two or 

three orders less than those necessary to induce 
mitochondrial toxicity. A list of BMDs and LOEL 
for UPRs genes is provided in Table 3.
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Fig. 5  Upstream regulator analysis. A i. Heatmap of upstream 
regulators retrieved by analysis using IPA upon class-specific 
inhibition of CI, CII, and CIII of the ETC. Activation z-score 
indicate the state of prediction, positive red values for induc-
tion of the small molecule activity and blue negative values for 
inhibition of the activity. Cuts-off of significance include abs. 

activation z-score >  2 and BH corrected p value of overlap. 
ii. Intersection plot of the class-specific inhibition activated 
molecules. iii. Heatmap of the small molecules activated con-
comitantly from the three classes of inhibitors. B Heatmap of 
upstream regulators activated with treatment of compounds at 
reference concentrations and retrieved by analysis using IPA
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Fig. 6  UPR response. A Graphical representation in Path-
Visio of the UPR pathway induced by CI inhibition. The log2 
fold change over control is visualized on the left side of the 
data node boxes using a gradient from blue (-4) over white 
(0) to red (5). The p adj value is visualized on the right side of 
the data node boxes, yellow for p adj < 0.05. Full green node 
boxes indicate unchanged genes. Full gray node boxes indicate 
untested genes. B Heatmap comparing the log2 fold change 

over control of genes depicted in the UPR graphical representa-
tion that were significantly altered by at least one class of inhib-
itors, and the UPR inducer tunicamycin  response (10  µM). C 
Heatmap comparing the log2 fold change over control of genes 
significantly altered in the UPR pathway induced by test com-
pounds at reference concentrations and the UPR inducer tunica-
mycin (10 µM). In grey non-significant responses. NA represent 
excluded probes with baseMean lower than 10 reads
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Relation between changes in gene transcription and 
protein levels

To address the biological meaning of transcriptional 
changes upon ETC inhibitors treatment, we exam-
ined the correlation between the upregulation of the 
UPR’s gene DDIT3 (CHOP) and its protein expres-
sion levels. RPTEC/TERT1 were treated for 24 h with 

reference concentrations of CI, CII and CIII inhibitors 
of the ETC, the UPR inducer tunicamycin (10 µM) as 
positive control and the Nrf2 inducer CDDO (1 µM) 
as negative control, protein expression levels were 
assessed through immunofluorescence (Fig.  8A, B, 
Figure  S6). All CI inhibitors, significantly induced 
the accumulation of the CHOP protein in the nucleus 
(Fig.  8A). Although CII inhibition increased CHOP 
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Fig. 7  UPR dose response. Dose responses of mRNA expres-
sion of five relevant genes involved in the UPR stress response 
pathway. RPTEC/TERT1 cells were treated for 24 h with non-
cytotoxic concentrations of inhibitors of CI, CII, and CIII of 
the ETC. Black dashed horizontal lines indicated the fold 
change cut-off (abs 1.5). Data represent the mean of 3 inde-

pendent experiments  ±  SEM. Significant responses with p 
value < 0.05 are represented with bigger circles. Statistical sig-
nificance was computed by two paired t test between control 
and treatment groups. Dashed vertical lines correspond to the 
onset of mitochondrial insult (basal OCR LOEL)
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mRNA expression with treatment with all three com-
pounds, only treatment with mepronil resulted in an 
increased protein level. Analogously, all CIII inhibi-
tors increased CHOP mRNA expression, but only 
azoxystrobin and pyraclostrobin induced the protein 
expression. The discrepancy between transcripts 
levels and their protein domains encountered in this 
study, has not to be considered unusual. Different 
groups have studied the correlation between mRNA/
protein levels, concurring that only about 40% of the 
mRNA abundance correlates with the protein prod-
uct (Tian et  al. 2004; Lundberg et  al. 2010; Vogel 
et al. 2010; Schwanhüusser et al. 2011) and such cor-
relation is mainly related to housekeeping genes or 
steady-states-conditions (Schwanhüusser et  al. 2011; 
Liu et al. 2016). These results are not surprising given 
the large number of events occurring between the pro-
duction of mRNAs and functional proteins, including 
translation, post translational modifications and pro-
tein degradation. Also, the time of onset the ATF4 
response likely varies somewhat between compounds 
and exposure concentrations, which would addition-
ally affect the 24 h protein expression.

Mechanisms of oxidative stress protection upon ETC 
inhibition in differentiated RPTEC/TERT1 cells

During oxidative phosphorylation, a portion of 
electrons (0.2/2%) leaks out the ETC to directly 
react with molecular oxygen to form ROS such as 
 O2

− and  H2O2. The major sites of ROS produc-
tion are Iq (coenzyme-Q (CoQ) binding site) and If 
(FMN site) of CI, which produce ROS into the mito-
chondrial matrix, and  Qi site of CIII which releases 
electrons in both the matrix and the intermembrane 
space, although compared to CI the amount of ROS 
produced by CIII is small and can be neglected. CI 
inhibitors such as rotenone, inhibit the NADH-dehy-
drogenase complex at the level of the Iq site, block-
ing the regular transfer of electrons to the CoQ. Elec-
trons are forced to return to the  If site, which gets 
over-reduced, increasing the electron leak and the 
ROS production (Zhao et al. 2019). Excess of cellu-
lar ROS induces oxidative stress which triggers the 
Nrf2-antioxidant response element signalling path-
way in the attempt to restore cellular homeostasis 
by enhancing the transcription of several antioxidant 
and detoxification proteins, the most specific being 
NQO1 and HMOX1 (Jennings et  al. 2012). Interest-
ingly, although CI inhibitors resulted to have the 

Table 3  BMDs and LOELs of UPR’s genes response to test chemicals
An�mycin A Azoxystrobin Capsaicin Carboxin Deguelin Fenpyroximate Mepronil Picoxystrobin Pyraclostrobin Pyrimidifen Rotenone Tebufenpyrad Thifluzamide

Gene BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

BMD  
(µM)

ASNS 1.74E-07 3.57E+00 3.15E+01 4.91E+01 NA NA 1.68E+01 4.00E-01 3.32E-01 5.09E-07 2.76E-06 NA 9.48E+00
ATF3 2.05E-06 NA 2.29E+01 1.18E+02 2.03E-03 6.77E-03 4.47E+02 NA 8.46E-02 8.50E-06 2.10E-05 NA 1.12E+01
ATF4 4.00E-07 2.89E+00 4.78E+01 9.07E+01 NA NA 1.66E+02 1.49E+00 2.76E-01 6.91E-07 2.48E-05 NA 8.97E+00
BBC3 1.87E-05 8.37E+00 3.29E+01 1.07E+02 NA 1.10E-02 4.16E+02 4.37E-01 3.13E-01 NA NA NA 1.23E+01
CEBPB 2.75E-07 1.73E+00 2.74E+01 3.21E+01 3.59E-01 5.53E-02 6.52E+01 4.50E-01 1.50E+00 5.32E-07 6.87E-07 NA 6.35E+00
CHAC1 3.17E-07 1.42E+00 2.91E+01 6.09E+01 7.71E-02 6.33E-02 4.81E+01 9.10E+00 1.85E+00 5.54E-07 2.88E-06 NA 8.65E+00
CREBRF 1.97E-06 2.70E+00 NA NA 2.45E-03 2.15E-03 1.48E+02 6.51E-01 3.10E-01 1.49E-05 NA NA 1.58E+01
CXCL8 4.91E-06 2.45E+00 4.30E+01 1.00E+02 2.65E-03 3.24E-03 1.27E+02 6.20E-01 3.44E-01 NA NA NA 1.35E+01
DDIT3 1.63E-07 1.81E+00 3.84E+01 1.83E+01 4.83E-04 2.32E-03 1.18E+02 3.20E-01 1.32E-01 4.68E-07 1.04E-05 NA 4.14E+00
DNAJB9 1.91E-07 1.76E+00 2.02E+01 1.07E+02 4.33E-04 3.01E-03 4.34E+02 6.20E-01 1.06E-01 5.22E-07 2.87E-05 NA 7.68E+00
HSPA5 1.90E-07 7.20E+00 NA NA 1.74E-03 3.03E-03 3.34E+02 1.44E+00 3.13E-01 6.01E-07 NA NA 5.95E+00
PPP1R15A 2.69E-07 1.96E+00 NA 4.56E+01 1.69E-03 3.25E-03 1.25E+02 4.43E-01 2.79E-01 2.96E-06 NA NA 6.22E+00
TRIB3 2.33E-07 1.46E+00 1.50E+01 3.01E+01 3.91E-01 NA 1.19E+02 4.40E-01 NA 5.29E-07 6.18E-06 NA 6.42E+00
VEGFA 2.88E-07 2.61E+00 NA 7.10E+01 9.33E-02 NA 5.06E+01 4.61E-01 1.17E+00 5.83E-07 NA NA 1.55E+01
WARS NA NA NA NA 8.79E-02 3.71E-01 NA 9.27E+00 NA NA NA NA NA
XBP1 3.46E-07 9.07E+00 4.11E+01 1.34E+02 NA NA 4.46E+02 NA 3.25E-01 6.44E-07 NA NA 8.45E+00

An�mycin A Azoxystrobin Capsaicin Carboxin Deguelin Fenpyroximate Mepronil Picoxystrobin Pyraclostrobin Pyrimidifen Rotenone Tebufenpyrad Thifluzamide

Gene LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

LOTEL 
(µM)

ASNS 5.12E-06 1.00E+01 5.00E+01 1.00E+02 3.20E-03 1.60E-02 1.00E+02 2.00E+00 4.00E-01 5.12E-06 5.12E-06 4.00E-01 3.00E+01
ATF3 2.56E-05 1.00E+01 1.00E+02 NA 1.60E-02 1.60E-02 5.00E+02 2.00E+00 4.00E-01 2.56E-05 1.28E-04 4.00E-01 3.00E+01
ATF4 5.12E-06 1.00E+01 1.00E+02 2.00E+02 6.40E-04 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
BBC3 2.56E-05 1.00E+01 5.00E+01 1.00E+02 1.60E-02 1.60E-02 5.00E+02 2.00E+00 4.00E-01 3.20E-03 6.40E-04 4.00E-01 3.00E+01
CEBPB 5.12E-06 1.00E+01 1.00E+02 1.00E+02 3.20E-03 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
CHAC1 5.12E-06 1.00E+01 5.00E+01 1.00E+02 3.20E-03 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 2.56E-05 4.00E-01 3.00E+01
CREBRF 2.56E-05 1.00E+01 NA NA 1.60E-02 1.60E-02 5.00E+02 2.00E+00 4.00E-01 6.40E-04 6.40E-04 4.00E-01 3.00E+01
CXCL8 2.56E-05 1.00E+01 1.00E+02 2.00E+02 1.60E-02 1.60E-02 1.28E-04 2.00E+00 4.00E-01 1.28E-04 1.28E-04 4.00E-01 3.00E+01
DDIT3 5.12E-06 1.00E+01 1.00E+02 5.00E+01 3.20E-03 3.20E-03 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
DNAJB9 5.12E-06 1.00E+01 5.00E+01 2.00E+02 3.20E-03 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
HSPA5 5.12E-06 1.00E+01 NA NA 1.60E-02 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
PPP1R15A 5.12E-06 1.00E+01 NA 1.00E+02 3.20E-03 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
TRIB3 5.12E-06 1.00E+01 5.00E+01 1.00E+02 6.40E-04 3.20E-03 5.00E+02 2.00E+00 4.00E-01 5.12E-06 5.12E-06 4.00E-01 3.00E+01
VEGFA 5.12E-06 1.00E+01 NA 2.00E+02 3.20E-03 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
WARS 5.12E-06 NA NA 2.00E+02 NA NA 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 4.00E-01 3.00E+01
XBP1 5.12E-06 1.00E+01 1.00E+02 2.00E+02 NA 1.60E-02 5.00E+02 2.00E+00 4.00E-01 5.12E-06 1.28E-04 NA 3.00E+01

Included genes were changed from all three classes of inhibitors. BMDs were determined in BMDExpress2 using a Exp5 parametric 
model to fit the dose − response curves Significance cuts − off include padj < 0.05, abs fold change > 1.5
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strongest activity in terms of transcriptional induc-
tion, pathway analysis of transcripts previously per-
formed in this study did not highlight Nrf2 activation 
(Fig.  4). To investigate the effect of ETC inhibition 
on Nrf2’s genes, we compared the expression profiles 
of ETC inhibitors and Nrf2 inducers (sodium arsen-
ite and CDDO) treated samples. The list of genes 
involved in the Nrf2 pathway and their expression 

upon CI inhibition is depicted in Fig.  9A, whereas 
genes of the pathway changes by either CI, CII, CIII, 
sodium arsenite or CDDO treatment are illustrated 
in Fig.  9B. Fifteen out of 31 of the genes included 
in the Nrf2 pathway were measured with our gene 
panel and 7 were induced by ETC inhibition, includ-
ing: the encoding genes of ferritin’s light and heavy 
chain FTL (average log2 FC 1.24 ± 0.15) and FTH1 
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Fig. 9  Nrf2 response. A Graphical representation in PathVisio 
of the Nrf2 pathway induced by CI inhibition. The log2 fold 
change over control is visualized on the left side of the data 
node boxes using a gradient from blue (-4) over white (0) to 
red (5). The p adj value is visualized on the right side of the 
data node boxes, yellow for p adj <  0.05. Full green node 
boxes indicate unchanged genes. Full gray node boxes indicate 
untested genes. B Heatmap comparing the log2 fold change 
over control of genes significantly altered in the Nrf2 path-
way induced by CI, CII, CIII inhibitors and the Nrf2 induc-
ers arsenite (10 µM) and CDDO (1  µM), cuts-off: abs fold 
change >  1.5, p adj <  0.05. C Heatmap comparing the log2 
fold change over control of genes significantly altered in the 

Nrf2 pathway induced by test compounds at reference concen-
trations and the Nrf2 inducers arsenite (10  µM) and CDDO 
(1 µM), cuts-off: abs fold change > 1.5, p adj < 0.05. In grey 
non-significant responses. NAs represent excluded probes with 
baseMean lower than 10 reads. D Heatmap comparing the log2 
fold change over control of other genes involved in the antioxi-
dant response machinery, upon exposure of reference concen-
trations of compounds and the Nrf2 inducers arsenite (10 µM) 
and CDDO (1 µM). Cuts-off: baseMean < 10 reads. E Western 
blot of HMOX1 expression in samples treated for 24  h with 
representative concentrations of inhibitors of CI, CII, CIII of 
the ETC and inducers of the Nrf2 pathway arsenite (10  µM) 
and CDDO (1 µM)
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(average log2 FC 0.91 ± 0.07), the transcription fac-
tors MAFF (average log2 FC 2.50 ± 0.50) and MAFG 
(average log2 FC 1.62 ± 0.32) and the thioredoxin 
reductase TXNRD1 (average log2 FC 1.48 ± 0.12) 
whereas the amino acid transporter SLC7A11 (aver-
age log2 FC 2.82 ± 0.10) and the glutathione syn-
thesis enzyme GCLC (average log2 FC 0.78 ± 0.14) 
were only changed by CI and CIII (Fig. 9B). On the 
other hand, treatment with the oxidative stress induc-
ers CDDO and sodium arsenite upregulated an addi-
tional eight genes, including the prototypical genes 
of the Nrf2 stress response pathway HMOX1 (aver-
age log2 FC 6.04 ± 0.3) and NQO1 (average log2 FC 
3.42 ± 0.37). The compound-specific induction pro-
vided an overview of the compounds’ contribution 
to the class-specific response (Fig. 9C). Compounds 
clustering separated the Nrf2 inducers from the ETC 
inhibitors independently on their class and indicated 
MAFF as the only gene being upregulated by all 
ETC inhibitors. The complete concentration response 
curves for five representative genes on the Nrf2 path-
way are depicted in Fig.  10. Neither HMOX1 nor 
NQO1 induction was found along the tested concen-
tration range for ETC inhibitors, while MAFF was 
upregulated in a dose dependent manner, reaching 3/
fourfold increase over the Nrf2 inducers. To exclude a 
possible transcriptional induction of HMOX1 by ETC 
inhibitors occurring earlier than 24 h, we verified the 
presence of its protein product in samples treated with 
reference concentrations of compounds. We found a 
total lack of HMOX1 product upon ETC inhibition, 
whereas the protein resulted abundant upon treatment 
with sodium arsenite and CDDO (Fig. 9E).

Discussion

Chemical hazard identification and characterisation, 
still presents a large challenge during the early stages 
of the drug discovery process and for other products 
where humans and the environment are exposed. Ani-
mal testing remains the bedrock of chemical safety 
assessment, but due to species differences, complexi-
ties in addressing cellular mechanisms and ethical 
considerations a concerted effort is being made to 
transition chemical safety evaluation toward non-
animal approaches. In  vitro cell culture models are 
well utilised tools to this end representing a reduc-
tionist approach, removing higher order systems, 

reducing complexity, and are thus ideally suited to 
investigating the early stages of toxicological events. 
In vitro models and are valuable tools for mechanistic 
approaches including OCR measurements, biochemi-
cal assays, imaging and omic technologies (Jennings 
2015). On a cellular level, rapid cellular adaptation 
to homeostatic perturbations, occurs mainly through 
altered gene expression via hub stress response tran-
scription factor activation (Jennings et al. 2012). For 
this reason, transcriptomics is becoming a common 
and useful tool in toxicological studies as multiple 
pathways are simultaneously measured in the same 
sample. The current study aimed to identify transcrip-
tional signatures associated with chemically induced 
ETC inhibition.

Chemical-induced mitochondrial dysfunction 
is gaining momentum as a previously overlooked 
mechanism responsible for many types of toxicologi-
cal outcomes (Dykens and Will 2008). To understand 
the role of mitochondrial impairment in cellular tox-
icity, contact-inhibited human renal proximal tubular 
epithelial cells (RPTEC/TERT1 cells) were treated 
for 24  h with a range of concentrations of CI, CII 
and CIII inhibitors of the ETC prior to transcriptom-
ics analysis. Pathway analysis (ORA) identified the 
UPR pathway as the predominant biological response 
to ETC inhibition. Schematic representation of the 
UPR pathway, including gene expression levels and 
key protein interaction, highlights the PERK/ATF4 
branch of the UPR as the most highly activated.

Upon endoplasmic reticulum (ER) stress, where 
an accumulation of misfolded proteins is detected, 
the UPR pathway initiates a series of events that 
temporarily stop translation, activate ER-associated 
degradation (ERAD) and prime the cell for renewed 
translation via transcriptional reprogramming (Gaud-
ette et  al. 2014; Adams et  al. 2019). A number of 
perturbations have been studied that induce ER stress 
including calcium perturbations, hypoxia, viral infec-
tion, specific genetic mutations, specific chemical 
insult, amino acid depletion and nutrient depriva-
tion (Ron 2002; Chakrabarti et al. 2011; Adams et al. 
2019; Read and Schröder 2021). The UPR is initiated 
by the dissociation of Bip (HSPA5) from three ER 
bound proteins, the inositol requiring enzyme 1 α/β 
(IRE1), the activating transcription factor 6 (ATF6) 
and eIF2 kinase PKR-like endoplasmic reticulum 
kinase (PERK). IRE1 exist in two isoforms; IRE1β 
mediates translational attenuation by 28S rRNA 
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cleavage (Iwawaki et  al. 2001) and IRE1α activa-
tion leads to the splicing of X-box-binding protein 1 
(XBP1) mRNA, which acts as a transcription factor 
(XBP1s) (Bravo et al. 2013). ATF6 activation leads to 
the release of its cytosolic portion, the bZIP transcrip-
tion factor ATF6N (Taouji et  al. 2013). Activated 
PERK phosphorylates eukaryotic initiation factor 2α 
(eIF2α) which represses general translation while 
increasing the translation of activating transcription 

factor 4’s (ATF4) (Bravo et  al. 2013; Adams et  al. 
2019).

ATF4 is a basic leucine-zipper (bZIP) transcription 
factor, which binds to C/EBP-ATF response elements 
(CARE) elements in DNA leading to the expression 
of several downstream genes, including DNA Dam-
age Inducible Transcript 3 (DDIT3, aka GADD153 
and CHOP), TRIB3, ATF3, ASNS, HERPUD1 and 
PPP1R15A (GADD34), all of which were induced 
here upon exposure to ETC inhibitors. Links between 
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metabolic state and ATF4 induction have been previ-
ously observed in other in vitro studies, including the 
observation that ATF4 is induced upon ETC inhibi-
tion in neuronal, liver cancer cells and iPSC induced 
proximal tubular-like cells (Krug et  al. 2014; Jen-
nings et al. 2022; van der Stel et al. 2022). There is an 
established link between mitochondrial disturbances 
and Parkinsonian motor disease, where UPR has been 
implicated as a protective mechanism (Costa et  al. 
2020). Post-mortem studies have identified ATF4 
and DDIT3 in dopaminergic neurons of Parkinson’s 
patients (Hoozemans et al. 2007; Esteves and Cardoso 
2020). Both animal and in vitro studies of Parkinso-
nian motor diseases often use the complex I inhibi-
tors rotenone and/or  MPP+ as chemical initiators 
(Ryu et al. 2002; Conn et al. 2004; Tong et al. 2015; 
Tong et  al. 2016; Gaballah et  al. 2016; Costa et  al. 
2020). Wu and colleagues demonstrated that oral 
administration of rotenone (3 mg/kg/day) for 4 weeks 
in rats resulted in an increase in the mRNA and pro-
tein expression of Atf4 and Ddit3 in midbrain tissue 
(Wu et al. 2013), whereas Gaballah group identified 
an over threefold increase in Ddit3 mRNA expression 
in rat brains after sub-cutaneous injection of rotenone 
(1.5 mg/kg/ every second day) for 21 days (Gaballah 
et  al. 2016). Molecular studies in whole organisms 
also provide evidence of a link between mitochon-
drial perturbation and PERK/ATF4 activation. ATF4 
and downstream genes have also been found to be 
induced in Drosophila Melanogaster upon geneti-
cally induced ETC disturbance (COX7A knockdown) 
(Sorge et  al. 2020). In a mouse model (p32/C1qbp-
deficient mice), mitochondrial translation inhibition, 
induced elF2α phosphorylation and ATF4 induction, 
inducing transcription of ATF4 target genes (Saito 
et al. 2017; Sasaki et al. 2020).

Since DDIT3 is a highly induced UPR gene, its 
role has been studied under various settings. A recent 
study, from Kaspar et  al. has implicated DDIT3 
as protective in a model of mitochondrial disease 
(Aspartyl-tRNA synthetase (DARS) knock out) (Kas-
par et  al. 2021). The authors propose DDIT3 to be 
protective in mitochondrial stress by preventing over-
activation of ATF4. DDIT3 is a basic leucine zipper 
transcription factor (bZIP TF) of the dimer-forming 
CAAT/Enhancer Binding Protein (C/EBP) family, 
forming homodimers with other bZIP TFs includ-
ing C/EBPβ, ATF3, MAF and ATF4 (Neill and Mas-
son 2023; Osman et al. 2023). All these genes were 

induced in the present study by ETC inhibitors. 
ChiP sequencing experiments has shown that DDIT3 
overexpression, acts predominantly as a transcrip-
tion repressor, but can also upregulate certain genes 
(Osman et al. 2023). Interestingly, GADD45A, highly 
upregulated in this study, was amongst the gene 
targets supressed by DDIT3 overexpression (non-
stressed conditions) (Osman et  al. 2023). It is plau-
sible that ATF4/DDIT3 heterodimers exhibits differ-
ent transcriptional outcomes and indeed GADD45A, 
which promotes cell cycle inhibition, has also been 
previously characterised as an ATF4 upregulated gene 
(Wang et al. 2015). Thus, the possible dimerisation of 
the ATF4 induced C/EBP bZIP transcription factors, 
allows for several interactions and may be responsi-
ble for transcriptional fine tuning and temporal altera-
tions in transcriptional outcome.

GADD45A is better recognised as a member of the 
p53 set of regulated genes. DNA damage, cell cycle 
and G1 to S cell cycle progression, were all predicted 
to be activated and all contain GADD45A. In addition 
these pathway classes include ATM, CCND1, CDK1, 
-4,-6, CDKN1A, CDKN1B, E2F1, MDM2 and TP53. 
This gene set is thus likely activated through p53 acti-
vation which was also identified as an upstream regu-
lator. Since it is highly unlikely that the compounds 
used cause DNA damage, this pathway is most likely 
activated here through energy sensing mechanisms 
for example AMPK (Herzig and Shaw 2018). Indeed, 
AMPK was identified as an overrepresented pathway. 
Activation of the above mentioned set of p53 causes 
cell cycle arrest, one of the most energy demand-
ing cell functions. The gene TGLN, which encodes 
transgelin was also highly induced in the ETC inhibi-
tion data set. A recent study shows that transgelin a 
regulator of the actin cytoskeleton is induced by p53 
(Tsui et al. 2019).

It was anticipated that ETC inhibition would lead 
to oxidative stress as this phenomenon has been pre-
viously observed in several studies (Barrientos and 
Moraes 1999; Nakamura et al. 2001; Li et al. 2003). 
However, the Nrf2 pathway was not identified as 
being overrepresented in overexpression analysis nor 
in the upstream regulator analysis. While there was 
an induction of some genes associated to the Nrf2 
oxidative stress response pathway including GCLC, 
SLC7A11, TXNRD1 and FTL, other prototypical Nrf2 
genes such as HMOX-1, NQO1, ME1 and GCLM were 
not affected. Interestingly, thioredoxin interacting 
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protein (TXNIP), proposed to be supressed by Nrf2 
(He and Ma 2012), was strongly downregulated in all 
conditions (Fig. 9D). TXNIP binds to and inhibits the 
activity of cytosolic and mitochondrial thioredoxin 
(TRX-1 and TRX-2 respectively) a thiol-reducing and 
ROS-scavenging enzyme. Thus, decreasing TXNIP 
would be expected to enhance thioredoxin activity 
and alleviate oxidative stress. Some of the genes are 
likely under the transcriptional regulation of other 
transcription factors, e.g. SLC7A11 has also been 
shown to be also regulated by ATF4 (Zgheib et  al. 
2018; Torrence et al. 2021). Thus, at the present time 
we cannot categorically conclude if the Nrf2 pathway 
has been impacted by the ETC inhibitors.

The downregulation of the energy-intensive pro-
cess of biosynthesis of cholesterol might be closely 
associated with ETC inhibition. Acetyl-CoA, ATP, 
oxygen, and the reducing substrates NADPH and 
NADH must all be provided in significant amounts 
for the energy-intensive process of cholesterol bio-
synthesis to occur (Luo et al. 2019). The low energy 
conditions derived from the ETC inhibition may limit 
the availability of all the substrates necessary for the 
synthesis of cholesterol (Shi and Tu 2015).

In conclusion, the ETC inhibitors had a profound 
effect on transcriptional regulation of contact-inhib-
ited RPTEC/TERT1 cells, often at concentrations 
prior to those where inhibition of oxygen consump-
tion was detected. The cells are thus highly sensitive 
to even modest decreases in mitochondrial respiration 
and/or ATP production. While complex I and com-
plex III inhibitors were more potent than complex 
II inhibitors the pathways induced were similar. The 
ATF4 arm of the unfolded protein response was the 
most predominant transcriptional pathway activated, 
followed by p53 and cholesterol biosynthesis. Taken 
together with other studies it is likely that the ATF4 
pathway is a primary sensor and adaptor of mito-
chondrial dysfunction. More work will be required to 
delineate this pathway further and determine the roles 
of the individual players.
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