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Abstract

Characterizing cellular diversity at different levels of biological organization and across AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:data

modalities is a prerequisite to understanding the function of cell types in the brain. Classifica-

tion of neurons is also essential to manipulate cell types in controlled ways and to under-

stand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census

Network (BICCN) is an integrated network of data-generating centers, data archives, and

data standards developers, with the goal of systematic multimodal brain cell type profiling

and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstra-

tion of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we pro-

vide a guide to the cellular and spatial approaches employed by the BICCN, and to

accessing and using these data and extensive resources, including the BRAIN Cell Data

Center (BCDC), which serves to manage and integrate data across the ecosystem. We illus-

trate the power of the BICCN data ecosystem through vignettes highlighting several BICCN

analysis and visualization tools. Finally, we present emerging standards that have been

developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR)

neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the

exploration and analysis of cell types in the brain.

Introduction and overview

The National Institutes of Health’s Brain Research Through Advancing Innovative Neuro-

technologies (BRAIN) Initiative, launched in 2013, is a major effort to accelerate neuroscience

research by providing researchers with tools to study and treat human brain disorders through

a comprehensive understanding of the human brain [1]. Following a pilot phase [2] surveying

the feasibility of scaling single-cell profiling technologies, the BRAIN Initiative Cell Census

Network (BICCN) launched a 5-year phase (2017 to 2022), with the goal of systematic
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multimodal cell type profiling and characterization of the whole mouse brain, with parallel

proof of concept for a similar characterization and scalability to tackle the much larger human

and nonhuman primate (NHP) brains. This effort resulted in broad collaboration among the

neuroscience community to apply advanced single-cell profiling to characterize transcriptomic

and epigenomic signatures, anatomical phenotypes, and functional properties of brain cell

types and accelerated the rapid sharing of cell census data with the larger community prepubli-

cation. The success of these efforts is built on significant advances in scalable single-cell analy-

sis including single-cell genomic (RNA, ATAC-seq, and methylation) profiling, anatomical

mapping at cellular resolution, and other approaches and has proven to be powerful and scal-

able. The BICCN has completed whole mouse brain RNA-seq and spatial transcriptomic

atlases [3,4], and large-scale research in human and NHP atlases has begun through the newly

initiated BRAIN Initiative Cell Atlas Network (BICAN) [5]. These resulting data resources are

already proving invaluable for researchers across many areas of neuroscience. Here, we pro-

vide a comprehensive description and user guide to available resources and discuss how they

can enable rapid progress in neuroscience.

BICCN is a collaborative network of centers and laboratories, including data generating

centers, data archives, and data standards developers, which generate, map, and share

resources to support several overarching goals. These include generating a high-resolution,

comprehensive atlas of cell types in the mouse brain based on large-scale single-cell transcrip-

tome and epigenome sequencing, along with systematic characterization of neuronal morphol-

ogy, a census of the number and location of cells for each type, new genetic tools to

experimentally target brain cell types, and a prototype atlas of human brain and NHP cell

types in selected regions of the adult and developing human brain. A standard anatomical tem-

plate for mapping cell types in the mouse brain was also established through completion and

validation of a common coordinate framework (CCF; [6]). BICCN also conducted an initial

profiling of cellular diversity in several structures relevant to neurodegenerative and neuropsy-

chiatric disease, including the hippocampus and dorsolateral prefrontal cortex, and, impor-

tantly, cross-species identification and mapping of cell types between mouse, marmoset, and

human (S1 Text—BICCN Scientific Outcomes).

Each BICCN project has contributed publicly accessible data to multimodal classification of

cell types based on transcriptomic, epigenetic, proteomic, morphological connectivity, anatomic

distribution, and physiological signatures of cells for further study. To date, the BRAIN Initiative

data archives store petabytes of omics, imaging, and neurophysiology datasets generated using

over 40 cell profiling techniques and 97 published protocols (see Data Archives for the BICCN,

BICCN Data Processing Pipelines). The BICCN BRAIN Cell Data Center (BCDC; biccn.org)

manages this ecosystem, together with data archives to support logistical organization, data inte-

gration, and development of common data standards as well as central maintenance to sustain,

compare, and reanalyze data. A major success of the BICCN has been to embrace an operating

principle that data should be released quarterly, prepublication, and freely shared under CC-BY-

4.0 license unless human protection restrictions apply. In this way, the BICCN Data Ecosystem

represents one of the largest resources for single-cell data of the brain and any organ.

The first phase of the BICCN generated a comprehensive multimodal cell census and atlas

of the mammalian primary motor cortex (MOp or M1) [7]. This project involved coordinated

large-scale analyses of single-cell transcriptomes [8,9], chromatin accessibility [10], DNA

methylomes [11], spatially resolved single-cell transcriptomes [12], anatomic characterization

with morphological and electrophysiological properties [13,14], and cellular resolution input–

output mapping [10,15]. The results and their extension to the whole mouse brain and other

human regions represent a milestone in the effort to create a catalog or census of all brain cell

types and advance the collective knowledge and understanding of brain cell type organization.
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Six active BICCN Working Groups continue to extend and integrate new and existing data

across labs toward an integrated transcriptomic and epigenomic atlas of the entire mouse cen-

tral nervous system.

BICCN reflects the increasingly collaborative nature of modern neuroscience and has

accomplished the deepest coordinated characterization of cell types in any organ to date. Con-

sortia such as the Human Cell Atlas (HCA; [16]) and Human Biomolecular Atlas Program

[17] are also key representatives of this community and are leading molecular profiling in

other organs. Here, we describe the BICCN data ecosystem and provide a guide to accessing

and using its data and resources. The section Characterizing Cell Types of the Brain describes

the challenge of brain cell type profiling, the approaches taken by BICCN investigators, and

requirements for spatial localization and data architecture. The BICCN Data Ecosystem sec-

tion overviews the data ecosystem and the BCDC and its role in data management. Data

Archives for the BICCN provides a guide to the primary BICCN-related data archives describ-

ing methods for accessing archived data and the process of data submission. In BICCN Data

Processing Pipelines, we describe progress in standardizing molecular and image-based pro-

cessing pipelines and their use. We offer several usage vignettes and describe some of the

many BICCN tools for analysis and visualization that have been developed in the section

Working with BICCN Data. Standards that have been developed or adopted within the

BICCN are described in Standards and the BICCN: Towards FAIR Neuroscience, which pro-

vides an inventory of progress in Findable, Accessible, Interoperable, and Reusable (FAIR)

[18] neuroscience. Finally, S1–S4 Tables provide information throughout the guide on the

many resources available to users of these rich data.

Characterizing cell types of the brain

Understanding reproducible features of brain cells is a prerequisite toAU : Pleasecheckandconfirmthattheedittothesentence}Understandingreproduciblefeaturesofbraincellsisaprerequisiteto:::}didnotaltertheintendedthoughtofthesentence:characterize cell types

and to understand their function in the brain, to manipulate them in controlled ways, and to

determine variability in brain disorders. Neurons can be distinguished by differential expres-

sion of gene classes such as neurotransmitters and neuropeptides, electrophysiological firing

patterns, morphology, and by their connectivity, and these modalities form a natural basis for

classification. Properties of glial cells, vascular cells, and immune cells in the nervous system

are also essential to understand brain function in health and disease [19]. Moreover, the brain

has an immensely complex global and regional structure and mapping the distribution of cell

types across regions, and nuclei is a vital part of characterization.

BICCN cell type profiling

There is general agreement that types should be defined by invariant and generally intrinsic

properties and that this classification can provide a good starting point for a census [7]. There

are, however, significant challenges in characterizing cell types because of inherent biological

variability, imperfect measurements, and challenges of data integration between modalities

[7,20]. While past attempts have not resulted in a unified taxonomy of neuronal or glial cell

types, partly due to limited data, single-cell transcriptomics is enabling, for the first time, sys-

tematic high-throughput measurements of brain cells and generation of datasets that hold the

promise of being complete, accurate, and permanent [21]. However, the structure and rela-

tionships of cell types is very complex with evidence that there are not always sharp boundaries

separating different regions, particularly in the cerebral cortex [22]. For a recent overview of

brain cell type profiling and its challenges, see [23].

A full characterization of cell types for a given brain region will consist of an enumeration

of distinct types characterized across different biological features, including the distributions
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of their molecular profiles (transcriptome, proteome, chromatin accessibility), developmental

history, morphology, functionality (e.g., electrophysiology), and spatial location mapped to a

CCF or atlas of the brain. The result of profiling in this way is the development of a taxonomy

of different types derived from multiple modality data and their congruences (Fig 1). Present

classification studies approach but generally do not fully attain complete characterization, due

Fig 1. Cell type profiling and major approaches. A variety of multimodal techniques are used to profile cell types of the brain. A common coordinate

framework (CCF) is used to map spatial distribution of types and their connectivity. Top to bottom: (A) Transcriptomic techniques, single-cell and single-

nucleus (sc/sn-RNA-seq), and epigenomic (ATAC-seq), single-nucleus methylation (snmC-seq), (B) epi-retro-seq, (C) single-cell full morphology and

connectivity (fMOST, BAR-seq), (D) spatial transcriptomics (MERFISH), (E) antero- and retro-grade tracing methods for morphological reconstruction. (F)

Multimodal technique combining transcriptome, electrophysiology, and morphology (Patch-seq). (G) Cell type classifications are represented as taxonomies

reflecting hierarchical relationships, multimodal correspondence, and cell distribution (S1 Table). (H) Transgenic mouse lines are used in selecting expressing

cell types.

https://doi.org/10.1371/journal.pbio.3002133.g001
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to having only partial measurements and lacking full data correspondences. Determining rela-

tive significance of data is challenging, and while each modality is valuable, the transcriptome

forms a natural template to which other modalities can be mapped for completion and essen-

tial missing information.

To progress toward this goal, BICCN studies used a wide array of approaches (Figs 1 and 2;

S1 Table), broadly classified as single-cell transcriptomic and epigenomics, spatial

Fig 2. BICCN cell type modalities, techniques, and investigators. Primary techniques (right annotation) used in profiling cell types by BICCN investigators

(top) are colored by major modality (left) and primary species (S1 Table). Investigator awards are ordered by techniques common to laboratories. BRAIN

Initiative data archives store primary data shown by modality; NeMO, Neuroscience Multi-Omic Archive; BIL, Brain Imaging Library; DANDI, Distributed

Archives for Neurophysiology Data Integration; BossDB, Brain Observatory Storage Service and Database (see Data archives for the BICCN); The NIH UM1,

cooperative agreements involving large-scale research activities; U19, multidisciplinary with specific major objective; U01, discrete, specified, circumscribed

project; RF1, discrete, specific project by named investigator (NIH Grants).

https://doi.org/10.1371/journal.pbio.3002133.g002
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transcriptomics, anatomy/morphology, imaging-based, electrophysiology, and multimodal,

spanning more than 40 high-resolution methods for investigation of cell type characteristics.

Some of the most broadly used BICCN methods (Fig 1) include single-cell and single-nucleus

RNA-seq (sc/snRNA-seq) [8,24–26], single-nucleus long-read sequencing [27], single-cell

ATAC-seq [8], snmC-seq [11], epi-retro-seq [15], single-cell full morphology and BAR-seq

[28], MERFISH and other spatial transcriptomics methods [12], anterograde and retrograde

tracing for morphology [14], multimodality Patch-Seq [12,13], and the use of transgenic lines

[29]. All data in the mouse were mapped to the CCF through either image registration or spec-

imen pinning (See Common coordinate frameworks of the brain).

The cell type profiling techniques developed and used by the more than 30 BICCN projects

are presented in Fig 2, illustrating the breadth of the consortium’s approaches. These tech-

niques are broadly classified as transcriptomic, epigenomic, spatial transcriptome, anatomy/

morphology, imaging-based, electrophysiology, and multimodal, spanning a wide range of

more than 40 high-resolution methods for investigation of cell type characteristics. Investiga-

tors are grouped here by techniques common to their programs. While the primary focus of

the BICCN is on the mouse, Fig 2 shows profiling applied to human, marmoset, and macaque

as well as several other species for an evolutionary study [9]. S1 Table provides details on the

primary techniques used and BICCN investigator projects (see also Team Pages on biccn.org).

BICCN data levels

The importance of having structure in data grows with increasing annotation and its associa-

tion with existing knowledge. The hierarchical organization of information is an active area of

bioinformatics [30,31]. Among other benefits, the specification of the structure of a dataset

and its relevant metadata provides a mechanism for efficient retrieval of datasets by users.

BICCN data and structured datasets are classified through Data Levels (Fig A in S1 Text),

reflecting a common conceptual approach for identifying increasing levels of structure from

data, through information, to knowledge [32]. InAU : Pleasecheckandconfirmthattheedittothesentence}Inthisway;BICCNdatasetsareclassifiedbyinformationcontent:::}didnotaltertheintendedthoughtofthesentence:this way, BICCN datasets are classified by

information content ranging from primary Raw (Level 0) data directly from individual labora-

tories running specific assay platforms, to QC/QA Validated (Level 1) data with appropriate

associated metadata, Linked (Level 2) data that are associated with a specific brain region or

nuclei, datasets with computed Features (Level 3), and, finally, Integrated (Level 4) datasets

having biological relevant annotation and comparison with other sources (see S1 Text—

BICCN Data Levels).

Data Levels are more than a labeling system and provide an entry point for users of the

BICCN data corpus and use–case-directed identification of datasets of particular interest. At

project award, each BICCN investigator specified levels of data that their project would gener-

ate and BICCN working groups collectively reconcile these definitions by each modality such

as 10×-snRNA seq, MERFISH, or electrophysiology to achieve modality specific definitions

across groups (S2 Table). WhileAU : Pleasecheckandconfirmthattheedittothesentence}WhileallLevel1dataarerequiredtobedeposited:::}didnotaltertheintendedthoughtofthesentence:all Level 1 data are required to be deposited in BRAIN Initia-

tive archives (see Data archives for the BICCN) on a quarterly basis, uniform storage and

archiving requirements for datasets with more structure are currently being developed by the

BRAIN archives as required by BICCN program objectives. S3 Table lists current BICCN-level

classified datasets and their provenance. There is some flexibility in defining levels particularly

with increasing annotation and structure.

Common coordinate frameworks of the brain

Spatially localizing cell type data to a CCF provides an anatomical context that is essential to

understand the role of cell types in brain function. When spatially mapped, data achieve
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Linked data level and allow users to identify and access data in a regionally annotated way.

BICCN data from the mouse brain are mapped to the Allen Mouse Common Coordinate

Framework (http://atlas.brain-map.org/; [6]), which serves as the main anatomic data browser

and spatial coordinate environment for mouse data, as well as the reference atlas for mouse

data within EBRAINS, the European infrastructure for brain and brain-inspired research

(https://ebrains.eu/service/mouse-brain-atlas). CCFv3 is based on a 3D 10-μm isotropic,

highly detailed population average of 1,675 mouse brains using 2-photon imaging (Fig 3A and

3B) and consists of 207 newly drawn structures in 3D: 123 subcortical structures, 41 fiber tracts

(plus ventricular systems), and 43 cortical regions, including primary visual and higher visual

areas. Ultimately, more than 500 gray matter structures, cortical layers, approximately 80 fiber

tracts, and ventricle structures in 3D will be included [6] (Fig 3C and 3D). A recent fMOST

atlas was derived from CCFv3 [33], extending registration accuracy for this modality (Fig 3E).

The CCFv3 is being refined and improved through the BICCN and currently provides a defini-

tive mouse brain reference framework.

Human and NHP atlases are similarly necessary for structure identification and data map-

ping (Fig 3F–3H). However, here, current reference atlases have major limitations such as lack

of whole-brain coverage, relatively low image resolution, and sparse structural annotation. The

BICCN uses the Allen Human Reference Atlas - 3D, 2020, a human brain atlas [34] that incor-

porates neuroimaging, high-resolution histology, and chemo architecture across a complete

adult female brain, with magnetic resonance imaging (MRI), diffusion-weighted imaging

(DWI), and 1,356 large-format cellular resolution (1 mm/pixel) Nissl and immunohistochem-

istry anatomical plates (Fig 3G), and this is the initial atlas for the recently started BICAN

Fig 3. Common coordinate frameworks of the brain. (A, B) Allen Mouse Brain Common Coordinate Framework (CCF) constructed from serial 2-photon

tomography images with 100 μm z-sampling from 1,675 young adult C57BL/6J mice yields 10-μm cubic resolution. (C) Digital atlases of the Mouse (Allen

CCFv3) annotated plate and (D) 3D reconstruction. (E) fMOST mouse atlas derived from CCFv3 through iterative averaging of 36 fMOST brains. This

approach to a reference atlas reduces the average distance error of somata mapping up to 40% (F) marmoset atlas plate (Allen Institute for Brain Science). (G)

Human reference atlas from 34-year-old female, 1 mm/pixel Nissl and immunohistochemistry anatomical plates, annotated 862 structures, including 117 white

matter tracts and several novel cyto- and chemoarchitecturally defined structures. (H) MRI-based annotation of human atlas of 150 structures form the initial

atlas for BICAN profiling.

https://doi.org/10.1371/journal.pbio.3002133.g003
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consortium [5]. The atlas is annotated in 3D to over 150 structures (Fig 3H) and has been rere-

leased under a CC-BY-4.0 license in 2022 to support broader community use. This human

atlas forms the starting anatomic context for the next BICAN phase.

Mapping brain data to reference spaces is challenging and uses a range of manual and auto-

mated methods of image registration (see BICCN image processing pipelines). Given the chal-

lenge of determining anatomical context for any reference atlas even within the mouse, precise

image registration requires the whole brain image series (or a reasonable fraction of the brain)

to be present with sufficient distinctive anatomical landmarks. Omics data often may not have

detailed structural localization and can be positioned within a CCF through coordinate based,

visual, or ontological tagging. Human data are typically of this type, where anatomic ontology

is known and localized using annotated atlas plates and MNI space from the MRI reference

brain volume (ICBM 2009b Nonlinear Symmetric; [35]. Mapping of these tissues is effectively

done using the Cell Locator (RRID:SCR_019264)), developed in collaboration with Kitware

(www.kitware.com). See S1 Text—Common Coordinate Frameworks for more information.

The BICCN data ecosystem

The BICCN data workflow includes 3 distinct components, from work in individual centers,

followed by ingestion and storage in dedicated archives, and ending in data catalog and portal

in the BCDC (Fig 4). Multimodal data are generated by laboratories in multiple centers, which

develop and apply robust methods for high-resolution, high-throughput mapping, including

laboratory-specific QC/QA methods and data quantification (Fig 4A). Data analysis at individ-

ual laboratories is focused on rigorous signal detection and clustering, identification of

Fig 4. BICCN data ecosystem. (A) Multimodal cell type data generation by UM1/U01/19, RF1 centers produce high-resolution Level 1 multimodal data. (B)

Data are submitted to one of 4 BRAIN archives depending on data type(s): Neuroscience Multi-Omic Data Archive (NeMO), Brain Imaging Library (BIL),

Distributed Archives for Neurophysiology Data Integration (DANDI) for neurophysiology data, and Brain Observatory Storage Service and Database (BossDB)

for electron microscopy ultrastructural datasets. Datasets are indexed and referenced (C) by the Brain Cell Data Center (BCDC; biccn.org), which provides a

portal for accessing the consortium’s data, tools, and knowledge. (D) Laboratories engage in collaborative cross-modality interpretation of data and results. (E)

Terra cloud-based platform for standardized omics processing accessible through BCDC. (F) An infrastructure working group oversees architectural

development and workflow management.

https://doi.org/10.1371/journal.pbio.3002133.g004
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modality-specific cell type taxonomies, and the validation of cross-modality associations.

BICCN mandates broad and rapid data dissemination to accelerate scientific exploration and

encourage community engagement, and all laboratories deposit Level 1 validated data quar-

terly to dedicated archives (Fig 4B). Finally, the BICCN data ecosystem is managed by the

BCDC (Fig 4C). BCDC provides public access to and organization of the complex data, tools,

and knowledge derived by BICCN, by supporting the acquisition of data from BICCN part-

ners, providing data models and framework for importing structured data into the BCDC, and

establishing semantic and spatial community standards for description and management of

single-cell data modalities.

BICCN has a highly collaborative network for addressing multimodal analysis and cell type

reproducibility across modalities and laboratories [7,36] (Fig 4D). Cross-institution analysis

working groups tackle regional and whole brain analysis, which is facilitated by unrestricted

access to quarterly released data to the archives. Systematic data processing provides a platform

with common computational pipelines and environment for reproducible science across

groups. For example, the BCDC provides access to Terra (https://terra.bio), a scalable and

secure platform codeveloped by the Broad Institute, Microsoft, and Verily for biomedical

researchers to share data and run analysis tools such as omics processing pipelines (Fig 4E). In

addition, an Infrastructure and Standards Development group develops needed software, for-

malizes cross-modality standards, and specifies data structures, and protocols (Fig 4F) (see

Standards and the BICCN: Towards FAIR Neuroscience.

The BICCN Portal (www.biccn.org) is an entry point for BICCN resources and provides

detailed investigator profiles, consortium news, data access, tools, standards documentation,

policies, and overview of scientific progress (Fig 5A–5E). BCDC maintains a searchable data

catalog listing all public datasets available through the BICCN portal. The BICCN catalog is

built as an extension of the Allen Institute’s Brain Knowledge Platform and is currently acces-

sible under the “Data access” tab at BICCN.org (https://biccn.org/data). The catalog organizes

datasets by projects, each with one or more associated datasets that may be stored in a single

archive or distributed across multiple archives (see Data archives for the BICCN). Users can

browse the catalog or use a flexible search function (Fig 5C) to filter data by species, modality,

techniques, and specimen type. For each dataset, the catalog provides basic descriptive meta-

data (Fig 5B), information on the dataset release status, the terms of the use, and a link to the

location in the archive. Clicking on the link brings the user to a landing page that provides the

dataset identifier, descriptive metadata, a download link, and additional relevant information.

Data archives for the BICCN

BICCN data archives ensure that data are FAIR (See Standards and the BICCN: Towards

FAIR Neuroscience), while optimizing storage costs to store and process data, enabling repro-

ducible data practices, and effectively managing interchange between data producers and

computational analysts. The archives serve as active repositories with corresponding.

Compute capabilities that enable collaboration within and across labs and serve as an entry

point for research for all neuroscientists. Each archive supplies its own documentation on data

submission, access, and reuse. There are currently 4 archives (of 7 BRAIN Initiative–supported

archives) that are central to BICCN-related data types: Neuroscience Multi-Omic Data

Archive (NeMO; https://nemoarchive.org), Brain Imaging Library (BIL; https://www.

brainimagelibrary.org), Brain Observatory Storage Service and Database (BossDB; https://

bossdb.org), and Distributed Archives for Neurophysiology Data Integration (DANDI;

https://dandiarchive.org) (Fig 5F). The archives supply permanent and archival storage capa-

bilities for transcriptomic and epigenomic data, imaging-based data including tracing, slice
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and whole brain morphology, density distribution, electrophysiology, and functional imaging,

and ultraresolution electron microscopy (see Fig 2).

Neuroscience Multi-Omic Archive

The NeMO archive (RRID:SCR_016152; https://nemoarchive.org) stores and disseminates

omics data from the BRAIN Initiative and related brain research projects. NeMO stores both

transcriptomic and epigenomic data, including transcription factor binding sites and other

regulatory elements, histone modification profiles and chromatin accessibility, levels of cyto-

sine modification, and genomic regions associated with brain abnormalities and disease. Data

are organized by projects and within each project further organized by laboratory where data

were generated, grant, organism, and the assay type. NeMO is consistent with the principles

advanced by the NIH Strategic Plan for Data Science [37], including FAIR Principles, docu-

mentation of APIs, data-indexing systems, workflow sharing, use of shareable software pipe-

lines, and storage on cloud-based systems.

Fig 5. Brain Cell Data Center (BCDC). (A) The BCDC (www.biccn.org) supports the goals of the BRAIN Initiative Cell Census Network (BICCN) by

providing a central public resource through the BICCN portal, which makes BICCN data and activities searchable from inside or outside the BICCN network.

The portal includes (B) metadata and file manifests documenting data deposition from investigators into archives, (C) a searchable data catalog describing

projects and datasets generated by the BICCN, (D) links to relevant publications with associated datasets and data mining tools, and (E) BICCN standards

adopted by the consortium or created by internal working groups to ensure that data are harmonized across the consortium. (F) BRAIN Initiative archives are

accessible from the BICCN data catalog. NeMO, Neuroscience Multi-Omic Data Archive; BIL, Brain Image Library; DANDI, Distributed Archives for

Neurophysiology Data Integration; BossDB, Brain Observatory Storage Service and Database.

https://doi.org/10.1371/journal.pbio.3002133.g005
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Data archived at NeMO include raw sequence files as well as derived intermediate files such

as BAM files (BAM | Integrative Genomics Viewer) and analyzed results including counts and

cluster information (Data Levels 1 and 3), and metadata are submitted to BCDC. Sequence-

level data for human samples submitted with access restrictions are made available through an

approval process in conjunction with the NIMH Data Archive and NeMO archive. Data sub-

missions rely on the fast transfer technology Aspera (https://www.nemoarchive.org/resources/

aspera/). To upload data to NeMO, a user obtains credentials.

Brain Image Library

The BIL (RRID:SCR_017272; https://www.brainimagelibrary.org) provides a persistent cen-

tralized repository for brain microscopy data and supports dataset deposition, integration into

a searchable web-accessible system, redistribution, and analysis tools. It allows researchers to

process datasets in-place and to share restricted and prerelease datasets. BIL includes whole-

brain microscopy image datasets and their accompanying higher-level derived data such as

neuron morphologies, targeted microscope-enabled experiments including connectivity

between cells and spatial transcriptomics, and other historical collections of value to the com-

munity. In addition to the BICCN, BIL accepts all microscopy data relevant to the BRAIN Ini-

tiative, including data from primates, and most mammals and model organisms. BIL accepts

both raw and processed data, and Data Levels 2 and 3, such as neuron tracings, which can be

linked to lower-level data sources. While BIL does not limit the amount of data deposited per

dataset or investigator, users planning to deposit more than 50 TB of data in a single year

should contact in advance to discuss data deposition plans. Data contributed to BIL following

the Standard metadata for 3D microscopy schema [38] are issued DOIs. Higher-level traced

neuron data are accepted in the SWC format [37].

The BIL Analysis Ecosystem provides an integrated computational and visualization system

to explore, visualize, and access BIL data without having to download it. Its Analysis Ecosystem

provides large memory nodes, GPU nodes, and access to high-performance computing (HPC)

resources for extensive data exploration. The Analysis Ecosystem virtual machine (VM) system

has a remote desktop environment to run applications such as Fiji [39] and Vaa3d [40] and

supports custom web gateways and commercial software. An Open-OnDemand gateway at

BIL offers interactive access to popular scientific applications such as Jupyter Notebooks. A

search portal provides pointers to the data on the BIL Analysis Ecosystem as well as download

links. Finally, workshops are offered on a regular basis on how to interact with data through

the BIL Analysis Ecosystem, the data submission process, and additional services [37].

Distributed Archives for Neurophysiology Data Integration

The DANDI (RRID:SCR_017571; https://dandiarchive.org) is a web platform for scientists to

share, collaborate, and process data from cellular neurophysiology experiments. DANDI

works with BICCN and other BRAIN Initiative groups to curate data using community data

standards such as Neurodata without Borders (NWB; [41]) and Brain Imaging Data Structure

(BIDS; [42]) and to make data and software for cellular neurophysiology FAIR. Currently

housing nearly 500 TB of data across 6 species and multiple instruments and techniques, the

DANDI archive stores, publishes, and disseminates neurophysiology data including electro-

physiology, optical physiology, and behavioral time-series, and images (MRI and microscopy)

from immunostaining experiments.

DANDI datasets are referred to as Dandisets and include the dataset and file metadata. Sup-

plied per-file metadata includes instrument, species, sample, subject, and other experimental

details. Each Dandiset is organized in a structured manner to help users and software tools
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interact with it and has a unique persistent identifier that can be used for citation. The DANDI

web application allows users to browse and search for Dandisets, create an account to register

a new Dandiset or gain access to the Dandi Hub analysis platform, add collaborators to a Dan-

diset, and retrieve an API key to perform data upload. DANDI has enabled streaming access to

parts of data using a combination of cloud technologies and storage formats, allowing for

more scalable analysis software and visualization technologies. DANDI exposes all data as ver-

sioned DataLad datasets [43], allowing users to overview an entire dataset without download-

ing any data to their local file system and then to selectively download specific files or folders.

DANDI provides a programmable interface to the archive and Jupyter computational environ-

ment, and an API allows development of other software tools for accessing, searching, and

interacting with the data in the archive.

BICCN data processing pipelines

The BICCN ecosystem includes production-level, cloud-native data processing pipelines,

developed by the Broad Institute’s Data Sciences Platform (DSP) in collaboration with BCDC.

While BICCN investigators and other users often process their own omics datasets, standard-

ized pipelines are used to supplement and integrate original analyses with uniformly processed

datasets. The pipelines leverage consistent standard file schema and types as well as standard-

ized quality control metrics and metadata. The established cloud-native pipelines replicate

processing used by several consortium groups including computational pipelines for process-

ing single-cell/nucleus 10× v2/3, sc/sn full transcript, sn-ATAC-seq, and snmC-seq sequencing

data. Each of these pipelines was developed in collaboration with a sponsoring BICCN group

and captures their expertise in data processing (Table 1; for additional pipeline documenta-

tion, type “BICCN” in the WARP Documentation search bar (https://broadinstitute.github.io/

warp/docs/get-started). Detailed documentation and user guides are available through www.

biccn.org. Workflow Description Language (WDL) Analysis Research Pipelines (WARP WDL

Code) repository contains a collection of cloud-optimized pipelines.

The Broad Institute Data Sciences Platform resources are actively used by other individuals

and consortia, and the approach to the development of molecular pipelines for the BICCN is

inspired by FAIR principles [18]. ThisAU : Pleasecheckandconfirmthattheedittothesentence}ThisincludesuseofResearchResourceIdentifiersðRRIDsÞtogive:::}didnotaltertheintendedthoughtofthesentence:includes use of Research Resource Identifiers (RRIDs)

to give pipelines unique, explicit identifiers and host the pipelines in multiple community

resources including public GitHub repositories (for software engineers), Dockstore (https://

dockstore.org) for computational biologists, and Terra (where the pipelines are preconfigured

and ready to run for those without local infrastructure or who want to use scalable cloud

resources). Use of a modern WDL separates the code performing scientific tasks from code

orchestrating the pipeline on infrastructure and encouraging interoperability for reproducible

science (see Section Standards and the BICCN: Towards FAIR Neuroscience.)

Table 1. BICCN molecular pipelines.

Pipeline WARP WDL Code Input Data Overview Terra Workspace

Smart-seq2 Single Nucleus Multi-

Sample (RRID:SCR_021312)

Smart-seq2 Single

Nucleus Multi-Sample

Single-cell data generated with

Smart-seq2 assays

Smart-seq2 Single Nucleus

Multi-Sample Overview

Smart-seq2 Single Nucleus

Multi-Sample

Optimus (RRID:SCR_018908) Optimus 10× Genomics v2, v3 3’ single-cell

and single-nucleus data

Optimus Overview Optimus

Single-Cell ATAC-seq (RRID:SCR_

018919)

scATAC Single-cell ATAC-seq data from

nuclear isolates

scATAC Overview scATAC

MethylC-Seq (RRIS:SCR_021219) CEMBA Multiplexed single-nucleus bisulfite

sequencing data

CEMBA Overview CEMBA

https://doi.org/10.1371/journal.pbio.3002133.t001
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BICCN image processing pipelines

Image registration, mapping, and alignment are necessary to bring data from individual brain

samples into common coordinate systems, yet often challenging to standardize. The choice of

which software to use often depends on the computational resources available, integration

with other image tools (e.g., visualization, neuron reconstruction), and which algorithm is

most effective for the image data at hand. Two image processing platforms were developed or

extended through the BICCN data ecosystem. (1) Generative Diffeomorphic Mapping (GDM)

for image registration and atlas mapping from the Brain Architecture Portal (http://

brainarchitecture.org) combines multimodal imaging datasets such as ex vivo radiology and

histology in the same animal/subject. The GDM approach overcomes challenges in registering

tissue processing procedures such as extraction and fixation that cause brain tissue deforma-

tion (S1 Text—CCF Mapping). (2) The Image and Multi-Morphology Pipeline [40,44] accesses

raw images from the BIL archive and implements the full pipeline of conversion, processing,

morphometry generation, registration and mapping, release, and analysis. This pipeline is

hosted on an open cloud platform that features collaborative processing and synergetic com-

puting among various clients, and web interfaces. All data on the server can be accessed

through MorphoHub [45], a petabyte-scale multimorphometry management system and inte-

grates the 3 largest whole-brain full morphology datasets [28], MouseLight [46], and single-

neuron projectome of mouse prefrontal cortex [46,47] (S1 Text—Image Processing Pipelines).

While not all BICCN image data are mapped into the CCFv3, a wide variety of tools were

improved through BICCN collaboration (Fig B in S1 Text). These image registration packages

include ANTs, which maximizes image cross-correlation while ensuring that maps between

images are smooth and invertible [48], Elastix, whose modular design allows users to compare

different registration algorithms [49], and 3D Slicer, which offers both landmark and grayscale

image-based registration [50]. Highly flexible registration tools such as QuickNII and VisuA-

lign directly map to the CCFv3 and focus on registering high-resolution 2D images [51]; Clou-

dReg, which is a cloud-compliant pipeline for intensity correction, image stitching, and

diffeomorphism-based registration [52]; and mBrainAligner [44], which is cross-modal and

integrates with the Vaa3D software suite and can also be freely accessed through the web server

mBrainAligner-Web [33,44]. Additional cloud-based Petabyte data generation and manage-

ment system MorphoHub [45] was also developed to assist additional data analysis. These plat-

forms are developed through open-source and extensible approaches, are accessible to the

public, and can be extended through plugins (S4 Table).

Working with BICCN data

The BICCN has developed many tools and applications to work with BICCN data. An inven-

tory of these tools describing their application to single-cell analysis is provided under the

“Tools and analysis” tab of the BICCN portal Tools and Analysis - Brain Cell Data Center

(BCDC). Some of these resources are described below, with an emphasis on those that facilitate

integrative analysis.

Cell Type Knowledge Explorer

The Cell Type Knowledge Explorer (CTKE; RRID:SCR_022793) is an interactive application

that aggregates multimodal BICCN data from the primary motor cortex (MOp) atlas at the

level of individual cell types in mouse, human, and marmoset. The CTKE integrates the work

of many BICCN laboratories and presents aggregate knowledge about cell types in the form of

data visualizations and text summaries. Drawing inspiration from Gene Cards (genecards.org;

[53]), information is displayed on over 400 individual panels across the 3 species. The CTKE is
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powered by a data-driven ontology [54] linking MOp atlas data to a well-established body of

knowledge on neurobiology enabling text-based search of the data by cell type names, minimal

sets of marker genes from the NS-Forest algorithm [55], and historical terms from the litera-

ture (“pyramidal,” “chandelier,” etc.).

By leveraging BICCN’s cross-modality mapping of nontranscriptomic data to expression-

based taxonomies, CTKE provides rich phenotypic information about cell types and enables

its systematic exploration. Cell Type Knowledge Cards for each of the 3 taxonomies are acces-

sible from an interactive sunburst plot (Fig 6A and 6B). Each card visually presents the molec-

ular signatures of cell types derived from single-cell transcriptomics and may also include

morphological reconstructions, exemplar action potential traces, and summaries of

electrophysiological characteristics, or spatial locations determined using spatial transcrip-

tomics. Genome browser views show accessible chromatin data at marker gene locations and

Fig 6. Cell Type Knowledge Explorer. CTKE is an interactive tool that aggregates multimodal BICCN data from the

primary motor cortex mini atlas at the level of individual cell types in mouse, human, and marmoset. (A) Cross-species

aligned taxonomies and common cell types in MOp, (B) cell types in each species are accessible and linked through

interactive sunburst plots, (C) marker gene panels defining the L4 cell type in mouse, including machine learning–based

NS-Forest markers [55] highlighted in green, and (D) rendering of expressing cells in UMAP, (E) morphology and

electrophysiology exemplars associated with cell type.

https://doi.org/10.1371/journal.pbio.3002133.g006
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predicted cell type–specific enhancer regions and links to homologous cell types across species.

These modalities are represented on a given card in unique panels, each of which includes

links to reusable source data and additional BICCN visualization and analysis tools.

CTKE also helps researchers to annotate and interpret their own data. For example, CTKE

includes links to Azimuth [56], a web application that provides utilities to map single-cell

expression data to curated reference datasets. This allows users to derive cell type annotations

for their own datasets in the context of BICCN primary motor cortex mini atlas data for the

human and mouse. Similarly, CTKE facilitates the interpretation and annotation of other data

types. For example, a researcher studying mouse MOp may have immunohistochemistry data

indicating that the gene Rorb is highly expressed in a certain population of cells and want

more information about what type of cells they might be. Searching “Rorb.”
In the CTKE would return the L4/5 IT neuron subclass as a cell type that expresses Rorb

more highly than other MOp types (Fig 6C and 6D, “Transcriptomics” panel). Navigating to

the “Spatial Transcriptomics” and “Morphology” panels would reveal that L4/5 IT neurons are

found at a similar cortical depth and with similar morphological characteristics to those this

researcher sees in their cell population of interest (Fig 6E). If this researcher were interested in

understanding whether these cell types are present in humans, they could navigate to the

“Cross-Species Cell Types” panel on the Cell Type Knowledge Card for the L4/5 IT_1 subtype,

where they would also find several putatively homologous types and be able to navigate

directly to their cards for further investigation. In summary, the CTKE strives to provide a

user-friendly interface for deep exploration of the BICCN primary motor cortex mini-atlas in

a cell type–centric manner and provides a framework for extending to other brain regions and

future data navigation tools for whole-brain multimodal atlases.

NeMO Analytics

NeMO Analytics (RRID:SCR_018164; https://nemoanalytics.org) is a web-based suite of data

visualization and analysis tools for single-cell data analysis. The portal allows users to explore

single-cell, single-nucleus, and spatial transcriptomic and epigenetic profiling data, with flexi-

ble plotting tools allowing side-by-side comparisons of any data type. The portal is prepopu-

lated with thematically organized datasets reflecting projects across BICCN. Users can upload

their own data for private or public use, utilize curated datasets from other users, select a data-

set from the NeMO Archive, or benefit from data collections hosted from peer-reviewed publi-

cations. NeMO Analytics simplifies access to BICCN data and provides nonprogrammers with

a suite of analytical tools for data exploration, including cell cluster visualization based on

expression/cell type, cell cluster comparison, identification of marker genes across datasets,

plotting multigene analyses (e.g., heat maps, volcano plots, violin plots for groups of genes),

and note taking (Fig 7). Additional tools include a workbench to perform de novo analysis of

scRNA-seq data, visualization and analysis of spatial transcriptomics data, and visualization of

epigenomic data. The platform supports visualization of datasets across species and modalities

side by side and linked by homologous gene symbols. The links to the datasets in NeMO Ana-

lytics are embedded in the figure legends, providing seamless access to the data.

Mouse Connectome Project

The Mouse Connectome Project (MCP; RRID:SCR_004096; https://cic.ini.usc.edu; https://

brain.neurobio.ucla.edu/) has systematically produced and collected connectivity data for over

10,000 neural pathways in >4,000 experimental cases utilizing a variety of multifluorescent

pathway tracing techniques that included double coinjections, triple anterograde and quadru-

ple retrograde tracing, Cre-dependent double AAV anterograde tracing, and rabies viral-based
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Cre-dependent retrograde methods [57,58] (Fig 8). This combination of injection strategies

can [59] simultaneously reveal key connectivity information for a given brain region and

enables construction of detailed connectivity maps and to systematically assemble neural net-

works of different functional systems in the mouse brain. Complementary to the molecular

cell typing strategies described above, these connectivity data provide a fundamental frame-

work for cataloging neuronal types based on anatomic locations, projection targets, and mor-

phological features (Fig 8A). In each animal, up to 4 retrograde tracers are injected into

different cortical locations to retrogradely label all neurons that send projections to the

injected areas. Because the injections collectively span the entire neocortex, theoretically, for

any given cortical area, all neuronal populations (corticocortical projection neurons) that

innervate different cortical targets are demonstrated. Distributions of these retrogradely

labeled neurons were annotated to construct a connectivity matrix to visualize corticocortical

network organization and a connectivity map to enable direct comparisons of regional and

laminar-specific distribution patterns of neuronal populations (cell types) associated with each

cortical area (Fig 8C); see also www.MouseConnectome.org/Corticalmap). Multiple retrograde

tracer injections into different cortical (i.e., temporal association area) and subcortical areas

(i.e., the superior colliculus, periaqueductal gray, posterior thalamic nucleus) simultaneously

reveal multiple cell types, namely, intratelencephalic (IT), pyramidal tract (PT), and corti-

cothalamic projecting (CT) neurons (Fig 8C). This connectivity map and derived catalog of

anatomically defined neuron types provide complementary and confirmatory information for

Fig 7. Analyzing BICCN datasets with NeMO Analytics. NeMO Analytics provides direct access to many of the BICCN multiomic datasets for comparative

analysis, visualization, and data mining. (A) Example NeMO Analytics profile showing glutamic acid decarboxylase 2 (Gad2) expression and epigenetic

changes in the datasets of [8]. This profile can be found at NeMO Analytics. (B) Integrated visualization of Patch-seq morphology, electrophysiology, and gene

expression for cell types in primary motor cortex NeMO Analytics [13]. (C) Visualization from a MERFISH experiment with spatial distribution of cell types

NeMO Analytics [12]. (D) NeMO Analytics offers a variety of web-based visualization and analysis tools including heatmaps, volcano plots, and a single-cell

workbench allowing for de novo analysis of datasets. (E) Additional utilities of NeMO Analytics.

https://doi.org/10.1371/journal.pbio.3002133.g007
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molecularly defined neuron types described in other BICCN resources [8,15]. Finally, these

multifluorescent retrograde tracing data are available through iConnectome (www.

MouseConnectome.org; https://brain.neurobio.ucla.edu/maps/).

Brain Architecture Project

A collection of high-resolution 2D images from BICCN collaborators are available through the

Brain Architecture Project (BAP; RRID:SCR_004283; http://brainarchitecture.org) on the

Brain Architecture web portal. Datasets are divided into species and experiment-type specific

pages, accessible from the front landing page. Users can filter mouse cell distribution datasets

via free text search of metadata for keywords and mouse projection and connectivity datasets

via injection region or tracer. A high-resolution viewer capability to display overlays of

regional compartments, points indicating cell bodies post-cell detection, and skeletonization

Fig 8. Neuronal Connectivity and Mouse Connectome Project (MCP). (A) Connectivity map of distinct cortical projection neurons (cell types)

in the prefrontal cortex. (B) A connectivity matrix constructed based on these retrograde tracing data. These data resources are available on

iConnectome (www.MouseConnectome.org). (C) Example of back labeled neurons in the cortex following injections of 4 retrograde tracers into

the temporal association area (TEa), superior colliculus (SC), periaqueductal gray (PG), and posterior thalamic nucleus (PO), revealing 3 major

classes of cortical neuron types, IT, PT, and CT. Scale bar = 250 μm.

https://doi.org/10.1371/journal.pbio.3002133.g008
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on 2D sections of atlas mapped brains. The viewer can display data at multiple resolutions, with

zoom to super-resolution capability, beyond the native in-plane 0.46-μm resolution of the images.

All software employed for image analytics pipeline, including registration and atlas mapping, cell

detection, and process detection and skeletonization via are available both in interactive versions

on the Brain Architecture web portal, and for download (of both source code and documentation)

on GitHub and Bitbucket repositories. There are additionally cross-linkages with the Broad Insti-

tute Single-Cell Portal (https://singlecell.broadinstitute.org/single_cell).

Additional tools and resources

Numerous other resources have been key in analysis of BICCN publication datasets, described

in S1 Text—BICCN Tools and Resources, S4 Table, and at https://biccn.org/tools. Tools key to

BICCN publications are Epiviz (RRID:SCR_022796) and Brain Cell Methylation Viewer

(RRID:SCR_020954), interactive visualization tools for functional genomics data; Brainome

(RRID:SCR_018162), a genome browser to visualize the cell type–specific transcriptomes and

epigenomes of cell types from the mouse MOp; Catlas (RRID:SCR_018690), which provides

maps of accessible chromatin in the adult mouse isocortex, olfactory bulb, hippocampus, and

cerebral nuclei; Cytosplore Viewer (RRID:SCR_018330) is a stand-alone application (Win-

dows and MacOS) for interactive visual exploration of multispecies and cross-omics single-cell

data in several BICCN data resources; and MetaNeighbor [60,61], a method for assessing the

replicability of single-cell data, used in a number of key BICCN publications (e.g., [8,9]) to val-

idate cell types and perform quality control. An important resource for the analysis of single-

cell brain data is the Broad Institute Single Cell Portal (RRID:SCR_014816).

Several open-access neuroinformatics resources launched prior to BICCN efforts [62] but

were substantially expanded with support and contributions from BICCN projects and have

been utilized in multiple BICCN publications. Two such examples, NeuroMorpho.Org (RRID:

SCR_002145) and Hippocampome.org (RRID:SCR_009023), have helped bridge seminal liter-

ature information and data with new BICCN-generated data. NeuroMorpho.Org [63] provides

free access to hundreds of thousands of reconstructed neural cell morphologies contributed by

over 900 laboratories worldwide from approximately 100 distinct speciesAU : Pleasecheckandconfirmthattheedittothesentence}NeuroMorpho:Org½63�providesfreeaccesstohundredsofthousandsof :::}didnotaltertheintendedthoughtofthesentence:and were utilized in

the recent comparative analysis of neocortical neurons [9], where BICCN data from human,

marmoset, and mouse were augmented with tracings from other mammals. Hippocampome.

org [64] is a knowledge base of neuron types from the mammalian hippocampal formation

and entorhinal cortex with more than 500,000 neuronal properties extracted from 46,000

pieces of evidence annotated from scientific articles. For more details on the above and addi-

tional resources, we refer readers to the BICCN online resource Tools and Analysis - Brain

Cell Data Center (BCDC).

Standards and the BICCN: Towards FAIR Neuroscience

To be reused and shared efficiently, accessible data need to be described in standard ways, and

the development and adoption of standards is thus essential to advancing rigorous science and

efficient collaboration [65]. An increasingly comprehensive and detailed set of technical, qual-

ity control and policy standards developed or utilized by the BICCN provides guidance/best

practices for consortia members and others seeking to use BICCN data. The BICCN is com-

mitted to implementing practices and technologies to make data and other research products

FAIR [18]. All data that do not involve protected health information are made available under

a CC-BY 4.0 attribution license [6].

BICCN Standards, Best Practices, and Recommendations have been implemented across

BCDC and the BRAIN data archives including metadata and file formats, common processing
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pipelines, spatial and semantic standards, and identifier systems. BICCN Working Groups

focused on harmonizing protocols, data formats, and metadata for transcriptomic, physiologi-

cal, and anatomical data types. The BCDC coordinated the formation of working groups of

consortium members that considered what standards and best practices were necessary for

new experimental technologies for which standards were not yet available, including develop-

ing QC criteria for a given modality. The BCDC was also responsible for developing strategies

to harmonize common metadata across the archives, including submissions checklists,

collections metadata, and basic descriptive information for specimens. The Metadata and

Infrastructure Working Group (Fig 4F), comprising representatives from the BCDC, the 4

BRAIN Archives housing BICCN data and BICCN investigators, coordinated the adoption

and development of the necessary technical standards to support FAIR data. However, beyond

basic descriptive metadata such as modality or species, annotations, and mappings at a deeper

level are still nascent [66].

Additional standards were adopted over the course of the project as they became available,

e.g., the Essential Metadata for 3D Microscopy standard developed with support from the

BRAIN Initiative [38] was recently implemented by BIL. The independent data generation

within the BICCN allowed post hoc assessment of standards for rigor and reproducibility

meta-analysis. This is particularly true of the mouse expression data, which involved replicates

across technologies and allowed assessment and integration to assess the replicability of cell

type calling via, e.g., MetaNeighbor [60] and post hoc integration to produce more reliable

marker sets [9,67]. BICCN-developed standards are available through a public GitHub Reposi-

tory (https://github.com/BICCN) and BICCN Standards, Best Practices, and

Recommendations - Brain Cell Data Center (BCDC).

BICCN FAIR data practices

The BCDC, in partnership with the archives that house the data, ensures that all BICCN data

are FAIR according to the principles set out in [18]. The BICCN ecosystem benefits and

derives increased utility from the set of 15 FAIR data principles and recommendations.

Although full implementation of FAIR was challenging, particularly in the initial phase of the

BICCN where the archives, techniques, and standards were under simultaneous development,

the BICCN has been moving toward implementation of a consistent set of baseline FAIR prac-

tices over the course of the project. The BICCN ecosystem benefits and derives increased util-

ity from the FAIR data principles and recommendations. Summarized in Box 1 are the main

areas where the BICCN data ecosystem has implemented these practices. This standards-based

work includes use of persistent identifiers and rich metadata, detailed provenance, use of FAIR

vocabulary, and use of clear data use agreements.

Box 1. FAIR Neuroscience data practices and the BICCN

1. Use of persistent identifiers and rich metadata to describe all datasets

• BICCN datasets receive a DOI or an equivalent persistent identifier from the archives;

• The BCDC and archives coordinate on standard metadata to accompany all datasets;

• Archives implement dataset landing pages for machine-readable rich metadata about

the datasets and access.
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2. Providing detailed provenance

• BICCN datasets are versioned;

• Full-citation metadata is supplied to support data citation;

• Investigators encouraged to link datasets to detailed experimental protocols deposited

in at BICCN group at Protocols.io.

3. Adherence to and definition of data standards

• Archives are implementing community data standards, including those developed

through the US BRAIN Initiative;

• Archives have implemented common file format and metadata requirements for spe-

cific data types;

• Standards in use in BICCN are documented at biccn.org;

• Several archives make use of standard identifier schemes for entities linked to the data

such as ORCIDS for authors and RRIDs for organisms, antibodies, cell lines, and

tools.

4. Use of FAIR vocabulary

• BICCN has developed ontologies and controlled vocabularies to annotate data and

map metadata such as the Brain Data Standards Ontology;

• Vocabularies are all maintained in GitHub repositories as described on the BICCN

standards page.

5. Providing a plurality of data attributes to aid in reuse

• Checklists for standard metadata for experimental types such as Patch-seq and for

describing specimens,

• Contact person identified to answer questions about the data, and code that can be

used with the data.

6. The use of clear licenses and data use agreements

• All data that do not involve protected health information are made available under a

CC-BY 4.0 attribution license;
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The Brain Data Standards Ontology

An important component of cell type classification is a rigorous and precise ontology and

nomenclature. The Brain Data Standards Ontology (BDSO) [54] is an ontology of cell types

defined in the BICCN MOp that extends the Cell Ontology (CL) [68] to provide a more

detailed set of terms for FAIR-compliant annotation than previously available. As an extension

of CL, BDSO is fully interoperable with both CL and Uberon [69], allowing data annotated

with BDSO terms to be interoperable not only with the BICCN data, but also with datasets

from the wider community. This approach is scalable and lowers human error (compared to

manually creating the ontology), allowing features that are crucial in scaling to whole brain

annotation. As part of creating BDSO, representation of neuronal cell types in CL has been

deepened, adding new cortical cell types by defined markers, projection pattern (e.g., extrate-

lencephalic projecting), layer, and morphology (e.g., pyramidal). These additions to CL have

already been used for annotation in datasets in CellXGene [37], the Cell Annotation Platform

(RRID:SCR_022797), and other single-cell transcriptomics data providers to deepen annota-

tions to use terms from BDSO. A major application of BDSO is to support organization, navi-

gation, and searching of data in the CTKE. Knowledge graphs and APIs were developed for

the CTKE (Knowledge graph: http://purl.obolibrary.org/obo/pcl/bds/kg/; API: http://purl.

obolibrary.org/obo/pcl/bds/api/), making the reuse, search, and navigation of the BDSO

openly accessible. The latest release of the ontology is hosted at BDSO (S1 Text—Brain Data

Standards Ontology).

From BICCN to the BRAIN Initiative Cell Atlas Network (BICAN)

Advances in the development of laboratory techniques and analysis methods for single-cell

data in the mammalian brain has made feasible a characterization of its fundamental cell types.

Beginning with 10 pilot studies [2] in developing, validating, and scaling up emerging genomic

and anatomical mapping technologies, the BICCN has used these approaches toward genera-

tion of complete, accurate, and permanent (CAP) data resources to form an extensive data eco-

system. The BICCN has completed cell type profiling using transcriptomics (10× RNA-seq)

and epigenomics (ATAC-seq) for the whole mouse brain, and in many regions of the human

brain, and is developing architecture, infrastructure, and product resources to support these

data. In addition to ongoing BICCN datasets produced by individual laboratories and resulting

publications, 6 active BICCN Working Groups are presently engaged in continuing collabora-

tive projects (BICCN 2.0) integrating and interpreting new and existing data. In addition to

fulfilling the goal of integrating transcriptomic and epigenomic data across the entire mouse

central nervous system, these groups are developing methods to identify cell type–specific

enhancers that can drive systemic delivery of reporter genes to select subclasses or types of

brain cells in mice and primates, producing molecularly annotated wiring diagrams of the

mammalian brain, and now beginning work on developing comprehensive human and NHP

atlases, through the recently launched BICAN. Additional work is in measuring proteomic sig-

natures of brain cells and further developing integration methods and infrastructure for future

atlases.

• BICCN requires that those using the data follow formal citation principles for citing

the data;

• Archives are making citations available per dataset to assist in proper citation.
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While significant progress has been made in most aspects of the original BICCN infrastruc-

ture vision, much work remains and is continuing with new BICAN activities. The resources

developed through the BICCN have been the result of active collaborations between data gen-

erators, analysts, informaticians, and software developers, and the ultimately desired data eco-

system will support data collection, quantification, and a mapping framework for managing

data and information across diverse repositories. This ecoystem should maintain consistent

data description standards that describe and facilitate best FAIR practices for community use

of multimodal single-cell data and its content. From early in the consortium’s activities,

requirements for FAIR data management were identified; however, the goal of building a

foundational community resource for housing single-cell centered data content in the brain is

still a work in progress.

An important component of full data integration is the spatial mapping of data enabling

users to search by spatial location for data of interest, and common coordinate frameworks for

mapping must be in place. There has been general community acceptance of the Allen Mouse

Brain Common Coordinate Framework (CCFv3) with several tools now available for pinning

specimen level or registering and aligning spatial sections or volumes. Components are now in

place for a fully searchable and spatially resolved database, although there remains engineering

work to incorporate these into a functional application. Gaps also remain in the BICCN infra-

structure. The BCDC data catalog offers an entry point to each project and dataset, yet speci-

men-level search and access enumerating regional or nuclei-level search is not at present

universally available. Further, while the data archives are all capable of accepting and managing

large data volumes, and many tools are available for accessing relevant data, the workflow is

not yet fully interoperable and there are still inconsistent metadata standards across modalities.

This is particularly challenging for users of multimodality data types such as Patch-seq where

the associated data types, transcriptomic, morphology, and electrophysiology are stored in dif-

ferent archives.

BICCN data represent unprecedented coverage describing the cell type landscape of the

mammalian brain, and the stage is now set for completing the BRAIN Initiative 2025 [37]

vision of large-scale profiling of the human brain including diversity and development. This

new phase, commenced in Fall 2022, is the BICAN [5] and is the extension of the groundwork

set by the BICCN. The extension of BICCN to BICAN is essential to understand which cell

types are unique to humans and to identify precise relationships with cell types of the mouse

and NHP. BICAN presents novel challenges of human tissue management and sample selec-

tion, the need for improved standardization of sequencing and mapping, and establishment of

a more integrated neuroinformatics framework. BICAN will also present major challenges in

establishing standard protocols, mapping, and annotation, but much work can be leveraged

from BICCN ecosystem. The neuroinformatics work of the BICAN initiative calls for stan-

dardized sequencing and tissue selection, and for the creation of an integrated knowledge base

for the community [70].

The ultimate expectation of BRAIN 2025 is to accomplish a full census of neuronal and glial

cell types in mouse, human, and NHP, an intellectual framework for cell type classification,

and to provide experimental access to the different brain cell types to determine their roles in

health and disease. However, there is not yet full consensus on what a neuronal type is, since a

variety of factors including experience, connectivity, and neuromodulators can diversify the

molecular, electrical, and structural properties of initially similar neurons. There is also

increasing evidence that there may not even be sharp boundaries separating subtypes from

each other, and cell phenotypes may change over time. Here, taxonomies of putative types and

representative cells will provide a frame of reference for studies across labs, and possibly in dif-

ferent organisms, allowing cross-comparison. The data and resources under development in
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the combined BICCN/BICAN data ecosystems should provide researchers with tools to

address these challenges.

The extension of the multimodal cell-type atlas of select regions in the human brain to mul-

tiple brain regions, particularly those housing vulnerable cell populations, and to different

stages of brain development is essential. Such openly available datasets will be key to future

studies comparing cell types within their spatial context in the normative brain to those in neu-

ropsychiatric disease, with the addition of transcriptional, epigenetic, morphological, and

neurophysiological datasets from postmortem brains, either within the BICCN and BICAN

data archives or published in the literature. Combining the BICCN and BICAN data archives

with the ability to place cells within a CCF detected from deidentified digital pathology data

will also make available large datasets that provide the sample numbers and diverse representa-

tion necessary for use of interpretative machine learning analysis applications. Moreover, as

techniques for spatial detection of proteins and metabolites achieve multiplexing capabilities

as well as cellular resolution, such data may help to uncover disease mechanisms that may be

beyond transcriptional and epigenetic detection but, when combined with data currently

included in the BICCN datasets, could help explain the neurophysiological changes detected in

specific cell types and brain areas as part of a disease phenotype.

The BICCN has provided the community with massive high-quality datasets describing the

multimodal cell type landscape of the mammalian brain. Substantial resources now exist for

the study of brain cell types, and while the supporting data ecosystem is not yet complete, tre-

mendous progress has been made. Increasingly diverse skills are being applied to the architec-

tural design and development of the new BICAN data ecosystem, and we are planning for

continuous extension and enhancement of this work to address human-specific challenges.

We are only beginning to interpret this valuable data and to understand its importance for the

nature of cell types in the brain.

Supporting information

S1 Table. BICCN grant awards, data modalities, techniques, and species profiled. BICCN

Grants: Lists all BICCN investigators and award information. BICCN Modalities: Defines the

modalities profiled by the BICCN. BICCN Techniques: Detailed definition of the techniques

used by BICCN investigators. BICCN Species: Species profiled including binomial name and

NCBI taxon ID.

(XLSX)

S2 Table. Description of data organization by data levels, definitions, and classification.

Definition of data levels defined by the BICCN. Columns are detailed definition for each spe-

cific modality profiled.

(XLSX)

S3 Table. Inventory of BICCN datasets and description of their data level and provenance.

List of all datasets produced by BICCN investigators and laboratories. Columns define grant,

PI, modality, level of data, description of data, collection name, provenance of data and loca-

tion in archives, tools used in processing data.
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S4 Table. Inventory of BICCN applications and resources, definitions, access identification

by RRID and URL. Complete set of software and tools resources generated by the BICCN,
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(XLSX)
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