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In clinical settings, the absolute risk reduction due to treatment that can be
expected in a particular patient is of key interest. However, logistic regres-
sion, the default regression model for trials with a binary outcome, produces
estimates of the effect of treatment measured as a difference in log odds. We
explored options to estimate treatment effects directly as a difference in risk,
specifically in the network meta-analysis setting. We propose a novel Bayesian
(meta-)regression model for binary outcomes on the additive risk scale. The
model allows treatment effects, covariate effects, interactions and variance
parameters to be estimated directly on the linear scale of clinical interest. We
compared effect estimates from this model to (1) a previously proposed addi-
tive risk model by Warn, Thompson and Spiegelhalter (“WTS model”) and (2)
backtransforming the predictions from a logistic model to the natural scale after
regression. The models were compared in a network meta-analysis of 20 hep-
atitis C trials, as well as in the analysis of simulated single trial settings. The
resulting estimates diverged, in particular for small sample sizes or true risks
close to 0% or 100%. Researchers should be aware that modelling untransformed
risk can yield very different results from default logistic models. The treatment
effect in participants with such extreme predicted risks weighed more heavily
on the overall treatment effect estimate from our proposed model compared to
the WTS model. In our network meta-analysis, this sensitivity of our proposed
model was needed to detect all information in the data.

K E Y W O R D S

absolute risk modelling, Bayesian regression, network meta-analysis

1 INTRODUCTION

Faced with a newly diagnosed patient, clinicians must consider which treatment will provide the largest risk reduction in
their individual patient. To answer this question requires statistical methods that quantify treatment effects on a clinically
relevant scale. Heterogeneity in treatment effects (HTE) is a scale-dependent concept. For binary outcomes, treatment
effects may be quantified on several scales, including the odds ratio (OR), the absolute risk difference (RD) and the relative
risk (RR) scales. If a treatment effect is assumed constant across patients on one scale, the effect generally varies on
the other scales. The choice of effect measure impacts the relation of absolute treatment benefit to baseline risk. This
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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relation is often monotonic, but not necessarily so: in the case of effect modification, an increased effect on one scale may
correspond to a decreased effect on another.1

There are diverging views on the most appropriate scale of treatment effects in (meta-)analysis of binary outcomes.
Arguments include mathematical properties, the presence of between-trial heterogeneity in treatment effects, clinical
relevance, and ease of interpretation. There is typically less heterogeneity on ratio scales,2-4 making effects on these scales
more generalisable and, in the case of meta-analysis, more consistent. Some argue that an effect measure should be chosen
based purely on the best fit to the data, or least between-trial heterogeneity in meta-analysis.5 Others suggest that the
choice of effect measure should be based on both the data and clinical considerations regarding the relation of treatment
benefit to baseline risk.2,6 Recently, guidelines for modelling between-patient HTE in RCT analyses were published in the
form of the PATH (Predictive Approaches to Treatment effect Heterogeneity) statement.7,8 The PATH authors recommend
measuring benefits on the “natural” RD scale to guide clinical decision making. This is in line with the PRISMA-statement
for reporting meta-analyses,9 which proposes the absolute risk scale as the most easily interpretable.

In this paper, we focus on (meta-)regression methods to obtain treatment effects on the absolute risk scale: risk dif-
ferences. One approach is to use logistic regression and transform treatment effects in the form of log odds ratios to
risk differences if an estimate of baseline risk is available. This was recently done in a Bayesian network meta-analysis
(NMA),10 where both personalised risks and treatment effects were incorporated following the PATH risk modelling
approach. The log odds scale has attractive mathematical properties, though it is not always suitable for situations with
predicted risks very close to 0 or 1. This occurs, for example, in trial data where almost all patients experience the outcome
in both treatment groups.

Recently, we performed a network meta-analysis where 100% success rates were an important feature of the data.
In a logistic NMA model, the use of weakly informative priors was not sufficient to obtain convergence for all model
parameters. In addition, all model parameters were defined on the logit scale, while the clinicians were only interested
in the natural scale. This meant, for instance, that the between-study variance was not on the scale of interest to the
clinicians. The same applied to any treatment-by-covariate interactions, which may influence the end results in different
ways due to the noncollapsibility of the log odds. Since the original clinical focus of the NMA was on “personalised”
treatment effects on the natural scale, we were motivated to explore options to model these directly.

This led to the development of an alternative model for benefit estimation directly on the natural risk scale. Any model
that regresses on the natural risk scale must somehow keep the predicted risk within [0, 1]. Standard methods for the
maximum likelihood (ML) estimation of binomial generalised linear (mixed) models (GL(M)M) with identity link have
no such safety net and can fail to attain convergence. The Bayesian MCMC framework offers more flexibility to define
bounds on the linear predictor at each iteration. Warn, Thompson and Spiegelhalter (WTS) bound the risk parameter
domain using min() and max() functions in the meta-analysis of aggregated binary outcomes.11 Their method has been
applied in a few meta-analyses12-14 and is referenced in meta-analysis guidelines.15 It has been developed further for the
analysis of cluster-randomised trials.16 However, the model runs into difficulty with empirical success precentages close
to 0 or 100%. As a remedy, WTS propose a small continuity correction on the aggregated data. It is not immediately obvious
how such a continuity correction may be applied to individual patient data (IPD) in HTE modelling.

We aimed to develop an improved absolute risk model that is suitable for IPD MA and NMA, and that can deal with
extreme risk estimates. We hereto propose an alternative Bayesian (meta-)regression model for binary outcomes on the
natural risk scale. The model has a true identity link function and it deals well with empirical success in (almost) all
patients of a trial arm. Our proposed model, as well as the logistic and WTS model are defined formally in Section 2. We
compare the models’ resulting estimates in an IPD NMA of the example dataset that motivated this research (Section 3).
To further investigate the differences between the models, we examine simulated scenarios (Section 4). We then discuss
our results and give recommendations in (Section 5).

2 MODELS TO OBTAIN ABSOLUTE RISK DIFFERENCES

2.1 Data setting

We will define all models very generally, so that they can be applied to a network meta-analysis. Simpler forms can be
applied in direct pairwise meta-analysis and to the analysis of single trials. Here, assume we have data from ns studies,
with a total of np participants. In total, nt treatments are compared, though not all ns studies necessarily have arms for
all nt treatments. For each study j ∈ {1, … ,ns}, rj ∈ {1, … ,nt} is defined as the study-specific reference treatment. For
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each participant, we assume to have observed a binary outcome and possibly covariate values of interest. With yijk, we
denote the outcome for participant i ∈ {1, … ,np}, who participated in study j ∈ {1, … ,ns} and was given treatment
k ∈ {1, … ,nt}.

In our notation above and model definitions below, we assume that individual participant data (IPD) are available. The
models are easily adjusted to aggregate data (AD) by replacing the individual binary outcome yijk with yjk, the aggregate
binomial outcome in a trial arm that received treatment k and was part of study j.

2.2 NMA using generalised linear models

In all models below, yijk is assumed to be randomly sampled from a binomial distribution with size 1 and success proba-
bility pijk: yijk ∼ Binomial(1, pijk), and pijk = g−1(𝛼j + 𝛿j,rjk), where 𝛿j,rjk = 0 for k = rj. Here, g is the link function, which is
the logit or the identity in this paper.

The regression equation for yijk contains study-specific regression parameters:

• 𝛼j: the intercept of study j, representing baseline risk in models with identity link or baseline log odds in logistic models
for study j under the reference treatment;

• 𝛿j,rjk: the study-specific treatment effect of treatment k compared to the reference treatment rj.

In the case of meta-analysis of multiple trials, study-specific treatment effects may be combined into overall effects
in two ways. They can be assumed identical across studies and equal to the overall effect (𝛿j,rjk = drjk), which is often
referred to as a common effects (CE) meta-analysis model. Alternatively, study-specific effects may be assumed to be an
exchangeable sample from a common distribution, usually Gaussian. In this case, the effects are independent conditional
on their mean and between-study variance: 𝛿j,rjk ∼ (drjk, 𝜏

2). In frequentist terms, this type of model is usually called
a random effects (RE) model. Both the overall mean and between-study variance are defined on the scale of the link
function. When the number of studies per comparison is small, as in the NMA of our example, it is convenient to assume
the between-study variance 𝜏2 to be constant across treatment comparisons. When there are studies with more than two
arms, the correlation between study arms can be accounted for by specifying a multivariate normal distribution with
non-zero covariances.15 The dependence structure of the study-specific intercepts 𝛼j can be chosen freely. We chose to
model the 𝛼j as marginally independent across studies, so that the meta-analysis was fully stratified by study.

In the NMA, indirect comparisons of interest can be specified through consistency assumptions, again on the scale
defined by the link function: drjk = d1k − d1rj , d11 = 0. In what follows, we denote the scale of the overall treatment effect
(risk difference or difference in log odds) with a superscript (RD or log, respectively).

2.3 Obtaining risk difference estimates using logistic regression

Our objective is to estimate the risk difference that treatment k yields compared to the overall reference 1, denoted with
RD1k. The logistic model yields log odds ratios as treatment effects. Their transformation to the absolute scale requires
𝓁0, the log odds (or logit risk) of the outcome for a patient who receives the reference treatment:

RD1k =
exp

[
𝓁0 + dlog

1k

]

exp
[
𝓁0 + dlog

1k

]
+ 1

−
exp [𝓁0]

exp [𝓁0] + 1
. (1)

The reference log odds 𝓁0 may be supplied to the model as a point estimate or in the form of a distribution. They may
be estimated from internal data, for instance using the study-specific baseline log odds 𝛼j. Alternatively, an estimate
could be obtained from external data, such as observational studies. In our analysis of the Hepatitis C data, we used
a point estimate based on all patients in the dataset that received the reference treatment. As an example, suppose
we are analysing a single trial with two treatment arms. For each patient i, we record an outcome yi ∼ Binomial(1, pi)
and only one covariate xi ∈ {0, 1} that indicates the treatment assigned to patient i. An translation of (1) into JAGS
model code is given below for this situation. Here, we have chosen a weakly informative  (0, 52) prior on the
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1744 THOMASSEN et al.

treatment effect on the log odds scale, and an uninformative  (0, 1002) prior on the log odds of the outcome in the
control group.

model {
for(i in 1:length(y)) {
y[i] ∼ dbinom(p[i],1)
logit(p[i]) <- mu + logoddsdelta*x[i]
}

logit(pnull) <- mu
logit(ptot) <- mu + logoddsdelta
deltaRD <- ptot - pnull

logoddsdelta ∼ dnorm(0,0.04) #variance=1/precision=1/0.04=25
mu ∼ dnorm(0,0.0001)

}

2.4 Modelling untransformed risk directly

In binomial models with an identity link, RD1k is equal to the treatment effect dRD
1k , so no additional transformations are

necessary. An important difficulty in the estimation of the additive model, though, is that the probabilities pijk have unit
interval support. The regression coefficients, by contrast, are not necessarily restricted to produce linear predictors within
[0, 1]. This is not a problem with the logistic model, as the support of log odds comprises the entire real line. The Bayesian
framework with MCMC estimation provides the flexibility to define additional constraints in the regression equations
that keep the linear predictor in [0, 1].

We will discuss two Bayesian implementations of a binomial regression model with identity link. Both implementa-
tions essentially aim to fit the same theoretical additive risk model. When writing out the likelihood of a binomial GLM
with identity link, an indicator function 1{0<=linear predictor<=1} would make the bounds of the model parameters explicit
in the expression. As such, the support for each model parameter depends on the data as well as on the other parame-
ters. To fit the model, this indicator function needs to be translated into code. As the parameter bounds may vary for each
observed patient, it is not generally possible to translate them into priors. Warn, Thompson and Spiegelhalter (WTS)11,15

translate the parameter bounds into code using min and max functions (Section 2.4.1). We found that placing a logit func-
tion on both sides of the regression equation (Section 2.4.2) also translates the parameter bounds, with slightly different
properties than the WTS approach.

2.4.1 The Warn, Thompson, and Spiegelhalter (WTS) model

One option is the model published by Warn, Thompson, and Spiegelhalter,11,15 which we adapted slightly to IPD context:

pijk = 𝛼RD
j +min

[
max

(
𝛿

RD
j,rjk
,−𝛼RD

j

)
,

(
1 − 𝛼RD

j

)]
,

𝛿j,rjk = 0 for k = rj. (2)

Equation (2) is akin to equation (4) in the WTS paper.11 However, in equation (5) in WTS the analysis takes place on the
treatment group level, and exactly two treatment arms are allowed per trial. Equation (2) above is a slightly generalised
version with three index levels: i for individual patients, j for trials and k for treatments in the (N)MA. These indices allow
for the application of the model to other settings than a two-treatment meta-analysis, such as NMA, IPD MA, and trial
analysis with individual covariates. If a more elaborate linear predictor is of interest, its intercept may replace 𝛼RD

j in (2),
and 𝛿RD

j,rjk
may be replaced by the rest of the linear predictor.

In Equation (2), the parameters 𝛼RD
j represent the “baseline” probability of the outcome in the reference arm of each

trial j. This probability is by definition in the unit interval, hence priors with unit interval support are appropriate for 𝛼RD
j .
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THOMASSEN et al. 1745

When such priors are used, Equation (2) reduces to pijk = 𝛼RD
j for patients in the reference arm of trial j as follows:

pijk = 𝛼RD
j +min

[
max

(
𝛿

RD
j,rjk
,−𝛼RD

j

)
,

(
1 − 𝛼RD

j

)]

= 𝛼RD
j +min

[
max

(
0,−𝛼RD

j

)
,

(
1 − 𝛼RD

j

)]
(since 𝛿

RD
j,rjk

= 0 for k = rj)

= 𝛼RD
j +min

[
0,
(

1 − 𝛼RD
j

)]
(since 𝛼

RD
j >= 0 by its prior)

= 𝛼RD
j + 0 (since 𝛼

RD
j <= 1 by its prior).

= 𝛼RD
j

The parameters 𝛿RD
j,rjk

in equation (2) represent the difference in risk of the outcome under treatment k versus the
reference in trial j. As the total risk for each patient is in [0, 1], the risk difference is bounded between −𝛼RD

j and 1 − 𝛼RD
j .

Generally, in an additive risk model, the bounds for each parameter depend on the data as well as the other parameters.
WTS translate this constraint to BUGS code using min and max functions: when 𝛿RD

j,rjk
is such that the sum −𝛼RD

j + 𝛿RD
j,rjk

would drop below 0 or exceed 1, the second term of the sum is set to −𝛼RD
j or 1 − 𝛼RD

j , respectively, so that the sum equals
0 or 1, respectively.

As such, the WTS model does not constrain the linear predictor 𝛼RD
j + 𝛿RD

j,rjk
per se; instead, it constrains pijk. The min

and max functions set pijk to 0 or 1 when the linear predictor reaches below 0 or above 1. Hence, (2) allows treatment
effect estimates that yield a linear predictor outside [0, 1], though the predicted risks remain within [0, 1]. Neither pijk nor
the linear predictor is transformed to a nonlinear scale, so treatment effects from this model have an interpretation as risk
differences. However, because of the min and max functions, pijk and the linear predictor are not identical.

We illustrate (2) on the example trial of Section 2.3, where the data consists of a binary outcome yi and a binary treat-
ment indicator xi for each patient i. JAGS model code for this simple case is provided below. As previously, we defined a
weakly informative prior on the (risk difference) treatment effect and a uniform prior on the probability of the outcome
in the control group.

model {
for(i in 1:length(y)) {
y[i] ∼ dbinom(p[i],1)
p[i] <- alpha + min(max((lp[i]),(0-alpha)),(1-alpha))
lp[i] <- delta*x[i] #linear predictor without intercept
}
delta ∼ dnorm(0,1)T(-1,1)
alpha ∼ dunif(0,1)

}

When the WTS model is applied in a meta-analysis, the dependence structure of the within-study parameters within
and between the studies may be defined in several ways, as explained in Section 2.2. In the examples in this paper,
we assume 𝛼RD

j to be independent across studies, whereas 𝛿RD
j,rjk

are assumed exchangeable with constant between-study
variance 𝜏2.

2.4.2 A proposed alternative

As an alternative to the WTS model, we also assume a linear risk model pijk = 𝛼RD
j + 𝛿RD

j,rjk
, where we propose using a logit

transformation on both sides of the regression equation:

log
( pijk

1 − pijk

)
= log

⎛
⎜⎜⎜⎝

𝛼

RD
j + 𝛿RD

j,rjk

1 −
[
𝛼

RD
j + 𝛿RD

j,rjk

]
⎞
⎟⎟⎟⎠
,

𝛿j,rjk = 0 for k = rj. (3)
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1746 THOMASSEN et al.

The logit on the right-hand side of the equation constrains the linear predictor 𝛼RD
j + 𝛿RD

j,rjk
1{k≠rj} within [0, 1]. Theoreti-

cally, this likelihood is only defined for parameter combinations that result in linear predictor values in [0, 1], as the logit
of a number below 0 or above 1 is not on the real line. Therefore, no posterior mass is placed on parameter combinations
resulting in probabilities outside [0,1]. In our implementation, this resulted in such parameter combinations not being
sampled by the Gibbs samplers JAGS17 and Stan,18 as implemented in R19 version 4.2.2. A transformation is also applied
on the left-hand side of the equation. As the logit function is one-to-one, the transformation on both sides ensures an
identity relation between pijk and the linear predictor.

We revisit the example of a two-arm trial with binary outcome yi and a binary treatment indicator xi. Approach (3)
can be translated into JAGS code as follows, using the same priors as in the previous section.

model {
for(i in 1:length(y)) {
y[i] ∼ dbinom(p[i],1)
logit(p[i]) <- log((alpha+lp[i])/(1-(alpha+lp[i])))
lp[i] <- delta*x[i] #linear predictor without intercept
}
delta ∼ dnorm(0,1)T(-1,1)
alpha ∼ dunif(0,1)

}

In the examples of (network) meta-analysis that follow, we assume 𝛼RD
j to be independent and 𝛿RD

j,rjk
to be exchangeable

across studies with constant between-study variance 𝜏2. Other assumptions are of course possible (Section 2.2).

2.5 Priors and estimation

In the Bayesian context, the model is completed with prior distributions on the study-specific intercepts 𝛼j, the overall
effects d1⋅, and the between-study SD 𝜏. For the intercepts and overall effects, (N)MA guidelines have recommended
using vague priors such as the (0, 1002)-distribution on log odds ratios.10,15 A downside of vague default priors is that
they can introduce an unrealistic amount of variance. For instance, a (0, 1002) prior encodes the assumption that the
treatment effect is almost as likely to lie between 20 and 30 as it is to lie between 0 and 10. Yet treatment effects on the
log odds scale exceeding [−5, 5] are quite extreme, corresponding to odds ratios exceeding [0.007,148]. Moreover, risk
difference treatment effects mathematically cannot exceed [−1, 1]. Prior distributions with smaller variances encode this
information. In addition, informative priors can help regularise the model. We therefore opt for normal priors with mean
0 for all models, and SD 5 for log odds and SD 1 for risk differences. These priors are very weakly informative, but do not
add an unrealistic amount of variance.

For each model, the posterior distribution of the model parameters can be estimated using MCMC, though there are
some considerations to take into account. Firstly, the WTS model (2) and our proposed model (3) are nonstandard and
require a large degree of flexibility in the model specification options of the MCMC method. In addition, some MCMC
methods may be more appropriate to the shape of the parameter support and the correlation structure than others. In
the additive models, the support of one parameter depends linearly on the data and on the other parameters, resulting
in sharp edges of the likelihood. This can lead to problems with MCMC algorithms that use the shape of the posterior
distribution to their advantage, such as the No U-Turn Sampler (NUTS) implemented in Stan.18,20 We have been able to
estimate several versions (single trial, meta-analysis, network meta-analysis) of the model in the Gibbs sampler JAGS,
and some in Stan as well. Although we have not done a formal comparison, we noticed that the Metropolis-within-Gibbs
sampler in JAGS17 achieved convergence in all simulated scenarios of Section 4, while Stan did not. This may have to do
with the “sharp edges” in the likelihood support of the additive risk models.

The convergence rate and autocorrelation of the chain will depend on the specific model and data structure at hand.
Therefore, the parameters of the MCMC procedure (eg, the number of iterations, the number of burnin samples and the
thinning rate) will need to be finetuned in each implementation to obtain decent effective sample sizes and to ensure
convergence for the MCMC samples.
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2.6 Other applications

As special cases of NMA, the models described above can be applied to the analysis of a single trial as well as MAs with
direct comparisons. Continuous and categorical covariates could be added, as we will show in some of our simulations in
Section 4. Interaction terms could also be added in single trial analyses and (N)MA, though in (N)MA their interpretation
warrants caution.21

3 NMA OF HEPATITIS C DATA

Our alternative model was motivated by in an individual participant data (IPD) network meta-analysis (NMA) of the
largest connected component of the TherapySelector (TS) database. The database contains data from 20 studies, compris-
ing 5,842 hepatitis C (HCV) patients and 15 therapy regimens (Table A1). The primary outcome was Sustained Virologic
Response (SVR, binary) and four categorical covariates were available for all patients. In the past few years, antiviral
agents have entered the market that are almost 100% successful in repressing the hepatitis C virus. As a result, the HCV
data contains several trial arms with SVR proportions close to or equal to 1. This aspect of the data played an important
role in our modelling process.

The aim of the analysis was to estimate treatment effects with respect to overall reference treatment 1 (peginterferon-𝛼
plus ribavirin for 48 weeks), in the form of absolute risk differences, preferably conditional on patient covariates. To this
end, we considered the three network meta-analysis approaches outlined above.

3.1 Descriptives

The connectivity within the network was generally low (Figure 1). The therapies 8, 12, 14, and 15 were given to relatively
small numbers of patients, potentially leading to larger uncertainty about these therapies in our analysis. There were
several trial arms where (almost) all patients attained SVR during the study (Table A2). All analyses were complete case,
intention-to-treat. The study samples were heterogeneous with respect to HCV genotype and proportion of patients with
cirrhosis (Supplement, Table S1).

3.2 Network meta-analysis

We applied the three models decribed in Section 2 in an NMA of the TS data. As in the single trial example described in
Sections 2.3,2.4.1 and 2.4.2, we used uninformative priors on the baseline log odds or risk, while weakly informative priors
were defined for the treatment effects. All models were estimated using JAGS accessed from R version 4.0.219 through
R2jags.22 After some finetuning of the MCMC parameters, we ran two parallel chains of 50 000 iterations each, with
a burn-in period of 5000 samples. A thinning factor of 20 was used, resulting in a total of 4500 saved iterations for each
model. For both additive risk models, we found no signs of lack of MCMC convergence in the Gelman-Rubin statistics (all
≤ 1.01) nor in the traceplots. The Markov Chain resulting from our proposed model did suffer from more autocorrelation
than the WTS model as reflected in lower effective sample sizes (minimum ESS 210 vs 1000). For the logistic model,
three risk difference estimates had Gelman-Rubin statistics above 1.01 (RD4, RD8, RD13), raising concerns about their
convergence, despite the weakly informative priors. All effective sample sizes were below 500, with the minimum ESS at
72 (RD5), suggesting high autocorrelation within the chains.

The posterior densities of the estimated risk differences for each treatment compared to the reference were sum-
marised by their median and 95% central credible interval (Figure 2). Firstly, the credible intervals are generally wide,
indicating large posterior uncertainty about the relative effectiveness of the treatments. Secondly, the estimated risk differ-
ences differ vastly depending on the model that was used. The between-model differences are most pronounced between
the logistic model on the one hand and the two additive risk models on the other. Still, the two additive risk models
disagree for almost half of the treatments.

The between-study SDs (𝜏) were estimated at 0.19 [0.01-0.82] (logistic model, 𝜏 on log(OR) scale), 0.03 [0.00-0.09]
(model by Warn et al., 𝜏 on RD scale) and 0.05 [0.01-0.10] (our proposed model, 𝜏 on RD scale), respectively. This
heterogeneity may contribute to the posterior uncertainty.
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Therapy network for NMA
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F I G U R E 1 Graphical representation of the subnetwork of therapies that we analysed. The nodes in this graph each represent a unique
therapy regimen. The relative size of the nodes indicates the total number of patients in the database who received this therapy regimen. The
presence of an edge between two nodes indicates that these nodes have been compared directly in at least one study. The relative thickness of
the edges indicates the number of studies comparing their respective endpoints.
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F I G U R E 2 Graphical summaries of the posterior densities of the risk differences, after fitting the three models described in Section 2.
The horizontal lines in the plots span a central 95% posterior interval and the dots represent posterior medians. As the outcome (sustained
virologic response) is beneficial, higher RD values mean higher treatment effectiveness.
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xi1 binary, pi=0.69+0.3xi1. xi1 binary, pi=0.99+0xi1.

(b)

(c)

xi1 binary, pi=0.6+0.3xi1. xi1 binary, pi=0.9+0xi1.

(a)

(e)

(f)

(d)xi1 binary, pi=0.5+0.3xi1. xi1 binary, pi=0.8+0xi1.
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1. Proposed model

2. Model by Warn et al.

3. Logistic model + transform

F I G U R E 3 Estimated posterior density of the risk difference (RD) in simulated trials, produced by our proposed model, the logistic
model and the WTS model. The sample size in each trial was 50 individuals per treatment arm, 100 in total.The lines of the OLS estimate and
the observed risk difference overlap completely. Observed RD is defined as the observed success proportion in treatment group minus the
observed success proportion in the control group. OLS, ordinary least squares.

The differences in between-study variance on the logit and natural scales of analysis, as well as the convergence
problems of the logistic model may partly explain the variation in results across the models. To gain more insight into why
and when the models obtain differing results, we simulated several scenarios, zooming in on less complicated settings in
single trials and pairwise MA.

4 SIMULATIONS

4.1 Simulated scenarios

To understand the differences in behaviour of the three models on the TS data, we studied their results in simpler sim-
ulated settings. As our simulations were motivated by a network meta-analysis of trials, our simulated scenarios were
inspired by the setup of a single trial, with x1i denoting the binary treatment indicator. An important characteristic of
the Hepatitis C data is the perfect success rate in some trial arms. We therefore chose our true parameters such that the
true treatment effect remained mostly constant on the scale of the link function, and increased the intercept, moving the
predicted risks pi closer to 1 with every increase. Each simulation was performed with n = 1000, to limit the effect of
sampling variability, as well as n = 100, to obtain an impression of the models’ behavior in smaller samples.

We simulated data from the following GLM, assuming i ∈ {1, 2, … ,n}:

yi ∼ Binomial(1, pi), (4)

pi = g−1 (𝛼 + 𝛿xi1(+𝛽xi2)). (5)

The link function g was defined as either the logit or the identity. In addition, we varied the number of independent
variables, the true parameters 𝛼, 𝛿, 𝛽, the total sample size n, and the distribution of x.
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xi1 binary, pi=0.69+0.3xi1. xi1 binary, pi=0.99+0xi1.

xi1 binary, pi=0.6+0.3xi1. xi1 binary, pi=0.9+0xi1.

xi1 binary, pi=0.5+0.3xi1. xi1 binary, pi=0.8+0xi1.
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1. Proposed model

2. Model by Warn et al.

3. Logistic model + transform
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F I G U R E 4 Estimated posterior density of the risk difference (RD) in simulated trials, produced by our proposed model, the logistic
model and the WTS model. The sample size in each trial was 500 individuals per treatment arm, 1000 in total. The lines of the OLS estimate
and the observed risk difference overlap completely. Observed RD is defined as the observed success proportion in treatment group minus the
observed success proportion in the control group. OLS, ordinary least squares.

4.1.1 One independent variable

We first examined scenarios with a single balanced treatment variable xi1. In this case, the structure of the data is such
that it can be fully captured in a crosstable, irrespective of the true link function. We therefore did not vary the true link
and used the identity for ease of interpretation. The true risk difference between the treatment groups (𝛿) was first held
fixed at 0.3, while varying the intercept 𝛼 ∈ {0.5, 0.6, 0.69}. In a second round of simulations, 𝛿 was held fixed at 0 while
𝛼 ∈ {0.8, 0.9, 0.99} varied.

4.1.2 Two independent variables

In all our simulations with two independent variables, we imitated the two-arm trial case with one balanced binary treat-
ment variable and one covariate. The covariate xi2 was defined as xi2 ∼ Bin(n, 0.5) or xi2 ∼  [−1, 1], in both cases drawn
independently of xi1, mimicking treatment randomisation. For the binary and continous xi2, respectively, we simulated
data where g was the identity and data where g was the logit. The following parameter combinations were specified:

• xi2 ∼ Bin(n, 0.5), g identity: 𝛿 = 𝛽 = 0.3, 𝛼 ∈ {0.2, 0.3, 0.39};
• xi2 ∼ Bin(n, 0.5), g logit: 𝛿 = 𝛽 = 1, 𝛼 ∈ {−1, 0, 1};
• xi2 ∼  [−1, 1], g identity: 𝛿 = 0.3, 𝛽 = 0.2, 𝛼 ∈ {0.3, 0.4, 0.49};
• xi2 ∼  [−1, 1], g logit: 𝛿 = 𝛽 = 1, 𝛼 ∈ {−1, 0, 1}.

We chose the regression parameters to create a comparable range (or comparable proximity to the edges of [0,1]) of
true risks between the two link functions. We keep the effect of the covariates (𝛽, 𝛿) constant and vary the intercepts to
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xi1 binary, xi2 binary, pi=0.39+0.3xi1+0.3xi2. xi1 binary, xi2 binary, pi=expit(1+xi1+xi2)

xi1 binary, xi2 binary, pi=0.3+0.3xi1+0.3xi2. xi1 binary, xi2 binary, pi=expit(0+xi1+xi2)
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1. Proposed model

2. Model by Warn et al.
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True effect

F I G U R E 5 Estimated posterior mean and 95% central CrI of the risk difference (RD) in simulated trials across levels of a binary
covariate xi2. Results are shown for our proposed model, the logistic model and the WTS model. The sample size in each trial was 50
individuals per treatment arm, 100 in total.

move risks over the [0,1] interval, from more in the middle towards the edges. Since the parameters are on different scales
(logit vs natural) for the logistic and identity models, respectively, the parameter values that create this (comparable)
range of true risks, differ, while the obtained risks are similar.

4.2 Simulation results

In each simulated scenario, we fitted the three models described in section 2 using JAGS from R (4.2.2). For each model
fit, we ran two Markov chains of 10 000 iterations each, with a burn-in period of 2000 iterations and a thinning factor of 8.
Compared to the real data NMA, the simulation scenarios were relatively simple in terms of model complexity and data
structure. Therefore, we started with a (comparatively) shorter burnin period, fewer iterations and the default thinning
factor ofR2jags. This yielded satisfactory MCMC diagnostics, so we did not change this. For the resulting Markov chains,
we assessed convergence based on the Gelman-Rubin statistic. We considered a chain converged when the statistic was
equal to or below 1.01. In addition, we registered the time that it took for the models to fit. For full RMarkdown reports
of the simulations, including further model diagnostics, we refer the reader to our GitHub repository https://github.com/
DThomassen/Bayesian-RD-Regression.

Our primary interest was in the estimated posterior distribution of the risk difference (RD) due to treatment, compared
to the true risk difference. A “true” constant risk difference is only available in the scenarios where the true link function
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xi1 binary, xi2 binary, pi=0.2+0.3xi1+0.3xi2. xi1 binary, xi2 binary, pi=expit(−1+xi1+xi2)
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1. Proposed model

2. Model by Warn et al.
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F I G U R E 6 Estimated posterior mean and 95% central CrI of the risk difference (RD) in simulated trials across levels of a binary
covariate xi2. Results are shown for our proposed model, the logistic model and the WTS model. The sample size in each trial was 500
individuals per treatment arm, 1000 in total.

is the identity. Because we sampled each scenario only once, the data is subject to sampling variability with respect to
the true risk difference. As additional comparators, we obtained the observed RD (ie, observed success proportion in
treatment group minus observed success proportion in the control group) and the ordinary least squares (OLS) estimate
of the risk difference.

4.2.1 One binary independent variable

In the single binary treatment variable scenarios, all three models provided very similar results in most cases (Figures 3
and 4). All Gelman-Rubin statistics were well below 1.01. In the smaller sample scenarios (Figure 3), the sampling vari-
ability was larger, resulting in higher posterior variance and larger deviations of the observed RD from the true RD. In all
binary treatment scenarios, the fitting time of the logistic models was roughly 150% of the fitting time of the additive risk
models. The latter were very similar in fitting time.

A difference between the additive risk model results arose in cases where n = 100 and the true risk for one of the
treatment groups was very close to one (Figure 3C,F). Here, the posterior RD resulting from the WTS model had large
variance and most of its mass was above the observed risk difference. This results from the use of the min() and max()
functions in the model. When the success rate in one treatment arm is 100%, any value of 𝛿 that exceeds the observed
risk difference will result in a linear predictor larger than one. The min() function turns these linear predictors into
predicted risks of 100% for that treatment arm, which is perfectly compatible with the data. For this reason, the Deviance
Information Criterion (DIC) of the WTS model was similar to or even lower than the DIC of our proposed model in these
scenarios. As a consequence, the WTS model can only learn from the data that the risk difference is likely equal to or
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xi1 binary, xi2~U[−1,1], pi=0.49+0.3xi1+0.2xi2. xi1 binary, xi2~U[−1,1], pi=expit(1+xi1+xi2)

xi1 binary, xi2~U[−1,1], pi=0.4+0.3xi1+0.2xi2. xi1 binary, xi2~U[−1,1], pi=expit(0+xi1+xi2)

xi1 binary, xi2~U[−1,1], pi=0.3+0.3xi1+0.2xi2. xi1 binary, xi2~U[−1,1], pi=expit(−1+xi1+xi2)
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F I G U R E 7 Estimated posterior mean and 95% central CrI of the risk difference (RD) in simulated trials across levels of a continuous
covariate xi2. Results are shown for our proposed model, the logistic model and the WTS model. The sample size in each trial was 50
individuals per treatment arm, 100 in total.

larger than the observed risk difference. Posterior mass is assigned to all risk difference values that exceed the observed
risk difference, limited by the prior. The analogue holds for predicted risks of 0%.

In the scenario where n = 100 and the true risk was 99% in both trial arms (Figure 3F), the logistic model differed
slightly from the additive risk models. The logistic model showed extreme effects on the log odds scale and a sharp peak
in density around the observed risk difference after transformation to the RD scale. For the single trial RD point estimate,
this is not necessarily a problem. But such extreme effects on the log odds scale can influence the overall results of MA or
NMA, as the effects are often combined (weighed, averaged, added and subtracted) on the log odds scale. This may have
played a role in the Hepatitis C NMA.

4.2.2 Two independent variables

When we look at the results from the scenarios with one binary treatment variable and one additional independent vari-
able (Figures 5–8), the main differences appeared between the logistic model on one side and the two additive models on
the other. There was a home advantage: where the true link was the logit (Figure panels D-F), the logistic models were
better able to capture the treatment-covariate-outcome relation and where the true link was the identity (Figure panels
A-C), the natural risk models performed better.

This home advantage increased when variation of 𝛼 moved the true risks to the more nonlinear part of the logistic
function. For the scenarios with xi2 ∼  [−1, 1], this was less clear, because when 𝛼 was lower, the minimum true risks got
close to zero, whereas when 𝛼was higher, the maximum true risks approached one (Figures 7 and 8). So in most scenarios,
the “home advantage” of the models was visible on either the lower or higher end of xi2. When the true link is the logit, the
linear effect of treatment (ie, the first derivative of g−1(linear predictor) with respect to the treatment variable) becomes
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F I G U R E 8 Estimated posterior mean and 95% central CrI of the risk difference (RD) in simulated trials across levels of a continuous
covariate xi2. Results are shown for our proposed model, the logistic model and the WTS model. The sample size in each trial was 500
individuals per treatment arm, 1000 in total.

smaller as the predicted risks approach 0 or 1 from 0.5. This home adantage was also visible in the DICs of the models,
with differences in DIC ranging from 1 to 19 in favor of the true model as the predicted risks got closer to 0 or 1.

In the smaller samples (n = 100) contrasts also emerged between the additive risk models (Figures 5 and 7). Our
proposed model generally resulted in slightly more conservative treatment effect estimates that were closer to the observed
risk difference. Where the maximum true risk approached one, the WTS model yielded larger posterior variance and
assigned posterior mass to RD values corresponding to linear predictors exceeding one (Figure 5C,F).

For binary xi2, the two additive models were comparable in terms of fitting time, while the logistic model was roughly
15% slower. For uniform xi2, the logistic model was the fastest, with the WTS model being about 30-60% slower, and our
proposed model taking more than twice as long to fit.

4.3 Link with the data example

In scenarios with 100% success in one trial arm, we noted that the WTS model put posterior mass on all beta values
above the observed RD, within the constraints of the prior. Our model assigned mass somewhat symmetrically around
the observed RD. If such a trial were part of a meta-analysis, the differences in posterior variance could impact the weight
that is given to the trial. In the Hepatitis C data, there is an example of such a meta-analysis with one study that has a
100% successful arm. To compare treatment 13 to 5, two studies are available: ASTRAL-2 and ASTRAL-3. The observed
risk differences in these studies are 0.06 and 0.17, respectively. ASTRAL-2 has one trial arm where 133/133 patients reach
SVR.
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THOMASSEN et al. 1755

F I G U R E 9 Considerations in choosing between the three approaches discussed in this article.

When we analysed these trials individually, our proposed model as well as the logistic model resulted in a posterior
mean close to 0.06 for ASTRAL-2, whereas the WTS model resulted in a flat posterior and a posterior mean around 0.4.
The large posterior variance will lower the weight that is given to this trial in a meta-analysis. For ASTRAL-3, all three
models give the same result.

When we look at the pairwise comparison within the network meta-analysis, we see that the three models yielded
diverging summary estimates. Our model estimated the overall posterior RD around 0.12, so in between the estimates
from the individual trials. The summary estimate from the WTS model was roughly 0.17, close to the estimate of
the ASTRAL-3 trial. Apparently the weight of ASTRAL-2 in the MA was low. The summary estimate from the logis-
tic model was around 0.22, exceeding the estimates from both individual trials, which is surprising. Factors such as
heterogeneity and violations of the consistency assumption may be at play here. As the treatments 5 and 13 are very cen-
tral in the network (Figure 1), these results may have seriously affected the other treatment comparisons in the NMA
of Figure 2.
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1756 THOMASSEN et al.

5 DISCUSSION

We compared three methods to obtain estimates of risk differences in the (meta-)analysis of trials: a logistic model with
transformation, a natural risk model by WTS and our proposed natural risk model. In the NMA of the Hepatitis C data, the
models’ results were quite different. In most simulated single trial scenarios, however, all four models provided similar
results. Still, differences emerged when the true risks approached 0 or 100%. Here, the sigmoidal shape of the logistic
function is most nonlinear and the ‘home advantage’ of the logistic versus the additive risk models is most pronounced.
In some such cases, the logistic model became numerically unstable. This also occurred in our analysis of the Hepatitis
C data.

In addition, our proposed model was more sensitive to what happened at the boundaries of the risk parameter support
than the WTS model. This sensitivity can be both an advantage and a disadvantage. In the Hepatitis C data, there were
several trials where much information about the treatment effect lay at these boundaries. The WTS model was not able to
pick up this signal, whereas our proposed model was. In the case of a continuous variable with a few extreme values, the
risk difference estimate for our model would be limited by these outliers: the linear predictor for the extreme data points
should still lead to a linear predictor in the unit interval. The WTS model would be less affected by such outliers.

A limitation of our simulated scenarios is that they are by no means exhaustive. We primarily aimed to understand
the diverging model results on the Hepatitis C data. Furthermore, we only explored scenarios where at least one of the
models had the ‘true’ link function, while in reality, the structure of a dataset will almost never be exactly logistic or
exactly linear. More systematic comparisons of these models are required to gain insight into their behaviour in a wider
range of scenarios. To apply our proposed model in a different setting, we recommend examining simulated scenarios
that are relevant to this setting.

We defined a first version of our proposed model in a trial and error process while working on a Bayesian NMA of the
Hepatitis C data using JAGS. When developing it further, we decided to remain within this Bayesian MCMC framework,
as it provided the flexibility to define our logit-logit model. We also tried fitting the model using Stan, but ran into problems
with convergence. The angular shape of the likelihood likely plays a role here, as well as the specification of the priors.
As the support of the likelihood for any additive risk model is data-dependent, it is not evident how to define a joint prior
whose support perfectly fits the likelihood’s support. We defined priors such that their support at least fully contains the
likelihood support.

An often-cited downside of the Bayesian approach is the need for the specification of prior distributions, which intro-
duces a degree of subjectivity. It is also possible to use the flexible MCMC framework to obtain maximum likelihood
estimates. To this end, one can fit a “Bayesian” model with the desired likelihood function and a (possibly improper)
uniform prior on the parameters. The posterior distribution is then proportional to the likelihood function and the pos-
terior mode will be equal to the maximum likelihood estimate. In contrast to JAGS, Stan allows improper priors and may
therefore be preferred for MCMC ML estimation.

On the other hand, the priors in a Bayesian model present a transparent way to restrict parameters and regularise the
model. This is especially useful in the case of additive risk models, which can be computationally tricky. In our experience,
regularising priors were necessary for convergence of the MCMC procedure in more complex settings like our network
meta-analysis.

In our example NMA, we specified independent priors on the study-specific intercepts 𝛼j, among 𝛼j and 𝛿j, and among
the overall treatment effects d. Conditionally on the data, these parameters are not independent. The assumption of
marginal independence is commonly made, for example in Reference 15, but some have argued that it may not always
be realistic.23 To salvage this, a multivariate prior can be employed, or the model can be reparametrised such that the
assumption of marginal independence becomes more likely to hold.24,25 The parametrisation of our proposed model could
be optimised further, though this may come at the cost of the interpretability of the parameters.

The inclusion of covariates and interactions in the NMA model is necessary to obtain treatment effects conditional
on patient covariates.10 Attention is needed on separating within-trial from between-trial interactions.21 Study-specific
centering may be a pragmatic solution, which however complicates the interpretation of the summary treatment effect.
Prediction of a treatment effect for a new patient that was not part of any study is an important direction for further
investigation.

The compared models have their own properties and strengths. Which model is most suitable, depends on the spe-
cific modelling scenario. Considerations in choosing between the three approaches discussed above are summarised in
Figure 9. Distinct criteria such as interpretability and best fit need not exclude each other. It is possible to model treat-
ment effects on one scale for best fit and transform the results to another scale for interpretation. Mainly, a logistic model
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and an additive risk model imply different assumptions about the data. These concern, for instance, the scale on which
the treatment-outcome relation is assumed to be linear and the scale on which interactions are presumed to take place.
In network meta analysis, they also concern the scale on which consistency between the treatment effects across trials is
assumed.

When one is interested in interactions or heterogeneity on the natural risk scale, an additive risk apprach can be
applied. As we have discussed, there are at least two viable approaches: the WTS approach and our proposed approach.
The choice between the two additive risk models depends on how sensitive the model should be to what happens at the
extremes of the probability parameter support. We suggest comparing both approaches in a sensitivity analysis. Our pro-
posed model is preferable when datapoints with predicted risk in the outer regions of the 0%-100% range carry important
information about the parameters to be estimated.
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APPENDIX . TABLES

T A B L E A1 Patient numbers receiving each of the therapy regimens, split by cirrhosis status (Child score), HCV genotype and
comorbidities, respectively.

# Therapy regimen No. of patients

1 PegIFN-Riba 48wk 422

2 PegIFN-Riba-SMPV 24wk 758

3 PegIFN-Riba 24wk 243

4 SOF-Riba-PegIFN 12wk 244

5 SOF-Riba 12wk 847

6 SOF-Riba 16wk 291

7 SOF-Riba 24wk 279

8 SOF-VELP-VOX-Riba 12wk 37

9 SOF-VELP-VOX 12wk 170

10 SOF-VELP-VOX 8wk 579

11 SOF-VELP-Riba 12wk 317

12 SOF-VELP-Riba 8wk 56

13 SOF-VELP 12wk 1454

14 SOF-VELP 24wk 90

15 SOF-VELP 8wk 55

Abbreviations: PegIFN, Peginterferon-𝛼; Riba, Ribavirin; SOF, Sofosbuvir; VELP, Velpatasvir; VOX, Voxilaprevir.
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T A B L E A2 Pairwise analysis results and study sample characteristics for all direct comparisons in the NMA network.

Study n1
a SVR1

a n2
a SVR2

a RD 95%CI log(OR) 95%CI
1 vs 2
Forns Gastroenterology 2014 Promise 132 53 250 198 −0.39 −0.49 −0.29 −1.74 −2.20 −1.27
Jacobson Lancet 2014 QUEST-1 130 65 260 206 −0.29 −0.39 −0.19 −1.34 −1.79 −0.88
Manns Lancet 2014 QUEST-2 134 67 248 200 −0.31 −0.40 −0.21 −1.43 −1.89 −0.96
1 vs 4
Lawitz Lancet Inf Dis 2013 PROTON 26 15 47 42 −0.32 −0.53 −0.11 −1.82 −3.03 −0.61
3 vs 5
Lawitz N Eng J Med 2013 FISSION 243 162 253 170 −0.01 −0.09 0.08 −0.02 −0.40 0.35
4 vs 6
Foster Gastroenterology 2015 BOSON 197 183 196 141 0.21 0.14 0.28 1.63 1.00 2.26
4 vs 7
Foster Gastroenterology 2015 BOSON 197 183 199 170 0.07 0.01 0.14 0.80 0.13 1.47
5 vs 6
Jacobson N Eng J Med 2013 FUSION 100 50 95 69 −0.23 −0.36 −0.09 −0.98 −1.57 −0.38
5 vs 7
Doss J Hepatol 2015 52 40 51 46 −0.13 −0.27 0.01 −1.02 −2.14 0.11
Ruane J Hepatol 2015 31 21 29 27 −0.25 −0.44 −0.06 −1.86 −3.48 −0.24

5 vs 13
Foster N Eng J Med 2015 ASTRAL-2 131 123 133 133 −0.06 −0.10 −0.02 −2.91 −5.77 −0.05
Foster N Eng J Med 2015 ASTRAL-3 280 218 277 264 −0.17 −0.23 −0.12 −1.75 −2.38 −1.13
6 vs 7
Foster Gastroenterology 2015 BOSON 196 141 199 170 −0.13 −0.21 −0.06 −0.83 −1.33 −0.32
8 vs 9
Lawitz Hepatology 2017 June 37 36 33 33 −0.03 −0.10 0.05 −1.01 -4.25 2.22
9 vs 13
Bourliere N Eng J Med 2017 POLARIS-4 137 136 125 110 0.11 0.05 0.17 2.92 0.88 4.96
10 vs 13
Jacobson Gastroenterology 2017 POLARIS-2 473 451 418 415 −0.04 −0.06 −0.02 −1.91 −3.12 −0.70
Jacobson Gastroenterology 2017 POLARIS-3 106 104 106 104 0.00 −0.04 0.04 0.00 −1.98 1.98
11 vs 13
Curry N Eng J Med 2015 ASTRAL-4 87 82 90 75 0.11 0.02 0.20 1.19 0.13 2.25
Esteban Gastroenterology 2018 101 99 98 92 0.04 −0.01 0.10 1.17 −0.45 2.80
Pianko Ann Int Med 2015 160 78 80 77 0.01 −0.04 0.07 0.42 −1.40 2.24
Takehara J Gastroenterol 2018 49 47 51 47 0.04 −0.05 0.13 0.69 −1.05 2.44
11 vs 14
Curry N Eng J Med 2015 ASTRAL-4 87 82 90 79 0.06 −0.02 0.15 0.83 −0.28 1.93
12 vs 13
Everson Ann Int Med 2015 56 48 76 73 −0.10 −0.20 0.00 −1.40 −2.78 −0.02
12 vs 15
Everson Ann Int Med 2015 56 48 55 49 −0.03 −0.16 0.09 −0.31 −1.44 0.82
13 vs 14
Curry N Eng J Med 2015 ASTRAL-4 90 75 90 79 −0.04 −0.15 0.06 −0.36 −1.20 0.48
13 vs 15
Everson Ann Int Med 2015 76 73 55 49 0.07 −0.02 0.16 1.09 −0.34 2.52

Note: For each corresponding trial arm, two numbers are given: the total number of patients in the arm and the number them who attained SVR. Some
trials had more than two arms, hence they appear in more than one pairwise comparison.
Abbreviations: PegIFN, Peginterferon-𝛼; Riba, Ribavirin; SOF, Sofosbuvir; SVR, sustained virologic response, a binary measure of successful treatment;
VELP, Velpatasvir; VOX, Voxilaprevir.
aThis example shows our analysis of the TherapySelector database as it was in November 2019. Subsequent changes and corrections to the database may
have occurred since. Numbers may differ slightly from numbers in the original papers because of different selection criteria in the TherapySelector.
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