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ABSTRACT
Catastrophe-related insurance (e.g. business interruption insurance) is an effective financing tool
for global corporations to reduce economic losses caused by high impact events. Flexible opera-
tional planning is an often-used tool enabling rapid adjustment of operational plans for reducing
catastrophe-related damage costs. The interaction between catastrophe insurance and flexible
operations planning has rarely been studied. In this paper, we develop a stochastic programming
model for a multi-echelon global supply chain network that we solve to investigate the impact of
purchasing catastrophe insuranceon supply chainoperational planning in a catastrophe-proneenvi-
ronment. Computational simulations are developed for evaluating solution quality and measuring
catastrophe-related damage costs. We find that it may be optimal for supply chains to scrap redun-
dant products in catastrophes when customer demand falls below the expected level. Purchasing
catastrophe insurance may encourage supply chains to scrap more products, which results in more
catastrophe-relateddamages. Fromanalysing supply chain costs, catastrophe-relateddamage costs,
and operational plans, we find that a higher compensation rate of catastrophe insurance triggers
more production activities being planned at the vulnerable node just before the vulnerable time
period, especially for low residual value products. Finally, we givemanagerial insights to help reduce
unnecessary damages in catastrophes.
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1. Introduction

The global economy can be devastated by natural disas-
ters such as the Fukushima accident and the Thailand
floods in 2011 (Hayashi andHughes 2013;Haraguchi and
Lall 2015), and man-made incidents, such as the Tianjin
explosions in 2015 and the Hanjin Shipping bankruptcy
in 2016 (Mihalascu 2015; Braden 2016), not to mention
the ongoing pandemic of COVID-19. Disruption risk
mitigation strategies have attracted increasing attention
from decision makers. Financial and operational miti-
gation strategies are important tools for global supply
chains (SCs) to cope with disruption risks.

When facing forthcoming uncertainties, SCs often
adapt their operational strategy by adjusting production
activities, e.g. production and transportation plans, to
reduce possible financial losses. By making a detour or
using a different transportation mode, SCs can avoid
passing through high risk areas in transportation (Fan
et al. 2017a; Fan, Schwartz, and Voß 2017). Delaying
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or advancing production activities help to reduce pos-
sible economic losses during vulnerable time periods.
In contrast to these operational strategies, purchasing
catastrophe-related insurance (e.g. business interruption
insurance) is an important financial strategy for mitigat-
ing disruption risks (Zhao et al. 2020; Nebolsina 2021).
In our paper, catastrophe insurance indicates business
interruption insurance for catastrophe-related disruption
risks. By covering damage costs caused by a prescribed
catastrophe, catastrophe insurance is a way for SCs to
share the risk with, and obtain financial support from,
insurance companies (Eggert, Fan, and Voß 2016).

Althoughpurchasing catastrophe insurance and adjust-
ing operational plans are effective in reducing SC eco-
nomic losses in case of a catastrophe when adopted sep-
arately, the interaction between the two has not been
thoroughly studied. When multiple strategies are avail-
able, the implementation of one strategy may influence
the implementation of the other. More specifically, the
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protection of catastrophe insurance may reduce decision
makers’ cautiousness. It may also drive decision mak-
ers to pursue insurance compensation through deliber-
ately creating high damage costs. In that case, purchasing
catastrophe insurancemay result in higher expected costs
for companies and/or insurers.

In this paper, we aim to develop a systematic and quan-
titative analysis of the impact of catastrophe insurance
on SC operational planning. To achieve this goal, a series
of challenges should be overcome in modelling: (a) this
problem should be studied at global SC scale, because
the impact of catastrophes may affect multiple partner
companies. However, (b) the nature of multi-echelon
(with multiple companies in each echelon) and multi-
products of global SCs increases the difficulty in mod-
elling and computing. Meanwhile, (c) the long recovery
time requires the model to include a considerable num-
ber of planning periods which also leads to (d) a con-
siderable number of decision variables to be included in
the model (Dunke et al. 2018). Moreover, (e) demand
fluctuations often come along with catastrophes.

To overcome these challenges, we build a stochastic
programming model for a multi-echelon, multi-node,
global SC that provides multiple products to globally
distributed customers in a catastrophe-prone environ-
ment. We analyse and simulate the impacts of catas-
trophe insurance on global SC operational planning by
using real-world data. We assume that the probabil-
ity of catastrophe occurrence during a period of time
can be estimated using historical records and real-time
information. Given the low probability of catastrophes,
we include no more than one catastrophe in the time
horizon considered. Recovery time after a catastrophe
and the catastrophe’s occurrence time point are assumed
to be distributed exponentially and uniformly, respec-
tively. In addition, uncertain demand is considered in our
model. To make it possible to analyse operations deci-
sions involving purchasing, production, and transporta-
tion plans, we use overall SC costs to measure the per-
formance of operations plans and damage costs to indi-
cate the negative impact from catastrophes. The model
provides optimised purchasing, production, and trans-
portation plans.We use a simulation study to evaluate the
quality of solutions. Managerial implications and conclu-
sions are made based on analysing solutions for insured
and uninsured SCs.

The paper is organized as follows. Section 2 shows a
systematic literature review on SC risks and risk man-
agement/mitigation strategies. Background and assump-
tions are explained in Section 3. A stochastic model for
a multi-echelon global SC is developed in Section 4.
A computational simulation is introduced in Section 5.

Finally, we summarise managerial insights and outline
further research directions in Section 6.

2. Systematic literature review

In this section, we will review literature in the related
domain. We first refer to various typologies of SC risks.
Then, we summarise conceptual research and empiri-
cal research in SC risk mitigation, as recently emerging
many articles in this domain. Next, we review research in
financial and operational mitigation strategies, as well as
research on the interaction between the two, since these
are the main focus of this research. Stochastic program-
ming is used in our research, so we will review articles
on applying stochastic programming for SC riskmanage-
ment. A summary of research gaps is provided at the end
of this section.

2.1. Categories of supply chain risks

Disaster management has been receiving increasing
attention in SC research (Gupta et al. 2016) and risk
management is an important component. SC risk can
be categorised into internal and external environmental
risk, social risk, financial risk, and operational risk (Jüt-
tner, Peck, and Christopher 2003; Christopher and Gau-
denzi 2015). In general, operational and disruption risks
refer to different impact levels (Tang 2006). Operational
risk refers to uncertainties that have local impacts and
takes place on a daily base. Disruption risk refers to
natural or man-made disasters and may have global
impacts. Catastrophic risk refers to disruptions that
cause major damage to infrastructure and local ser-
vices of many partner companies (Dlugolecki and Hoek-
stra 2006). According to the role of the disrupted com-
pany, disruption risks can be categorised as production
disruptions, supply disruptions, and transportation dis-
ruptions (Ivanov et al. 2017). Wicaksana et al. (2022)
proposed a new SC risk typology, which categorises SC
risks according to the characteristics (internal/external,
intentional/unintentional), the location (SC stages and
flows), and the impact (economics, social, environmen-
tal) of risks. In this paper, we focus on catastrophic risk
which has low frequency, high impact.

2.2. Conceptual research and empirical research in
SC riskmitigation

TheCOVID-19 pandemic has been disrupting global SCs
seriously. SC risk management related concepts, such as
SC readiness, sustainability, flexibility, resilience, viabil-
ity and reconfigurability become more important than
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ever before (Al Naimi et al. 2022). Empirical studies show
that SC performance is significantly influenced by SC
resilience, robustness and dynamic capability (Belhadi
et al. 2021; Ruel and El Baz 2021). Belhadi et al. (2021)
concluded that SC adaptive capability and collabora-
tions positively influence SC resilience. Llaguno, Mula,
and Campuzano-Bolarin (2022) reviewed the ripple
effect of low-frequency/high-impact disruption risks
and proposed a conceptual framework for resilient SC.
Mohammed, Jabbour, and Diabat (2021) strengthen the
importance of possessing dynamic capabilities, which
include capability of sensing, readiness, response, recov-
ery and growth. Similar conceptual frameworks are pro-
posed for resilient SC in Kähkönen et al. (2021) and
Llaguno, Mula, and Campuzano-Bolarin (2022). Recon-
figurability was studied as a capability that enables SCs
to rapidly adapt themselves in facing internal and exter-
nal changes (Dolgui, Ivanov, and Sokolov 2020). Ruel and
El Baz (2021) concluded that SC readiness has signif-
icant positive correlations with both SC resilience and
SC robustness. Ivanov (2021) proposed a framework of
merging four strategies, named intertwining, scalability,
substitution and re-purposing, formaintaining SC viabil-
ity in facing disruptions. An emerging concept of digital
twins for SCs aims to visualise the impact of risks along
the whole global SC, it worthies further research in the
near future (Wicaksana et al. 2022).

Though many concepts and conceptual frameworks
have been proposed in existing research, further research
should be conducted in implementing these con-
cepts/frameworks to guide practitioners’ decisions. In
solving real world problems, decision support in produc-
tion planning, transportation planning, as well as finan-
cial decisions are needed. In this paper, we focus on the
impact of using financial mitigation strategies and oper-
ational mitigation strategies on SC production plans and
transportation plans.

2.3. Financial mitigation strategies

Purchasing a business insurance is an option for reduc-
ing damage costs in case of natural/man-made disrup-
tions, economic crisis, customer demand fluctuations, or
technological/regulatory changes (Shi 2004; Stecke and
Kumar 2009). With advanced risk-management tools,
such as catastrophe bonds, insurers can pool global catas-
trophe risks and are able to provide financial assistance
to vulnerable firms after disruptions (Dlugolecki and
Hoekstra 2006; Schultz 2022).

The coverage of catastrophe-related insurance
depends on insurance policy between the insurer and the
insured. It may only cover direct economic losses (caused
by damage of insured properties in interruptions), or also

cover indirect economic losses (lost profits and/or extra
costs caused by catastrophic events at partner companies)
(Jaffee and Russell 1997; Surminski and Eldridge 2015).
For example, business interruption insurance is a type of
catastrophe-related insurance which covers both prop-
erty damages in a disruption and revenue losses arising
from those property damages (Dong, Tang, and Tom-
lin 2018). The coverage varies depending on the contract
between the insured and the insurer. In our paper, we
focus on a catastrophe-related insurance that fully or par-
tially cover product damages caused by a catastrophe. In
the rest of this paper, the term ‘catastrophe insurance’
indicates this type of insurance.

2.4. Operational mitigation strategies

SC risk prediction opens a way of efficientlymanaging SC
risks with operational mitigation strategies. More accu-
rate prediction became possible using big data analytics
and artificial intelligence (Baryannis, Dani, and Anto-
niou 2019; Sanders and Ganeshan 2018; Choi, Wallace,
and Wang 2018; Fan, Heilig, and Voß 2015). Blockchain
technology is a new tool for detecting SC risks and build-
ing trust between partner companies (Min 2019; Smith
and Dhillon 2019). Existing research on operational mit-
igation strategies aim at minimising system costs or time
or maximising system profits in an environment with
uncertain demand (Yang, Cai, and Chen 2018; Chen,
Shum, and Simchi-Levi 2014; Ma et al. 2022; Sazvar
et al. 2021), uncertain supply (Hamdan andDiabat 2019),
uncertain costs (Farrokh et al. 2018), or hybrid uncer-
tainties (Hamdan and Diabat 2019; Farrokh et al. 2018).
More research should be conducted on decision support
in facing conflicting or complementary goals in mitigat-
ing negative impacts of SC disruptions.

Simultaneously analysing the impacts of SC dis-
ruptions and demand uncertainties is a big challenge
due to the complexity of SC models (Badakhshan and
Ball 2022). Hybrid optimisation-based simulation tech-
niques make it possible to analyse the impacts of hybrid
disruptions and uncertainties on the performance of
complex SC networks (Ivanov et al. 2017). Opera-
tional mitigation strategies for disruption risk (catas-
trophic events), such as reduced capacity in produc-
tion (Bhuiyan, Medal, and Harun 2020; Snoeck, Ude-
nio, and Fransoo 2019; Dong, Tang, and Tomlin 2018;
Li and Zhang 2018) or storage (Fattahi and Govin-
dan 2018) and disrupted transportation routes (Ham-
dan and Diabat 2020) or suppliers (Sawik 2019; Sabouhi,
Pishvaee, and Jabalameli 2018), have been attracting
more research interest recently. In quantitative analyses
of disruption risks, customer demand is often assumed to
be deterministic (Christopher and Gaudenzi 2015; Dong
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and Tomlin 2012; Tomlin 2006), even though customer
demand fluctuation often comes along with catastrophic
events (Snyder et al. 2016). Customer demand fluctua-
tions may or may not be caused by catastrophic events,
as demand fluctuations are not rare in real-world busi-
nesses. More quantitative research should be conducted
in analysing operational strategies in facing hybrid uncer-
tainties.

2.5. Interactions between financial strategies and
operational strategies

Dong andTomlin (2012) propose that financial and oper-
ational mitigation measures can be complements under
certain conditions, whereas proper catastrophe insur-
ance policies are required to mitigate free-riding prob-
lems within an SC (Serpa and Krishnan 2017). Dong,
Tang, and Tomlin (2018) analyse the interaction among
storing inventory, taking preparedness, and purchas-
ing an insurance in a two-stage production chain with
deterministic customer demand. In their model, disrup-
tions only influence production and disruption-related
lost sales costs are reimbursed if an insurance is pur-
chased. However, the impact of a catastrophic event
ripples through each echelon of a global SC. Different
concurrent risk mitigation strategies can positively or
negatively affect each other (Kumar and Park 2019). It
is essential to study the effect of simultaneously adopt-
ing financial and operational mitigation measures for
SCs in facing disruptive events (Dolgui and Ivanov 2021;
Badakhshan and Ball 2022). Badakhshan and Ball (2022)
proposed a digital twin framework for simulating both
inventory control and cash replenishment policies in a
low-frequency-high-impact disruptive environment and
simulated three disruptive scenarios with determinis-
tic parameters. More effort should be contributed to
investigating the combined effects of multiple risk mit-
igation strategies. A paper by Zhen et al. (2016) looks
at interactions between business interruption insurance
and backup transportation plans using a model where a
single distribution centre delivers a quantity of a prod-
uct tomultiple customers.Most of their analysis concerns
backup transportation strategies, and they conclude that
insurance and backup transportation can be seen as
substitutes.

From existing research in financial and operational
mitigation strategies, we see that it is necessary to syn-
chronise multiple strategies to mitigate impacts from
low-frequency-high-impact disruptions. So far, there is
a lack of research in quantitative methods in measuring
the performance of disruption mitigation strategies and
interaction effects between different strategies.

2.6. Stochastic programming for SC risk
management

Quantitative analyses of SC disruption risks have been
developed considerably during the recent years. Catas-
trophic events are characterised by three parameters:
the point in time of the occurrence, the duration of
negative impacts to the SC, and the probability of its
occurrence in Fan et al. (2017a). Stochastic optimisa-
tion, robust optimisation, and dynamic optimisation are
used for supporting decisions on supplier selection, pro-
duction planning, transportation planning, and distri-
bution planning in an uncertain environment (Ermoliev
et al. 2000; Govindan and Cheng 2018; Gao et al. 2017).
The impacts of disruption risk are also analysed in case
studies (Haraguchi and Lall 2015).

A two-stage stochastic program (SP) is sometimes
used for SC disruption risk management. See, e.g.
King and Wallace (2012) for a general introduction to
stochastic programming. Fattahi, Govindan, and Mai-
hami (2020) build a two-stage stochastic model for an
SC to optimise location, allocation, capacity, inventory,
and order-size decisions at the first-stage, and adjust allo-
cation, inventory and order-size decisions once a distri-
bution centre disruption event is disclosed. Jabbarzadeh,
Haughton, and Khosrojerdi (2018) propose a two-stage
SP model for a closed-loop SC network in an environ-
ment with uncertain demand and disruption risks. Their
model aims at minimising overall costs through pro-
duction facility location and relocation (first-stage deci-
sion) and production planning (second-stage decision).
Facility disruption problems are also studied in Bhuiyan,
Medal, andHarun (2020). In theirmodel, allocation deci-
sions are made in the first stage and post-disruption
transportation flows are planned in the second stage. This
is similar to an SCmodel for blood proposed in Hamdan
and Diabat (2020).

Stochastic programming is used for building a flexible
SC in facing disruptions (Fan et al. 2017a; Fan, Schwartz,
andVoß 2017; Fan et al. 2017b). SC flexibility refers to the
capability of a manufacturer to produce different types
of products in Jordan and Graves (1995). Flexible SCs
can better protect themselves from disruptions (Simchi-
Levi, Wang, and Wei 2018). According to results in Fan
et al. (2017a) and Fan, Schwartz, and Voß (2017), flexible
SCs experience less negative impacts in case of a disrup-
tion event. Based on a systematic review of SCRM related
references of the last decade, Wicaksana et al. (2022)
strengthen the importance of SC flexibility and call for
researchers to dive into flexibility-oriented strategies.

In the present paper, flexibility is twofold: (1) each fac-
tory produces different types of products and each type of
product can be produced at different factories, (2) each
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transportation link has different transportation modes
that can be used as needed. These two conditions enable
flexible operational planning by postponing or bringing
forward production and/or transportation activities to
reduce economic losses from a possible catastrophe in the
near future.

2.7. Summary of literature review

In this section, we reviewed literature on SC risk and
concepts, methods and strategies for managing SC risks.
Based on existing research, we see research gaps in SC
disruption management:

(i) decision support in facing conflicting or comple-
mentary goals in mitigating negative impacts of SC
disruptions;

(ii) developing methods and tools for transforming
concepts and conceptual frameworks in existing
research into clear guidance for practitioners, for
example, tools for mapping/visualising the spread
of disruptions’ impacts along global SCs;

(iii) analysing the impact of hybrid uncertainties/
disruptions to global SC networks’ production and
transportation operations;

(iv) quantitative methods in measuring performance of
SC disruption mitigation strategies/policies, espe-
cially whenmultiplemitigation strategies are simul-
taneously used.

This paper mainly contributes to research areas (iii)
and (iv). First, we model daily production and trans-
portation plans of a global SC network over a long
time period in a disruptive environment with a two-
stage stochastic programming model. Second, given
the complexity of global SC networks, varies materi-
als/parts/products that are involved, the time span of
transportation (especially intercontinental transporta-
tion) and production, traditional optimisation or simula-
tion methods are insufficient for analysing the impacts of
hybrid uncertainties on global SCs. The combination of
optimisation and simulation methods enables us to mea-
sure the impact of disruptions and the impact of insur-
ance policies on SC performance. We simulate situations
when catastrophe-related insurances are taken/not taken
by SC executives and optimise SC production and trans-
portation plans (by solving the stochastic programming
model) in these situations. Third, we analyse solutions
(production plans) and results (costs and damage costs)
in different situations and summarisemanagerial insights
from our analyses.

3. Background and assumptions

In this section, we will introduce the disruptive envi-
ronment global SCs in this research are facing and
predictability of possible disruptions. To present the dis-
ruptive environment of our case, we classify disrup-
tions into three categories according to predictability, for
instance, prediction leading time and predictable details.
Catastrophe related damages and compensationmethods
in insurance policies will be introduced afterwards. The
structure of the global SC network including geograph-
ical locations of the main factories, distribution centres,
and transfer stations/ports will also be explained in this
section.

3.1. Disruption predictability

This paper focuses on stochastically predictable disrup-
tions (see Appendix A of the supplementary material for
detailed classification and explanation) that cause prod-
uct damage and production interruptions. It means that
probability information of possible impacts caused by
disruptions are known in advance. More accurate pre-
dictions of these impacts become available accompanying
with updated information.

3.2. Catastrophes and insurance policies

In general, catastrophes may take place at a production
site of an SC, a port, or during transportation. In this
paper, we focus on catastrophes at a factory (an assem-
bly centre). We assume that once a factory is disrupted,
production activities would have to be suspended for a
period of time (e.g. a few days or weeks). All the fin-
ished goods in the warehouse and work in progress are
destroyed at themoment of a catastrophe. Hence, a catas-
trophe at a location is represented by its probability of
occurrence, the recovery time (duration) and the point
in time of occurrence (start time). Our model focuses
on damage costs, which are related to the value of prod-
ucts and parts that are destroyed at a factory in case of a
catastrophe.

Based on the prediction of a disaster, decision mak-
ers can deploy flexible operational planning by postpon-
ing or bringing forward production and transportation
activities to reduce/avoid damage costs once the disaster
breaks out. Using stochastic programming for SC oper-
ational planning helps to achieve lower economic losses
in case of a disruption event in a catastrophe-prone envi-
ronment. Beyond that, purchasing insurancewith respect
to a possible disaster can be used as a strategy.
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Figure 1. SC structure.

When catastrophe insurance is considered, an insur-
ance policy is taken out based on the negotiation between
an insurer and an insured SC. In this paper, we aim to
analyse SC production and transportation planning. The
question of how to design an optimal insurance policy is
beyond the scope of this research.

In our model, the resulting insurance premium is paid
per unit time at a fixed price that does not vary with
production plans. In this research, we focus on variable
costs, so we do not include fixed costs, including insur-
ance cost. A part of the damage costs of insured SCs due
to destroyed products in a catastrophe at a specific loca-
tion will be indemnified by the insurer according to the
compensation rate specified in the insurance contract.
Note that indirect economic losses (e.g. stockout costs)
are not covered by the insurance in this research.

3.3. SC structure

We focus on a global SC consisting of suppliers, assem-
bly centres, sellers, final customers, and multiple transfer
stations on long distance (international) transportation
links. The global SC network is given in Figures 1 and 2.

Figure 1 shows product flows. In Figure 1, parts and
semi-products are provided by suppliers and transported
to assembly centres for finalising the final products. Final
products will be then transported to retailers (sellers). In
general, parts can be supplied bymultiple suppliers, while
each supplier has limited capacity. Multiple transporta-
tionmodes with various speeds and costs are available for
each transportation link and faster transportation modes
are more costly. Items have to be sent to a local port
or transferring centre nearby at first. From there, these
items are transported to other ports or transfer centres
close to the destination before arriving at final destina-
tion. Each seller provides finished products to customers

of the same region. Selling finished products to cross-
region customers is not allowed in our model. SC activi-
ties include assembling, transportation, and processing at
a port or a transferring centre. Processing and assembling
activities can take multiple time periods. Transportation
time depends on distances and transportation mode.

Figure 2 shows locations of SC partners and the scale
of the global SC. In Figure 2, the European section of the
global SC is the focus of our research; sellers in North
and South America as well as China are not included
in this figure due to limited space. Purple pinpoints in
Figure 2 show locations of factories/assembly centres. For
example, the factory in Hungary is the main supplier for
valuable components and parts as well as one of the main
factories for the final products. Green pinpoints show
locations of sales centres/retailers, blue pinpoints spec-
ify transfer stations/ports. Figure 1 shows material flows
and Figure 2 shows only transportation links. Four SC
echelons can be related in an international transporta-
tion link. For example, products transported from an
assembly centre inGermany to a seller inChina are trans-
ferred at a port in Europe (e.g. Bremen, Hamburg, or
Rotterdam) and a port in China (e.g. Shanghai, Tianjin,
or Guangzhou). The same happens for other interna-
tional transportation links. Taking into account all rel-
evant ports and transfer stations, the global SC in our
experiments consists of multiple echelons (more than
seven echelons, see Figure 1).

4. Model

In this section, we develop a two-stage stochastic pro-
gramming model for operational planning of a multi-
echelon multi-product global SC in a catastrophe-prone
environment with stochastically predictable disruptions.
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Figure 2. The global SC network.

4.1. The two stages of the stochastic programming
model

We develop a two-stage stochastic programming model
for the global SC with the aim of obtaining a first-stage
decision (production and transportation plans for the
time period T 1st in Figure 3) that optimises the sum-
mation of the value (or cost) of first-stage decisions and
the expected value of second-stage decisions (produc-
tion and transportation plans for the time period T 2nd

in Figure 3). By considering operational plans into two
stages, we leave uncertainties (including possible dis-
ruptions and demand fluctuations) in the second-stage.
We assume that the occurrence time of a catastrophic
event is stochastically predictable. That is, the domain
of the occurrence time T Loss

iω (see Figure 3, i indicates
the vulnerable SC node and ω indicates a possible real-
isation of the second stage) and the probability of such
an event would take place are predictable. We minimise
the first-stage cost plus the expected value of uncer-
tain second-stage costs. T Pre is a warm-up stage. In our

model, the first-stage decisions specify an SC opera-
tional plan (including plans of purchasing, production
and transportation activities) for the forthcoming plan
cycle. The second-stage decisions are making alternative
operational plans for possible realisations for a certain
period of time following the forthcoming plan cycle.

In this model, uncertainties are only related to the
second-stage decisions. Parameters that are related to the
first-stage decision are assumed to be deterministic. In
making the first-stage decisions, uncertainties in the sec-
ond stage should be also considered as well, including the
possibility that the damage cost caused by a catastrophe
in the second stage can be fully or partially refunded if
catastrophe insurance is purchased. The first stage deci-
sions must be non-anticipative, which means that they
cannot depend on the realised scenario.

4.2. Specification of SC operational plans

Our main focus is the impact of insurance on oper-
ational planning for global SCs. However, operational
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Figure 3. Stages and timeline.

Table 1. Sets.

Set Definition

I Set of nodes, I = ISup ∪ IPort ∪ IAsm ∪ IDem

ISup Set of supply nodes, ISup ⊂ I
IPort Set of ports, IPort ⊂ I
IAsm Set of assembly centres, IAsm ⊂ I
IDem Set of demand nodes/sellers, IDem ⊂ I
A Set of transportation links,A ⊆ I × I
M Set of transportation modes
PF Set of finished products
PC Set of components/parts
P Set of all products,P = PF ∪ PC

Pi Set of products produced/processed at node i ∈ I
T Set of periods in the considered time horizon (see Figure 3),

T = T Pre ∪ T 1st ∪ T 2nd

T Pre Set of periods before the first stage, T Pre ⊂ T
T 1st Set of periods in the first stage, T 1st ⊂ T
T 2nd Set of periods in the second stage, T 2nd ⊂ T
� Set of scenarios
T Cata
iω Set of time periods when node i ∈ I is interrupted in scenario

ω ∈ �

T Loss
iω Set of time periods constituting the time span within which all

products at node i ∈ I will be destroyed in scenario ω ∈ �

(see Figure 3)

plans (which include purchasing, production and trans-
portation plans) of a large-size, multi-product, multi-
echelon, multi-node global SC in multiple time periods
contain massive information which makes it unrealis-
tic to directly analyse operational plans in every detail
(Figure 1). In ourmodel, we consider daily updated oper-
ational plans of a global SC over a time period of four
months. It is not convenient to report the huge amount
of individual variables’ values in this paper. Therefore,
we use twomain indicators for each operational plan: the
overall SC costs, and damage costs in case of a catastro-
phe. As an insuree, an SC’s main concern is the overall
SC cost. As an insurer, damage cost in case of a disrup-
tion determines the amount of cost incurred. We mainly
focus on SC costs and damage costs in our computational
experiments.We nowproceed to describe the elements of
the model using sets defined in Table 1, input parameters
defined in Table 2, and variables defined in Table 3.

4.3. Objective function

Our stochastic programming model represents overall
costs for a two-stage multi-echelon global SC. The objec-
tive of the model is to identify a first-stage decision that
minimises first-stage SC cost and the expected cost of
the second-stage decision. First-stage SC cost is scenario-
independent so in the objective function given in (1) the

Table 2. Parameters.

Parameter Definition

Vpi Value of products p ∈ Pi at node i ∈ I
Cpi External purchasing cost for per unit of product p ∈ Pi at node

i ∈ I
CIpi Storage cost per unit of product p ∈ Pi at node i ∈ I
CH Capital holding cost coefficient
Tpi Processing time for product p ∈ Pi at node i ∈ I
Tijm Transport time for transportation link (i, j) ∈ A with

transportation modem ∈ M
Rpq Number of part p ∈ PC required to make one unit of product

q ∈ P
CLpi Cost of producing/processing one unit of product p ∈ Pi at

node i ∈ ISup ∪ IAsm

Cpijm Shipping cost for transportation link (i, j) ∈ A with
transportation mode m ∈ M for one unit of product
p ∈ Pi ∩ Pj

Lpi Coefficient of capacity consumption to make one unit of
product p ∈ Pi at location i ∈ I

LCapi Capacity at node i ∈ I per time period
Dtpiω Demand of product p ∈ Pi ∩ PF at node i ∈ I in period

t ∈ T 1st ∪ T 2nd in scenarioω ∈ �

C−
pi Stockout cost per unit of product p ∈ Pi ∩ PF at node i ∈ I
h0tpi Inventory of product p ∈ Pi at node i ∈ I in time period t0
VRes The ratio of the residual value of products in inventory at the

end of the plan horizon to the market value.
IBack The ratio of damage costs that would be compensated by the

insurer.
Rω Probability of scenarioω ∈ �

TFtpiω Time period where products p ∈ Pi , previously scheduled to
be processed in time period t ∈ T at node i ∈ I , will be
finished in scenarioω ∈ �

t0 The beginning of the first stage (see Figure 3)
t1 The end of the first stage (see Figure 3)
tf The end of the second stage (see Figure 3)

values for CSC
tω do not vary with ω for t ∈ T 1st

min
∑
ω∈�

Rω ·
⎧⎨
⎩

∑
t∈T 1st∪T 2nd

CSC
tω

− VRes ·
∑
p∈Pi

∑
i∈I

Vpi · htf piω

⎫⎬
⎭ (1)

SC cost per time period includes material/parts pur-
chasing cost, labour/processing cost, transportation cost,
storage cost and capital holding cost for products in
inventory, stockout cost, and capital holding cost for
products in transit and under progress. Residual value of
products at SC nodes at the end of the considered time
horizon is computed and deducted from SC cost. For an
SCwith catastrophe insurance, damage cost caused by the
pre-defined catastrophe is partially or fully indemnified
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Table 3. Variables.

Variable Definition Note

xtpiω Production quantity of product p ∈ Pi
at location i ∈ I \ IDem started in
time period t ∈ T 1st ∪ T 2nd for
scenarioω ∈ �

non-negative

ztpijmω Quantity of product p ∈ Pi ∩ Pj
transported on transportation link
(i, j) ∈ Awith transportation mode
m ∈ M, launched in time period
t ∈ T 1st ∪ T 2nd for scenarioω ∈ �

non-negative

xtpi Production quantity of product p ∈ Pi
at location i ∈ I \ IDem started in
time period t ∈ T 1st

first-stage variable

ztpijm Quantity of product p ∈ Pi ∩ Pj
transported on transportation link
(i, j) ∈ Awith transportation mode
m ∈ M started in time period
t ∈ T 1st

first-stage variable

htpiω Inventory of product p ∈ Pi at node
i ∈ I at the end of time period
t ∈ T 1st ∪ T 2nd for scenarioω ∈ �

non-negative
auxiliary variable

hDemtpiω Inventory of final product p ∈ PF ∩ Pi
at seller i ∈ IDem in time period
t ∈ T 1st ∪ T 2nd for scenarioω ∈ �

non-negative
auxiliary variable

h−Dem
tpiω Stockout of final product p ∈ PF ∩ Pi

at seller i ∈ IDem in time period
t ∈ T 1st ∪ T 2nd for scenarioω ∈ �

non-negative
auxiliary variable

hLosstpiω Destroyed inventory of final product
p ∈ PF ∩ Pi at seller i ∈ IDem in
time period t ∈ T 1st ∪ T 2nd for
scenarioω ∈ �

auxiliary variable

CSCtω SC costs for time period t ∈ T in
scenarioω ∈ �

dependent variable

VLosstiω Damage costs in time period t ∈ T at
node i ∈ I caused by a catastrophe
in scenarioω ∈ �

dependent variable

by the insurer. SC cost is computed according to (2).

CSC
tω =

∑
p∈Pi

∑
i∈ISup∪IAsm

(
CL
pi + Cpi

)
· xtpiω

+
∑

p∈Pi∩Pj

∑
(i,j)∈A

∑
m∈M

Cpijm · ztpijmω

+
∑
p∈Pi

∑
i∈I\IDem

(CI
pi + CH · Vpi) · htpiω

+
∑
p∈Pi

∑
i∈IDem

(CI
pi + CH · Vpi) · hDemtpiω

+
∑
p∈Pi

∑
i∈IDem

C−
pi · h−Dem

tpiω

+
∑

p∈Pi∩Pj

∑
(i,j)∈A

∑
m∈M

CH · Vpi · Tijm · ztpijmω

+
∑
p∈Pi

∑
i∈I\IDem

CH · Vpi · xtpiω ·
(
TF
tpiω − t

)

− IBack ·
∑

i∈I\IDem

VLoss
tiω ,

∀t ∈ T ,ω ∈ � (2)

The objective function (1) attempts to find operations
plans that minimise SC costs. These operations plans
should also maximise SC profits which can be written
as max

∑
ω∈� Rω ·

{∑
p∈Pi

(
∑

t∈T 1st∪T 2nd
∑

i∈IDem Vpi·
Dtpiω + VRes · ∑

i∈I Vpi · htf piω) − ∑
t∈T 1st∪T 2nd CSC

tω

}
.

4.4. Constraints

We introduce a constraint for balancing product flows at
each SC node. Each purchase order at an assembly centre
triggers shipment of parts/components fromanupstream
supplier (see Figure 1). Parts/Components that arrive at
the same time may be from different suppliers, departed
in different time periods, and/or transported with differ-
ent transportationmodes. Once parts/components arrive
at a warehouse, they may be stored at the warehouse
or directly sent for further processing. The constraints
defining inventory of a component/part at an assembly
centre follows:

htpjω = hτpjω + h0τpj −
∑
q∈Pj

Rpq · xtqjω

+
∑

t′∈T ∧t′=t−Tijm

∑
i∈I∧(i,j)∈A

∑
m∈M

zt′pijmω,

∀t ∈ T 1st ∪ T 2nd \ T Loss
jω , τ ∈ T ∧ τ = t − 1,

p ∈ PC ∩ Pj, j ∈ IAsm,ω ∈ �. (3)

Note that we use two different constraints for parts/
components at each SC node. Equation (3) is for items
before being processed at an SC node. We introduce the
next constraint (Equation (4)) for the inventory of items
after being processed at an SC node.

Processing of components/parts at an assembly centre
takes a certain period of time. After being finalised at an
assembly centre, finished products will be transported to
a downstream SC node. The product flow at an assembly
centre is the same as other SC nodes, except for sellers.
Therefore, we use a general constraint for the inventory of
components/parts/products after being processed at SC
nodes (except for sellers):

htpiω = hτpiω + h0τpi + xt′piω −
∑

j∈I∧(i,j)∈A

∑
m∈M

ztpijmω,

∀t ∈ T 1st ∪ T 2nd \ T Loss
iω , τ ∈ T ∧ τ = t − 1,

t′ ∈ T ∧ TF
t′piω = t,

p ∈ PF ∩ Pi ∧ i ∈ I \ IDem ∨ p ∈ PC ∩ Pi∧
i ∈ IPort ∪ ISup,ω ∈ �. (4)
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We use Equation (5) for the inventory of products at
sellers. Finished products at sellers can be stored in ware-
houses or sold to customers:

htpjω = hτpjω + h0τpj − Dtpjω

+
∑

t′∈T ∧t′=t−Tijm

∑
i∈I∧(i,j)∈A

∑
m∈M

zt′pijmω,

∀t ∈ T 1st ∪ T 2nd,

τ ∈ T ∧ τ = t − 1,

p ∈ PF ∩ Pj, j ∈ IDem,ω ∈ �. (5)

Transportation times are assumed to be deterministic
(because uncertainty in transportation is not the focus of
this research). The time of arrival depends on the time of
departure (see (6)). Once a batch of products arrives at
a port or transfer station, they receive a customs check
and/or handling activities (loading, unloading) which
takes a certain period of time.

xtpjω =
∑

i∈I∧(i,j)∈A

∑
m∈M

zt′pijmω

∀t ∈ T 1st ∪ T 2nd, p ∈ Pj, j ∈ IPort ,

t′ ∈ T ∧ t′ = t − Tijm,ω ∈ � (6)

Due to uncertainties of customer demand and SC oper-
ational processes, stockout is possible (when the value
of htpjω in (5) is negative). We define two auxiliary vari-
ables to differentiate between the inventory level (con-
straint (7)) and the stockout level (constraint (8)) of prod-
ucts at sellers. Note that the objective of the stochastic
programming model is to minimise SC cost and we use
the two auxiliary variables in computing the SC cost with
values that are established by constraints (7) and (8).

hDemtpiω ≥ htpiω, ∀t ∈ T 1st ∪ T 2nd, p ∈ PF ∩ Pi,

i ∈ IDem,ω ∈ �; (7)

h−Dem
tpiω ≥ −htpiω, ∀t ∈ T 1st ∪ T 2nd, p ∈ PF ∩ Pi,

i ∈ IDem,ω ∈ �. (8)

The capacity of production/processing activities at an
SC node is limited. It can be constrained by the labour
force, the capacity of facilities, or other resources. We use
the following constraints for the production capacity at
suppliers and assembly centres:

∑
p∈Pi

∑
τ≤t<TF

τpiω

Lpi · xtpiω ≤ LCapi ,

∀t ∈ T 1st ∪ T 2nd, i ∈ ISup ∪ IAsm,ω ∈ �. (9)

Except for at sellers, the inventory levels (in (3), (4),
and (7)) should be non-negative, as should stockout levels
(in (8)).

Because of the non-anticipativity of the first-stage
variables, constraints are enforced for production/
processing plans:

xtpi = xtpiω, ∀t ∈ T 1st , p ∈ Pi, i ∈ I \ IDem,ω ∈ �;
(10)

and for transportation plans:

ztpijm = ztpijmω, ∀t ∈ T 1st , p ∈ Pi ∩ Pj, (i, j) ∈ A,

m ∈ M,ω ∈ �. (11)

4.5. Catastrophe related constraints and costs

In case of a catastrophe at a supplier or an assembly cen-
tre, production processes are interrupted during the time
periods of the catastrophe:

xtpiω = 0, ∀t ∈ T Cata
iω , p ∈ Pi, i ∈ IAsm ∪ ISup,

ω ∈ �. (12)

Meanwhile, all the inventories are destroyed, too. The
affected parts/components/products cannot be sold:

htpiω +
∑
m∈M

∑
j∈I∧(i,j)∈A

ztpijmω = 0,

∀t ∈ T Loss
iω , p ∈ Pi, i ∈ I \ IDem,ω ∈ �. (13)

We deliver the damage cost of inventory to an auxiliary
variable through the following constraints:

hLosstpiω =
{
htpiω, t = t′ − 1
0, otherwise

∀t ∈ T , t′ ∈ T Loss
iω , p ∈ Pi, i ∈ I \ IDem,ω ∈ �.

(14)

Work in progress at this node will be damaged, too.
The damage cost in case of a catastrophe is calculated
according to (15):

VLoss
tiω =

∑
p∈Pi

⎛
⎝hLosstpiω +

∑
t′∈T ∧t−Tpi≤t′<t

xt′piω

⎞
⎠ · Vpi,

∀t ∈ T Loss
iω , i ∈ I \ IDem,ω ∈ �. (15)

In this paper, we do not focus on decision maker
behaviour or company behaviour. We analyse how
insurance policy influences costs, especially catastrophe-
related damage cost, of an entire global SC system over
multiple time periods in a catastrophe-prone environ-
ment with uncertain customer demand. In addition, we
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study whether the impact of insurance policy differs for
products with different residual value rate and whether
this impact is related to the predictability of catastrophic
events and customer demand.

5. Simulation experiment

5.1. Experiment setting

To make our research more realistic, we refer to an auto-
motive company’s global SC network and use real data
from its annual report. Products in the investigation are
characterised by high values and long production lead-
times. Demand is assumed to be normally distributed.
Mean (μ) and variance (σ ) of the demand are assumed
to be stochastically predictable based on historical sales
records.

Figure 1 shows the structure of the global SC net-
work on which we implement our stochastic program-
ming model. To draw a clear picture of insurance pol-
icy’s impact on such a complex global SC system, we
run a list of computational experiments that assume dif-
ferent types of information regarding catastrophes and
customer demand.We present the first experiment in this
section. In this experiment, we use different approaches
for solving the model to validate our solution approach.
We develop four additional computational experiments
for sensitivity analyses and production plan analyses in
the supplementary material (see Appendixes B-E in the
supplementary material).

5.2. Parameters

In this experiment, we investigate SC operations plan-
ning in an environment with possible catastrophic events
and fluctuating customer demand. Once a catastrophic
event takes place, the main factory is disrupted for a
period of time; products in inventory and in production
are destroyed; production activities have to be suspended
for a certain time period. Meanwhile, the catastrophe
would bring large fluctuations in customer demand. An
example is that thousands of cars were destroyed in Tian-
jin Port explosions in 2015. Several automobile produc-
tion lines temporarily suspended due to the disruption.1

Meanwhile, there was an unexpected jump in automobile
demand, e.g. sales of electric and hybrid cars were up by
52%.2

As we consider a catastrophe-prone environment, we
aim to draw an operational plan for 49 days (first-stage
of seven weeks) while considering possible catastrophes
during the second stage from day 50 to day 53. The
negative effect could last for multiple time periods after
a catastrophe, we consider second-stage of eight weeks

(from day 50 to day 115). Meanwhile, we consider a
warm-up stage of 14 days prior to the first stage. The total
considered time horizon of this experiment is 129 days.
We assume a catastrophe may take place at an assembly
centre during certain time periods with a probability of
80%. The outbreak time of a catastrophe is evenly dis-
tributed within the first 4 days of the second stage. The
duration of production suspension is exponentially dis-
tributed over a period of 5 to 14 days. Customer demand
for each product is normally distributed between −40%
and 40% of the expected level. We simulate cases when
the compensation rate increases from 0 to 0.8. The com-
pensation rate of 0 indicates the SC is uninsured. We
consider products with different residual value levels (0
and 0.8) in this experiment.

The objective is to draw an operational plan for the
forthcoming planning horizon to minimise the total cost
for the forthcoming horizon and the expected cost of
the next horizon. Each solution represents an operational
plan over a number of time periods.

5.3. Solution approaches

Due to the natural features of stochastic programming
models, it is unrealistic to get a theoretically optimal
solution by integrating over a continuous distribution. A
realistic approach is to solve the model with a relatively
small number of representative scenarios (in-sample sce-
narios) and simulating the solution with a large number
of out-of-sample scenarios to further verify the quality of
the solution. We run PySP (Watson and Woodruff 2011;
Veliz et al. 2015; Gade et al. 2016; Fan et al. 2017a; Fan,
Schwartz, and Voß 2017) and Gurobi on a compute clus-
ter with 20 Intel Xeon E5-2630V3 CPUs and 8 NVIDIA
K-80 GPUs.

To validate our solutions, we solve the model with
different approaches, named extensive form solutions,
expected value solutions and highest cost scenario solu-
tions.Wait-and-see solutions are also presented as bench-
marks for all other solutions.

• Extensive Form (EF) solution: We randomly gener-
ated scenario samples following probability distribu-
tion functions of stochastic parameters to represent
stochasticities from possible catastrophes and cus-
tomer demand fluctuations in the near future (the
second stage). We obtain the first-stage optimal solu-
tion by solving the extensive form based on all repre-
sentative scenarios of a randomly generated scenario
sample.

SC operational plans are based on the first-stage
solutions after solving extensive forms of the SC
model. SC operational plans are updated in a rolling



12 Y. FAN ET AL.

Table 4. Experiment results.

Solutions IBack VRes TCSC C1st C2nd VLoss VLoss% �TCSC% �C1st% CPU Time Wall-clock Time

EF-100 0 0 172323 113173 59150 0 0 7.2% 28.3% – 17901
0 80% 101926 139832 −37906 0 0 7.7% 25.6% – 16657

80% 0 171782 115476 56306 4638 2.7% 6.9% 30.9% – 18666
80% 80% 101733 145317 −43583 5646 5.5% 7.5% 30.5% – 17427

EF-40 0 0 175928 109514 66414 278 0.2% 9.5% 24.1% – 3780
0 80% 104714 135234 −30520 0 0 10.7% 21.4% – 3805

80% 0 175839 110754 65085 4946 2.8% 9.4% 25.6% – 3495
80% 80% 103402 139329 −35927 5953 5.8% 9.3% 25.1% – 3710

EVS 0 0 291401 87984 203417 0 0 81.3% −0.3% 100 –
0 80% 216122 110944 105178 0 0 128.4% −0.4% 101 –

80% 0 291401 87984 203417 0 0 81.3% −0.3% 101 –
80% 80% 216122 110944 105178 0 0 128.4% −0.4% 96 –

HCS 0 0 238320 102279 136041 0 0 48.3% 15.9% 20604 2183
0 80% 165829 122942 42887 0 0 75.3% 10.4% 25516 2634

80% 0 238320 102279 136041 0 0 48.3% 15.9% 25070 2575
80% 80% 165829 122942 42887 0 0 75.3% 10.4% 22980 2344

WS 0 0 160685 88212 72473 0 0 – – – –
0 80% 94606 111361 −16755 0 0 – – – –

80% 0 160685 88212 72472 0 0 – – – –
80% 80% 94606 111361 −16755 0 0 – – – –

TCSC : expected SC costs (including both the first and the second stage) of the 1000-scenario
VLoss%: the ratio of damage costs in SC costs (calculated by VLoss/TCSC )
�TCSC%: the gaps between the expected SC costs of EF-100/EF-40/EVS/HS solutions and the wait-and-see solutions (WS)
�C1st%: gaps
EF-100: extensive form solutions with 100 scenarios
EF-40: extensive form solutions with 40 scenarios
WS: expected SC costs of wait-and-see solutions.

horizon manner in practice. In our computational
experiments, we simulate SC operational plans for the
first stage and compute the expected cost of the second
stage.

• Expected Value Scenario (EVS) solution: The solu-
tion based on the expected value scenario is achieved
by solving the deterministic model with all stochas-
tic parameters (occurrence time and duration of a
catastrophe, time series demand of products) at the
expected values.

• Highest Cost Scenario (HCS) solution: We randomly
generated a scenario set (with 100 scenarios in
our computational experiments) following probabil-
ity distribution functions of stochastic parameters and
solve all the individual scenario instances. The first-
stage solution of the scenario which results in the
highest SC costs is called the highest-cost scenario
solution in this paper.

• Wait-and-See (WS) solution: To provide a benchmark
and show the value of information, we compute wait-
and-see solutions that provide operational plans in
cases when perfect information of both a catastro-
phe and customer demand are available.Wait-and-see
solutions are not feasible solutions of our stochastic
model, but are solutions when values of all stochastic
parameters are known (Madansky 1960). Wait-and-
see solutions can be used as benchmarks to indicate
the quality of stochastic programming solutions.

5.4. Out-of-sample evaluation

To test the quality of our solutions, we use out-of-
sample tests with 1000 randomly generated scenar-
ios for simulating realisations of the second stage. SC
costs and damage costs are computed accordingly. The
expected SC cost of a first-stage solution over the 1000-
scenario set shows the quality of a solution. We simulate
first-stage solutions from the three different approaches
(EF, EVS and HCS). WS solutions are calculated as a
benchmark.

5.5. Results

In Table 4, we show simulation results of EF, EVS
and HCS solutions, which are solved with different
approaches. For each solution approach, we simulate
cases when SC models with different parameters (com-
pensation rate IBack and residual value rate VRes). We
present two groups of extensive form solutions by solv-
ing stochastic models with 100 representative scenarios
(EF-100) and 40 representative scenarios (EF-40), respec-
tively. We present expected values of wait-and-see solu-
tions (WS) over the 1000-scenario set as benchmarks for
other solutions. Note that WS solutions are not feasi-
ble solutions of the stochastic model. We only use the
average costs of WS solutions as benchmarks for other
solutions.
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For each solution, we report the expected SC cost
(TCSC), the first-stage cost (C1st) and the expected
second-stage cost (C2nd). The expected SC cost indicates
the quality of the first-stage solution. The first-stage cost
reflects preparation before a possible catastrophe takes
place. Note that a lower first-stage cost does not result in
a lower expected SC cost.We report the expected damage
cost (VLoss) and the percentage of expected damage cost
in the expected SC cost (VLoss%) to show how damage
cost is influenced by SC model parameters (compensa-
tion rate and residual value rate). For each solution, we
also present the gaps to benchmark solutions in terms of
SC cost (�TCSC%) and first-stage cost (�C1st%). More-
over, CPU timeof generating/computing the solution and
wall-clock time (the actual time (in seconds) taken when
multiple threads are used) are given to show the efficiency
in obtaining the solution.

From results in Table 4, we see that EF solutions (EF-
100 and EF-40) perform better (with lower SC costs)
than EVS solutions and highest-cost scenario solutions.
The quality of extensive form solutions can be improved
by increasing the number of representative scenarios,
whereas includingmore representative scenarios requires
more computing time. Among all the solutions in Table 4,
better quality solutions have higher first-stage costs. It
implies that more sufficient preparation before a possi-
ble catastrophe (higher first-stage costs) helps to reduce
the expected cost of possible future realisations (second-
stage costs).

Among the best quality solutions (EF-100), higher
compensation rates result in slightly lower (reduced by
541 or less) expected SC cost, but also induce much
higher expected damage costs (increased by 4638 or
more). The same tendency can be seen among EF-40
solutions. It indicates that companies have limited ben-
efits from higher compensation rates for damages in
case of stochastic catastrophes, but higher compensation
rates significantly trigger higher damage costs. Though
compensation rates do not influence EVS and HCS
solutions, these solutions are less likely to be accepted
by decision makers because of the inferior quality
(higher TCSC).

Higher residual value rates are associated with higher
first-stage costs (increase by 29841 or less) and, mean-
while, much lower expected second-stage costs (reduce
by 97056 or more) among EF-100 solutions. The same
tendency can be seen among other solutions. Note that
second-stage costs can be negative values when VRes is
80%. The reason is that residual values of products in
warehouses/production/transit are counted as revenue
(negative costs) at the end of the second-stage.

It seems that a higher residual value rate may induce
higher damage costs, because more redundant products

are hold at SC nodes before catastrophes (in the first
stage) which makes it possible to scrap more products
in case of a catastrophe. This observation is consistent
with results of EF solutions in Table 4. However, whether
a higher residual value rate results in more damages wor-
thies further research. Experiments in Appendixes B and
C of the supplementary material will develop further
analyses on the relationship between residual value rates
and damage costs. As an aside we note that of the meth-
ods tested that can be used in practice, the EF solutions
offer substantially lower costs than EVS or HCS and that
using 100 scenarios of course gives better solutions than
40. The average savings for EF100 are 2% compared to
EF40, 46% compared to EVS and 32% compared to HCS.

5.6. Sensitivity analyses and production plan
analyses

To validate findings in this experiment, we include
four additional experiments for sensitivity analyses in
Appendixes (see the supplementary material). We anal-
yse sensitivity of results to stochastic timing of the
catastrophe and the insurance compensation ratio in
Appendixes B and C, respectively. Results show that a
higher compensation ratio always comes along with a
higher damage cost in case of a catastrophe and this
pattern does not depend on the timing of the catas-
trophe (Tables B1 and B2). The higher damage cost is
induced by a higher in-processing volume at the vulner-
able SC node at t1 in case of a higher compensation ratio
(Table C2).

To analyse costs in different realisations (individ-
ual scenarios), we run experiments in ideal situations
with a small number of representative scenarios in
Appendixes D and E of the supplementary material.
Results in Appendix D show that scenarios with lower
customer demand have higher damage costs in case of a
catastrophe. The main reason is that given the first-stage
solution, a lower customer demand results in a higher
inventory level (including products in processing and
products in-transit) and scrapping redundant products
reduces the (inventory/holding) cost in this situation.
Results in Appendix E show that scenarios with an earlier
occurrence time of a catastrophe are extremely vulnera-
ble in case of a higher compensation ratio. These scenar-
ios are often associated with extremely high damages in
case of a catastrophe.

6. Conclusions andmanagerial insights

In this paper, we described a global SCmodel and a com-
putational experiment to analyse the impact of insurance
policy on SC operational planning. Based on the results
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of our computational experiments, five main findings
are summarised for global SCs in a catastrophe-prone
environment. First, catastrophe insurance influences SC
operational planning, which further affects product dam-
ages in case of a catastrophic event. Second, a higher
compensation rate triggers a higher volume of process-
ing products towards the vulnerable time period at the
vulnerable SC node which induces higher catastrophe-
related damages. Third, an insurance policy imposes
stronger effects on catastrophe-related damages of prod-
ucts with a low residual value rate than products with
a high-residual value rate. Fourth, catastrophe-related
damages are higher when facing lower customer demand
than expected. Fifth, an insurance policy does not affect
SC operational planning if customer demand and the
catastrophic event are accurately predictable. Moreover,
the qualitative conclusions are irrespective of whether
the timing of the catastrophe is stochastic. A much more
extensive study of the detailed effects of uncertainty in
timing is left for future research.

This paper contributes to the field of SC disruption
risk management by focussing on operational planning.
The impact of a catastrophic event ripples through mul-
tiple echelons of a global SC, including final customers
and production and transportation activities. This brings
challenges in quantitatively analysing the impact of a
catastrophic event to global SC operational planning.
So far, research on operational planning strategies for
both disruption risk and uncertain customer demand
of a global SC has rarely been carried out. To the best
of the authors’ knowledge, this is the first paper con-
ducting research on operational planning strategies for
a multi-echelon global SC facing both disruption risks
and uncertain customer demand. This contributes to
closing the research gap associated with analysing the
impact of hybrid disruptions and uncertainties on global
SCs and providing decision support on production plans
and transportation plans of global SCs in such a dis-
ruptive environment. By simulating production activ-
ities for each product of each SC node within each
time period when facing catastrophic disruptions and
customer demand fluctuations when different insurance
policies are applied, we were able to systematically anal-
yse the impact of an insurance policy on operational
planning of a global SC, which fills in the research
gap of quantitative methods for analysing the impacts
of simultaneously implementing multiple mitigation
strategies.

Valuable insights for insurance policy design are sum-
marised fromour computational simulation results. They
alert insurance policy makers that in facing customer
demand fluctuations, a global SC may scrap redundant

products to reduce inventory costs and the volume of
damages can be higher when the SC is insured against
the catastrophe. The main reason is that bringing in
catastrophe insurance changes SC operational planning
in an uncertain environment. We suggest insurance pol-
icy makers be mindful of the impact of insurance policy
on global SCs’ operational planning. A high compen-
sation rate may have a mixed effect on global SCs and
the insurer. SCs with more redundant products likely
have higher catastrophe-related damages. Insurance pol-
icy makers should take into account potential risks of
policy holders scrapping redundant products, especially
low-residual value products, when making insurance
policies.

To eliminate the impact of insurance policy on SC
operational planning, a possible solution is to enhance
collaborations among global SCs. Our research results
suggest manufacturers should collaborate with each
other on sharing redundant materials and parts. Part-
ner companies can benefit from making use of each
other’s redundant products and, meanwhile, reduce the
probability of scrapping redundant products. In addi-
tion, governments could issue rules to regulate com-
pany behaviour to avoid scrapping redundant prod-
ucts. Another solution is that, instead of compensating
catastrophe-related damages, insurers may compensate
the costs of adjusting operational plans if this portion of
the cost can be fairly identified. Governments could issue
policies/rules for managing low-residual value products
in a disruptive environment. For example, building an e-
platform for manufacturers to share information about
redundant materials or parts would be helpful.

Further research should be conducted to evaluate
whether these solutions are viable in practice and how
to effectively deploy these solutions to global SCs. In
this paper, we assumed that decision makers would take
the decision generated with our model, whereas decision
maker behaviour is influenced bymany other factors, e.g.
the decision maker’s personal characteristics and pref-
erences. It may be meaningful to incorporate decision
makers’ behaviour into consideration for the next step in
research.

Notes

1. https://www.reuters.com/article/uk-china-blast-toyota-id
AFKCN0QO07W20150819.

2. https://www.theguardian.com/business/2015/sep/04/car-
sales-up-for-august-bucking-miserable-retail-trend.
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