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The majority of patients with resected stage II-IIIA non-small cell lung

cancer (NSCLC) are treated with platinum-based adjuvant chemotherapy

(ACT) in a one-size-fits-all approach. However, a significant number of

patients do not derive clinical benefit, and no predictive patient selection

biomarker is currently available. Using mass spectrometry-based proteo-

mics, we have profiled tumour resection material of 2 independent, multi-

centre cohorts of in total 67 patients with NSCLC who underwent ACT.

Unsupervised cluster analysis of both cohorts revealed a poor response/sur-

vival sub-cluster composed of ~ 25% of the patients, that displayed a

strong epithelial-mesenchymal transition signature and stromal phenotype.

Beyond this stromal sub-population, we identified and validated platinum

response prediction biomarker candidates involved in pathways relevant to

the mechanism of action of platinum drugs, such as DNA damage repair,

as well as less anticipated processes such as those related to the regulation

of actin cytoskeleton. Integration with pre-clinical proteomics data sup-

ported a role for several of these candidate proteins in platinum response

prediction. Validation of one of the candidates (HMGB1) in a third inde-

pendent patient cohort using immunohistochemistry highlights the poten-

tial of translating these proteomics results to clinical practice.
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1. Introduction

Lung cancer, of which non-small cell lung cancer

(NSCLC) is the most frequently diagnosed type, is the

deadliest malignancy worldwide, accounting for 18 %

of all cancer deaths in 2020 [1]. The overall 5-year sur-

vival rate is less than 20% and has increased only mar-

ginally in the last decades [2]. This poor overall

survival (OS) is mainly due to late detection of the

tumour, which causes most patients to present with

(inoperable or) metastasized disease.

Despite improved lung cancer screening protocols

and a shift towards detecting lower-stage cancers [3,4],

the proportion of patients with NSCLC who have

early-stage (I-IIIA) disease, where surgery serves as the

cornerstone of curative treatment, remains only one-

third. Platinum-based adjuvant chemotherapy (ACT)

regimens after surgery are standard care in stage II-

IIIA patients with NSCLC, based on a 4–5% absolute

OS benefit after 5 years [5]. In addition, while immu-

notherapy is now entering the adjuvant therapy arena

for stage IB to IIIA resectable NSCLC, cytotoxic che-

motherapy remains part of the adjuvant therapeutic

arsenal for this patient population [6–8]. In early and

late stage NSCLC, patient selection for therapies is

based on immunohistochemistry (IHC) for PD-L1 and

the presence of targetable driver mutations (EGFR,

KRAS G12C etc.) or driver fusions (ALK, ROS1,

RET). It is widely acknowledged that patient selection

for therapies based on specific biomarkers is the way

to go forward in precision oncology [9]. However,

there are no predictive biomarkers in tissue for

response to chemotherapy.

Cisplatin or carboplatin are the major components

of most chemotherapies (in combination with drugs

such as pemetrexed or gemcitabine). As alkylating

agents, these platinum drugs damage DNA via the for-

mation of cross-links, ultimately preventing DNA rep-

lication and RNA transcription, leading to apoptotic

cell death and immune responses. Nucleotide excision

repair (NER) is the major DNA repair pathway in

platinum-induced lesions, and enhanced repair and tol-

erance of platinum-induced DNA damage is one of

the key mechanisms involved in platinum resistance.

Other processes involved in determining sensitivity and

resistance include regulation of drug accumulation

and detoxification as well as alterations in cell (survi-

val/death) signalling and changes in the tumour micro-

environment [10]. Of note, besides DNA, cisplatin has

also been shown to modify other molecules, such as

RNA [11], adding yet another putative source from

which platinum toxicity can originate.

Many genomic instable tumours are characterized

by the loss of functionality in one or several DNA

repair pathways. In this context, optimizing treatment

according to tumour status for DNA repair bio-

markers could predict response to DNA damaging

therapies such as platinum-based ACT and might sub-

stantially improve the response of individual patients’

tumours. Therefore, several DNA repair proteins,

including NER protein ERCC1, the mismatch repair

(MMR) proteins MSH2 and MSH6, and double

strand break (DSB) repair proteins BRCA1/2, have

been explored in lung cancer for their use as prognos-

tic and/or predictive biomarkers of response to chemo-

therapy [12]. A recurring observation is that low

ERCC1 expression is associated with sensitivity to

platinum [13], but the results published in retrospective

and prospective studies are not always consistent [14].

Protein profiling by mass-spectrometry may be advan-

tageous in this context as it provides a read-out of

multiple proteins in a larger context of (DNA repair)

pathways. For example, in our study of BRCA1-

deficient breast cancer [15], we identified over 400 pro-

teins that were upregulated in BRCA1-deficient

tumours as compared to BRCA1-proficient tumours.

These regulated proteins were linked to 29 non-

redundant nuclear protein complexes that underscored

the importance of alterations in multiple DNA repair

pathways and chromatin remodelling. Based on highly

connected nodes in these complexes, a BRCA1-

deficiency signature was constructed with value for

selecting patients with “BRCAness” in independent

cohorts. This study clearly shows the potential of unbi-

ased proteomics in constructing biologically relevant

signatures with clinical value.

Despite these efforts and the reported putative asso-

ciation of > 900 genes/proteins with platinum resis-

tance in various cell line, xenograft and human cancer

tissue studies [10], no patient selection biomarker is

currently available for platinum treatment. The avail-

ability of biomarkers (detected in tissue or body fluids)

that can predict a patient’s response to platinum-based

therapies could help prevent unnecessary treatment

and the associated toxicities in patients who are resis-

tant to platinum drugs, and provide guidance for alter-

native non-platinum-based regimens. By performing

mass spectrometry-based proteomics in treatment-

naive tumour resection material of patients with

NSCLC who underwent platinum-based ACT, we

describe known and novel biological aspects of plati-

num sensitivity and resistance, and discover and vali-

date putative protein biomarkers that can predict

response to platinum treatment.
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2. Materials and methods

2.1. Formalin-fixed, paraffin-embedded (FFPE)

tissue collection

Formalin-fixed, paraffin-embedded specimens of

patients who underwent radical surgical resection for

primary NSCLC between 2004 and 2014 were waived

by the respective biobanks: Amsterdam UMC/VU

Medical Center biobank (BUP2016-032; VUmc

patient sub-cohort), the NKI-AVL Core Facility

Molecular Pathology & Biobanking (CFMPB) of the

Netherlands Cancer Institute – Antoni van Leeuwen-

hoek Hospital, Amsterdam (CFMPB238; NKI patient

sub-cohort) and the Maastricht Pathology Tissue Col-

lection (MPTC; via BUP2019-062; MUMC patient

sub-cohort). The use of pre-existing archived and de-

identified samples does not fall within the scope of

the Medical Research Involving Human Subjects Act

in the Netherlands. Collection, storage and use of tis-

sue and patient data were performed in agreement

with the “Code for Proper Secondary Use of Human

Tissue in the Netherlands” developed by the Dutch

Federation of Medical Scientific Societies (FMWV).

The inclusion criteria were as follows: (a) all patients

underwent complete resection of primary NSCLC

(both lung adenocarcinoma (LUAD) and lung squa-

mous carcinoma (LUSC) cases were included); (b)

patients received platinum-based ACT following sur-

gery (with the exception of a small cohort of patients

that were left untreated (UT) following surgery and

were used as part of the validation process); (c) at

least 36 months of survival follow-up information

was available; and (d) samples had a tumour cell per-

centage (TCP) of at least 30% (for the discovery

cohort, 40% for the validation cohort), as determined

by two independent pathologists. Patients who

received additional peri-operative treatment besides

platinum-based ACT (e.g. radiotherapy, neo-ACT or

participation in clinical trials) were not considered.

Cancer staging was performed in accordance with the

TNM classification (version 7) of the Union for

International Cancer Control [16]. Recurrence-free

survival (RFS) was defined as the time between first

chemotherapy (ACT sub-cohort) or resection (UT

sub-cohort) and recurrence (local, regional or distant)

or death due to any cause. Clinico-pathological char-

acteristics of both discovery (consisting of samples

from VUmc and NKI patients) and validation (con-

sisting of samples from VUmc and MUMC patients)

cohorts are reported in Table 1, Table S1 and

Fig. S1.

2.2. FFPE tissue preparation for

mass-spectrometry analysis

Formalin-fixed, paraffin-embedded tissue sections

(6 9 10 lm thickness) were cut from paraffin blocks

Table 1. Clinico-pathological characteristics of discovery and valida-

tion patient cohorts analysed by proteomics.

Discovery Validation

ACT ACT UTc

N

(45) %

N

(22) %

N

(10) %

Age, median

(mean � SD), years

61.0

(60.3 � 7.6) 66.5

(64.5 � 8.0) 59.5

(62.7 � 9.9) Sex

Male 26 57.8 11 50.0 6 60.0

Female 19 42.2 11 50.0 4 40.0

Subtype

LUAD 26 57.8 14 63.6 10 100

LUSC 19 42.2 8 36.4 0 0.0

Sub-cohort

VUmc 33 73.3 7 31.8 10 100

NKI 12 26.7 0 0.0 0 0.0

MUMC 0 0.0 15 68.2 0 0.0

pStagea

IA 1 2.2 0 0.0 2 20.0

IB 4 8.9 2 9.1 2 20.0

IIA 19 42.2 8 36.4 3 30.0

IIB 5 11.1 4 18.2 1 10.0

IIIA 15 33.3 6 27.3 1 10.0

IIIB 0 0.0 1 4.5 0 0.0

IV 1 2.2 0 0.0 1 10.0

Unknown 0 0.0 1 4.5 0 0.0

Platinum drug

Cisplatin 31 68.9 20 90.9

Carboplatin 11 24.4 1 4.5

Both, sequential 3 6.7 0 0.0

Unknown 0 0.0 1 4.5

Combination drug

Gemcitabine 25 55.6 8 36.4

Pemetrexed 16 35.6 9 40.9

Both, sequential 0 0.0 3 13.6

Other 4 8.9 1 4.5

Unknown 0 0.0 1 4.5

TCPb, median

(mean � SD), %

55

(54.6 � 10.6) 45

(46.8 � 12.2) 45

(48.0 � 9.0)

a

Cancer staging was performed in accordance with the TNM classi-

fication (version 7) of the Union for International Cancer Control

[16].
b

TCP, tumour cell percentage, average estimations of 2 indepen-

dent pathologists.
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(with reference slides for staining with haematoxylin

and eosin (HE) according to standard procedures

being taken at regular intervals during cutting). Pro-

teins were extracted and subsequently digested to pep-

tides as described previously [17], with minor

modifications. Following separation of proteins using

SDS/PAGE, each sample lane was cut from the gel as

a single band before being subjected to protein diges-

tion. Peptides were extracted and desalted using Oasis

HLB cartridges (Waters Chromatography B.V, Etten-

Leur, The Netherlands), and peptide concentrations

were determined using Pierce Quantitative Colorimet-

ric Peptide Assay (Thermo Scientific, Bremen, Ger-

many). Subsequently, peptide eluates (4 lg) were

lyophilized and re-dissolved in 20 lL 4%

acetonitrile + 0.5% Trifluoroacetic acid.

2.3. Liquid chromatography tandem

mass-spectrometry (LC–MS/MS) analysis of

FFPE samples

LC–MS/MS was performed as described previously

[17]. Peptides (5 lL) were separated by an Ultimate

3000 nanoLC-MS/MS system (Thermo Fisher, Bre-

men, Germany), equipped with a 20 cm 9 75 lm ID

fused silica column custom packed with 1.9 lm 120 A°
ReproSil Pur C18 aqua (Dr Maisch GMBH,

Ammerbuch-Entringen, Germany). After injection,

peptides were trapped at 6 lL�min�1 on a

10 mm 9 100 lm ID trap column packed with 5 lm
120 A° ReproSil Pur C18 aqua in 0.05% FA. Peptides

were separated at 300 nL�min�1 in a 10–40% gradient

(buffer A: 0.5% acetic acid, buffer B: 80% ACN,

0.5% acetic acid) in 60 min (90-min inject-to-inject).

Eluting peptides were ionized at a potential of +2 kVa

into a Q Exactive mass spectrometer (Thermo Fisher,

Bremen, Germany). Intact masses were measured at

resolution 70 000 (at m/z 200) in the orbitrap using an

AGC target value of 3E6 charges. The top 10 peptide

signals (charge-states 2+ and higher) were submitted to

MS/MS in the HCD (higher-energy collision) cell

(1.6 amu isolation width, 25% normalized collision

energy). MS/MS spectra were acquired at resolution

17 500 (at m/z 200) in the orbitrap using an AGC tar-

get value of 1E6 charges, a maxIT of 60 ms, and an

underfill ratio of 0.1%. Dynamic exclusion was applied

with a repeat count of 1 and an exclusion time of 30 s.

2.4. Processing and analysis of proteomics data

MS/MS spectra were searched against the Swissprot

Homo sapiens reference proteome FASTA file (release

January 2018, 42 259 canonical and isoform entries for

the discovery cohort and release April 2020, 42 347

canonical and isoform entries for the validation cohort)

using MaxQuant versions 1.6.0.16 (discovery cohort)

and 1.6.10.43 (validation cohort) [18]. Search settings

were selected as described previously [17]. Enzyme speci-

ficity was set to trypsin, and up to two missed cleavages

were allowed. Cysteine carbamidomethylation (Cys,

+57.021464 Da) was treated as fixed modification

and methionine oxidation (Met, +15.994915 Da) and N-

terminal acetylation (N-terminal, +42.010565 Da) as

variable modifications. Peptide precursor ions were

searched with a maximum mass deviation of 4.5 ppm

and fragment ions with a maximum mass deviation of

20 ppm. Peptide and protein identifications were filtered

at an false discovery rate (FDR) of 1% using the decoy

database strategy. The minimal peptide length was 7

amino acids. Proteins that could not be differentiated

based on MS/MS spectra alone were grouped into pro-

tein groups (default MaxQuant settings). Searches were

performed with the label-free quantification option

selected. Proteins were quantified by spectral counting

[19]. Raw spectral counts were normalized on the sum of

spectral counts for all identified proteins in a particular

sample, relative to the average sample sum determined

with all samples (Tables S2 and S3). To find statistically

significant differences in normalized counts between

sample groups, we applied the beta-binomial test [20],

which takes into account within-sample and between-

sample variation (Tables S4 and S5).

2.5. Survival analysis

Kaplan–Meier survival curves were constructed and

analysed using the survminer package in R. RFS,

defined as the time between first chemotherapy (ACT

sub-cohorts) or resection (UT sub-cohort) and recur-

rence (local, regional or distant) or death due to any

cause) was used as the metric for clinical outcome.

P values were calculated using the log-rank test.

2.6. Data analysis and visualization

Heatmaps were generated using the ComplexHeatmap

package in R (version 4.0.2). Boxplots were made using

the ggplot2 package in R, Microsoft Excel (version

2016) or GRAPHPAD PRISM (version 7.04). For gene set

enrichment analysis (GSEA) using the fgsea package

in R (nperm = 5000, gseaParam = 1, minSize = 15,

maxSize = 500), a rank metric score based on the

negative log10 P-value multiplied by the sign of log2

fold-change was used as input. Network analysis was

performed using the STRING tool, version 11.0 [21] and

visualized using CYTOSCAPE, version 3.7.2 [22],
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employing Cytoscape MCL cluster plugin. Functional

enrichment analysis was performed using g:Profiler,

version e99_eg46_p14_0f89727 [23]. ESTIMATE anal-

ysis was performed using the estimate package in R.

Venn diagrams were constructed using VENNY v2.1.0

[24].

2.7. Generation of predictive signatures

To construct predictive models and assign discrimina-

tive signature scores, we performed either exhaustive

search of 4-protein combinations (557 845 combina-

tions) or 500 000 random probing of 5-protein combi-

nations using logistic regression, and subsequently

recorded the frequency of proteins appearing in the

best performing classifiers according to leave-one-out

cross validation. We used a stepwise logistic regression

to construct a classifier, starting from either the pro-

tein with highest area under the curve (AUC) or the

most robust marker (see Section 2.8).

2.8. Calculation of robustness and signature

scores

The cumulative robustness score of a protein was

based on (a) spectral count (SC):intensity correlation

(< 0.75, score 0; 0.75–0.85, score 1; 0.85–0.95, score 2;

> 0.95, score 3); (b) average abundance in upregulated

group (≤ 5 SCs in both cohorts, score 0; < 15 in at

least one cohort, score 1; ≥ 15 in both cohorts, score

2; ≥ 30 in both cohorts, score 3); (c) significance

threshold (T1 in at least 1 group, score 0; T2:T2, score

1; T2:T3 or T3:T2, score 2; T3 in both cohorts, score 3;

T1 = P-value < 0.05, T2 = T1 + data presence ≥ 60%

in upregulated group, T3 = T2 + fold-change

> 1.5/< �1.5) and (d) number of unique peptides rela-

tive to the estimated molecular weight of a protein

(< 0.1 in at least one cohort, score 0; < 0.2 in at least

1 cohort, score 1; > 0.2 in both cohorts, score 2), see

Table S6. The signature score was based on a proteins

position in the top 30 lists of best 4- and 5- protein

signature combinations (Section 2.7, Table S6; top 10,

score 3; top20, score 2, top 30, score 1; not in top 30,

score 0) and whether it featured in any of the 4 step-

wise logistic regression signatures (see Section 2.7,

Table S6; yes, score 1; no, score 0).

2.9. Immunohistochemistry

HMGB1 (D3E5) antibody (#6893) from Cell Signaling

Technology (Bioke, Leiden, The Netherlands) was

used to stain 4 lm thick FFPE tissue sections. The

sections were incubated for 48 min at a dilution of

1 : 100 in Dako Antibody Diluent (Agilent, Amstelv-

een, The Netherlands, #S3022). Prior to staining, the

tissue sections underwent retrieval in cell conditioning

1 solution (Roche, Almere, The Netherlands, #950-

124) using a Ventana Benchmark Ultra machine

(Roche, Almere, The Netherlands). Detection was per-

formed using OptiView DAB IHC detection kit

(Roche, Almere, The Netherlands, 760-700).

Cellular localization and staining intensity of

HMGB1 protein was assessed by an experienced

histopathologist.

2.10. Tissue microarray (TMA) construction and

immunohistochemistry

A total of 74 Caucasian treatment-na€ıve patients with

NSCLC treated at Humanitas Clinical Institute (Roz-

zano, Milan, Italy), Livorno Civil Hospital (Livorno,

Italy), University Hospital Antwerp (Antwerp, Bel-

gium) and the Onze-Lieve-Vrouw-Hospital (Aalst,

Belgium), were enrolled between 2004 and 2013. The

selection was based on the availability of surgically

resected FFPE specimens, diagnosis of histologically

confirmed NSCLC, and treatment with adjuvant

platinum-based regimens. The study on patients’ speci-

mens was approved by the local ethics committees

(Ethics Committee of Istituto Clinico Humanitas (Roz-

zano, Milan, Italy) – Ref-No. 165/17, Comitato Etico

di Area Vasta Nord Ovest (CEAVNO) Regione

Toscana – Protocol No. 31677, University Hospital

Antwerp (Antwerp, Belgium) ethics committee – Pro-

tocol No. B300201316249 and Onze Lieve Vrouw Hos-

pital (Aalst, Belgium) ethics committee – Protocol No.

B300201317801) and conducted in accordance with

principles stated in the Declaration of Helsinki. Writ-

ten informed consent was obtained from all patients.

TMAs were constructed as previously described

[25,26]. Briefly, paraffin-embedded tumour specimens

were collected, and two pathologists selected 1 mm2

punches from tumour cores (with TCP above 50%) of

at least 3 different tumour areas for each patient, to

include in recipient tissue array blocks using a specific

TMA instrument (Beecher Instruments, Micro-Array

Technologies, Silver Spring, MD). Biopsies were

included in new recipient paraffin blocks and each tis-

sue array block contained cores from at least three dif-

ferent tumour areas for each patient. TMA sections

were de-paraffinized with xylene and rehydrated in

alcohol. Subsequently, the sections were incubated

with the rabbit monoclonal antibody specific for

endogenous HMGB1 (D3E5, Cell Signaling Technol-

ogy), using the VENTANA BenchMark ULTRA

automated slide stainer (Roche), as described

5Molecular Oncology (2023) ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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previously. Negative controls were obtained by

replacement of primary antibody with buffer (PBS

1X). Protein expression was determined using an

Olympus BX50F bright field microscope (Olympus

Optical Co Ltd., Tokyo, Japan) with a 209 objective.

Scoring was performed by two blind independent

observers, who also evaluated the amount of tissue

loss, background staining and overall interpretability.

The immunostaining intensity was classified into two

grades: 0 (absent) and 1 (present). RFS was calculated

from the date from first dose of chemotherapy to the

date of clinical and/or radiological evidence of relapse.

The Kaplan–Meier method was used to plot RFS, and

the log-rank test to compare curves. All the analyses

of the samples were carried out in a blinded fashion

relative to clinical outcome.

3. Results

3.1. Mass-spectrometry-based profiling of

resected primary NSCLC tumour cohorts

Protein expression profiles of 2 independent, multi-

centre patient cohorts with NSCLC were profiled. The

first cohort (discovery cohort) consisted of tumour

resection samples of 45 patients with NSCLC, includ-

ing both LUAD as well as LUSC diagnoses. While the

analysed samples of this cohort were treatment-naive,

all patients went on to receive platinum-based ACT

following resection. The second cohort (validation

cohort) consisted of 32 independent, treatment-naive

tumour resection samples. Again, both LUAD and

LUSC samples were represented. Of note, while the

majority of these patients also went on to receive

ACT, 10 patients were left UT for later analysis of

predictive vs. prognostic impact of identified bio-

marker candidates (Table 1, Table S1).

In both cohorts, the majority of patients (over 80%)

who received ACT had stage IIA to IIIA disease,

which aligns with the established standard of care for

these disease stages. Likewise, as expected, > 90% of

these patients received doublet chemotherapy consist-

ing of cisplatin or carboplatin as the platinum

component, and either gemcitabine or pemetrexed as

combination drug. The average age at diagnosis of

both cohorts was between 60 and 65 years, and both

females and males were comparably represented (42/58

discovery, 50/50 validation ACT cohort). In both ACT

cohorts, the ratio of LUAD to LUSC subtypes was

around 60 to 40, in agreement with the observed distri-

bution of histological subtypes of NSCLC in the Neth-

erlands [27]. Thus, the discovery and validation

cohorts analysed in this study were not only compara-

ble but also representative in terms of clinico-

pathological parameters (Table 1, Table S1).

We performed quantitative mass-spectrometry-based

proteomics on archived FFPE tumour resection sam-

ples of both discovery and validation cohorts. In total,

we identified almost 6000 proteins (discovery: 4878,

validation: 4396) in single-shot MS-runs, using a FDR

of 1% at protein and peptide levels (Fig. 1A,

Fig. S2A,B). Unsupervised hierarchical cluster analyses

based on the quantitative levels of 3561 (discovery) or

3597 (validation) proteins after data clean-up and fil-

tering (Fig. S2A), were dominated by subtype-specific

biology, revealing distinct LUAD and LUSC clusters

in both cohorts (Fig. 1B).

As a proof of principle for data quality and our statis-

tical analysis pipeline, we performed a LUAD vs. LUSC

comparison using beta-binomial statistics to explore

whether we can distinguish these histological subtypes

with high sensitivity and specificity using proteins in our

dataset that correspond to immunohistochemical

markers used in the clinic. All of the most commonly

used marker proteins, including cytokeratin 7 (KRT7),

thyroid transcription factor-1 (TTF-1, also called

NKX2-1) and napsin-A (NAPSA) for LUAD, as well as

tumour protein p63 (TP63) and cytokeratins 5 and 6

(KRT5, KRT6) for LUSC [28,29], were highly differen-

tial between the 2 histological subtypes in our datasets

(Fig. S3). All six biomarkers were not only significantly

differential (P < 0.05), but also had a high fold-change

(> 2.5) and, with the exception of transcription factor

TTF-1/NKX2-1, a data presence of at least 60% in the

upregulated group. This shows that relevant biomarkers

can be robustly detected in these protein expression

Fig. 1. Mass-spectrometry-based profiling of resected primary NSCLC tumours and identification of a PR/S sub-cluster. (A) Study design;

RFS within 36 months (m) from date of first chemotherapy until recurrence (local, regional or distant) or death due to any cause. (B) Hierar-

chical cluster analyses based on the quantitative levels of 3561 (discovery cohort, left) or 3597 (validation cohort, right) proteins after data

clean-up and filtering (see Fig. S2A). Rel. expr., relative expression. (C) Kaplan–Meier plots of RFS of PR/S cluster vs. all other samples

(Rest). P-values were calculated using log-rank test. (D) Gene-set enrichment analysis of MSigDB Hallmark gene sets in PR/S cluster vs. all

other samples. Shown are all significant (Padj < 0.05) and sub-significant (Padj < 0.15) processes enriched in the PR/S clusters of the discov-

ery and validation cohorts. (E) ESTIMATE analysis of PR/S cluster samples (orange) vs. all other samples (grey). **** = P < 0.001 (Mann

Whitney test).
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datasets, and gives confidence to the statistical method-

ology that we subsequently applied to identify ACT

response-related protein biomarkers. Importantly,

expression characteristics (e.g. per cent data presence,

abundancy and fold-change) of all six biomarkers were

very comparable between both cohorts (Fig. S3, bot-

tom), suggesting that although different in centre of ori-

gin and sample size, expression profiling in both cohorts

was reliable and representative.

3.2. Identification of a poor response/survival

sub-cluster (PR/S cluster)

Although dominated by subtype-specific biology, unsu-

pervised hierarchical cluster analyses identified 3 major

sample clusters in both cohorts (Fig. 1B): a LUAD-

enriched, a LUSC-enriched, and a third mixed subtype

cluster. Strikingly, these separate sub-clusters of mixed

histology types, consisting of 12 patients (27%) and 8

patients (25%) in the discovery and validation cohorts,

respectively, were significantly enriched for PR/S sam-

ples (Fig. 1C), and will thus henceforth be referred to

as PR/S clusters. Furthermore, a strong correlation

with low number of protein identifications was

observed for these PR/S clusters, suggesting a less het-

erogenous protein composition which was, however,

not correlated with a lower TCP (Fig. 1B). GSEA of

these PR/S clusters revealed a significant enrichment

of epithelial–mesenchymal transition (EMT)-related

proteins, indicative of a tumour stroma-like subpopu-

lation (Fig. 1D). Inference of stromal cells using the

ESTIMATE algorithm indeed showed a significantly

higher stromal score for PR/S cluster tumour samples

(Fig. 1E). The enrichment of EMT proteins in this

patient population was exemplified by the significant

(P < 0.05) overexpression of mesenchymal proteins

such as fibronectin (FN1), vimentin (VIM), nidogen 2

(NID2) and collagens (e.g. type I collagens COL1A1

and COL1A2) (Fig. S4A). Other well established extra-

cellular matrix (ECM) proteins such as type IV colla-

gens (eg. COL4A1), glycoproteins (eg. dermatopontin,

DPT) and proteoglycans (eg. heparan sulfate proteo-

glycan 2, HSPG2) were likewise strongly (P < 0.01)

overexpressed in the PR/S cluster (Fig. S4C). Of note,

one quarter of all common differentially expressed

proteins (DEPs) upregulated in the PR/S clusters of

both cohorts could be classified as ECM proteins, the

majority of which represented ECM glycoproteins and

collagens (Fig. S4B). Thus both discovery and valida-

tion cohorts featured a subset of patients that showed

PR/S and that clustered apart based on their protein

expression profiles, which were dominated by EMT-

and ECM-related biology.

3.3. Analysis of ACT response/survival biology

Next, we sought out to identify processes associated

with proteins whose expression was specifically

linked to poor and good response/survival. Based

on the RFS time, RFS, patients were divided

into 2 response groups: PR/S group, PRG (RFS

≤ 16 months) and good response/survival group, GRG

(RFS > 24 months) (Fig. S1). We performed differen-

tial expression analysis (beta-binomial test) comparing

PRG vs. GRG samples for the LUAD and LUSC sub-

types independently, as well as for the whole pan-

NSCLC cohort (LUAD and LUSC samples combined)

(Tables S4 and S5). The first aim was to compare

response-related biology between the different sub-

types. Due to the limited and unbalanced number of

LUSC samples in the validation cohort (see Fig. S5A),

this initial subtype-specific analysis could only be per-

formed for the discovery cohort (Fig. 2A). Gene-set

enrichment analysis revealed a strong enrichment of

proteins related to the ribosome in the PRG across

subtypes (normalized enrichment score, NES > 3 in all

3 comparisons). Other processes related to genetic

information processing, such as spliceosome and pro-

tein export were enriched in the PRG in the LUAD

and pan-NSCLC comparisons only, while snare inter-

actions in vesicular transport were specifically enriched

in PRG LUSC. Also enriched in PRG samples across

all 3 comparisons were proteins related to ECM-

receptor interaction. The most striking processes

enriched in the GRG were related to carbohydrate

metabolism (citrate cycle in all 3 comparisons,

glycolysis in LUAD and pan-NSCLC), immune system

(chemokine signalling pathway in LUAD and pan-

NSCLC, antigen processing and presentation in

LUAD only) as well as cell community and motility

(adherens junction and regulation of actin cytoskeleton

in LUAD and pan-NSCLC, GAP junction in LUSC

and pan-NSCLC). As for the discovery cohort, GSEA

was subsequently performed for the comparisons of

the validation cohort (Fig. 2B). We focused on ACT-

response-related biology in the LUAD and pan-

NSCLC context, since, as mentioned, the PRG vs.

GRG comparison could not be performed in the

LUSC validation set (underpowered PRG, see

Fig. S5A). This analysis confirmed the strong enrich-

ment of ribosome-related biology in the PRG in both

LUAD and pan-NSCLC (NES > 3 in both validation

comparisons). Likewise, the metabolic (citrate cycle,

glycolysis) and actin�/adherens junction-related pro-

cesses were reproducibly significantly enriched in the

GRG in the validation cohort comparisons (Fig. 2B).

Other processes, such as those related to the immune
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system in the GRG and ECM-receptor interaction and

protein export in the PRG, could only partially be

captured in the validation cohort.

3.4. Identification of differentially expressed

proteins related to ACT response/survival

Encouraged by the degree of overlap on the level of

enriched biology between the discovery and validation

cohorts, we went on to filter for the most differential

proteins between PRG and GRG and thus identify

potential ACT response prediction biomarker candi-

dates. For the discovery cohort, differential expression

analysis revealed 217 significantly DEPs (p < 0.05) in

the LUAD comparison, of which 83 were upregulated

in PRG and 134 in GRG (Fig. S5A,B). For the LUSC

subtype, this number was much larger, with 789 DEPs,

of which 279 were upregulated in PRG and 510 in

GRG. This discrepancy could be explained by the

larger number of LUSC relative to LUAD samples in

the PR/S cluster of the discovery cohort, which clus-

tered apart based on their lower number of protein

identifications and increased stromal components.

Finally, the pan-NSCLC analysis identified 550 DEPs

in the discovery cohort, of which 203 were upregulated

in PRG and 347 in GRG (Fig. S5A,B). In total, 259

proteins (84 PRG, 175 GRG) were differentially

expressed in more than one of these subtype-specific

comparisons of the discovery cohort (Fig. S5B). Along

the same lines, PRG vs. GRG comparisons were con-

ducted for the validation cohorts. Due to the under-

powered LUSC sample group in this cohort, the

LUSC PRG vs. GRG comparison was excluded from

all subsequent analyses. Of note, the overlap between

DEPs of the discovery and validation cohort was sig-

nificant, even at increasingly stringent significance

thresholds (Fig. 3A). Proteins that were significantly

differentially expressed (P < 0.05) in either or both

subtype comparisons (LUAD and pan-NSCLC) in

both discovery and validation cohorts, were selected

for further analysis. This concerned 86 proteins in

total, 33 proteins with greater abundance in PRG sam-

ples and 53 proteins with higher expression in GRG

samples (Fig. 3B).

To get a deeper functional understanding of the pro-

teins related to poor response to ACT, the 33 PRG

DEPs were visualized in a protein–protein interaction

(PPI) network. Markov clustering combined with gene

ontology analysis revealed 3 biologically relevant pro-

tein clusters (Fig. 3C), related to ribosome, spliceo-

some and chromatin silencing, respectively. Strikingly,

the ribosomal protein cluster, composed of proteins of

both the small (40S) and large (60S) ribosome sub-

units, was highly connected, with interaction scores of

> 0.9 between almost all proteins. At the same time,

the large majority of these proteins, while being

Fig. 2. Differential biology associated with poor- and GRGs. (A) Heatmap showing the NESs of differentially regulated KEGG pathway signa-

tures between PRG and GRG samples in all subtypes (LUSC and pan-NSCLC) of the discovery cohort, as determined by GSEA. (B) Heatmap

showing the NESs of differentially regulated KEGG pathway signatures between PRG and GRG samples in the LUAD and pan-NSCLC com-

parisons of discovery (D) and validation (V) ACT cohorts, as determined by GSEA. Shown are the 5 most significant signatures of each com-

parison in each direction. Significant enrichment (Padj < 0.05) is annotated with *, all coloured fields without * represent sub-significant

(Padj < 0.15) processes, empty (white) fields are not significantly enriched (Padj > 0.15).
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significantly (T2 threshold; P < 0.05, with data-

presence in at least 60% in the upregulated group)

enriched in the PRG in both discovery and validation

cohorts, had relatively low fold-change values of less

than 1.5. Only RPL26 had consistent fold-changes of

just over 1.5 in both cohorts. Closely related to this

cluster were other ribonucleoproteins, eg. those

involved in RNA splicing (SNRPA and SNRPD1).

Another cluster was made up of several DNA-binding

proteins, among which were core components of nucle-

osomes (eg. HIST2H2BE and H2AFY) and high

mobility group proteins (HMGB1 and HMGA), both

of these protein groups playing central roles in tran-

scription regulation, DNA repair and chromatin

silencing. Connecting the RNA- and DNA-binding

protein clusters were nucleophosmin (NPM1) and

nucleolin (NCL), which have the ability to bind both

chromatin and RNA. This bundled enrichment of pro-

teins in the PRG that can directly interact with nucleic

acids is intriguing. Enrichment of HMGB1 and

HMGA is particularly interesting in the context of

ACT response, as both high mobility families (HMGA

and HMGB) display elevated affinities for the bent

DNA structure of platinum-DNA adducts [30,31].

Analogous to the 33 biomarker candidates with ele-

vated expression in the PRG, we had a closer look at

the 53 proteins whose expression in the PRG was

reduced compared to the GRG. Visualization of these

GRG proteins in a PPI network (Fig. 3D) again

revealed several functionally related clusters, the larg-

est of these being actin filament organization, with

proteins such as coronin-1B and C (CORO1B and

CORO1C), plastin 1 (PLS1) and actin-related proteins

2 and 3 (ACTR2/ARP2 and ACTR3/ARP3). Several

smaller clusters were enriched for proteins related to

this process, such as ER to Golgi vesicle-mediated

transport (represented by eg. coatomer subunits alpha

and gamma, COPA and COPG1) and regulation of

MAP kinase activity (including MAP kinases MAPK1

and MAP2K2), as well as metabolic pathways (eg. cit-

rate cycle). Most interestingly, several DNA repair

proteins were also enriched in the GRG, among which

DNA damage-binding protein (DDB1), pre-mRNA-

processing factor 19 (PRPF19) and DHX9, a BRCA1-

interacting nucleic acid helicase. Additionally, N-myc

downstream-regulated gene-1 (NDRG1), which has

been shown to sensitize NSCLC cells to cisplatin, pos-

sibly via modulation by key NER protein ERCC1

[32], was significantly and reproducibly enriched in

the GRG.

3.5. Differential expression of DNA damage

repair-related proteins in in vitro proteomic

studies

Previously, we reported the proteome profiling of the

conditioned media (secretomes) of a panel of NSCLC

cell lines in relation to their respective cisplatin IC50

values [33]. In addition, we profiled the whole cell

lysates of this NSCLC panel using LC–MS/MS. Both

datasets revealed proteins associated with various bio-

logical functions implicated in (intrinsic) sensitivity to

cisplatin, among which DNA repair and chromatin

remodelling. Proteins involved in several relevant

DNA repair pathways were significantly more abun-

dant in cisplatin-sensitive whole cell lysates, including

PARP1, RFC1, POLD1, POLE4, UBA52, PRPF19

and DDB1 as part of NER and/or base excision repair

(BER), as well as RAD50 and MSH6 as part of DSB

and MMR, respectively. Additionally, DHX9, which

can associate with numerous proteins involved in

DNA damage response, such as BRCA1, was more

abundant in cisplatin sensitive cell lines (Fig. S6A,B).

Of these, we found DDB1 and DHX9 to be signifi-

cantly more abundant in our clinical GRG (Fig. 3D,

Fig. S6C). Interestingly, we also found DDB1 expres-

sion to be (sub-) significantly (P < 0.1) higher in

cisplatin-sensitive compared to cisplatin-induced

(acquired) resistant tumour populations of small cell

lung cancer (SCLC) in a proteomics study analysing

genetically modified mouse models (GEMMs) [17]

(Fig. S6D). Along with DDB1, other proteins involved

in NER were also enriched in the cisplatin sensitive

mouse lesions. In an earlier mouse study in mammary

Fig. 3. Identification of DEPs associated with poor- and GRGs. (A) Overlap between DEPs, as determined by beta-binomial test, bb.test

between poor and GRGs (PRG vs. GRG) in the pan-NSCLC comparisons of the discovery and validation ACT cohorts. All significance thresh-

olds (T1-T3) showed a significant overlap in the number of DEPs (hypergeometric test). (B) T1-T1 (significance threshold 1, P < 0.05, see

Fig. 3A) overlapping biomarker candidates between discovery and validation ACT cohorts for the LUAD and pan-NSCLC PRG vs. GRG com-

parisons. Due to the limited and unbalanced number of LUSC samples in the validation cohort (see Fig. S5A), this overlap analysis could not

be performed for the LUSC subtype. DE(P), differentially expressed (proteins) (C) PPI network of 33 proteins with reproducibly higher abun-

dance in PRG compared to GRG samples for the LUAD, pan-NSCLC or both comparisons, see Fig. 3B. (D) PPI network of 53 proteins with

reproducibly higher abundance in GRG compared to PRG samples for the LUAD, pan-NSCLC or both comparisons, see Fig. 3B. The outer-

most node rings annotate which subtype comparison revealed differential expression, inner node rings show significance threshold for each

cohort. Gray shading of inner node circle shows differential expression also in the UT subset of the validation cohort.
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GEMMs, BRCA1-deficient mammary tumours were

found to be highly sensitive to cisplatin treatment [34].

DNA repair was among the major biological processes

altered in the sensitive BRCA1-deficient tumours after

cisplatin treatment, as exemplified by induced expres-

sion of PARP1, among others. Interestingly, DHX9

expression was also found to be (sub-) significantly

(P < 0.1) induced upon short-term cisplatin treatment

in BRCA1-deficient (i.e. cisplatin sensitive) but not -

proficient mouse mammary tumours, suggesting that

these proteins are part of the active response to cis-

platin in responsive tumours (Fig. S6D). Taken

together, these pre-clinical data support a role for both

DNA damage-related proteins, DDB1 and DHX9, in

cisplatin-induced cell killing, thereby contributing to

platinum-drug sensitivity and favourable response, as

observed in our clinical dataset.

3.6. Selection of top ACT response biomarker

candidates

Of the 86 consistently DEPs between GRG and PRG in

both discovery and validation cohorts, 75 proteins were

categorized as pan NSCLC (pan-NSCLC comparison)

ACT response prediction biomarker candidates

(Fig. 3A,B). Besides significant differential expression

between the two response groups, a few technical aspects

were considered when aiming to identify particularly

robust biomarker candidates. These included a high SC

to intensity correlation as well as protein identification

on the basis of more than a single unique peptide. In

addition, proteins with an abundance distinctly above

the detection limit were deemed to be more suitable with

an eye on subsequent validation via an antibody-based

assay. Considering all these aspects, the 75 candidate

proteins were assigned a robustness score (Fig. 4A,

Table S6), whereby the afore highlighted proteins

NDRG1 (GRG marker candidate) and HMGB1 (PRG

marker candidate) were among the 7 technically most

robust candidate proteins. Of note, both GRG DNA

damage candidates with strong pre-clinical evidence,

DDB1 and DHX9, were also among the 25 most robust

proteins (Fig. 4A). Finally, multiple predictive models

were constructed using proteins with a correlation

between SC and intensity > 0.75 in the combined discov-

ery and validation dataset. Using either brute force

search for all logistic models (Fig. S7A) or stepwise

logistic regression starting with either the most robust

protein (highest robustness score) or the protein with

the highest AUC (Fig. S7B), proteins were subjected to

feature selection and signature modelling and, based on

this, assigned a discriminative signature score (Fig. S7C,

Table S6, Section 2.8). Among the proteins with the

highest signature scores were DNPEP, NDRG1,

ACTR3 (GRG), RPL31, SRP14 and FKBP3 (PRG).

Based on the integration of patient tumour proteo-

mics data with our in vitro cell line and mouse model

proteomics data, as well as functional evidence derived

from protein network and gene ontology analyses,

combined with described robustness and signature

scores, a list of 13 top ACT response biomarker candi-

dates was compiled (Fig. 4B): NDRG1, DDB1,

DHX9, DNPEP, ACTR3, FAM120A, CORO1C

(GRG candidates), HMGB1, SRP14, FKBP3, RPL31,

RPL27 and RPL26 (PRG candidates). Importantly,

pre-clinical evidence from above mentioned in vitro

studies supported the relevance of not only DDB1 and

DHX9 in this list, but also of FAM120A, CORO1C,

ACTR3, DNPEP (GRG), FKBP3, RPL27 and RPL26

(PRG) (Fig. 4B). Additionally, with the exception of

FAM120A, RPL31, SRP14 and FKBP3, all candidates

are among the 25 technically most robust proteins

(Fig. 4A).

Next, we compared PRG vs. GRG in the small set of

samples from patients that were left UT (all of which

were LUAD subtypes and part of the validation cohort),

in order to distinguish which of the identified 86 putative

ACT response predictive biomarker candidates were, in

fact, more likely to be prognostic. This analysis found 8

out of the 86 candidate proteins to be differentially

expressed also in the UT setting. Specifically, this con-

cerned NCL, NPM1, SNRPA and HIST1H1E of the

PRG, and TWF2, GPS1, OGDH and ASNA1 of

the GRG (Fig. 3C,D). Differential expression of these

proteins may therefore be indicators of RFS, irrespective

of whether patients receive ACT. Importantly, none of

the 13 top ACT response prediction candidates (Fig. 4B)

were differentially regulated in this UT cohort, suggest-

ing that these proteins may indeed be markers of

response to ACT rather than survival.

Finally, to investigate the possibility of (co-) targeting

proteins that confer resistance to platinum-based drugs,

we consulted several drug databases: Drugbank, Drug

Gene Interaction database (DGIdb), ChEMBL and

Therapeutic Target Database (TTD) (Fig. 4C). All six

PRG ACT response prediction candidates (HMGB1,

SRP14, FKBP3, RPL31, RPL27 and RPL26) were

annotated in at least one of these, with HMGB1 and

FKBP3 specifically categorized as being part of the

druggable genome and SRP14 annotated to be involved

in drug resistance in the Drug Gene Interaction data-

base (DGIdb, Fig. 4D). Furthermore, with the excep-

tion of FKBP3, all six PRG ACT response prediction

candidates had a gene essentiality score (CERES score)

of < �0.6 in a large panel of NSCLC cell lines, indicat-

ing cancer cell dependence on these genes (Fig. 4C).
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Fig. 4. Selection of top ACT response biomarker candidates. (A) Ranking of the 43 most robust pan-NSCLC ACT response prediction bio-

marker candidates (all proteins with a robustness score of 7 or higher). The cumulative robustness score was based on SC:intensity correla-

tion, average abundance in upregulated group, significance threshold and number of unique peptides relative to the estimated molecular

weight of a protein (see Table S6). The underlying signature score (orange) was based on a proteins position in the top 30 lists of best 4-

and 5- protein signature combinations and whether it featured in any of the 4 stepwise logistic regression signatures (see Table S6, Fig. S7).

For calculation of robustness and signature scores, see Section 2.8. (B) Table highlighting the 13 top ACT response biomarker candidates,

see Fig. 3C,D; robustness and significance score, see Fig. 4A, Fig. S7C; in vitro evidence, see Fig. S6; drug target database, see Fig. 4C,D;

implication in (platinum) drug resistance/sensitivity based on reports from literature, see main text. (C) Annotation of 33 validated PRG pro-

teins in different drug databases. DGIdb, Drug Gene Interaction database; TTD, Therapeutic Target Database; CERES score, evaluation of

genetic vulnerabilities of top PRG candidates using data from the Cancer Dependency Map Project (DepMap). Average gene essentiality

scores that reflect gene dependence were calculated in 53 NSCLC cell lines, whereby a lower CERES score indicates a higher likelihood that

the gene of interest is essential in a given cell line. An essential gene threshold of �0.6 CERES score was used [62]. (D) DGIdb Druggable

Gene Categories.

13Molecular Oncology (2023) ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

F. B€ottger et al. Platinum response prediction protein biomarkers

 18780261, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1878-0261.13555 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [22/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.7. Immunohistochemistry-based validation of

HMGB1 as a putative marker protein for poor

response to ACT in NSCLC

Among the 3 most robust candidate proteins overex-

pressed in the PRG and part of the 13 top ACT

response prediction candidates was high mobility

group protein HMGB1 (Fig. 4A), suggesting this may

be a particularly suitable candidate for validation

using a clinically relevant antibody-based assay. As a

means of antibody-based validation, nuclear expression

of HMGB1 was initially assessed by IHC on FFPE

sections of the same samples that were profiled by pro-

teomics. To quantify HMGB1 abundance in tumour

cell nuclei, H-scores were assigned based on the pro-

portion of cells stained and the intensity of the stain-

ing. This generated values between 0 and 300, whereby

0 was categorized as total loss and 300 as extreme gain

of HMGB1 compared to normal cell staining pattern.

First, correlation of mass-spectrometry-based HMGB1

abundance and IHC-based HMGB1 H-score was

assessed. In a first approximation, this showed correla-

tive tendencies but was not statistically significant

(Fig. S8A,Bi). Considering the fact that the proteomics

data reflected HMGB1 signal of the entire demarcated

IHC slide area (which consisted of 40–80% tumour

cells, but also of 20–60% tumour microenvironment

including immune cells etc.), while IHC analysis specif-

ically scored nuclear tumour cell signal, immune infil-

trated tumours (with a TCP ≤ 50%) were subsequently

removed from this initial correlative analysis. This

resulted in a more significant correlation between

proteomics- and IHC-derived HMGB1 signal

(Fig. S8Biii,iv). The same was true when considering

only extreme gain (H-score 300) IHC samples

(Fig. S8Bii). Independent of direct signal correlation

between these 2 methods (mass-spectrometry-based

abundance and IHC-based H-score), Kaplan–Meier

survival analysis of RFS was performed separately for

data generated with either method. Strikingly, this led

to very comparable results, whereby low HMGB1

abundance (proteomics) or total loss of nuclear stain-

ing (IHC) was significantly associated with longer RFS

in this NSCLC ACT cohort (Fig. 5A,B). Subsequent

staining and survival analysis of an independent

NSCLC TMA cohort (Fig. 5C, Fig. S9) confirmed that

Fig. 5. IHC-based validation of HMGB1 as a putative biomarker for

poor response to ACT in NSCLC. (A) Kaplan–Meier survival analysis

(log-rank test) of RFS based on HMGB1 protein levels in the prote-

omics dataset. NSCLC patient samples with the highest HMGB1

expression (top 25%, N = 7, red, average RFS = 12.9 months) are

compared to the lower 75% (N = 24, blue, average

RFS = 23.8 months) (B) Kaplan–Meier survival analysis of RFS

based on HMGB1 staining of the same tumour sample cohort as

was used for proteomic profiling. Patient samples with an IHC

staining score of 0 (negative, N = 12, blue) vs. 10–300 (positive,

N = 19, red) are compared. (C) Kaplan–Meier survival analysis of

RFS based on HMGB1 staining of an independent TMA cohort of

NSCLC patient samples (N = 74, of which RFS data was available

for 53). Baseline demographic and clinico-pathological characteris-

tics of these patient samples are reported in Fig. S9. NSCLC

patient samples with an IHC staining score of 0 (negative, N = 22,

blue) vs. 10–300 (positive, N = 31, red) are compared. P-values are

based on log-rank test.
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high nuclear HMGB1 signal significantly correlates

with poor disease-related survival following ACT and

may therefore have the potential to serve as a (target-

able) biomarker in platinum-based chemotherapy resis-

tant NSCLC patient cohorts.

4. Discussion

Effective predictive biomarkers for the selection of

patients benefiting from platinum-based ACT in

NSCLC are needed to guide treatment decisions in the

clinic. This study demonstrates clear differences in

the predictive value of proteomic profiles in completely

resected, early stage patients with NSCLC who

received post-operative platinum-based ACT. A repro-

ducible sub-cluster of around a quarter of all tumour

samples was observed, that belonged to patients with

poor RFS and was strongly enriched for ECM-

associated proteins. These proteins may originate from

tumours that have undergone EMT, mimicking a stro-

mal and aggressive phenotype. Alternatively, this find-

ing could suggest that in addition to focusing on the

tumour cells themselves for the mechanisms of drug

resistance, the tumour stroma may play a particularly

prominent role in conferring resistance to platinum-

based drugs in NSCLC tumours. Based on the analysis

of the proteins identified in this sub-population, it is

tempting to speculate that the primary mechanism of

protection of the tumour cells from platinum-based

ACT in this subset of samples is by providing a

mechanical barrier [35,36]. Since tumour stroma in

general is characterized by higher abundancy and stiff-

ness compared to normal ECM, combining platinum

with anti-stromal agents, such as those involved in

inhibiting ECM deposition or enhancing ECM degra-

dation, may therefore increase therapeutic effectivity in

this particular patient group.

Furthermore, this study identifies candidate bio-

markers for differential chemotherapy response that

may allow for the selection of responsive patients

beyond this PR/S cluster. We have compiled a selection

of 13 such candidate proteins that represent both the

prediction of ACT sensitivity and resistance,

providing valuable insights for guiding treatment deci-

sions. Among these were several proteins directly or

indirectly involved in DNA damage repair. In general,

DNA damage induced by platinum drugs, which signifi-

cantly distort the DNA helix, is repaired by the NER

mechanism. Together with DDB2, GRG candidate

DDB1 is part of the initial damage recognition complex

during NER. Interestingly, overexpression of DDB2 has

been shown to enhance the sensitivity of human ovarian

cancer cells to cisplatin by functioning as a

transcriptional repressor for Bcl-2 in combination with

DDB1, thereby augmenting cellular apoptosis [37].

Upon damage sensing, subsequent repair proteins are

then recruited to damaged DNA to unwind the DNA

strands and excise the damaged DNA. In complex with

ERCC4/XPF, ERCC1 is the rate-limiting component of

the latter process, and high ERCC1 expression is gener-

ally associated with resistance to platinum [13]. In a

recent NSCLC study, ERCC1 was shown to promote

resistance to chemotherapy in lung cancer cell lines, and

N-myc downstream-regulated gene-1 (NDRG1) was

identified as an additional factor in the coordination of

apoptosis and DNA damage response in hypoxic set-

tings. Specifically, ERCC1 was shown to confer resis-

tance to sodium glycididazole (CMNa)-sensitized

cisplatin chemotherapy by downregulating NDRG1,

resulting in endurance to hypoxia and thwarted apopto-

sis [32]. Another study showed NDRG1 to be necessary

for p53-dependent apoptosis [38]. While the ERCC1

protein itself could not be detected by mass-

spectrometry in either discovery or validation cohorts,

NDRG1 was significantly and recurrently less abundant

in the PRG (i.e. more abundant in the GRG). This sug-

gests that low NDRG1 levels could be an indirect read-

out of high ERCC1 abundance, predictive of DNA

damage response and apoptosis inhibition, leading to

chemotherapy resistance in NSCLC. Indeed, several

other studies support the notion that downregulation of

NDRG1 may be a common mechanism conferring resis-

tance to platinum-based chemotherapy [32,39,40], with

Liu and colleagues not only demonstrating in a proteo-

mics study a marked reduction of NDRG1 expression in

cisplatin resistant NSCLC cells, but also showing that

this downregulation was associated with the acquisition

of an EMT phenotype. Other proteins among the most

promising ACT response prediction candidates more

directly involved in DNA repair were GRG candidate

DHX9, as well as PRG candidate HMGB1. Nuclear

HMGB1 has been reported to be involved in nucleotide

and base excision repair (NER/BER) pathways and has

been associated with chemotherapy resistance in multi-

ple cancer types, including lung cancer [41–44]. Addi-

tional studies demonstrated that downregulation or

inhibition of cytoplasmic translocation was able to

reverse cisplatin resistance [45–47]. Furthermore,

HMGB1 is a druggable target for small molecules, such

as ethyl pyruvate. Of note, this is also true for other top

PRG candidates. Peptidyl-prolyl cis-trans isomerase

(FKBP3) is a FK506 binding protein that also has a

high affinity for rapamycin. It has been shown to medi-

ate oxaliplatin resistance in colorectal cancer [48], and

up-regulation was shown to be closely correlated with

poor survival in patients with NSCLC [49]. Several
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studies have reported a significant synergistic anti-

proliferative effect on cancer cells upon simultaneous

exposure to cisplatin and mTOR inhibitors such as

rapamycin [50–53]. A phase I clinical trial in patients

with NSCLC showed combination therapy with siroli-

mus (also known as rapamycin), radiation, and cisplatin

to be well tolerated in these patients. As signalling

through mammalian target of rapamycin (mTOR) pro-

motes ribosome biogenesis to ensure rapid growth, the

ACT resistant patient population in this study, which is

characterized not only by increased expression of rapa-

mycin binding protein FKBP3 but also a large cluster of

ribosomal proteins, may be sensitive to (co-) treatment

with mTOR inhibitors. Lastly, SRP14 (signal recogni-

tion particle 14 kDa protein) is a central player in SRP-

dependent co-translational protein targeting to the

membrane (and strongly connected in the ribosomal

protein cluster). Targeting of SRP14 with TAS-103 in

combination with cisplatin treatment has been shown to

have a super-additive cytotoxic effect on human small

cell lung cancer cells [54,55].

Translatability to a clinically applicable antibody-

based protein assay as well as external validation was

demonstrated for one of these top ACT response bio-

marker candidates, HMGB1. Based on antibody avail-

ability and staining success, a next step in determining

the potential of the other top ACT response prediction

candidates as clinical biomarkers will require similar

external validation in larger patient cohorts. Further-

more, while an UT cohort was included in this study

to distinguish between predictive and prognostic

potential of the candidate biomarkers, this patient

population was too small to establish statistically

sound conclusions in this matter.

An advantage of omics profiling in predictive bio-

marker research is the possibility to assess multigene

molecular signatures in addition to individual bio-

marker candidates. We have combined these approaches

by using multiple predictive signature models to help

prioritize the most predictive protein biomarkers. Pub-

lished predictive signatures related to prediction of ACT

efficacy are almost exclusively based on mRNA expres-

sion data [56–60]. Proteomics-based approaches such as

those presented here could increase the functional rele-

vance and hence future clinical application of these sig-

natures, as protein expression is more closely aligned

with cellular function and activity.

5. Conclusions

In this study we identify and validate key protein

determinants of platinum response in patients with

NSCLC, providing insights into predictive biomarkers,

the landscape of platinum sensitivity and resistance

mechanisms, and approaches to improve therapeutic

efficacy. We demonstrate the potential of proteomic

analyses on patient-derived tumour material in con-

structing a biologically relevant platinum response pre-

diction signature with clinical value. While

larger studies are needed to substantiate and further

validate these promising first results, clinical applica-

tion of our findings holds the promise of maximizing

platinum-drug efficacy, minimizing toxicities and guid-

ing treatment decisions towards alternative, non-plati-

num-based regimens in the future. With the advent of

immunotherapy in the adjuvant therapy setting,

follow-up studies should additionally focus on predict-

ing the sensitivity of NSCLC tumours to platinum-

based chemotherapy in the context of immunotherapy

in order to enable forward-looking personalized treat-

ment selection.
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Table S3. Protein expression data validation cohort.
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tions discovery cohort.
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tions validation cohort.
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