4 Universiteit
747 Leiden
The Netherlands

Multimodal data integration advances longitudinal prediction of the
naturalistic course of depression and reveals a multimodal signature of

remission during 2-year follow-up
Habets, P.C.; Thomas, R.M.; Milaneschi, Y.; Jansen, R.; Pool, R.; Peyrot, W.J.; ... ; Vinkers, C.H.

Citation

Habets, P. C., Thomas, R. M., Milaneschi, Y., Jansen, R., Pool, R., Peyrot, W. J., ... Vinkers, C. H.
(2023). Multimodal data integration advances longitudinal prediction of the naturalistic course of
depression and reveals a multimodal signature of remission during 2-year follow-up. Biological
Psychiatry, 94(12), 948-958. doi:10.1016/j.biopsych.2023.05.024

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3720678

Note: To cite this publication please use the final published version (if applicable).


https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3720678

Biological
Psychiatry

Archival Report

Multimodal Data Integration Advances
Longitudinal Prediction of the Naturalistic Course
of Depression and Reveals a Multimodal
Signature of Remission During 2-Year Follow-up

Philippe C. Habets, Rajat M. Thomas, Yuri Milaneschi, Rick Jansen, Rene Pool,
Wouter J. Peyrot, Brenda W.J.H. Penninx, Onno C. Meijer, Guido A. van Wingen, and
Christiaan H. Vinkers

ABSTRACT

BACKGROUND: The ability to predict the disease course of individuals with major depressive disorder (MDD) is
essential for optimal treatment planning. Here, we used a data-driven machine learning approach to assess the
predictive value of different sets of biological data (whole-blood proteomics, lipid metabolomics, transcriptomics,
genetics), both separately and added to clinical baseline variables, for the longitudinal prediction of 2-year
remission status in MDD at the individual-subject level.

METHODS: Prediction models were trained and cross-validated in a sample of 643 patients with current MDD (2-year
remission n = 325) and subsequently tested for performance in 161 individuals with MDD (2-year remission n = 82).
RESULTS: Proteomics data showed the best unimodal data predictions (area under the receiver operating charac-
teristic curve = 0.68). Adding proteomic to clinical data at baseline significantly improved 2-year MDD remission
predictions (area under the receiver operating characteristic curve = 0.63 vs. 0.78, p = .013), while the addition of
other omics data to clinical data did not yield significantly improved model performance. Feature importance and
enrichment analysis revealed that proteomic analytes were involved in inflammatory response and lipid
metabolism, with fibrinogen levels showing the highest variable importance, followed by symptom severity.
Machine learning models outperformed psychiatrists’ ability to predict 2-year remission status (balanced
accuracy = 71% vs. 55%)).

CONCLUSIONS: This study showed the added predictive value of combining proteomic data, but not other omics
data, with clinical data for the prediction of 2-year remission status in MDD. Our results reveal a novel multimodal
signature of 2-year MDD remission status that shows clinical potential for individual MDD disease course
predictions from baseline measurements.

https://doi.org/10.1016/j.biopsych.2023.05.024

Major depressive disorder (MDD) is a heterogeneous disorder
in which both treatment response and prognosis vastly differ
among individuals. Around 20% to 25% of patients with MDD
are at risk for chronic depression, independent of initial treat-
ment type (1). The ability to predict the disease course of in-
dividuals with MDD early on is essential for optimal treatment
planning because this could allow for early treatment intensi-
fication for patients with a low long-term chance of remission
and the potential bypassing of initial first-choice treatments.
Previous studies have yielded insights into clinical, psy-
chological, and biological markers for chronicity in depression.
Chronicity in depression has been related to longer symptom
duration, increased symptom severity, and earlier age of onset
(1,2); higher levels of neuroticism and lower levels of extra-
version and conscientiousness (3); and various inflammatory
markers (4), low levels of vitamin D (5), metabolic syndrome (6),

and lower cortisol awakening response (7). However, statisti-
cally significant differences on a group level will not always be
useful for the prediction of disease course at the individual
level, due to either low effect sizes or redundancy with respect
to other more predictive variables. While multiple studies have
shown that biological data can be used to make accurate
diagnostic predictions of MDD cases and healthy control
participants (8-10), individual prediction of disease course in
depression has proven to be a difficult task, with a recent
systematic review and meta-analysis showing an average ac-
curacy of only 60% for predicting remission or resistance after
treatment in adequate-quality studies (i.e., studies that used a
follow-up time span of 8-24 weeks) (11).

One challenge of predicting MDD outcomes is that the eti-
ology and phenotype of MDD differ widely between individuals,
and large interindividual variation may exist with regard to
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relevant predictors (12—15). Especially when only a limited set
of predictor variables are included for prediction modeling, the
chances of accurately capturing complex multimodal system
dynamics (i.e., the biopsychosocial model of depression) with
those variables decrease further. With the availability of novel
machine learning methods that can learn complex, high-
dimensional nonlinear patterns in data, a solution to this
problem may be to incorporate multiple high-dimensional data
sources, each containing putative predictive factors.

While several studies have tried to predict MDD course from
a range of different data modalities (e.g., clinical variables,
metabolomics, imaging data, epigenetics) (16-20), combining
multiple data modalities for predicting MDD chronicity has
been relatively uncommon. In one recent analysis of the
NESDA (Netherlands Study of Depression and Anxiety) cohort
(21) that integrated clinical, psychological, and biomarker data,
predictions of 2-year chronicity (defined as 2-year remission
status) in MDD reached a balanced accuracy of 62% using a
penalized linear model (22). Adding limited biological data
yielded no improvement in prediction accuracy over the
combination of clinical and psychological data (22). Another
NESDA analysis using a similar model with epigenetic data
showed an area under the curve of 0.571 for predicting the
same 2-year remission status outcome (20). Remission after 6
years was predicted more accurately, but the reported area
under the receiver operating characteristic curve (AUROC)
(0.724) was based on 10-fold cross-validation results rather
than on outheld test set results, possibly leading to over-
optimistic performance metrics (23,24). Interestingly, neither
adding genome-wide single nucleotide polymorphism data nor
adding 27 clinical, demographic, and lifestyle variables
improved predictions (20). This is an important finding because
no other studies have integrated features from multiple high-
dimensional biological data (i.e., multiomic data) and clinical
data to improve predictions of MDD disease course. This
contrasts with other fields of medicine, where multimodal data
integration has led to significant advancements in the field of
precision medicine (25), most notably in the field of precision
oncology (26,27).

To further investigate the potential of multimodal data in the
field of precision psychiatry, the current study explored the
potential of integrating multiomic, clinical, psychological, and
demographic data. To this end, we used high-dimensional
multimodal data collected from 804 NESDA subjects with
MDD (21). In a subset of 643 individuals (80% of the total
sample), using combinations of lipid metabolomic, proteomic,
transcriptomic, genetic, demographic, psychological, and
clinical data measured at baseline (i.e., from the moment of
MDD diagnosis), we used cross-validated machine learning
models to predict MDD remission after 2 years of follow-up. To
allow for nonlinear pattern detection, and to assess the po-
tential benefit of nonlinear models over linear models in
multimodal pattern detection, we used several linear and
nonlinear machine learning algorithms (elastic net, support
vector machine, random forest, XGBoost, artificial neural
network). The validity of the models’ predictions was then
tested in a separate outheld test group of 161 individuals (20%
of the total sample).

To embed our machine learning models’ performance
metrics in the context of clinical expertise (i.e., how good or
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bad predictive performances are from a clinicians’ point of
view), we also had 4 clinical psychiatrists predict 2-year
remission status in a subset of 200 individuals on the basis
of extensive clinical information.

METHODS AND MATERIALS

Participants

In the current study, we included data that were collected as
part of a larger, multicenter longitudinal study (NESDA, N =
2981) (see Supplemental Methods in Supplement 1) (21). We
included a subsample from the NESDA cohort consisting of
804 subjects and used the following inclusion criteria [identical
to our previous study (22)]: 1) presence of a DSM-IV MDD or
dysthymia diagnosis (or both) during the past 6 months at
baseline, established using the structured Composite Inter-
national Diagnostic Interview (version 2.1) (28); 2) confirmation
of depressive symptoms in the month before baseline either by
the Composite International Diagnostic Interview or by the Life
Chart Interview (29); and 3) availability of 2-year follow-up data
on DSM-IV diagnosis and depressive symptoms measures
with the Composite International Diagnostic Interview. The
ethical review board of the Vrije Universiteit University Medical
Center and subsequently the review boards of each partici-
pating center approved the NESDA research protocol (refer-
ence No. 2003/183). After providing complete verbal and
written information about the study, informed consent was
obtained from all participants at the start of the baseline
assessment.

We defined 2 outcome groups: remission or no remission 2
years after follow-up. We based the outcome on the presence
or absence of a current unipolar depression diagnosis (6-
month recency of an MDD diagnosis or dysthymic disorder)
at 2-year follow-up according to DSM-IV criteria. The label
“remitted” was given to individuals who were in stable remis-
sion for at least 6 months, and the label “nonremitted” was
given to participants who, at the 2-year time point, were
diagnosed with depression and had experienced active
symptoms during the past 6 months. This approach was aimed
at improving the reliability of 2-year remission status labels by
reducing misclassification from recent diagnoses or nearby
relapses. Sample characteristics and statistics for both
outcome groups of all 804 included subjects are shown in
Table 1. Additionally, we provide statistics on comorbid anxiety
disorders at baseline and at the 2-year time point in Table S6 in
Supplement 2.

Clinical Variables

We included a set of 10 relevant clinical, psychological, and
demographic predictor variables (which we will refer to here-
after as “clinical variables”), including age, sex, years of edu-
cation, depressive symptom severity (Inventory of Depressive
Symptoms—Self-Report questionnaire) (30) (both as total
score and as severity category ranging from 1 to 5), and 5
personality dimensions (neuroticism, extraversion, openness
to experience, agreeableness, and conscientiousness)
measured with the NEO Five-Factor Inventory (31). Additional
information on variable inclusion is provided in Supplemental
Methods in Supplement 1.
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Table 1. Sample Characteristics

Presence of Unipolar

Depression at Follow-up p Value

No Yes Statistics p Value (Bonferroni Corrected)

Sample Size 407 (51%) 397 (49%) - - -
Age, Years 41.07 (12.55) 42.89 (11.83) F=4.49 .03 .28
Sex, Male 133 (33%) 145 (37%) 22 =1.15 .28 >.99
Education, Years 11.60 (3.17) 11.51 (3.37) F=0.14 .71 >.99
Body Mass Index 26.06 (5.43) 26.10 (5.54) F = 0.0086 .93 >.99
Recruitment Type, Primary Care/Specialized Care/General Population ~ 162/209/36 143/229/25 %2 =3.96 14 >.99
Diagnosis at Baseline, DD/Dysth/MDD 75/16/316 122/18/257 v2=17.28 <.0002 <.002
Antidepressant Use at Baseline 166 (41%) 189 (48%) %2 =3.52 .06 .49
Antidepressant Use at 2-Year Follow-up 127 (31%) 175 (44%) %2 = 13.66 .0002 <.002
Psychopharmaca Use (Any Type) Past 3 Years at Baseline 173 (43%) 194 (49%) %2 =3.03 .08 .66

Data are given as n (%) or mean (SD). The table shows characteristics of the total sample separately by the presence or absence of a unipolar depression diagnosis

(MDD or dysthymia) 2 years after baseline measurement. DD indicates both MDD and dysthymia diagnoses.

DD, double depression; Dysth, dysthymia; MDD, major depressive disorder.

Proteomic Variables

Proteomic data was collected and available at baseline for only
611 of the total 804 subjects. For these 611 individuals, a panel
of 243 analytes involved in endocrinological, immunological,
metabolic, and neurotrophic pathways were measured in
serum at baseline using a multiplex enzyme-linked immuno-
sorbent assay. A full list of the 243 analytes and their inclusion
in predictive modeling with missing percentages per variable
can be found in Table S1 in Supplement 2. Supplemental
Methods in Supplement 1 provides additional details on data
collection, missingness, imputation, and processing.

Lipid and Metabolite Variables

A lipid-focused metabolomics platform was used to measure
231 lipids, metabolites, and metabolite ratios in plasma at
baseline for 790 of the 804 included subjects (14 individuals
had no metabolomic data available and were excluded from
metabolomic-informed predictions). From now on, we refer to
this data as “lipidomic data.” Additional lipidomic data pro-
cessing details are described in Supplemental Methods in
Supplement 1.

Transcriptomic Variables

Transcriptome-wide expression levels were measured in whole
blood for 669 of the 804 included individuals. For each subject,
44,241 microarray probes targeting 23,588 genes were avail-
able for analysis. We used a data-driven feature reduction and
processing pipeline to select a final set of 87 genes for ma-
chine learning modeling (see full description in Supplemental
Methods in Supplement 1). We also analyzed whether a pro-
teomic panel-focused approach to selecting genes in the
transcriptomic data would yield improved results. We did this
by matching genes in the transcriptomic data based on being
included in Kyoto Encyclopedia of Genes and Genomes
pathway categories (32) that have been found to be enriched in
the coverage of the proteomic panel. See Supplemental
Methods in Supplement 1 for details.

950

Genotype Data

Using the LDpred package in R (33), a total of 29 polygenic risk
scores (PRSs) were calculated for 701 of the 804 included
subjects with available genotype data. Additional details about
DNA extraction and PRS calculation can be found in
Supplemental Methods in Supplement 1. Table S3 in
Supplement 2 lists all 29 phenotypes for which PRSs were
calculated (e.g., MDD, anxiety, neuroticism).

Analysis

All analyses were performed using the programming lan-
guages R (version 4.0.3) and Python (version 3.8.5). All R and
Python codes are made publicly available on GitHub at https://
github.com/pchabets/chronicity-prediction-depression.

Machine Learning Analysis

Full details about data preprocessing, imputation methods,
hyperparameter tuning, training, validation, test procedures,
and model evaluation are described in Supplemental Methods
in Supplement 1. Table S4 in Supplement 2 also lists pre-
processing, imputation, and hyperparameter settings for each
data type and model. In short, first, XGBoost models (34) were
trained using each data modality separately to predict 2-year
remission. Second, to investigate possible prediction
augmentation effects of combining clinical and high-
dimensional biological data, separate XGBoost models were
trained using the combination of clinical data added to each of
the separate omics data sources. Third, another XGBoost
model was trained using the combination of all data modalities
together. We also investigated the nature of the multimodal
predictive signature by running different linear and nonlinear
algorithms including elastic net, support vector machine,
random forest, and a feed-forward densely connected artificial
neural network using 1) only clinical features (i.e., severity
scores, psychological and demographic variables); 2) only
proteomics data; and 3) the combination of both data modal-
ities. For each model, prediction augmentation by adding
proteomics data to the clinical data was evaluated using the
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AUROC. Additional details about model evaluation and
comparison are provided in Supplemental Methods in
Supplement 1.

All performance metrics reported are from validating the
trained models on outheld test data.

Feature Importance Analysis

Feature importance analysis was based on computing Shapley
values for every feature included in the best-performing
XGBoost model using the Shapley additive explanations
(SHAP) implementation for XGBoost (35,36). Protein-protein
interaction and enrichment analysis was performed using the
metascape platform (37). Additional details about SHAP and
enrichment analysis are provided in Supplemental Methods in
Supplement 1.

Human Predictions

Four human raters (trained and board-certified psychiatrists)
independently predicted 2-year remission status for 200 sub-
jects with MDD using clinical baseline data. Each rater was
given 2 sets of samples for prediction. In the first sample,
raters had to predict the 2-year remission status of subjects
based on the same 10 clinical baseline predictor variables
used by the machine learning models. In the second sample,
raters also had access to baseline data on 1) dysthymia
diagnosis, 2) MDD history, 3) anxiety diagnosis (lifetime), 4) 1-
month recency of anxiety disorder symptoms, 5) alcohol
diagnosis status (lifetime), 6) recency of alcohol abuse or de-
pendency, and 7) total disease history (totaling 17 baseline
predictor variables). In addition, we trained another XGBoost
model on the same set of additional clinical data to allow for a
more direct comparison of predictive performance between
human raters and trained models. The human rating was set up
single blinded, meaning that none of the human raters were
given information on any of the model’s performances before
finishing their predictions. Additional details about the human
prediction process, inter-rater agreement analysis, and pre-
processing of the data for the XGBoost model are described in
Supplemental Methods in Supplement 1.

RESULTS

Proteomic Data Are Most Informative for Predicting
2-Year Remission Status

First, we tested how well 2-year remission in MDD could be
predicted for each data modality separately. For each of the
available data modalities, the train, validation, and test sets
used for the classification models approximated balanced
distributions of the 2 outcome classes (Table S4 in Supplement
2). For unimodal data predictions, the model using proteomic
data showed the highest performance (AUROC = 0.67,
balanced accuracy = 0.68), followed by the models informed
by clinical data (AUROC = 0.63, balanced accuracy = 0.62) and
genetic data (AUROC = 0.61, balanced accuracy = 0.60)
(Figure 1; Table S4 in Supplement 2). All models reached ac-
curacy levels significantly above chance level. For the model
informed by PRSs, accuracy only reached a significant level
when using a cutoff on the ROC curve that made the model
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significantly biased toward false-negative classifications
(McNemar’s test, p = 1.86 X 10~®) (Table S4 in Supplement 2).
The XGBoost model using all 63 clinical variables that were
included in the previous prediction study by Dinga et al. (22)
did not outperform the XGBoost model using the selected 10
clinical variables (AUROC = 0.61 vs. AUROC = 0.63, p = .71),
indicating that no superior nonlinear information was detected
in the discarded 53 clinical variables. Using a proteomic panel-
focused approach to feature selection in the transcriptomic
data resulted in the model’s accuracy level failing to perform
statistically significantly above chance level (AUROC = 0.54,
p = .90) (see Figure S3 in Supplement 1).

Combining Clinical and Proteomic Data Augments
Prediction Performance

Models informed by both clinical and omics data out-
performed models informed by unimodal omics data in every
case, most robustly for combining proteomic and clinical data
(Figure 2). All combinations of clinical and omics data resulted
in higher predictive performance than the model informed by
clinical data only, except for combining clinical and tran-
scriptomic data (Figure 2). Although a clear trend in
augmented predictions by combining omics with clinical data
was observed for all omics data (Figure 2), only the augmented
performance of adding proteomic to clinical data reached
statistical significance (AUROC = 0.78 vs. AUROC = 0.63,
p =.013).

To further investigate the augmented prediction of 2-year
remission status when adding proteomic to clinical data, we
used several linear and nonlinear machine learning models
informed by clinical, proteomic, and the combination of both
types of data (Table S4 in Supplement 2). Informing machine
learning models by only proteomic data resulted in low pre-
dictive performance for linear models compared with nonlinear
models (Figure S2 in Supplement 1). Augmented predictive
performance by adding proteomic data to clinical data was not
found for any linear model, but it was observed for all nonlinear
models, was most pronounced for XGBoost, and reached
statistical significance only for the XGBoost model (p = .013)
(Figure S2 in Supplement 1).

Additionally, we assessed to what extent the predictive
performance of the XGBoost model could be attributed to
(captured interactions with) possible confounding factors (i.e.,
antidepressant use at baseline, other psychopharmaceuticals
used at baseline, years of education, center of patient
recruitment, body mass index, age, and sex). Using a method
recently proposed method by Dinga et al. (38) (see
Supplemental Methods in Supplement 1) that provides post
hoc controlling for confounders on the level of machine
learning predictions using component analysis of deviance
explained (D?) in outcome labels, we found that the multimodal
XGBoost predictions not only explained deviance in the 2-year
remission outcomes independent of the possible confounders
(independent D? = 0.13) but also explained a substantially
larger amount of deviance than all confounders (independent
D? = 0.038) or the interaction of confounder information and
predictions (shared D? = 0.028) (Figure S4 in Supplement 1).
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Figure 1. Predictive performance of XGBoost models informed by proteomic data (left), clinical data (middle), or polygenic risk score (PRS) (genetic) data
(right). Receiver operating characteristic curves are plotted separately, with the reported area under the receiver operating characteristic curve (AUROC) and
the maximum balanced accuracy shown for the optimal class probability cutoff. For each model, a confusion matrix is shown with additional performance

metrics.

Variable Importance Analysis Shows Predictive
Pattern Enrichment of Analytes Involved in
Inflammatory Response and Lipid Metabolism

SHAP analysis was performed on the best-performing unim-
odal and multimodal informed models (i.e., XGBoost informed
by proteomic data and XGBoost informed by clinical and
proteomic data). For both the proteomics-only model and the
model informed by both clinical and proteomic data, blood
fibrinogen levels showed the highest mean absolute SHAP
values (Figure 3; Table S5 in Supplement 2). Symptom severity
at baseline was the most predictive clinical feature for 2-year
remission status in MDD (Figure 3; Table S5 in Supplement
2). For the proteomics-only model, 109 analytes had an
average absolute SHAP value > 0 (i.e., were informative for
predictions). For the combined data model, 42 features were
informative for predicting 2-year remission in the MDD model,
including 38 proteomic analytes. Age, years of education, and
sex were not attributed any SHAP values in the multimodal
XGBoost model (Table S5 in Supplement 2).

Proteomic analytes that were informative in the combined
data model and in the proteomics-only model were analyzed
separately for protein-protein interactions and pathway en-
richments. Network analysis of protein-protein interactions

952

revealed densely connected subnetworks associated with in-
flammatory response and lipid metabolism for both the unim-
odal and multimodal XGBoost models, with enrichment of
Reactome, gene ontology, and WikiPathway terms related to
interleukin-10  signaling, chemokine signaling pathway,
cholesterol esterification, and reverse cholesterol transport
(Figure 4).

Human Prediction of 2-Year Remission Status From
Clinical Data

Four clinical psychiatrists independently predicted 2-year
remission status retrospectively from baseline data for 200
subjects with balanced subjects’ outcome distribution (2-year
nonremitted n = 100, remitted n = 100). Using the 10 clinical
features that the clinical XGBoost model was informed by,
human raters had an average accuracy of 0.51 (minimum
0.35, maximum = 0.63) (Figure 5). When additional relevant
clinical baseline data were available to the human raters, the
raters’ average prediction accuracy increased to 0.55 (mini-
mum = 0.33, maximum = 0.65) (Figure 5). Inter-rater reliability
between the 4 raters was low (Fleiss’ kappa = 0.32, p = 7.26 X
1077). Both XGBoost models (trained on the limited and
extended clinical data) outperformed the human predictions
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(Figure 5). The XGBoost model trained on the extended set of
clinical information performed slightly better than the model
trained on the limited set of 10 clinical variables but not
significantly better AUROC = 0.65 vs. AUROC = 0.63, p =.75).
Additionally, it was still significantly outperformed by the model
trained on both clinical and proteomic data (AUROC = 0.78 vs.
AUROC = 0.65, p = .03).

DISCUSSION

In this study, we showed that longitudinal prediction of 2-year
MDD remission status substantially benefited from integrating
multimodal data compared with relying exclusively on
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unimodal data. More specifically, model predictions improved
significantly when combining proteomic and clinical data
(Figure 2). Our model that was informed only by clinical data
showed identical performance to the previously reported per-
formance of a linear model using multiple data modalities,
including those 10 clinical variables, in the same dataset (22).
The performance of our model predictions increased signifi-
cantly when proteomic data were added, but only for nonlinear
models, suggesting superior multimodal predictive pattern
detection by nonlinear models over linear models (Figure S2 in
Supplement 1). Subsequent SHAP analysis revealed a multi-
modal predictive signature consisting of baseline symptom
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Figure 3. (A) Shapley additive explanations
(SHAP) analysis results visualized for the
XGBoost model informed by both clinical and
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Severity) is a categorical measure of symptom severity.

severity, personality traits, and peripheral blood biomarkers
related to the immune system and lipid metabolism.

Interpretation of Predictive Features

We have included a full, in-depth discussion of the feature
importance and enrichment analysis results and their limita-
tions in Supplemental Discussion in Supplement 1. A short
summary follows below.

The findings of the SHAP analysis support previous
research that suggests that symptom severity is predictive of
MDD chronicity (22). While a set of 3 inflammatory markers (C-
reactive protein, interleukin 6, tumor necrosis factor «) did not
improve predictions in the same previous study (22), the cur-
rent study’s proteomic analysis showed a predictive inflam-
matory component as part of a multimodal signature that was
predictive of 2-year remission status in depression, indicating
the need for higher proteomic resolution. Due to the multivar-
iate nature of the predictive model, no valid conclusion can be
drawn about whether high or low fibrinogen is a risk factor for
2-year nonremission (39). Although the model informed by all
data modalities performed better than the clinical-only model
(AUROC = 0.70 vs. 0.63), integrating all omics data with clinical
data did not yield improved predictions over the combined
proteomics and clinical model, possibly indicating redundancy
of the other omics data in our NESDA sample considering 2-
year MDD remission predictions (Figure 2A, B).

While combining several PRSs resulted in prediction accu-
racy similar to the model informed by clinical data only, our
results suggest that future PRS improvements or genetic
dimensionality reduction techniques may be needed to further
improve the multimodal prediction of complex traits. In con-
structing our PRSs, we based them on all genetic variants
found in primary genome-wide association studies (Table S3 in
Supplement 2 lists all studies), such as the one conducted for
depression (40). This approach was taken because restricting
our analysis to significantly associated variants would
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considerably diminish predictive power, as supported by
recent studies (41,42). The model that significantly out-
performed the one based on clinical data was the model that
was informed by both clinical and proteomic data, with only the
XGBoost model having a large enough effect to have adequate
power within the test sample, while proteomic data were most
informative for unimodal data predictions. Furthermore, our
study suggests that while proteomic data had a larger feature
space than clinical and PRS data, their superiority in predicting
2-year MDD remission status cannot be explained by dimen-
sionality alone, and it may be the most informative omics data
modality when combined with clinical data.

Prediction and Models’ Performance

Applying machine learning models entails predicting at the
individual-subject level (n = 1 prediction), which may ultimately
pave the way for individual clinical application, i.e., enable
personalized psychiatry (43). For personalized psychiatry, ac-
curacy and other prediction performance metrics are arguably
more valuable than traditional statistical measures because
they 1) indicate how well a model works on the individual-
subject level and 2) are the result of the model being put to
practice in separate new individuals not previously seen by the
model.

One might regard a balanced accuracy of 71% (i.e., our
best-performing model) as too low for use in clinical practice.
However, consistent with previous findings (44), we showed
that the next best thing for patients—namely interpretive
predictions by clinicians—performed substantially worse.
Moreover, we showed that clinicians’ predictions showed high
inter-rater variability resulting in low inter-rater reliability (Fleiss’
kappa = 0.32) (45). One of the clinicians was part of the
research design, and so to mitigate incentive bias, we used a
blinded rater design, meaning that the raters had no informa-
tion on the models’ performance until after they had made their
predictions. When excluding the involved clinician from the
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analysis (rater 1 in Figure 5), the mean accuracy of the
remaining 3 human raters was 0.57 when using 10 clinical
variables and 0.53 when having access to the complementary
clinical data. One can argue that the retrospective data shown
to the clinicians in our study did not approximate a live clinical
impression. However, previous studies have shown that this

the superiority of machine learning—based clinical decision
making compared with conventional clinical decision making
for medical fields outside of psychiatry (50,51). To facilitate the
future prospects of personalized, machine learning—aided

added source of information for predictions results in even xgbonst 083 065 071 used data

worse predictions by clinicians (46,47). This does not mean 50 B loginical foatures,
that live clinical impressions are uninformative for future pre- reters aversge | i @ it protoomics added
dictions per se. In the light of multimodal prediction, live clinical

impressions may yet prove to hold complementary information g e T

for augmented predictions. Future studies will have to clarify - rafer 3 -py gt

for what type of outcome predictions (e.g., therapy response, rater 2- )

remission), and in combination with what type of data, clinical ater 1 L

impressions add a complementary layer of predictive

information.

A much-needed next step for personalized psychiatry is to
implement and test machine learning-based clinical decision
making in clinical trials. Clinical implementation of machine
learning models has shown promise in preliminary studies
(48,49). Importantly, recent clinical trials successfully showed
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0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
balanced accuracy

Figure 5. Results of clinical psychiatrists’ predictions of 2-year major
depressive disorder chronicity compared with the XGBoost model’s per-
formance. The x-axis shows the balanced accuracy of predictions. The dots
represent a psychiatrist’s or model’s predictive performance, with the color
indicating on what basis information predictions were made.
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decision making in psychiatry, we view our study as an
important clue regarding the type of data that can be infor-
mative for prediction models put into practice specifically with
the aim of predicting an individual’s naturalistic course of MDD
from baseline data. Such predictions may ultimately benefit
patient outcomes by providing clinically actionable informa-
tion. For example, in cases predicted to show nonremission
after 2 years, intensifying therapy early on may improve dis-
ease course.

Strengths and Limitations

We were able to train, (cross-)validate, and test our models on
subject data that were collected as part of the longitudinal
NESDA study. Likewise, human prediction evaluation was
solely based on data of subjects included in the NESDA
database. Unfortunately, without any validation of our model
on data external to the NESDA dataset, robust assessment of
the generalizability of our model’s performance is currently
lacking. However, given that we carefully prevented any data
leakage from final test set to the train set in all our imputation,
preprocessing, and feature selection procedures (i.e., pre-
vented double dipping) (23,52,53); used balanced train and test
sets (54); used separate repeated 10-fold cross-validation
procedures in the train sample independent of the final test
set (23,24); used a sample size for prediction analysis of
several hundred (23); and tested final model performance on an
outheld test sample (23,53,55), we believe that, at the least, the
multimodal features that were found to be most predictive
represent robust findings. Therefore, we argue that the
importance of this work lies primarily in the observations that 1)
there are blood-based variables that can be individually pre-
dictive for the naturalistic 2-year course of MDD; 2) individual
predictions become more accurate when using multimodal
data; and 3) high-dimensional predictive signatures may not be
detected using conventional linear machine learning models.
Secondarily, we found that the best-performing multimodal
predictive signature comprised baseline symptom severity,
personality traits, and blood biomarkers related to immune
system and lipid metabolism. These findings can aid variable
inclusion decisions in future MDD remission prediction studies.
However, due to the lack of precise disease trajectory data
before and after the 2-year interval and the noncausal nature of
SHAP values, the predictive signature’s causal interpretation
remains unclear. Additionally, the NESDA sample does not
offer information on biomarker status over time, thereby
limiting the evaluation of the signature’s stability for predicting
remission at other time intervals and extrapolative value
beyond the 2-year interval.

Age, sex, body mass index, years of education, center of
patient recruitment, antidepressant use at baseline, and other
psychopharmaceuticals used at baseline were not significantly
different between the 2 outcome groups (Table 1). Further-
more, our post hoc confounder analysis showed that the
performance of the multimodal predictions could not be
explained by any of these confounding factors (Figure S4 in
Supplement 1) and was independent from any possible inter-
action with these confounding factors. These results suggest
some biological validity of the multimodal signature indepen-
dent of any of the included confounders.
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We chose 2-year remission status instead of a longer period
of enduring depression because 1) persistent depressive dis-
order is defined as depression lasting for at least 2 years in
DSM-5 (Fs4.1 = 300.4) (56), and 2) sufficient sample size was
available only for the 2-year time period (although still subop-
timal for the model informed by all modalities). Despite using
stable 6-month outcomes, our predicted outcome label hinges
on a somewhat arbitrary cutoff concerning both time span and
diagnostic criteria, which may conflate chronic phenotypes
and delayed remission cases under a single designation.
Likewise, the remitted label does not represent lifetime
remission because individuals who show remission after 2
years can eventually relapse into depressive episodes. This
may account for the moderate prediction performance found
with unimodal omics data and suboptimal results using
multimodal data. To what extent the described predictive
signature generalizes to longer remission rates remains to be
seen and may not hold given that an approximated 30% to
85% of remissions in depression are followed up by a relapse
at some point (57). Indeed, analyzing the NESDA subsample of
our data with available outcome data at a 2-year, 4-year, and
6-year interval (n = 503), we found that 4-year consistency of
remission status was reported for 67% of the individuals, and
6-year consistency of remission status was reported for 49%
of the individuals. Notwithstanding this, accurate prediction of
remission status at a 2-year interval—even if inconsistent with
remission status at other points in time—provides clinically
relevant information (although only for the 2-year period).

Similarly, comorbid anxiety disorders may obscure true
remission rates. A previous study showed that recovery rate is
lower when including both depressive and anxiety disorder
symptoms (58). Looking at our own sample, we found that the
2-year remitted group showed a significantly lower prevalence
of anxiety disorders at the 2-year time point (27% vs. 53%, p <
2 x 1074, while no such difference was found at baseline
(Table S6 in Supplement 2). Beck Anxiety Inventory scores (59)
were also significantly lower for the remitted group at the 2-
year time point (14.6 vs. 20.41, p < 2 X 10™%. Interestingly,
at baseline, neither group showed any significant difference
(Table S6 in Supplement 2). Furthermore, the model including
anxiety scores and disorder information as clinical data did not
improve but instead slightly worsened predictions (AUROC =
0.63 vs. AUROC = 0.61) (see Results). This suggests that
anxiety disorder-related information at baseline added no in-
formation beyond the 10 clinical variables for 2-year depres-
sion remission predictions despite the nonremission group
showing higher average Beck Anxiety Inventory scores at
baseline (20.09 vs. 1758, p = 9 X 107% (Table S6 in
Supplement 2). It is questionable to what extent the predictive
signature in our study can be expected to be depression
specific. The possibility of overlapping diagnoses and a pre-
dictive pattern that may indicate combined remission rather
than depression-specific remission could contribute to the
suboptimal prediction performance.

Conclusions

To our knowledge, this is the first study to show that the
combination of multimodal biological and clinical data signifi-
cantly improves the accuracy of individual longitudinal
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predictions of remission status in MDD in a relatively large
sample (N = 804). Moreover, this study shows that what is
predictive of remission of MDD within 2 years is a combined
signature of symptom severity, personality traits, and immune-
and lipid metabolism-related proteins at baseline. We argue
that future studies that investigate the potential of clinical
application of MDD course prediction models are much
needed and should consider including both clinical and pro-
teomic data focused on immune and lipid metabolism markers
in their data.
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