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Introduction

Glucocorticoids are systemic hormones that regulate the 
functions of diverse cell types in both physiological and 
pathologically conditions. Both fast, nongenomic effects 
as well as slow receptor-mediated effects account for glu-
cocorticoid actions. In the latter case, the main glucocor-
ticoids (cortisol in humans, corticosterone in rodents) bind 
to two types of receptors, the high affinity mineralocorti-
coid receptor (MR) (NR3C2, nuclear receptor subfamily 
3, group C, member 2) and the low affinity glucocorticoid 
receptor (GR) (NR3C1, nuclear receptor subfamily 3, group 
C, member 1) [1]. In molecular terms, ligand-activated GR 
and MR bind as homo or heterodimers to glucocorticoid-
response elements on the DNA, regulating in a positive or 
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Abstract
Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also 
enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative dis-
orders of humans and models of human diseases. .”The Wobbler mouse model of amyotrophic lateral sclerosis shows 
hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator 
Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now 
tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice 
remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice 
receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors 
HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, 
P2RY12 purinergic receptor) as well as serum IL1β and corticosterone. We showed that chronic stress produced high 
levels of serum corticosterone and IL1β, decreased body and spleen weight, produced microgliosis and astrogliosis and 
increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microglio-
sis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression 
and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably 
involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component 
of neurodegenerative disorders.

Keywords  Neuroinflammation · Glucocorticoids · Glucocorticoid receptor modulators · Cort113176 · Stress

Received: 5 April 2023 / Accepted: 1 August 2023 / Published online: 11 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Stress-induced Neuroinflammation of the Spinal Cord is Restrained 
by Cort113176 (Dazucorilant), A Specific Glucocorticoid Receptor 
Modulator

Maria Meyer1 · Onno Meijer2 · Hazel Hunt3 · Joseph Belanoff3 · Analia Lima1 · E. Ronald de Kloet2 · Maria Claudia  
Gonzalez Deniselle1,4 · Alejandro F. De Nicola1,5

1 3

http://orcid.org/0000-0002-3523-9148
http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-023-03554-x&domain=pdf&date_stamp=2023-8-10


Molecular Neurobiology (2024) 61:1–14

negative way the transcription of target genes [1, 2]. Addi-
tionally, GR may directly bind to DNA and interact with 
other transcription factors causing gene repression. Thirdly, 
gene transrepression can take place by direct protein-protein 
interaction (tethering) between the GR and the transcription 
factors activator protein-1 (AP-1) and NFkB [3–5]. There-
fore, mechanisms involving the GR offer the opportunity for 
pharmacological modulation of this receptor when dysregu-
lation of glucocorticoid action is involved in the initiation or 
aggravation of pathology.

Glucocorticoids are well known for their anti-inflam-
matory, anti-proliferative and immunosuppressive effects. 
These properties have been used for the treatment of dis-
eases with a dysregulated immune system affecting the ner-
vous system, bronchial system, bowel, skin, hematological, 
bone, or joints [6, 7]. Although beneficial effects are due 
to suppression of inflammatory genes, paradoxically, gluco-
corticoids may enhance inflammation in peripheral organs 
and particularly in the nervous system [7–12]. Examples of 
the latter effect include Cushing syndrome, major depres-
sive disorder, post-traumatic stress disorder, brain aging and 
animal models presenting prolonged glucocorticoid excess 
[13–16]. Interestingly, neurodegenerative diseases such as 
Alzheimer`s, Parkinson´s, Huntington´s and amyotrophic 
lateral sclerosis (ALS) show abnormal glucocorticoid 
dynamics, consisting of HPA axis hyperactivation, elevation 
of blood cortisol levels and abnormal circadian rhythms of 
cortisol [17–21]. Remarkably, these disorders also present 
increased production and/or levels of peripheral and central 
inflammatory factors [21].

In previous studies we used the Wobbler mouse model of 
ALS to elucidate if hypercorticosteronemia associates with 
neuroinflammation. Wobblers show a point mutation of the 
vacuolar protein sorting-associated protein 54 (Vps54) lead-
ing to motoneuron degeneration and aberrant glial cell func-
tion [22]. Wobblers show dysregulated HPA axis, increased 
levels of corticosterone in brain, plasma and adrenal glands, 
focal adrenal hypertrophy and enhanced response to stress 
[14, 23]. Concomitantly, the mutant mice show faulty 
hippocampal and spinal cord parameters. To disclose if 
changes of hippocampus are reversible by inhibition of GR, 
Wobbler mice received for 4 days the specific GR antago-
nist CORT108297. Treatment with CORT108297 increases 
doublecortin (DCX) + neuroblasts in the subgranular zone 
of the hippocampus, diminishes astrogliosis and changes 
the phenotype of Iba1 + microglia from a reactive to a qui-
escent form without changing the hypercorticosteronemia 
[24]. Besides hippocampus, pathological changes are also 
prominent in the spinal cord of Wobbler mice, which show 
microgliosis, astrogliosis and high expression of proinflam-
matory factors [14, 23–28]. Treatment of Wobblers for 3 
weeks with the GR modulator CORT113176 (Dazucorilant) 

reduces proinflammatory markers and density of astro-
cytes and microglial cells [29, 30]. We hypothesized that 
CORT113176 interferes with GR function or could favor 
restoration of the balance between pro- and anti-inflamma-
tory signaling pathways in coordination with the MR [29]. 
That brain and spinal cord neuroinflammation of the Wob-
bler mouse decreases by treatment with GR modulators [24, 
30, 31], supports the paradoxical proinflammatory effect of 
glucocorticoids.

Classically, mifepristone (RU496) has been used to 
inhibit the GR in hypercorticoidisms and to prevent sec-
ondary effects of glucocorticoids. However, mifepristone 
is a non-selective compound with potent antagonism for 
progesterone receptors [32]. Therefore, specific inhibitors/
modulators of higher affinity have been developed. In this 
regard, the GR modulators CORT113176 and CORT108297 
have been used to reverse β-amyloid toxicity, loss of mem-
ory processes, hippocampal pathology and neuroendocrine 
overshooting, supporting a pathological role of GR activa-
tion in the context of CNS diseases [32–35]. In control NFR/
NFR mice, we have shown that treatment with corticos-
terone for 5 days reduces DCX + neuroblasts and induces 
astrocyte hypertrophy in hippocampus dentate gyrus. In 
these circumstances, treatment with CORT108297 antago-
nizes the corticosterone effects [24]. Furthermore, efficacy 
of CORT113176 as antagonist is higher than CORT108297, 
a property that can be due to differences in the affinity of 
both compounds for GR [36] or different capacity to recruit 
coregulators that would condition their function [33, 37]. 
Within this family of compounds, CORT118335 shows 
mainly brain antagonism, but for CORT108297 there is also 
agonism. For these reasons they are considered GR modula-
tors [32].

We now tested the hypothesis that neuroinflammation 
associates to adrenal dysfunction using a high inflamma-
tion, high corticosterone model that resemble the situation 
of the Wobbler mouse. Chronic stress produces prolonged 
activation of the HPA axis and results in maladaptive 
responses (increasing allostatic load) with detrimental 
effects in the nervous system [38]. Thus, prolonged high 
stress levels of adrenal glucocorticoids increase reactivity 
and proliferation of microglía and astrocytes in prefrontal 
cortex and hippocampus, with enhanced expresión of proin-
flammatory mediators [39–42]. Spinal cord astrocytosis or 
astrocyte hypertrophy have also been described in the spi-
nal cord from animals subjected to stress or corticosterone 
treatment [13, 24, 43]. We thus analyzed the involvement 
of GR on spinal cord neuroinflammation, and compared the 
expresión of proinflammatory factors within the HMGB1-
TLR4-NFkB pathway, microgliosis, astrogliosis and related 
markers of glial dysfunction between stressed mice and 
stressed mice receiving CORT113176. Our data provided 
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support that treatment with a GR modulator rescued the 
spinal cord from stress-related neuroinflammation, which 
could be advantageous for the treatment of ALS, multiple 
sclerosis, and spinal cord injury.

Materials and Methods

Experimental Animals

Mice of the NFR/NFR strain originally obtained from 
NIH (Bethesda, MD, USA) were bred and maintained 
in the animal room facility of the Instituto de Biologia y 
Medicina Experimental. The NFR/NFR strain is the back-
ground strain of Wobbler mice, in which CORT113176 
prevented unwanted effects of endogenous glucocorticoids. 
To better reproduce these effects in stressed mice, the same 
strain was used. Mice were kept in ventilated cage racks 
under controlled temperature (22 o C), a 12/12 h light dark 
cycle with lights on at 7 am. Mice were fed Purina mouse 
chow and water ad libitum. Five-month-old animals were 
divided into three groups (A) control non-stressed mice; 
(B) mice subjected to restrain and rotation stress; (C) 
mice subjected to restrain and rotation stress and receiving 
CORT113176 (Dazucorilant, ([4a(R)-1-(4-fluorophenyl)-
6-(4-trifluoromethylphenyl)sulfonyl)-4,4a,5,6,7,8-hexa-
hydro-4aH-pyrazolo[3,4 g]isoquinolin-4a-yl][pyridine 2yl]
methanone1H-pyrazolo, Corcept Therapeutics, Menlo Park, 
CA, USA) .CORT113176 shows a Ki value for GR of < 1 
nM and does not interact with androgen receptors, estro-
gen receptors or MR [36]. The protocol used for stress and 

CORT113176 administration is graphically presented in 
Fig. 1 with full details of the procedure given in the legend.

The weight of the mice was recorded once a week for a 
period of 3 weeks. For immunohistochemistry and immu-
nofluorescence procedures, mice were first anesthetized 
with a mixture of ketamine (75  mg/kg, i.p, cat.#326F, 
Holliday Labs, Argentina) and xylazine (6  mg/kg, i.p, 
cat.#050,Richmond Vet., Argentina).and perfused intracar-
dially with 4% paraformaldehyde (PFA) in 0.1 M sodium 
phosphate buffer pH 7.4. For PCR analysis, anesthetized 
mice were decapitated and spinal tissue kept frozen at −80o 
C until used. All animal procedures were evaluated and 
approved by the Institutional Animal Care and Use Com-
mittee following the Guide for the Care and Use of Labora-
tory Animals (Animal Welfare Assurance, NIH certificate # 
F16-00065 A5072-01).

Immunohistochemistry and Immunofluorescence 
Procedures

For microglia labeling, dissected cervical spinal cords 
were embedded in Tissue-Tek (OCT compound, cat.# 
KMA.0100.00 A, Cell Path, Newtown, U.K.) 16 μm sections 
were cut in a cryostat set at − 10oC, and stained for microglia 
using a rabbit anti-Iba1 antibody (1:2000, Cat. #019-19741, 
RRID: AB_839504, Wako, Japan). The secondary antibody 
was a goat anti-rabbit IgG conjugated to Alexa Red 555 (cat 
# 21,428, RRID: AB_141784, Invitrogen, Life Technolo-
gies, Eugene, OR, USA) Sections were cover-slipped with 
Fluoromont (cat. # 0100-01, Southern Biotech, Birming-
ham, AL, USA) and Iba1 + immunofluorescent microglial 

Fig. 1  Five months old male mice of the NFR/NFR strain were left 
as control (A), subjected to stress (B) or subjected to stress and given 
COR113176. at the beginning of the 1st week (C). For restraining 
stress, mice were introduced into Falcon tubes with open ends to 
allow normal breathing. Rotation stress consisted of maintaining mice 
in Plexiglas cages on top of a platform rotating at speeds from 0 to 
100 rpm/min. Stress lasted for 1 h the 1st week, 1.5 h the 2nd week and 
2 h the 3rd week. Mice were stressed once a day and the regimen of 

the stressor was alternated to avoid habituation. Mice in group C were 
given morning (8 a.m.) injections of 30  mg/kg CORT113176 every 
other day for 3 weeks, whereas groups A and B received oil vehicle 
only. CORT113176 was dissolved in castor vegetable oil and injected 
s.c. on the back of the neck. During the experiment, injections of 
CORT113176 or vehicle were given 30 min before the employment of 
stressors. On day 21, mice were injected at 8 a.m. with CORT113176 
or vehicle, stressed and sacrificed 2 h afterwards [31]
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each animal. GS + cells, were quantitated by a computerized 
image analysis system (Bioscan Optimas VI, Edmonton, 
WY, USA) equipped with a Panasonic GPKR222 camera 
connected to an Olympus BH2 microscope.

qPCR of Glial Cell Markers and Inflammatory 
Mediators

The cellular response to stress and CORT113176 was also 
analyzed at the transcriptional level by measuring mRNA of 
the astrocyte markers aquaporin 4 (AQP4) and SOX9 [44, 
45] and two microglia markers: CD11b and the purinergic 
receptor P2RY12 [46, 47]. Regarding the inflammatory 
mediators we selected those pertaining to the HMGB1 → 
TLR4 → NFkB pathway [48, 49]. As shown in previous 
work, CORT113176 down-regulates the increased levels 
of these inflammatory factors in the spinal cord of Wob-
bler mice [31]. All mRNA levels were measured by real 
time PCR using previously published procedures [50]. The 
cervical spinal cord was used for qPCR analysis, to bet-
ter compare results with those in the Wobbler mouse in 
which pathology is restricted to the cervical región [30, 31]. 
Sequences of primers are shown in Table 1.

Briefly, total RNA was extracted from spinal cord with 
Trizol (cat.#15,596,026,Life Technologies-Invitrogen, 
CA, USA), and remaining DNA removed by treatment 
with DNase1 (cat.# EC 3.1.21.1, Promega, Madison, WI, 
USA). Then, we used a M1705 MMLV reverse transcrip-
tase (cat# EC 2.2.2.49; Promega) for PCR amplification of 
DNA templates in the presence of random hexamer primers. 
Cyclophilin was used as the house keeping gene. A real time 
Step-one Plus sequence Detection System (Applied Biosys-
tems, Foster City, CA, USA) was used to establish gene 
expression profiles and mRNA expression was analyzed by 
the 2−Δct method [51]. Results were expressed as fold induc-
tion over group (A), composed of non-stressed mice.

ELISA for IL1β and TNFα

Levels of serum IL-1β and spinal cord TNFα were quan-
tified by ELISA. A volume of 100  µl of serum or tissue 

cells were counted in gray matter of the ventral horn [30]. 
Images taken with the confocal microscope were analyzed 
using Image J (Image Processing and Analysis in Java, 
NIH, MD, USA) at 200X. The number of Iba1 + microglia 
was quantified by this program and expressed per unit area 
(mm2). Cells were counted in 5–6 sections per mice. The 
number of mice in this and subsequent experiments are indi-
cated in the Figure legends.

The response of astrocytes was determined by immu-
nohistochemistry using a GFAP antibody that stains both 
quiescent and reactive astrocytes. After anesthesia and per-
fusion, the cervical region of the spinal cord was used to 
compare actual data with those obtained in CORT113176-
treated Wobbler mice [30]. Paraffin sections were exposed 
to a primary rabbit polyclonal GFAP antibody (1/500 
dilution, cat.# G9269,RRID:AB_477035, Sigma-Aldrich, 
USA)) followed by a biotinylated goat antirabbit second-
ary antibody (1:200 dilution, cat# 7014, RRID:AB_477035, 
Sigma-Aldrich). Thereafter, sections were treated fol-
lowing an ABC kit instructions (cat# PK2200, RRID: 
AB_2336835, Vector Labs, CA, USA), with peroxidase 
activity revealed by diaminobenzidine tetrachloride (DAB, 
Sigma). GFAP + cells were quantitated by a computerized 
image analysis system (Bioscan Optimas VI, Edmonton, 
WY, USA) equipped with a Panasonic GPKR222 camera 
connected to an Olympus BH2 microscope. GFAP + cells 
were counted in the ventral horn gray matter from at least 
6 sections per mice, and results were averaged per ani-
mal. Data were expressed as the mean number of labeled 
cells ± SEM per unit area (mm2).

Glutamine synthase (GS) staining was performed in 
sections pretreated with mouse IgG blocking reagent 
(cat.#PK2200,Vector M.O.M. Immunodetection Kit, Vector 
Labs) and then incubated with monoclonal mouse anti- GS 
(1:200 dilution, cat. #610,517, BD Biosciences, RRBD_ AB 
387,879, CA, USA ). This step was followed by incubation 
with a secondary monoclonal antimouse (M.O.M. Immuno-
detection Kit cat# PK2200, Vector Labs. Cells were counted 
in 5–6 Sects. (5–6 images were taken from the right side of 
the ventral horn of the spinal cord and 5–6 images from the 
left side, leaving a total of 10–12 quantified images) from 

Gene Gene Bank 
Accession No.

Forward Primer (5´- 3´) Reverse Primer (5´- 3´)

CD11b NM_008401 AAACCACAGTCCCGCAGAGA CGTGTTCACCAGCTGGCTTA
TLR4 NM_021297 GGCTCCTGGCTAGGACTCTGA TCTGATCCATGCATTGGTAGGT
NFκB p50 NM_ 008689 TCCACTGTCTGCCTCTCTCGTC GCCTTCAATAGGTCCTTCCTGC
P2RY12 NM_027571.4 TTTCAGATCCGCAGTAAATC-

CAA
GGCTCCCAGTTTAGCATCACTA

AQP4 NM_009700.3 CTGGAGCCAGCATGAATCCAG TTCTTCTCTTCTCCACGGTCA
SOX9 NM_011448.4 GGACAACACATGCCTCTGCAA TCTCCAGCCACAGCAGTGAG-

TAA
Cyclophilin 
b

NM_022536 GTGGCAAGATCGAAGTG-
GAGAAAC

TAAAAATCAGGCCTGTG-
GAATGTG

Table 1  Sequence of primers for 
PCR analysis
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was set at *and #p < 0.05, ** and ##p < 0.01, and *** and 
###p < 0.001.

Results

Changes of Body Weight, Spleen Weight and Serum 
Corticosterone in Mice Subjected to Stress Plus or 
Minus CoRT113176

As shown in Fig. 2A body weight of control mice was main-
tained or slightly increased throughout the 3 week period. 
Instead, stressed mice with or without CORT113176 treat-
ment showed a significantly decreased body weight at the 
end point of the 3 week period. However, stressed mice 
receiving CORT11376 were moderately but significantly 
heavier than the stress-only group. Statistical analysis using 
two-way ANOVA with repeated measures showed signifi-
cant effects of time (F(3,39)= 12.91, p < 0.001), effects of 
treatment (F(2,13) = 5.174,p = 0.022) and effects of time x 
treatment interaction (F(6,39)= 6.536, p < 0.001). Regarding 
spleen weight, one-way ANOVA test showed significant 
group differences according to treatment (F (2,23) = 13.11, 
p < 0.0002). The multiple comparison test showed a signifi-
cant decrease in spleen weight in stressed mice (p < 0.001 
vs. control Fig.  2B) whereas spleen weight was recov-
ered in stressed mice receiving CORT113176 (p < 0.01 
vs. stress only group). As expected, stressed mice showed 
high levels of serum corticosterone (Fig. 2C). Quantitative 
analysis by ANOVA showed significant group differences 

homogenate was used to quantify these cytokines. Homog-
enates from the spinal cord were prepared in ice-cold lysis 
buffer (50 mM Tris–HCl, 150 mM NaCl, 2 mM EDTA, 1 
mM phenylmethylsulphonyl fluoride, 1 mM Na3VO4, and 
1% Triton 100, pH 7. 4) containing a protease inhibitor 
cocktail (Roche Diagnostics). We employed the BioLegend 
ELISA Max Deluxe set kit (San Diego, CA, USA) for IL-1 
β (Cat# 432604,5 plates) and for TNFα ( Cat# 430904,5 
plates), in accordance with the manufacturer’s instructions 
Each sample was quantified in triplicate.

Determination of Serum Corticosterone

Trunk blood was taken in the morning after decapitation 
of anesthetized mice. Serum was collected and steroids 
were extracted with dichloromethame. Corticosterone was 
determined by RIA using an antiserum provided by Dr. A. 
Bélanger, Laval University, Quebec, Canada. For this assay, 
inter and intra assays coefficients of variation were 5.9% 
and 4.9% [14], respectively, with sensitivity set at 0.3 ng/ml. 
Results were expressed as ng/ml of serum corticosterone.

Statistical Analysis

Data were analyzed by one-way ANOVA followed by the 
post-hoc Newman-Keuls test with the exception of the 
effect of treatments on the weight of the animals which was 
analyzed by repeated measures two-way ANOVA. Statisti-
cal analysis was performed with Prism 9 GraphPad software 
(San Diego, CA, USA). The level of statistical significance 

Fig. 2  A: Changes of body and spleen weight and plasma corticosterone 
in control, stressed mice and stressed mice receiving CORT113176 
(Dazucorilant) for 3 weeks. Whereas control mice maintained their 
body weight during the 3 weeks experimental period, stressed mice 
were lighter vs. controls. Body weight decline was partially corrected 
by CORT113176. Two-way ANOVA análisis of this parameter showed 
significant effects of time (p < 0.0001), treatment (p = 0.022) and time 
x treatment interaction (p < 0.0001). Multiple comparison test at the 
3rd week showed significant differences between control and stress 

groups (*** p < 0.001) and stress vs. stress + CORT113176 groups (## 
p < 0.01)B: Weight of spleen was reduced in stressed mice vs. controls 
(***p < 0.001). CORT113176 treatment of stressed mice increased 
spleen weight vs. the stress only group (## p < 0.01). (n for con-
trols = 5; stress and stress + CORT113176 groups 10 mice per group). 
C: Plasma corticosterone was increased by stress (***p < 0.001) vs. 
control mice, and decreased after CORT113176 treatment of stressed 
mice (## p < 0.01). Results represent 7 mice per group
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Effects of Stress and CORT113176 on Astrocytes in 
the Spinal cord

Normal astrocytes are associated with neuroprotection and 
metabolic function of neurons, although under pathologi-
cal circumstances they become a source of proinflammatory 
factors, with astrogliosis developing after chronic stress and 
glucocorticoid exposure [24, 43, 56]. In the present study, 
group differences were found in stressed mice without or 
with CORT113176 treatment. ANOVA analysis showed sig-
nificant changes in GFAP + astrocyte number (F(2,12)=37.85, 
p < 0.0001) and in the mRNA of the astrocyte-specific 
nuclear marker SOX9 (F(2,19) = 4.534, p < 0.0246). Further-
more, multiple comparison tests showed a significant stress-
induced GFAP + astrogliosis (Fig. 4A, p < 0.001) and higher 
mRNA of the astrocyte nuclear marker SOX9 (Fig.  4C, 
p < 0.05) vs. control mice. Changes produced by stress were 
restored after GR inhibition with CORT113176. The reduc-
ing effect was shown for GFAP immunolabeling and SOX9 
mRNA (Fig.  4A, C and p < 0.001 and p < 0.05 vs. stress-
only group, respectively).

The astrocyte response to experimental conditions 
included the water channel acquaporin4 (AQP4) immu-
nostaining and mRNA (Fig.  4D and F). Significant group 
differences were found for AQP4 immunoreactive area 
(F(2,12) = 13.54,p = 0.008).The multiple comparison test 
showed higher levels for the stress group (p < 0.001 vs. 
control mice), which subsided when stressed mice received 
CORT113176 (Fig.  4D, p < 0.01 vs. stress only group). 
Immunofluorescence images of AQP4 protein (Fig.  4E) 
showed higher labeling of astrocyte-like cells and microvas-
culature in the stressed group compared to the control and 
stress + CORT113176 groups. Changes were also obtained 
for AQP4 mRNA (F (2,15) = 6.385, p = 0.0099). A multiple 
comparison test showed that the stress-induced rise in 
AQP4 (p < 0.05 vs. control) was reduced by CORT113176 
treatment (p < 0.01 vs. stress-only group) (Fig. 4F). To fur-
ther localize AQP4 we performed a double label colocaliza-
tion of AQ4 with GFAP using different Alexa fluor dyes. We 
found that AQ4 (green label) colocalized with astrocyte (red 
label) around microvessels (Suplementary Fig. 1).

Glutamine synthase (GS) is an enzyme of the glutama-
tergic pathway that metabolizes glutamate + NH4 into glu-
tamine, preventing glutamate excitotoxicity [57]. ANOVA 
analysis showed significant group differences for GS (F 
(2,10) = 39.05, p < 0.0001). Stress powerfully down-regulated 
GS vs. control mice (p < 0.001), whereas GS + cells were 
modestly although significantly increased by CORT113176 
treatment (p < 0.05) (Fig.  4G). Images in Fig.  4H show 
scarce GS + cells in the stressed mice (middle graph) 
vs. the control or stress + CORT113176 groups (left and 
right graphs, respectively). Although GS is considered an 

(F(2,17) = 12.45, p = 0.0005). Thus, serum corticosterone was 
4-fold higher in stressed mice vs. control animals (p < 0.001) 
whereas CORT113176 treatment of the stressed group sig-
nificantly decreased serum corticosterone (p < 0.01 vs. 
stress only mice).

Effects of Stress and CORT113176 on Markers of 
Microglia Activation

Microglia becomes highly reactive in response to stress, 
with glucocorticoids playing a mediating role on microglia 
priming [40, 41, 52, 53]. In the present work, we employed 
control mice, stressed mice and stressed mice receiving 
the GR modulator CORT113176 to measure the response 
of microglia markers to the mentioned experimental condi-
tions. Significant group differences for the microglia marker 
CD11b (cluster of differentiation molecule 11b) were found 
in the ANOVA test (F(2,16) = 7.602,p < 0.0048). Post-hoc 
analysis demonstrated that stress lasting for 3 weeks sig-
nificantly increased CD11b mRNA expression compared 
to control mice (Fig. 3A, p < 0.01 ). The increased CD11b 
mRNA of stressed mice was prevented by modulation of the 
GR with CORT113176 (p < 0.01 vs. the stress-only group) 
(Fig. 3A). ANOVA analysis also showed strong group differ-
ences for Iba1 immunofluorescent microglia (F(2,12)=100.8, 
p < 0.0001) (Fig.  3C). Post-hoc analysis showed higher 
number of Iba1 + cells in the spinal cord of the stress group 
vs. the control group (p < 0.001) that was reduced in the 
stress + CORT113176 treated mice (p < 0.001 vs. stress-
only mice) (Fig. 3C). Microscopy images of the mentioned 
changes of Iba1 + cells produced by stress and stressed mice 
receiving the GR modulator are shown in Fig. 3D.

Comparable results to those obtained for CD11b and Iba1 
were found for P2RY12 mRNA, a purinergic receptor associ-
ated to activated microglia in neurodegenerative and neuro-
inflammatory disorders [54, 55]. We found group differences 
for P2RY12 mRNA in the ANOVA analysis (F (2,18) = 5.507, 
p = 0.0136). A multiple comparison test revealed a moder-
ate, although significant increase of P2RY12 in the stressed 
group (p < 0.05 vs. control) that decreased to control levels 
after treatment with CORT113176 (p < 0.05 vs. stressed-
only group; NS vs. control mice). (Fig. 3B).

Comparable results to those obtained for CD11b and Iba1 
were found for P2RY12 mRNA, a purinergic receptor associ-
ated to activated microglia in neurodegenerative and neuro-
inflammatory disorders [54, 55]. We found group differences 
for P2RY12 mRNA in the ANOVA analysis (F (2,18) = 5.507, 
p = 0.0136). A multiple comparison test revealed a moder-
ate, although significant increase of P2RY12 in the stressed 
group (p < 0.05 vs. control) that decreased to control levels 
after treatment with CORT113176 (p < 0.05 vs. stressed-
only group; NS vs. control mice). (Fig. 3B).
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NFkBp50 mRNA (F (2,16) = 7.374, p = 0.0054), TLR4 mRNA 
(F(2,17) = 6.876, p = 0.0065),TNFα protein (F(2,11) = 6.255, 
p = 0.0153), and serum IL1β (F(2,18) = 19.53,p < 0.0001). 
Multiple comparison tests showed that stress increased lev-
els of TLR4 mRNA (Fig. 5A, p < 0.05), NFkBp50 mRNA 
(Fig. 5B, p < 0.01), TNFα protein (Fig. 5C, p < 0.05), and 
serum IL1β (Fig. 5D, p < 0.001) vs. control mice.

Administration of CORT113176 for 3 weeks to stressed 
mice prevented or attenuated proinflammatory media-
tors, as demonstrated by decreased levels of TLR4 mRNA 
(p < 0.01), NFkBp50 mRNA (p < 0.01), TNFα protein 
(p < 0.05) and serum IL1β (p < 0.001) (Fig.  5A-D). Addi-
tionally, ANOVA showed significant group differences in the 
alarmin HMGB1 + cells/mm2 (F(2,11) = 16,54,p = 0.0005). 
Multiple comparison test showed increased labelling for 
HMGB1 in stressed mice (Fig. 5E, p < 0.001 vs. controls) 
and decreased staining in the CORT113176-treated stressed 
group (p < 0.01). Images of Fig. 4F show enhanced number 
of HMGB1 + cells in the stressed group and their decrease 
by antagonizing the GR with CORT113176. Therefore, 
modulation of the GR with CORT113176 prevented the 

astrocyte-produced protein, its cellular location has been 
disputed [58]. However, studies using antibody combina-
tions producing green and red fluorescent labeling of each 
marker and confocal microscopy, show scarce double-
labelled GS-GFAP + cells (Fig. 4B, right image, arrowhead), 
whereas most GFAP + cells were GS negative (Fig. 4B left 
and middle images) supporting previous contentions that 
part of GS + cells in the spinal cord may be oligodendro-
cytes [59, 60].

Effects of Stress and CORT113176 on 
Proinflammatory Mediators

Stress-induced glucocorticoid secretion activates the syn-
thesis and release of proinflammatory mediators in the brain 
[16, 21, 40, 41]. Our data demonstrated that similar effects 
take place in the spinal cord. As shown in Fig. 5, stress up-
regulated the expression of inflammation-related molecules 
TLR4 mRNA, NFkBp50 mRNA, HMGB1 + cells and TNF 
α protein in the spinal cord and IL1β in serum. ANOVA 
showed significant group differences in the spinal cord for 

Fig. 3  Changes of microglia-related parameters produced by stress 
and CORT113176 (Dazucorilant). A:Stress significantly increased 
CD11b mRNA (** p < 0.01, n = 6) vs. control mice (n = 6). 
CORT113176 + stress decreased this microglía marker vs. the stress-
only group (## p < 0.01, n = 7). B: The purinergic receptor P2RY12 
mRNA levels were higher in stress mice (*p < 0.05,n = 8) vs. control 
mice (n = 6). CORT113176 treatment decreased P2RY12 levels (# 
p < 0.05, n = 7) vs. the stress only group. C: Number of Iba1 + cells was 

higher in the stress group (*** p < 0.001) vs. control mice, whereas 
CORT113176 returned Iba1 + cell number to normal (###p < 0.001 vs. 
stress only group). Cells were counted in 5–6 sections per mice (n = 5 
mice per group).D: Immunofluorescent staining of Iba1 + cells shows 
lower cell density in control and stressed + CORT113176-treated mice 
(left and right images ) vs. the stress group (middle image). Inside bar: 
25 μm
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of serum corticosterone and induces neuroinflammation; (3) 
the GR is a mediator of the proinflammatory effects of corti-
costerone, and (4) modulation of the GR with CORT113176 
counteracted unwanted effects of glucocorticoids in the spi-
nal cord.

Thus, we demonstrated that a 3 weeks experience of 
variable restraining / rotating stress paradigm produced 
signs of spinal cord pathology in mice. The observed 
changes resembled those reported for the Wobbler mice 

stress-induced increase of several proinflammatory markers 
in the spinal cord and serum.

Discussion

The main findings of the present experiments led us to 
conclude (1) the spinal cord is vulnerable to the effect of 
chronic stress; (2) chronic stress associates with high levels 

Fig. 4  Changes of astrocyte-related parameters produced by stress 
and CORT113176 (Dazucorilant). A: The astrocyte specific protein 
GFAP was upregulated by stress vs. control mice (*** p < 0.001) 
but GFAP + cell density declined when CORT113176 was given to 
stressed mice (### p < 0.001) (n = 5 animals per group). C: mRNA 
levels of the astrocyte nuclear marker SOX9 was increased in 
stressed mice (*p < 0.05) and was reduced after CORT113176 treat-
ment (# p < 0.05) (n = 7–8 animals per group). D: immunolabeling 
for AQP4 revealed higher number of antigen + cells in stressed mice 
(*** p < 0.001 vs. control mice) that was significant decreased after 
CORT113176 treatment of stressed mice (## p < 0.01) (n = 5 mice per 
group). E: immunofluorecent images of AQP4 showed higher staining 
of astrocytes and vessels in the stressed group (middle panel) vs. the 

control or CORT113176-treated mice (left and right images, respec-
tively). F: AQP4 mRNA expression was increased in stressed mice 
(*p < 0.05 vs. controls), whereas CORT113176 reduced AQP4 mRNA 
levels (## p < 0.01 vs. stress only group). G: Immunocytochemistry 
for glutamine synthase (GS) revealed fewer GS + cells in the stressed 
group vs. control (*** p < 0.001) and vs. CORT113176-treated mice (# 
p<0.05 vs. stress-only mice). H: light microscopy images support the 
statistical analysis of G regarding GS, with the stressed group present-
ing less + cells than the other 2 groups. Inside bar: 50 μm. The cell type 
expressing GS is debatable. Figure  4B shows double-colocalization 
analysis. Left panel: green fluorescent GS + cells (arrows); middle 
panel red staining GFAP cells (arrows); right panel: merge image with 
few double.labeled cells (orange, arrowhead)
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which produced a partial recovery of body weight and also 
restored spleen weight. Along this line, there is a brain-
spleen axis dysfunction during stress in which activated 
microglia recruits peripheral immune cells to the brain, 
implying that the spleen contributes to neuroinflammation 
[64]. The posssibility that CORT113176 restores the regula-
tion of the brain-spleen axis opens new venues to understand 
the relationhip between stress-related and immune-related 
pathologies.

Our data are also in agreement with several publica-
tions reporting agonistic activity (i.e., inhibition of the HPA 
axis) of GR modulators, with normalization of circulat-
ing corticosterone. In this regard, a 7-day treatment with 
CORT113116 or CORT108297 prevents the rise of corti-
costerone induced by icv injection of amyloid β in rats [33], 
whereas CORT108297 given to rats for 10 days decreases 
hypercorticosteronemia caused by status epilepticus [65]. 
Moreover, treatment with CORT113176 or CORT108297 
for 5 days or with CORT113176 for 18 days decreases 
plasma corticosterone of Wobbler mice [24, 30]. Shorter 
treatments are also effective. Thus, increases of plasma 

model of ALS studied under non-stressed conditions [29, 
30]. Both models showed increased circulating corticoste-
rone levels, decreased spleen and body weight, enhanced 
parameters related to astrogliosis and microgliosis and 
increased expression of proinflammatory factors within 
the HMGB1, TLR4, NFkBp50 immune-related pathway. 
Furthermore, these abnormalities were a likely response 
to hypercorticosteronemia, because they subsided when 
the GR modulator CORT113176 was co-administered with 
stress. In this regard, the response of stressed-control mice 
to CORT113176 resembled the response of Wobbler mice 
treated with this GR modulator [30].

Changes of body weight of stressed mice were expected, 
since high corticosterone levels produced by chronic stress 
activation of the HPA axis stimulates protein catabolism in 
muscle and lipid degradation in adipose tissue [61]. Hyper-
corticosteronemia also targets the spleen, a glucocorticoid-
target tissue expressing GR. In this context, restrain stress 
increases GR activation, corticosterone-induced apoptosis 
and shrinkage of the spleen [62, 63]. Both parameters were 
significantly modified by treatment with CORT113176, 

Fig. 5  Changes of proinflammatory factors in control stressed mice and 
stressed mice receiving CORT113176 (Dazucorilant). A: mRNA lev-
els of TLR4 mRNA was increased in stressed mice (* p < 0.05 vs. con-
trols) and normalized to control levels after CORT113176 treatment 
(## p < 0.01 vs. stress-only group) (n = 6 to 7 animals per group). B: 
The mRNA for the NFκBp50 subnit was higher in the stress group (** 
p < 0.01 vs. controls) and decreased after CORT113176 treatment (## 
p < 0.01) (n = 6–7 animals per group). C: TNFα protein measured by 
ELISA show higher levels in the stress grioup (* p < 0.05 vs. controls) 
amd lower levels tan stress only when mice received CORT113176 (# 
p < 0.05). (n = 5 mice per group). D: Serum IL1β levels were stimulated 

by stress (*** p < 0.001 vs. control mice) but highly decreased in the 
CORT113176 + stress mice (### p < 0.001) (n = 7–8 mice pre group). 
E: Density of the high mobility box group 1 protein (HMGB1) + cells 
were substantially increaded by stress (*** p < 0.001 vs. controls) and 
were reduced in number following CORT113176 treatment of stressed 
mice (## p < 0.01 vs. stress only mice). (n = 5 mice per goup). F: Light 
microscopy images oF HMGB1 + cells showing more immunoreac-
tive cells in the stressed mice (middle image) compared to control or 
stressed mice receiving CORT113176 (left and rigth images, respec-
tively). Inside bar: 20 μm
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damage and neuroinflammation [73]. Frank et al. have shown 
that stress-induced neuroinflammation is glucocorticoid-
dependent, because these hormones mediate microglia reactiv-
ity, induction of the alarmin HMGB1 and potentiate NRLP3 
inflammasome activation [40, 41]. These authors have shown 
that severe stress and corticosterone treatment induce, whereas 
adrenalectomy or mifepristone treatment decreases HMGB1 
expression, suggesting that effects on HMGB1 are due to glu-
cocorticoids direct effects on microglia. Thus, likely events 
taking place in the spinal cord of stressed mice would involve 
HMGB1, its receptor TLR4, and activation and nuclear trans-
location of NFkB with transcription effects on inflammatory 
cytokine genes. This cascade takes place in several inflam-
matory conditions [48, 49]. Although the cell types showing 
HMGB1 immunoreactivity were not discriminated, we have 
shown before colocalization of HMGB1 with the astrocyte 
marker GFAP and HMGB1 with the microglía marker Iba1 by 
means of double-immunofluorescence techniques and confo-
cal microscopy [31]. Therefore, its is likely that changes of this 
proinflammatory marker in the present experiments involved 
both microglía and astrocytes.

Although the high content of GR makes the hippocampus 
highly susceptible to glucocorticoid oversecretion [8, 12, 69, 
73], the spinal cord is not spared from vulnerabilty [42, 74]. 
Since both microglía and astrocytes (in addition to ventral 
and dorsal horn neurons) express immunoreactive GR [30], 
it is likely that CORT113176 directly affects this receptor in 
glial cells. The current stressed experiments support this view. 
Thus, GR hyperactivation becomes a danger signal increas-
ing CNS pathology, while inhibition of this receptor with the 
GR antagonist mifepristone or with GR modulators dampens 
CNS vulnerability [24, 32–35, 65–67]. Considering the exist-
ing background, we analyzed if chronic stress in mice leads to 
spinal cord inflammation, an event that could be pharmacologi-
cally antagonized with a GR modulator. We found that after 
stress, mice developed microgliosis, increased Iba1 + label-
ing, high expression of the mRNAs of the microglia marker 
CD11b and the purinergic receptor P2RY12. This last recep-
tor is expressed in microglia ramifications, is activated by 
ATP, is involved in motility and migration towards sites of 
injury or degeneration, activates the NLRP3 inflammasome 
and enhances release of IL-6 secretion by endothelial cells 
[46, 47, 54, 55]. Thus, important evidence supports a role pf 
P2RY12 in neuroinflammation. These possibilities suggest that 
stress activation of P2RY12 mRNA is related to the inflam-
matory response, which was inhibited by the GR modulator 
CORT113176.

Therefore, inflammatory mediators may be the common 
pathway for stress-related disorders involving glucocorticoids. 
Major components of this inflammatory pathway include 
HMGB1, TLR4, purinergic receptors, TNFα and NFkB for 
activated microglia and HMGB1, NFkB, TNFα and AQP4 for 

corticosterone measured 15, 30 or 60  min after restrain 
or forced swim stress are prevented by treatment with 
CORT108297 [66, 67]. In the study of Gehrand et al. [66] 
CORT113176 in very high doses increases plasma corticos-
terone following hypoxic stress of neonatal rats, suggesting 
an antagonist role of this compound on the HPA axis. In the 
present experiments, 21 days of restraining/rotation stress 
increased serum corticosterone levels by 3.6-fold vs. control 
mice. This increase was significantly reduced by daily treat-
ment with CORT113176, suggesting an agonistic-like effect 
at the hypothalamic or anterior pituitary level. Thus, using 
our experimental design, levels of serum corticosterone in 
stressed + CORT113176-treated mice were not significantly 
different from the non-stressed group. Therefore, the ago-
nist or antagonist activity of GR modulators on the HPA axis 
may depend on the experimental situation, tissue in ques-
tion, dosage or age of the animals. On the other hand, all 
published reports conclude that GR modulators show nega-
tive regulation of GR in glucocorticoid targets situated in 
some peripheral organs and the central nervous system.

Previous work in Wobbler mouse motoneuron degenera-
tion demonstrate increased levels of corticosterone in plasma, 
spinal cord and brain, suggesting a pathogenic role for glu-
cocorticoids in this disorder [14, 23]. These studies show 
that treatment of Wobblers with 30  mg/Kg CORT113176 
for 21 days prevents spinal cord neuropathology, decreases 
reactive gliosis, motoneuron vacuolation, plasma corticos-
terone and expression of proinflammatory factors. There-
fore, a mixed role of CORT113176 also takes place in this 
model, because it shows agonist activity on the HPA axis 
and antagonistic activity in the spinal cord, resulting in the 
inhibition of reactive gliosis and neuroinflammation.

The present report provides support that stress-induced 
hypercorticosteronemia associates with a neuroinflamma-
tory condition with up-regulation of inflammatory factors. At 
first sight, this hypothesis seems controversial with the long 
accepted view that glucocorticoids suppress immune reactions 
and inflammatory factors [61, 68]. Because of these properties, 
glucocorticoids are widely used for the treatment of asthma, 
rheumatoid arthritis, respiratory distress syndrome, skin dis-
eases, hematological cancers, inflammatory diseases, CNS 
trauma and transplant rejection [69]. However, there may be 
a switch from an anti- to a proinflammatory effect of gluco-
corticoids, depending on dosage, tissue environment, time of 
exposure and molecular mechanisms of GR signaling at target 
genes [7, 9, 10, 12, 29, 70]. As already mentioned, glucocor-
ticoid proinflammatory effects have been demonstrated in the 
nervous system. Thus, in the hippocampus and frontal cortex 
stress-induced glucocorticoid secretion increases LPS-induced 
NFκB activation and induces the inflammatory factor TNFα 
and the nitric oxide synthesizing enzyme iNOS [10, 71, 72], 
whereas direct treatment with glucocorticoids causes neuronal 
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deactivation of the GR may be a useful pharmaceutical strategy 
for attenuating the damaging effect of high glucocorticoid lev-
els detected in neurodegenerative diseases including ALS [29]. 
In this regard, a current phase II clinical trial (Beta.clinical trial.
gov, NCT05407324) is recruiting patients to test CORT113176 
(Dazucorilant) effects in ALS. The possibility exists, therefore, 
that modulation of the GR would become useful for the treat-
ment of inflammatory pathologies [80] in addition to neurode-
generative disorders.
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reactive astrocytes, besides others not reported in this commu-
nication. Regulation of proinflammatory genes by glucocorti-
coid binding to GR expressed by astrocytes and microglia may 
explain proinflammatory actions of adrenal-derived steroids 
during chronic stress [7, 29]. We also adhere to the hypoth-
esis that stress-mediated glucocorticoid elevation could prime 
the inflammatory phenotype of microglia, one likely source of 
inflammatory mediators [40, 41]. This possibility is reinforced 
by experiments showing that stress and corticosterone induced, 
whereas adrenalectomy or mifepristone treatment mitigates 
HMGB1 expression and microglia priming [71]. Therefore, 
glucocorticoids are probably involved in neuroinflammation 
because treatment of stressed mice with CORT113176 reduced 
Iba + microgliosis, CD11b and P2RY12 mRNAs, immuno-
reactive HMGB1 + cells and TLR4 and NFkB mRNAs vs. 
stress-only mice. Thus, microglia are not the only source of 
inflammatory factors, because astrocytes under pathologi-
cal conditions change their role from protective to damaging 
[75, 76]. Along this line, we showed increased number of 
GFAP + astrocytes in the spinal cord, together with high expres-
sion of the astrocyte water channel AQP4 mRNA and protein 
and of the astrocyte specific nuclear marker SOX9 [77]. A dual 
function of AQP4 has been observed, because when patho-
logical conditions prevail, AQP4 is involved in astrogliosis, 
inflammation and release of cytokines [78, 79]. Furthermore, 
in our stressed mice model, we showed a reduction of immu-
noreactive glutamine synthase (GS), an enzyme considered a 
marker of astrocytes. Since stress lowers GS, less glutamate 
will be deaminated to glutamine, with subsequent increase of 
glutamate and generation of excitoxicity [58]. In addition to 
astrocytes, GS + cells may be located in oligodendrocytes [59, 
60]. Whether stress influences colocalization of this enzyme in 
astrocytes and oligodendrocytes warrants further investigation. 
Furthermore, expression of TLR4 and response to HMGB1 
also occurs in astrocytes resembling expression of these fac-
tors in microglia [75]. Therefore, it was most rewarding that 
CORT11376 treatment down-regulated astrogliosis and other 
parameters of inflammation including neurotoxicity. These 
data suggest that blockage of GR with CORT113176 disabled 
pathological functional phenotypes of astrocytes and microglia.

The cellular pathways employed by glucocorticoids as medi-
ators of stress-induced inflammation of the spinal cord needs to 
be analyzed, in addition to the molecular mechanism employed 
by GR modulators leading to neuroprotection. The fact that 
CORT113176 counteracts the effects of stress on inflammatory 
mediators (i.e., HMGB1, TLR4, NFkB, etc.) seems a reason-
able argument favouring antagonism. Instead, GR actions via 
its classical antiinflammatory role or the supression of stress-
induced high corticosterone levels suggest agonistic effects. 
Therefore, the molecular mechanisms of this class of GR mod-
ulators needs further appraisal, because they show combined 
agonist/antagonist properties [37]. Having this caveat in mind, 
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