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A B S T R A C T

Rheumatoid Arthritis (RA) is an autoimmune disease that mainly affects joints in the wrist and hands. It
typically results in inflamed and painful joints. MRI is one of the most common imaging modalities to detect
and monitor possible inflamed RA-related areas, enabling rheumatologists to treat patients more timely and
efficiently. Despite the importance of finding and tracking inflamed areas associated with RA in MRI, there is
no previously published work on finding pixel-by-pixel changes related to RA between baseline and follow-
up MRIs. Therefore, this paper proposes a hypothesis-free deep learning-based model to discover changes in
wrist MRIs on a pixel level to detect changes in inflamed areas related to RA without using prior anatomical
information. To do this, a combination of a U-Net-based network and image thresholding was utilised to find
pixel-level non-trivial changes between baseline and follow-up MRI images. A wrist MRI dataset including 99
individual pairs of MRI images (each pair constructed of baseline and follow-up images) was used to evaluate
the proposed model. Data were collected from patients with clinically suspected arthralgia (CSA), defined as
patients at risk of developing RA according to their rheumatologist and already had subclinical inflammation
on MRI but could not be diagnosed with RA (yet) since they had not developed clinically detectable arthritis.
The obtained results were evaluated using an observer study. The evaluation showed that our proposed model
is a promising first step toward developing an automatic model to find RA-related inflammatory changes.
1. Introduction

Rheumatoid Arthritis (RA) is a chronic inflammatory autoimmune
disorder predominantly affecting the joints in the hands and feet [1].

RA can be diagnosed by conducting X-rays and lab tests. In re-
search, magnetic resonance imaging (MRI) is one of the common
modalities to investigate inflammatory progression in hands and feet
joints. MRI scans are currently scored visually, using the validated
RAMRIS (Rheumatoid Arthritis Magnetic Resonance Imaging Scoring)
system [2]. RAMRIS uses semi-quantitative scores that range between
0 and 3 to score inflammation and damage. RAMRIS has also been
modified in order to include more relevant RA features and exclude less
relevant features to improve the accuracy of scoring [3,4]. All of the
mentioned models use anatomical information to find a specific part of
e.g. the wrist to detect and score possible inflammation in these areas,
i.e. inflammation in the synovium (synovitis), in the tenosynovium
(tenosynovitis) and in bone marrow (bone marrow edema, BME).

∗ Corresponding author.
E-mail address: b.c.stoel@lumc.nl (B.C. Stoel).

However, these mentioned models have an intrinsic limitation,
where images are first quantified into a global measure, after which
progression is determined by basically subtracting the follow-up from
the baseline measurement. This leads to a lack of sensitivity to subtle
changes, as it may not show all progression within a bone, synovium
or tendon, because areas classified as inflamed may progress or resolve
without altering its total area, keeping the visual score unchanged.
Similarly, areas labelled as unaffected may still show a subtle intensity
increase that has not yet reached the threshold. This can be even more
prominent in very early disease stages such as studied here. Another
drawback is that these models presume relevant inflammatory patterns
to occur only in predefined anatomical regions.

One of the methods to address the above drawbacks is to find in-
flamed areas related to RA without considering anatomical information
and then scoring the detected areas. In this case, it is possible to find
and track inflamed areas and find out which regions are exactly affected
by RA and how it changed over time.
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Since defining a pixel-level change map between two MRI scans
with minimum artefacts is a complicated task, this research topic has
not been investigated yet. The aim of this paper is therefore to create a
pixel-level change map between baseline and follow-up images without
using anatomical information, to detect subtle inflammatory changes.
As a first step, however, the aim is to find any changes between two
MRI scans with a minimum amount of artefacts.

In this paper, we used a combination of deep learning and classical
image processing techniques to detect changes between two MRI scans.
In the proposed model, we are not only looking for pixel-level changes,
but we would also like to find in which areas the inflammation pro-
gressed or resolved over time. Therefore, changes are detected forward
and backward in time and highlighted separately.

To do this, we propose a U-Net-based [5] network that is able
to reconstruct follow-up images from baseline images and visa versa
(i.e. forward and backward in time, respectively). After pre-training the
network, a joint U-Net-based model is used to improve the accuracy
of the image reconstruction. Two copies of the pre-trained networks
are used jointly, utilising a joint loss to learn image reconstruction in
both forward and backward direction. Since changes in early disease
stages with subtle inflammation are rare, the network would not learn
these changes, therefore the follow-up reconstructed images would
not contain these changes. In the next step, differences are calculated
between follow-up and reconstructed baseline image to find progressed
areas, and between baseline and reconstructed follow-up image to
detect resolved area (where inflammation has decreased over time).
Furthermore, to detect non-trivial changes and remove artefacts from
the change map Otsu [6] thresholding is utilised. The logic behind our
work is, that there are areas with changes that repeatedly occur in
different images and their transformation pattern can be learned by
our model, and consequently can appear in the reconstructed image.
Therefore, less differences will appear in these areas when we com-
pare baseline and reconstructed follow-up images. However, unique
changes cannot be learned, therefore they would not emerge in the
reconstructed image and will be highlighted in the difference map.
Finally, by thresholding the difference map, artefacts will be excluded
from the final change map, and unique changes will emerge in the final
change map.

To evaluate the proposed model, a wrist MRI dataset including 99
pairs of baseline and follow-up images were used [7]. The images are
from 99 individual patients that were considered prone to develop RA
(with clinically suspect joint pain). To validate the obtained results, two
experts evaluated the calculated change maps. The experimental results
showed that our proposed model obtained promising results as a first
model to calculate pixel-level change maps as a preliminary stage in
detecting RA-related inflamed areas in MRI scans of the wrist.

1.1. Research contribution

The contribution of this paper can be summarised as follows.

• An unsupervised deep learning model is proposed to detect in-
flammatory changes on a pixel-level.

• The proposed model can detect non-trivial changes forward and
backward in time.

• Our model can be considered a significant step in developing
an RA-related inflammation detection technique without needing
anatomical information.

2. Literature review

Change detection is one of the important computer-based applica-
tions in many fields such as remote sensing (satellite imaging), video
surveillance, and medical imaging [8]. Below a summary is provided
of the various techniques that have been applied for change detection
2

in medical imaging.
2.1. Change detection in medical imaging

Change detection is an active area of research in brain MRI imag-
ing to detect and track changes in brain MRI over time [9–11]. For
example, Patriarche et al. [12] proposed an automatic change detec-
tion model to find changes between two MRI scans (reference and
target) in white-matter, due to brain tumours. In their proposed model,
anatomical and lesions’ intensity information was used. Subsequently,
a combination of feature detection and image processing techniques
was utilised to find pixel-wise changes. Furthermore, Seo et al. [13]
developed a non-parametric method to detect subtle changes without
using prior knowledge. To do this, a local kernel was computed from
a reference image, which calculates the similarity of a pixel and its
surroundings pixels. Then, it is used to compare against similar features
from the target image. Finally, a dissimilarity map was made, indicating
the local statistical likelihood of dissimilarity between a baseline and
follow-up scan.

Nika et al. [14] proposed an automated change detection model
by considering three-dimensional volumetric brain MRI images. Firstly,
to align reference and target volumes, a cubic spline interpolation
was utilised. In the change detection step, an optimisation model was
proposed, where a dictionary composed of reference volumes with a
high level of redundancy was used. Further, a Principal Component
Analysis (PCA) method was utilised to reduce the dimensionality of
the dictionary and consequently the computational time, which can
keep more significant features in the dictionary. Subsequently, a sta-
tistical model named 3D EigenBlockCD-2 was proposed to compute
the background of the reference MRI volume, and foreground blocks
containing the significant changes. Finally, the output was thresholded
to eliminate noise and false positives. Output intensities greater than
the threshold were considered clinically relevant changes between the
two MRI volumes of a particular patient, acquired at two different time
points.

The first deep learning-based change detection model in medi-
cal imaging was proposed by Dupont et al. [15]. An unsupervised
joint auto-encoder model was proposed to detect changes in Age-
Related Macular Degeneration (ARMD). In the proposed model, an
auto-encoder model constructed from four convolutional layers is used
to reconstruct follow-up images. In the first step, the network has been
trained to reconstruct images in both directions, and then in the final
training stage, a joint auto-encoder network was suggested to learn
image reconstruction in each direction (forward and backward in time)
separately. Then differences between baseline image and reconstructed
follow-up image and follow-up image versus reconstructed baseline im-
age were calculated using Mean Square Error (MSE) as loss function. In
the last stage, the average of both reconstruction errors was computed
and to select only non-trivial changes, Otsu thresholding was applied
to generate the final pixel-by-pixel change map.

As mentioned above, there is only a limited amount of previous
works in the area of medical image pixel-by-pixel change detection, of
which only one had applied deep learning to do this.

3. Proposed model

The aim of this paper is, therefore, to introduce a model that finds
changes related to RA between two MRI images. Inspired by the work
of Kalinicheva et al. [16], an unsupervised change detection model
is proposed for RA-related change detection between reference and
follow-up MRI scans. An overview of the proposed model is given in
Fig. 1, where the model is constructed from four stages: data prepa-
ration, pre-training, final training and change detection. In the data
preparation stage, super-resolution reconstruction was performed to
create an isotropic image, images were registered to align the baseline
and follow-up images. Subsequently, noise was removed from the areas
around the wrist, by truncating the gray values in regions containing

air. In the pre-training and training stages, the aim was to create and
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Fig. 1. Overview of the proposed model.
train convolutional neural networks to reconstruct follow-up images us-
ing baseline and vice versa. Thus, the purpose was to train a network to
learn patterns that repeatedly appear in baseline and follow-up images.
After final training, the proposed network can reconstruct follow-up (or
baseline) images without unique changes that are assumed to be related
to RA. Therefore, by subtracting the original from the reconstructed
images, the difference images will contain the RA-related changes. In
the final stage of the proposed model, Otsu thresholding was applied
to produce the final change maps. A detailed explanation of each stage
is provided below

3.1. Data preparation

Contrast-enhanced T1-weighted fat-suppressed MRI scans of the
wrist of 236 patients at four time points (baseline, with 4, 12, and 24
months follow-up) were collected from the TREAT-EARLIER trial [7].
At the start of the study, patients were randomly split into a placebo
and treatment arm. Treatment started from the beginning of the study
and continued up to one year. To evaluate preventive effects of treat-
ment, follow-up continued for one more year without treatment. When
conducting this research, wrist MRIs at all time points were available
for 107 patients. However, eight low-intensity cases were excluded
from the final dataset during the pre-processing stage. Therefore, we
have used 99 pairs of MRI scans from baseline and corresponding fourth
follow-up, regardless of which group they belonged to. Originally, all
MRI images sizes was 20 × 512 × 512. Each image contained 20
slices, and the height and width of the images were 512 pixels. Per
visit, two MRI scans were made: one in which the axial plane has the
highest resolution (axial scan), and one in which the coronal plane
contained most details (coronal scan). In the axial scan, spacing was
0.27 × 0.27 × 3.29 mm and in coronal scan the image spacing was
0.19 × 0.19 × 2.19 mm. To combine these two scans, Super-Resolution
Reconstruction (SRR) [17] was applied to obtain one 3D image with
isotropic voxels (see Fig. 2). As can be seen from Fig. 2, the axial and
coronal scans were combined for each time point by SRR. First, Elastix
image registration [18,19] was applied to align the coronal scan to
the axial scan. Secondly, intensity matching was applied to match the
intensity of the two images, and finally, SRR was applied (see Table 1).
After SRR, voxel size was made isotropic to 0.195 × 0.195 × 0.195 mm and
onsequently the number of slices in each MRI scan increased to 323.
n example of a coronal and axial scan in three different cross-sectional
lanes (coronal, axial, and sagittal) and the corresponding SRR image
re provided in Table 1.

As discussed above, the MRI images have been taken at various time
oints. The position and orientation of the wrist during MRI scanning
an change over time. Since the purpose of our work is to find a
ixel-level change map, image registration was needed to align pairs
f baseline and follow-up images. To do this, the baseline SRR image
3

as considered the fixed image and the follow-up image as a moving
Fig. 2. The overview of super resolution reconstruction method.

image. In this paper, the Elastix registration tool [18,19] was used
for registration. First, affine registration was applied; subsequently, to
have a more precise and pixel-wise alignment, B-spline registration was
utilised after affine registration. An example of a registered SRR image
is provided in Table 2.

As can be seen from the first row, the fixed image stayed the same,
but the follow-up image has been aligned to the baseline image. It
needs to be noted that, during registration, missing pixels may occur

especially in the first and last slices of an MRI image. This is caused by
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Table 1
An example image of super-resolution reconstruction.

the fact that not always the exact same volume of interest is scanned
over time, leading to pixels that appear in one image but are absent
in the other. To differentiate missing pixel pairs from complete pixel
pairs, we set the intensity values of missing pixels to −500 during the
registration.

In the final pre-processing stage, we applied background removal
[20] to delete pixels from MRI scan containing only air. Moreover,
all pixel values (except for missing pixels) between the 2.5 and 97.5
percentile were normalised to an interval of [0,1].

3.2. Pre-training stage

In the proposed model, a U-Net (see Fig. 3) was first used for
image reconstruction, where the network learns to reconstruct follow-
up images from the baseline images and vice versa. At this stage, the
network will learn to reconstruct images in both directions. It means,
that the input can be a baseline to reconstruct follow-up or the other
way around. During pre-training, the network learns to detect com-
mon patterns, textures and small intensity changes. However, unique
changes such as inflamed areas that occurs rarely and irregularly would
not be learned by network. The fact that these latter patterns have
not been learned, can be used to detect these uncommon changes by
image subtraction in the next phase. As shown in Fig. 3, the proposed
network was constructed from six blocks for downsampling, six blocks
for upsampling, and a bridging block to connect the two parts of the
network. Each block had two convolutional layers with a filter size
of 3 × 3, along with a Batch Normalisation (BN) layer. To prevent
overfitting, dropout between two convolutional layers was added to the
network, with a probability of 0.1. In the downsampling part, there
was a Maxpooling layer after each block, to reduce the size of the
feature maps. In the upsampling section, a deconvolution layer was
utilised to increase the size of feature maps. Further, to concatenate
the block’s input feature maps, a shortcut connection to its output
feature maps was utilised for each block. To increase the quality of the
up-sampled feature maps, long connections were used to transfer and
concatenate down-sampled features to the up-sampled features. Finally,
a convolutional layer with a filter size of 1 × 1 was used to generate
the final output of the network.

3.3. Final training

After pre-training, two copies of the trained network is created and
used as a joint network utilising a joint loss function (see Fig. 4). In
4

Fig. 3. The U-Net structure for image reconstruction.

the final training stage, the first U-Net is trained just using baseline
images to learn to reconstruct follow-up images, and the second U-Net
is utilised to reconstruct baseline images using follow-up images (see
Fig. 4, original images with orange border and reconstructed images
with pink border). In the proposed model, the Mean Square Error (MSE)
is used as a loss function to calculate the differences between the
predicted follow-up image versus the original follow-up image. First,
the MSE for the predicted reconstructed image is obtained in each
branch, and then the average of achieved losses is calculated as the
joint loss:

𝐽𝑜𝑖𝑛𝑡𝑀𝑆𝐸 =
1
𝑛
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2 +
1
𝑛
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥𝑖)2

2
, (1)

where 𝑦𝑖 represents the true follow-up image, 𝑦𝑖 is the predicted follow-
up image, 𝑥𝑖 indicates the true baseline image, 𝑥𝑖 is the predicted
baseline image, and 𝑛 represents the number of pixels.

After final training, the jointly trained network is used to generate
the predicted images in the test stage.

3.4. Change detection

Subsequently, to find differences between baseline and recon-
structed follow-up images, these images were subtracted. Similarly, dif-
ferences were calculated between follow-up and reconstructed baseline
images (see Fig. 4, difference images with red border). To determine
significant changes in the forward versus backward direction, Otsu
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Table 2
An example image of registration.
Fig. 4. Overview of the proposed model for change detection. Orange border: original baseline and follow-up images, pink border: reconstructed baseline and follow-up images,
red border: difference images, Green arrows: inflammation remission, and yellow arrows: inflammation progression.
5
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thresholding was applied to each of the difference maps. For each
of the difference maps, Otsu thresholding was applied on positive
and negative pixels separately. As a result, two change maps were
generated. As can be seen from Fig. 4, the RA-related changes are
among the positive pixels, therefore we excluded the results obtained
from negative pixels from the final change map.

To calculate the final change map, the two obtained change maps
were merged, such that pixels appearing in the forward change map
(left branch) but not in backward one (right branch) represent inflam-
mation remission (blue pixels). Similarly, pixels that are in backward
change map but not in the forward one, show inflammation progression
(red pixels). To clarify how blue and red pixels are obtained, we added
green and yellow arrows to indicate corresponding areas.

As shown in Fig. 4, the proposed model was able to extract changes
between two MRI scans, using the combination of convolution neural
network and conventional image processing techniques.

4. Experiments

4.1. Dataset

For evaluation of the proposed model, a wrist (right and left) MRI
dataset was used [7]. The dataset has MRI scans of 236 patients
from four time points (baseline, with 4, 12, and 24 months follow-
up). However, when this research conducted, MRI scans for all time
points were available for 99 cases. Since, our purpose was finding the
changes related to RA between first and last time point (follow-up
after 24 months) MRI scans, we just used scans from the first and last
follow-up of these 99 patient. Therefore our training (69 cases), testing
(15 patients), and validation (15 cases) sets were from patients with
four-time point data (first and last time points pairs).

As mentioned before, each MRI has 323 slices after SRR. However,
after registration, we found some missing pixels in the first and last
slices of each patients. Therefore, 230 middle slices from each patient
were used for final training and evaluation of the proposed model.
Accordingly, 3450 MRI slices were in the testing and validation sets,
and 15 870 MRI slices in the training set. Also, to increase the number
of samples in the training set, horizontal and vertical translation was
utilised. It needs to be noted that, all image slices were resized to
128 × 128 for our proposed model.

4.2. Implementation

The proposed model was implemented using the Keras Python
package [21]. All experiments were carried out on a GeForce GTX
1080 Ti (3584/12 Gb) or Quadro RTX 6000 (4608/24 Gb) GPU. The
training of the proposed model was conducted in two stages. In the first
stage (pre-training), the U-Net-based network was trained with data
in both directions. After pre-training, two copies of the networks were
used along with a joint loss function for the final training. One of the
networks was specifically trained to reconstruct images in the forward
direction and the second one was to reconstruct images in the backward
direction. Detailed information regarding the network’s pre- and final
training is provided in Table 3.

In both training stages, Mean Square Error (MSE) is used as a
loss function to calculate differences between constructed output and
original output. However, we exclude pixels that come from out of the
picture (because of registration) from our calculation (pixels with −500
as the pixel’s value).

4.3. Experimental results

Since no ground-truth is available for change maps, we evaluated
our results by post-hoc subjective evaluation and an observer study.
6

Table 3
The general parameters and their corresponding values
for training the models.

Training parameters Range

Number of epochs 50
Steps per epochs 100 000
Batch size 32
Early Stopping 30
Optimiser Adam
Learning rate 0.00001
Loss function MSE

4.3.1. Subjective evaluation
A few examples of obtained change maps are provided in Fig. 5,

where each row represents a different patient: the first column shows
baseline images; the second column contains follow-up images; the
third gives the change maps obtained from simple subtraction between
original baseline and original follow up images (Baseline model), where
we just calculated a difference map and then applied Otsu thresholding;
and the last column contains the obtained results of the proposed model
(subtraction between original baseline and reconstructed follow up-
images). The pixel-by-pixel change maps are displayed in two different
colours. Blue pixels indicate bright areas converted to dark over time,
that can indicate resolving inflammation (MRI intensities have de-
creased). Red colours illustrate dark areas that turned bright over time
(MRI intensities have increased), which can indicate newly inflamed
areas emerging in the follow-up MRI scan. As can be seen, our proposed
change map found intensity changes with less noise and less artefacts,
as compared to the baseline model. If the reconstruction for a particular
patient went well, the obtained change map generally obtained a higher
accuracy in all MRI slices, as compared to the baseline model.

4.3.2. Observer study
To evaluate our proposed model, we performed an observer study.

To do this, we designed a viewer application to read and evaluate the
obtained change maps. In this section, firstly, an overview of viewer
is provided, then the obtained results are discussed in the following
subsection.

4.3.2.1. Viewer. For evaluating the change maps by observers, we
developed a viewer in C# (see Fig. 6), containing four main sections.
In the first section, the baseline image, follow-up image and the change
map are presented. In the second section, tools to load and scroll
through various MRI studies are provided. There are buttons to load
MRI scans of next or previous patients, and also buttons and sliders to
scroll through next or previous slices. In addition, there is a possibility
to overlay the change map onto the image slice and scroll through
different slices with overlay. Although our purpose was to score axial
scans, the coronal plane was also provided to help readers to have
a better understanding of the overall changes between baseline and
follow-up images.

The main part of the viewer is on scoring images visually in four
different domains. We asked the readers to check and evaluate changes
in the synovium, tenosynovium, bone marrow and the remainder of the
image (entire image except areas of synovium, tenosynovium and bone
marrow). For each section, we separately evaluated intensity increase
and decrease as follows:

• False Positive (FP) [−10, −1]: If there is no change between
the baseline and follow-up image, but the change map did show
changes. Dependent on the size or severity of the presented
erroneous changes, the score can be between −1 to −10 (small/
insignificant to extensive/severe errors).

• False Negative (FN) (0): If there is a change between baseline and
follow-up, but it is not shown in the change map, the score is 0.
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Fig. 5. Five sample of obtained change maps.
• True Positive (TP) [1, 10]: If there is a change between baseline
and follow-up, and it is presented in the change map. According to
the accuracy of the presented changes, the score can be between
1 and 10.

• True Negative (TN): There is no change between baseline and
follow-up, and the change map also does not show any changes.
This is indicated separately.

Since each SRR image consists of hundreds of slices and scoring all
slices would therefore be a too time-consuming process, we decided to
only score the central slice for each patient. As can be seen from section
four in Fig. 6, there is a table that shows the anonymised study ID of the
patient, central slice and saving status. Therefore, readers can choose
the central slice and save this slice number for each patient, then score
that specific slice and save it to file.
7

4.3.2.2. Observer study results. To evaluate the obtained change maps,
we invited a radiologist and rheumatologist in training to analyse the
results. One of the challenges to evaluate the change maps was the large
number of slices. To do this, we tried to select a slice on a location
where all features could be assessed properly. Therefore, slices with the
radio-ulnar joint were selected as the central slice, since this is the best
place to also score for tenosynovitis [22]. Firstly, we asked Reader 1 to
select the central slices for each MRI scan and score that specific slice.
The obtained scores from Reader 1 are shown in Table 4. Subsequently,
Reader 2 scored the same slices blinded for the scores of Reader 1, and
these scores are provided in Table 5.

According to Reader 1’s point of view, there was a considerable
amount of TN in the synovium, the changes in which were correctly
recognised by our model, as shown in Table 4. Also, there were five
True Positive cases (1, 9, 9, 10, 9), where in four of them our proposed
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Fig. 6. The designed viewer for the observer study.
Table 4
Obtained scores from Reader 1.

Patient list Synovium Tenosynovium Bone marrow Other regions

Increase Decrease Increase Decrease Increase Decrease Increase Decrease

01 TN TN TN −3 TN TN TN 8
02 TN 1 −7 −2 −5 TN −8 1
03 TN TN 8 8 TN TN −2 7
04 TN TN 9 TN TN TN −1 TN
05 TN TN TN −1 TN TN 1 5
06 TN TN TN 9 TN TN −5 7
07 0 −1 −5 −3 TN TN 6 −2
08 TN 9 TN 10 TN TN −1 9
09 9 TN 7 TN TN TN 5 −1
10 10 TN −8 TN 0 0 3 −2
11 TN −1 −5 TN −1 TN 2 TN
12 −2 TN −1 −1 0 TN 7 TN
13 TN TN 7 10 TN TN 7 TN
14 TN TN TN TN TN TN 8 8
15 TN 9 0 8 TN TN 8 9
model could find and represent them in the change maps with high
accuracy. However in three cases (−1, −1, −2), the change maps
showed minor changes, which were wrong, and in one case (0) the
model could not recognise and present changes in the change map.

The ‘Tenosynovium’ column from Table 4 shows that there were
more inflammatory changes in the tenosynovium than in the synovium,
a part of which has been detected accurately and represented in the
final change maps. However, we can see more negative scores in these
areas, which indicate that there were more FPs in this anatomical
area. The ‘Bone Marrow’ column (see Table 4) indicates that BME did
not occur frequently, which is recognised correctly. However, we had
three cases, in which the proposed model could not find any changes
in bone marrow (false negatives). Finally, the ‘Other Regions’ column
represents scores related to the remaining areas (entire wrist excluding
8

synovium, tenosynovium and bone marrow), such as connective tissue,
vessels and skin.

A similar pattern of scoring can be seen in Table 5, which was
obtained from the second reader. In most of the cases, the scores from
Reader 1 and Reader 2 were comparable. However there was a limited
number of cases, where a completely opposite score was given.

In addition, four example images along with their scores are pro-
vided in Table 6, showing that the obtained change maps for the first
two examples achieved high scores from both Readers. However, the
two readers disagreed in evaluating the third example change map. The
fourth example in Table 6, showed that both readers agreed that the
obtained change maps could not precisely reflect the actual changes.

To summarise and easily interpret the results, a modified version
of the confusion matrix was used (see Tables 7 and 8). As explained
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Table 5
Obtained scores from Reader 2.

Patient list Synovium Tenosynovium Bone marrow Other regions

Increase Decrease Increase Decrease Increase Decrease Increase Decrease

01 TN TN TN −5 TN TN 10 10
02 TN TN −10 −10 −10 TN 9 5
03 TN TN 10 10 TN TN 10 10
04 TN TN 10 TN TN TN −8 4
05 TN TN TN −5 TN TN 5 −5
06 TN TN −10 10 0 TN 10 10
07 5 −1 −10 −5 TN TN 5 −10
08 TN TN TN 10 TN TN 0 TN
09 −1 −1 10 TN TN TN 10 TN
10 10 TN 2 TN TN TN −5 −2
11 TN TN −5 TN TN TN −5 TN
12 −5 TN TN TN TN TN 5 TN
13 2 TN −1 10 TN TN TN TN
14 TN TN TN TN TN TN TN TN
15 TN 10 TN TN TN TN 10 5
Table 6
Four different examples along with the obtained scores from both readers.
9
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Table 7
Confusion matrix of obtained scores associated with Reader 1. N: Negative, P: Positive,
F: False, T: True.

Regions Synovium Tenosynovium Bone marrow

N P Level N P Level N P Level
F 1 1 0.2 F 1 5 2.6 F 2 2 0.6Increase
T 11 2 1.9 T 5 4 3.1 T 11 0 X

N P Level N P Level N P Level
F 0 2 0.2 F 0 5 1 F 1 0 XDecrease
T 10 3 1.9 T 5 5 4.5 T 14 0 X

N P Level N P Level N P Level
F 1 3 0.4 F 1 10 3.6 F 3 2 0.6Total
T 21 5 3.8 T 10 9 7.6 T 25 0 X

Table 8
Confusion matrix of obtained scores associated with Reader 2. N: Negative, P: Positive,
F: False, T: True.

Regions Synovitis Tenosynovium Bone marrow

N P Level N P Level N P Level
F 0 2 0.6 F 0 5 3.6 F 1 1 1Increase
T 10 3 1.7 T 6 4 3.2 T 13 0 X

N P Level N P Level N P Level
F 0 2 0.2 F 0 4 2.5 F 0 0 XDecrease
T 12 1 1 T 7 4 4 T 15 0 X

N P Level N P Level N P Level
F 0 4 0.8 F 0 9 6.1 F 1 1 1Total
T 22 4 2.7 T 13 8 7.2 T 28 0 X

above, False Positives and True Positives have not only been detected
but also the level of (dis-)agreement has been rated with a range of
values. Therefore, we added an additional column named Level, to
show the level of agreement (for True Positives) or the error level (for
False Positives). To analyse the performance of our proposed model in
detecting changes in forward and backward directions, we calculated
the confusion matrix for Increase (where changes showed an increase in
intensity, as indicated by red pixels), Decrease (where changes showed
a decrease in intensity, indicated by blue pixels), and a combination of
both types of changes.

To calculate the level of (dis-)agreement, for example, in the In-
crease category for the Synovium from Reader 1, we counted the
number of FNs, FPs, TNs and TPs as follows, 𝐹𝑁 = 1, 𝐹𝑃 = 1(𝑠𝑐𝑜𝑟𝑒 =
−2), 𝑇𝑁 = 11, 𝑇 𝑃 = 2(𝑠𝑐𝑜𝑟𝑒𝑠 9 𝑎𝑛𝑑 10). Since the maximum
range for the absolute scores is 10, we weighted FP and TP as follows,
𝐹𝑃 = 2∕10 = 0.2, 𝑇 𝑃 = 9∕10 + 10∕10 = 1.9. Then we put the weighed
scores in the Level column. As can be seen from Tables 7 and 8, there
were no considerable differences between the Increase and Decrease
categories, which indicates that our proposed model had almost similar
performance to find changes in the forward and backward direction.
The results show also that we had a small number of False Negatives
(from Reader 1’s perspective: five cases; and from the second Reader’s
perspective just one case). This means that in only a very limited
number of cases the proposed model was unable to detect changes.
There are cases where there was no change between baseline and
follow-up images, but by mistake our proposed model did show changes
(False Positives). However, the error level was low, which indicate
that detected false changes were small. On the other hand, the level
of agreement of True Positives was high, which means that not only
our proposed model could detect relevant changes correctly, but also
in most cases could accurately represent them in the change maps.

5. Discussion and conclusion

In this paper, a deep learning-based model is proposed to detect
inflammatory changes in Rheumatoid Arthritis from MRI scans. The
proposed model is a combination of a convolutional neural network
for image reconstruction and classical image processing techniques.
10
To do this, a U-Net-based model was developed for image reconstruc-
tion, where the model was able to reconstruct the follow-up MRI
from the baseline MRI. In the proposed model, we found for the first
time changes in both forward and backward direction. In this case,
we could find both inflammation remission, and new or progressing
inflammation over time.

In the end, the Otsu thresholding technique was applied to the
obtained difference map between the baseline and follow-up image to
show non-trivial changes over time.

Our algorithm uses the strengths of a joint U-Net to map the high
intensity changes, contrast defects and textural changes from one image
to another. As shown in a subjective comparison versus the Baseline
model, less artefacts and noise appeared in the final change maps, as
compared to simple subtraction.

In our proposed model, the accuracy of the final change map
depends on the quality of image reconstruction. In some cases, where
the reconstructed image was very similar to the original image without
unique changes, the output change map was more accurate with less
noise and fewer artefacts. To develop a better reconstruction model,
we tried various settings for the U-Net, and also different augmentation
methods. Since the follow-up image reconstruction is more difficult as
compared to usual DL image reconstruction, where the same image
as the input needs to be reconstructed, we found that resizing the
image to 128 × 128 could help to improve the quality of the image
reconstruction.

To evaluate our proposed model, we used a subjective comparison
versus the Baseline model, which uses the original SRR images to calcu-
late change maps instead of using the reconstructed images. In this case,
we noticed that our proposed model could successfully remove artefacts
and noise from the final change maps. Also, we set up a reader study,
where a radiologist and rheumatologist in training evaluated the final
change maps. One slice was scored at the level of the Listers tubercle for
each patients in the test set. We found that, synovitis was not frequently
present in the Distal Radial Ulnar (DRU) region (on the selected slice),
but in most of the cases if it appeared, it was detected and changes were
represented correctly in the final change maps. BME was not frequently
presented in the selected patients either, however the proposed model
could successfully recognised them as True Negatives. Most importantly
we could see minor intensity changes in the bone between baseline
and follow-up images, however, our proposed model could learn these
parts and they did not appeared in the final change map, which can be
considered an advantage of our model. In addition, tenosynovitis was
often well-recognised (both decreasing and increasing) by the model.

The other soft tissues (entire image except for synovitis, tenosynovi-
tis, and BME) are also evaluated by the two readers. Therefore, there is
a possibility to take a closer look at the changes in other regions (entire
image excluding synovium, tenosynovium and bone marrow) to find
possibly RA-related changes. For example, changes in vessels and/or
skin might be related to RA. However, the readers believed that, when
there are too many changes in this area, it makes scoring difficult and it
can be distracting. However, changes related to vessels are recognised
properly, but it remains to be seen if these changes are relevant to
the development of RA. Sometimes many pixels with intensity changes
undetectable by eye are presented in the final change maps. Also for
these regions, further research is needed to evaluate whether these
unexpected changes are relevant to RA development.

Because of the complexity of the scoring process, just one slice per
patient was used for evaluation, Which may not properly reflect the
overall quality of the change maps in some cases. Therefore, one of the
concern is that the results are not shown as well as they should be.
Therefore, the true results may be better than what the numbers have
shown.

One of the drawbacks of our work is the lack of a proper ground
truth. Ground truth change maps are, however, very time-consuming
to produce. Therefore, it was not available for our large dataset, and

we needed to use a subjective evaluation instead. Also, pixel-based
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analysis can be prone to errors due to image noise. One of the solutions
to address this problem can be region-based analysis. However, the
wrist has a complicated anatomy with multiple anatomical sections, in-
cluding bones, tendons, vessels, skin, and other tissue. Our preliminary
experiment showed that we would then need to segment the wrist into
33 regions to conduct hypothesis-free experiments on the whole wrist.
An accurate segmentation method for this purpose is not yet available

Furthermore, our proposed model finds all the changes between two
MRI scans and a part of detected changes may be irrelevant to RA.
For example, the changes could be because of fat suppression issues
or wrist movement during MRI scanning. One of our plans is to label
the changes into ‘relevant’ or ‘irrelevant’. In this case, we can train our
model to learn just RA-related changes.

Overall, the obtained results were promising as a first step to detect
inflammatory changes in rheumatoid arthritis using deep learning. In
this work, we found changes in both forward and backward directions;
therefore, we could distinguish between changes over time, detecting
both progression and remission in different inflammatory regions.
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