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SINGULAR MODULI FOR REAL QUADRATIC
FIELDS: A RIGID ANALYTIC APPROACH

HENRI DARMON and JAN VONK

Abstract
A rigid meromorphic cocycle is a class in the first cohomology of the discrete
group � WD SL2.ZŒ1=p�/ with values in the multiplicative group of nonzero rigid
meromorphic functions on the p-adic upper half-plane Hp WD P1.Cp/ � P1.Qp/.
Such a class can be evaluated at the real quadratic irrationalities in Hp , which are
referred to as “RM points.” Rigid meromorphic cocycles can be envisaged as the
real quadratic counterparts of Borcherds’ singular theta lifts: their zeroes and poles
are contained in a finite union of �-orbits of RM points, and their RM values are
conjectured to lie in ring class fields of real quadratic fields. These RM values enjoy
striking parallels with the values of modular functions on SL2.Z/nH at complex
multiplication (CM) points: in particular, they seem to factor just like the differences
of classical singular moduli, as described by Gross and Zagier. A fast algorithm for
computing rigid meromorphic cocycles to high p-adic accuracy leads to convincing
numerical evidence for the algebraicity and factorization of the resulting singular
moduli for real quadratic fields.
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Introduction
Drinfeld’s p-adic upper half-plane, a rigid analytic space whose Cp-points are iden-
tified with Hp WD P1.Cp/� P1.Qp/, offers an enticing framework for explicit class
field theory for real quadratic fields, since it contains a large supply H RM

p of real
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24 DARMON and VONK

multiplication (RM) points belonging to real quadratic fields in which the prime p is
either inert or ramified. Let M� denote the multiplicative group of rigid meromorphic
functions on Hp , consisting of ratios of nonzero rigid analytic functions. The discrete
group � D SL2.ZŒ1=p�/ acts on Hp by Möbius transformations, inducing an action
on M� (written either on the right or on the left) by the rule

.f j �/.�/ WD .��1f /.�/ WD f
�a� C b
c� C d

�
; where � WD

�
a b

c d

�
: (1)

A naive attempt at explicit class field theory for real quadratic fields could proceed by
examining the RM values of �-invariant functions in M�. However, because the �-
orbits in Hp are dense for the rigid analytic topology, any such function is constant,
that is,

H0.�;M�/DC�p: (2)

It is then natural to consider the first cohomology group H1.�;M�/ instead. A class
in this group is said to be parabolic if its restriction to the subgroup �1 � � of
upper triangular matrices1 is trivial and is said to be quasiparabolic if this restriction
lies in H1.�1;C�p/. The groups of such classes are denoted by H1par.�;M

�/ and
H1
f
.�;M�/, respectively.

Definition 1
A class in H1

f
.�;M�/ is called a rigid meromorphic cocycle for � .

A rigid meromorphic cocycle is thus a function J W � �!M� satisfying

J.�1�2/D J.�1/� �1J.�2/;

taken modulo 1 coboundaries, of the form �.�/D �f �f , with f 2M�, and admit-
ting a quasiparabolic representative, whose values on �1 consist of constant func-
tions. This representative is even unique, because M contains no translation-invariant
elements. The fact that every class in H1

f
.�;M�/ is thus equipped with a distin-

guished representative justifies the slightly abusive but more euphonious terminology
in which a “rigid analytic cohomology class” is dubbed a “rigid analytic cocycle.”

This article initiates the study of rigid meromorphic cocycles, with special
emphasis on their application to the analytic construction of class fields of real
quadratic fields.

The relevance of Definition 1 for explicit class field theory rests on the fact that
rigid meromorphic cocycles can be meaningfully evaluated at RM points. More pre-
cisely, the RM points in Hp are characterized by the fact that their associated order

1Note that this group contains translations, as well as the homothetyD in (12).
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O� WD

²�
a b

c d

�
2M2

�
ZŒ1=p�

�
such that a� C b D c�2C d�

³

is isomorphic to a ZŒ1=p�-order in the real quadratic fieldK DQ.�/, via the inclusion

� WO� �!K; �

�
a b

c d

�
D c� C d:

The stabilizer of � in � is generated up to torsion by a fundamental unit of norm 1

in O� . It is called the automorph of � and denoted �� . While �� is only well defined
up to torsion elements and up to replacing it by its inverse, the latter ambiguity can
be resolved by fixing a choice of orientation on H and Hp . The value of a rigid
meromorphic cocycle J at an RM point � is then defined to be

J Œ�� WD J.�� /.�/ 2Cp [ ¹1º; (3)

a numerical invariant which depends only on the �-orbit of the RM point � . The
cocycle J thus gives rise to a function

J W �nH RM
p �!Cp [ ¹1º: (4)

Conjecture 1 below asserts that it takes algebraic values that lie in (composita of)
abelian extensions of real quadratic fields, thus behaving in many key respects like
the function SL2.Z/nH CM �! C [ ¹1º induced by the classical j -function or by
any other meromorphic modular function defined over NQ.

Let S WD
�
0 �1
1 0

�
be the standard matrix of order 2 in �=h˙1i that fixes i D

p
�1.

Definition 2
A rigid meromorphic period function is the value at S of the quasiparabolic represen-
tative of a rigid meromorphic cocycle.

It is a standard fact in the theory of modular symbols (see Proposition 1.4) that
the assignment J 7! j WD J.S/ identifies H1

f
.�;M�/ with the multiplicative group

R� of rigid meromorphic period functions and that any function in R� satisfies the
following functional relations up to multiplicative constants:

j.�1=z/D j.z/�1; j.p2z/D j.z/;
j.zC 1/

j.z/
D j

�
�
zC 1

z

�
.mod C�p/:

(5)

The main result of the first two sections is the following.
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THEOREM 1
The group R� is of infinite rank. The zeroes and poles of any j 2R� are contained
in a finite union of �-orbits of RM points in Hp .

Theorem 1 suggests that rigid meromorphic period functions might be viewed
as the real quadratic counterpart of Borcherds’ singular theta lifts of modular forms
of weight 1=2, insofar as the latter are meromorphic modular functions with divisors
concentrated at CM points.

Let H� denote the ring class field (in the narrow sense) associated to the order
O� . It is an abelian extension of K D Q.�/ whose Galois group over K is identi-
fied via global class field theory with the narrow class group PicC.O� / of projective
oriented O� -modules. If j is any rigid meromorphic period function and J is its asso-
ciated rigid meromorphic cocycle, then Theorem 1 implies that the field

Hj DHJ WD Compositumj.�/D1.H� /

is a finite extension of Q; it is called the field of definition of j or of J . The main
conjecture of this paper, which is discussed in greater detail in Section 3, is the fol-
lowing.

CONJECTURE 1
If J is a rigid meromorphic cocycle and � 2Hp is an RM point, then the value J Œ��
is an algebraic number belonging to the compositum of HJ and H� .

Fixing a nontrivial J and varying � 2 K , note that the ring class fields H�
together with the cyclotomic extensions ofK generate an abelian extensionKab

J ofK
which is “almost” the full maximal abelian extensionKab in the sense thatKab=Kab

J is
an extension of exponent 2 (albeit of infinite degree). Conjecture 1 gives ample moti-
vation for the systematic study of rigid meromorphic cocycles. This study is carried
out in Sections 1 and 2, where Theorem 1 is proved by giving a complete classifica-
tion of rigid meromorphic period functions. These functions and their additive coun-
terparts, the rigid meromorphic period functions of weight 2, are reminiscent of the
“rational period functions” that are studied in [1], [16], and [2] and can be classified
along similar lines. The classification obtained in Section 2 is constructive and leads
to explicit product expansions for rigid meromorphic period functions. To describe
these, for any � 2 �nH RM

p , let

†� WD ¹w 2 �� such that ww0 < 0º; (6)

where w0 is the algebraic conjugate of w 2K WDQ.�/. The subset†� of �� contains
only finitely many integer translates of any given w 2 �� , and it can in fact be shown
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that it is a discrete subset of the full �-orbit, relative to the rigid p-adic topology
on Hp . After fixing a real embedding of K , let ı1.w/ 2 ¹�1; 1º denote the sign of
w 2†� .

A prime p is said to be monstrous if it divides the cardinality of the monster
sporadic simple group or equivalently (by a famous observation of Andrew Ogg) if
the quotient of the modular curve X0.p/ by its Atkin–Lehner involution has genus 0,
which occurs precisely when

p 2 ¹2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 41; 47; 59; 71º:

One of the illustrative results of Section 2 is the following.

THEOREM 2
Let p be a monstrous prime, and let � be any RM point in Hp . The infinite product

jC� .z/ WD
Y
w2†�

� tw.z/
tpw.z/

�ı1.w/
; where tw.z/D

´
z �w if jwj � 1;

z=w � 1 if jwj> 1;

converges to a rigid meromorphic period function on Hp .

The constructions described in the first two sections also lead to a complete clas-
sification of rigid meromorphic period functions for arbitrary p, which in principle
does not require that p be a monstrous prime: the multiplicative group of rigid mero-
morphic period functions is spanned by suitable Hecke translates of simple general-
izations of the example in Theorem 2. The sole reason for preferring to work compu-
tationally with monstrous primes, or even genus 0 primes, is a purely practical one:
in this case, the rigid meromorphic period functions admit simpler divisors and their
RM values appear to be of smaller height, which likely facilitates their numerical
recognition.

Section 2 concludes by describing an efficient algorithm for computing rigid
meromorphic period functions to high p-adic accuracy, in terms of their images in
the Tate algebra of a suitable affinoid subset of Hp . This algorithm makes it feasible
to compute the RM values of rigid meromorphic cocycles to hundreds of significant
digits and has been used to test Conjecture 1 numerically in a variety of situations.

For example, if p is a monstrous prime that is inert in Q.
p
5/, that is, if

p 2 ¹2; 3; 7; 13; 17; 23; 47º; (7)

and ' WD .1C
p
5/=2 is the golden ratio, the rigid meromorphic period function jC'

and associated rigid meromorphic cocycle JC' defined by setting � D ' in Theorem 2
can be viewed as a convincing analogue of the j -function, whose divisor is concen-
trated on the CM point .1C

p
�3/=2 of smallest negative discriminant. Calculations
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performed to 100 digits of 3-adic and 13-adic accuracy (the primes p D 3; 13 being
precisely those in (7) that are also inert in Q.

p
2/) suggest that

JC' Œ2
p
2�

‹
D

´
.33C 56

p
�1/=.5 � 13/ in C3;

.1C 2
p
�2/=3 in C13;

consistent with the fact that the order ZŒ2
p
2� has narrow class number 2 and that

its associated narrow ring class field is equal to Q.
p
2;
p
�1/. Likewise, the real

quadratic field K WD Q.
p
223/ has narrow class number 6, and the element

p
223

can be viewed as belonging to H7, H13, and H47. The value of JC' at � D
p
223,

computed to 100 digits of p-adic accuracy for p 2 ¹7; 13; 47º, appears to satisfy the
following sextic polynomials:

pD 7; 282525425x6C 27867770x5C 414793887x4 � 128906260x3

C 414793887x2C 27867770xC 282525425;

pD 13; 464800x6C 1275520x5C 1614802x4C 1596283x3C 1614802x2

C 1275520xC 464800;

pD 47; 4x6C 4x5C x4 � 2x3C x2C 4xC 4:

All three of these polynomials have the Hilbert class field of K as their splitting field,
providing evidence for Conjecture 1 in a setting where H� is nonabelian over Q.

A number of patterns emerge from the above experiments, notably the following.
� The RM value JC' Œ� � appears to belong to H �p�1D1

� , where �p and �1
denote Frobenius elements at the prime p and 1, respectively. In that sense
the situation is even a bit better than predicted by Conjecture 1, which only
asserts that JC' Œ� � should be defined over the compositum ofH� with the field

of definition H' DQ.
p
5/ of JC' . The experiments, which have been carried

out for numerous other examples as well, suggest that jC' should really be

viewed as being “defined over Q” rather than over Q.
p
5/.

� The primes that occur in the factorization of JC' Œ� � lie above rational primes

that are inert or ramified in both the real quadratic fields Q.
p
5/ and Q.�/ and

divide an integer of the form 5Disc.�/�m2

4
� 0.

� The value of JC' Œ� �—and even the precise field over which it is defined—
depends very much on the monstrous prime p relative to which it is computed.
However, if p and q are two monstrous primes for which ' and � belong to
both Hp and Hq , then the primes above q very often (but not always!) occur in
the factorization of the p-adic JC' Œ� � with the same multiplicity as the primes
above p in the factorization of the self-same q-adic invariant.
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In an attempt to better understand this last feature, Section 3 focuses on a prime
p 2 ¹2; 3; 5; 7; 13º, that is, a prime for which the modular curve X0.p/ has genus 0.
For each pair .�1; �2/ of RM points in Hp with associated ring class fields H1 DH�1
and H2 DH�2 a p-adic arithmetic intersection number

Jp.�1; �2/
‹
2H12 WDH1H2

is defined. Roughly speaking, it is the value OJ�1 Œ�2�, where OJ�1 is a simple modifica-
tion of the cocycle JC�1 of Theorem 2, with zeroes and poles concentrated in ��1. The
quantity Jp.�1; �2/ seems to enjoy many of the same properties as the difference

J1.�1; �2/ WD j.�1/� j.�2/; j.q/D
1

q
C 744C 196884qC � � �

of “classical” singular moduli studied in [15] and is conjectured to admit analogous
factorizations.

The prediction made in Conjecture 3.27 of Section 3 can be loosely paraphrased
as follows.

CONJECTURE 2

The p-adic intersection number Jp.�1; �2/
‹
2H12 is divisible only by primes of H12

lying above rational primes that are nonsplit in both of the real quadratic fields
K1 WDQ.�1/ and K2 WDQ.�2/ and divide a positive integer of the form D1D2�x

2

4p
. If

q is such a prime, then the valuations of Jp.�1; �2/ at the primes above q are deter-
mined by certain q-weighted topological intersection numbers of modular geodesics
attached to �1 and �2 on the Shimura curve arising from the indefinite quaternion
algebra ramified at q and p.

This prediction resonates closely with the factorizations described in [15], where
the valuation at q of J1.�1; �2/ is determined by a similar intersection of 0-cycles
attached to the CM points �1 and �2 on the 0-dimensional Shimura variety arising
from the definite quaternion algebra ramified at q and1.

Remark 1
With the benefit of hindsight, Conjecture 1 can be envisaged as a natural extension
of the construction of Gross–Stark units described in [5]. These Gross–Stark units
arise as the RM values of rigid analytic cocycles, taking values in the multiplicative
group O� of nonvanishing rigid analytic functions. Although the group H1

f
.�;O�/

is a finite torsion group, it acquires nonzero rank when � is replaced by a suitable
congruence subgroup, and the elements of H1

f
.�;O�/ (up to torsion) are essentially

in bijection with the modular units on the associated open modular curve. The field of
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definition of any J 2H1
f
.�;O�/ is equal to Q, and the main conjecture of [5] asserts

that the RM values J Œ�� are algebraic numbers—in fact, p-units—in the narrow class
field H� . The proof of Gross’s p-adic variant of the Stark conjecture given in [9]
implies that this is at least true of the quantities J Œ�� �J Œ� 0� (where � 7! � 0 denotes the
nontrivial automorphism of K), up to torsion in Q�p . The more recent work [11] and
[10] significantly refines the methods of [9] and may lead to even stronger evidence
for the algebraicity of the RM values of rigid analytic cocycles.

Remark 2
Although Conjecture 2 is natural a posteriori in light of Remark 1, the realization that
a direct analogue of singular moduli might grow out of the approach of [3] came to the
authors as a real surprise. To explain this, we remark that, for an arbitrary p-arithmetic
group � � SL2.ZŒ1=p�/, any finite rank Hecke stable submodule of H1

f
.�;M�/ is

necessarily contained in H1
f
.�;O�/. Meromorphic cocycles that are not analytic thus

bear no direct relationship to Hecke eigenforms, and their RM values do not encode
the special values of L-functions with Euler products, unlike the Gross–Stark units
of [5] and the Stark–Heegner points of [3], which are expected to satisfy analogues
of the Kronecker limit formula and the Gross–Zagier formula. In that sense, the main
thesis of this paper—that rigid meromorphic cocycles play the role of meromorphic
modular functions in extending the theory of complex multiplication to real quadratic
fields—breaks more decisively with the tradition of the Stark conjectures than either
[5] or [3], where the leading terms of motivic L-functions continue to play a central
role.

Remark 3
The Stark–Heegner points of [3] arise as the special values of certain “elliptic modular
cocycles” JE 2 H1.�;O�=qZ/, where E is an elliptic curve of conductor p and q is
Tate’s p-adic period attached toE . The cocycle JE plays the role of a kind of modular
parameterization for E in our theory. The parallel between rigid analytic cocycles
and the p-adic uniformization of modular and Shimura curves has been explored in a
number of other references, notably in [8], and the relevance of meromorphic cocycles
to this picture is further fleshed out in [4].

1. Additive cocycles of weight 2
This section introduces additive counterparts of the rigid meromorphic cocycles and
their associated rigid meromorphic period functions that were described in the Intro-
duction. These are referred to as rigid meromorphic cocycles and period functions of
weight k � 0. The main results of this section are Theorems 1.23 and 1.24, which
together give the full classification of rigid meromorphic period functions of weight
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2 up to rigid analytic period functions of the same weight. The techniques are greatly
inspired by the classification of rational period functions carried out by Knopp in
[16], Ash in [1], and Choie and Zagier in [2].

1.1. The p-adic upper half-plane
We begin by recalling some facts about the p-adic upper half-plane as a rigid analytic
space.

Let T denote the Bruhat–Tits tree of PGL2.Qp/, whose vertices are in bijection
with the homothety classes of Zp-lattices in Q2p , two vertices being joined by an
(unordered) edge if they admit representative lattices with one containing the other
with index p. Write T0, T1, and T �1 for the set of vertices, unordered edges, and
ordered edges, respectively, of T . If e 2 T �1 is an ordered edge, we denote by s.e/
and t .e/ 2 T0 its source and target vertices, respectively. The group � D SL2.ZŒ1=p�/
acts on T through its natural left action on Q2p , viewing the latter as column vectors.
The “standard vertex” v0 2 T0 associated to the lattice Z2p has SL2.Z/ as its stabilizer
for this action. A vertex is said to be even if its distance to v0 is even and is said to be
odd otherwise. The set of even and odd vertices are denoted T C0 and T �0 , respectively.
Likewise, an ordered edge in T �1 is said to be even if its source is even and odd if its
source is odd. The subsets of even and odd oriented edges are denoted T C1 and T �1 ,
respectively, so that we have the decompositions

T0 D T C0 t T �0 ; T �1 D T C1 t T �1 :

The p-adic upper half-plane Hp may be thought of as a tubular neighborhood of
the Bruhat–Tits tree T via the canonical “reduction map”

red WHp �! T ;

which maps Hp. OQ
nr
p / to T0, where OQnr

p is the completion of the maximal unramified
extension of Qp , by sending � to the lattice of .x; y/ 2 Q2p for which x� C y is an

integer in OQnr
p . The inverse image of a vertex v 2 T0, denoted Av , is called a vertex

affinoid in Hp , and the inverse image of an edge e 2 T1 is an annulus denoted by We .
The vertex affinoid A corresponding to the standard vertex v0 is called the standard
affinoid: it is the complement in P1.Cp/ of the p C 1 mod p residue discs around
the points in P1.Fp/. The edge e0 2 T1 with stabilizer �0.p/ is the image under the
reduction map of the standard annulus

We0 D
®
z 2Cp with 1 < jzj< p

¯
:

If v is a vertex and e1, : : : epC1 are the distinct edges in T1 having v as an endpoint,
then the union
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Wv WDAv [
[
j

Wej WD red�1
�
v [

[
j

ej

�

is called the standard wide open subset attached to v.
Let T �n denote the subgraph of T spanned by the vertices of distance at most n

from the standard vertex, and write H�np for the affinoid subdomain of Hp consisting
of those points reducing to T �n. Likewise let T <n denote the subgraph of T contain-
ing all the vertices of distance at most n�1 as well as all the edges containing at least
one of these vertices, and write H<n

p for the wide open subspace of Hp consisting of
those points reducing to T <n. The subsets H�np define an admissible cover

Hp D
[
n�0

H�np (8)

of the p-adic upper half-plane by affinoid subsets.
Of course, the actions of � on T and on Hp by Möbius transformations are

compatible under the reduction map. In particular, for all � 2 � ,

A�v D �Av; W�e D �We:

A Cp-valued function on Hp is said to be rigid analytic if its restriction to any
affinoid subset A of Hp is a uniform limit, relative to the supremum norm, of ratio-
nal functions on P1.Cp/ having poles outside of A. The space O of rigid analytic
functions on Hp is endowed with a natural topology arising from its expression as
the inverse limit of the affinoid algebras O.H�np /, which are Banach spaces for their
supremum norms. Let M denote the fraction field of O. Its elements are called rigid
meromorphic functions on Hp .

If � 2Hp is an RM point, then there is a primitive integral binary quadratic form
F� .x; y/ satisfying F� .�; 1/D 0, which is unique up to sign. The discriminant of � is
the discriminant of this binary quadratic form. The discriminant is an invariant for the
action of SL2.Z/, but not of � , which only preserves the prime-to-p part of disc.�/.

PROPOSITION 1.1
If � is an RM point of discriminant D0pn, where D0 is prime to p, then � reduces to
a point of T at distance n=2 from v0.
(1) If nD 2m is even, then � reduces to a vertex of T and belongs to one of the

affinoids in H�mp �H<m
p .

(2) If n D 2mC 1 is odd, then � reduces to the midpoint of an edge of T and
belongs to one of the annuli in H<mC1

p �H�mp .

Proof
LetAx2CBxyCCy2 be the primitive integral binary quadratic form of discriminant
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D DD0p
n having � as a root. Let $ be an element of OCp of normalized p-adic

valuation n=2. The natural image of � D �BC
p
D

2A
in P1.OCp=$/ agrees with the

image of Œ�B W 2A� 2 P1.Qp/ under the natural composition

P1.Qp/ ,! P1.Cp/D P1.OCp /�! P1.OCp=$/;

while its image in P1.OCp=$p
�/ for any 	 > 0 does not lie in the image of P1.Qp/.

The proposition follows.

1.2. Modular symbols
The parabolic cohomology of � with values in a PGL2.Qp/-module 
 admits a con-
crete description in terms of �-invariant modular symbols, which will also provide a
natural bridge between rigid meromorphic cocycles and the rigid meromorphic period
functions invoked in the Introduction.

The action of � on 
 shall be written (both on the right and on the left according
to convenience) as

.m;�/ 7!m j �; .�;m/ 7! �m WDm j ��1; m 2
;� 2 �:

Definition 1.2
An 
-valued modular symbol is a function

m W P1.Q/� P1.Q/�!
;

satisfying

m¹r; sº D �m¹s; rº; m¹r; sº Cm¹s; tº Dm¹r; tº for all r; s; t 2 P1.Q/:

The space of 
-valued modular symbols is denoted MS.
/. It is endowed with
a natural action of PGL2.Q/ by the rule

.m j �/¹r; sº WD
�
m¹�r; �sº

�
j �:

The space of �-invariant modular symbols, denoted

MS�.
/ WDH0
�
�;MS.
/

�
;

is the set of modular symbols satisfying the �-invariance property

m¹�r; �sº Dm¹r; sº j ��1 D �m¹r; sº; for all � 2 �:

It is equipped with the usual action of the Hecke operators Tn (for .n;p/D 1) defined
in terms of the double coset
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�

�
n 0

0 1

�
� D

G
j

��j

by setting

.m j Tn/D
X
j

.m j �j /:

The normalizer of � in PGL2.Q/ is the group PGL2.ZŒ1=p�/, and the determinant
induces an isomorphism

det W PGL2
�
ZŒ1=p�

�
=� �! ZŒ1=p��=

�
ZŒ1=p��

�2
D ¹1;�1;p;�pº

' Z=2Z�Z=2Z:

The elements w1 and wp associated to classes of matrices of determinant �1 and
p, respectively, generate this quotient and give rise to involutions on MS�.
/ by the
rules

.m jw1/¹r; sº WD
�
m¹w1r;w1sº

�
jw1;

.m jwp/¹r; sº WD
�
m¹wpr;wpsº

�
jwp:

(9)

A �-invariant modular symbol that is in theC1 (resp., �1) eigenspace for the involu-
tion w1 is said to be even (resp., odd). Likewise, it is said to be p-even (resp., p-odd)
if it is in the C1 (resp., �1) eigenspace for the involution wp .

The following lemma relates �-invariant modular symbols to the corresponding
parabolic cohomology groups.

LEMMA 1.3
There is a natural exact sequence

0�!
� �!
�1 �!MS�.
/�!H1.�;
/�!H1.�1;
/: (10)

In particular, there is a canonical Hecke-equivariant surjection ı W MS�.
/ �!
H1par.�;
/ which is an isomorphism when 
� D
�1 .

Proof
Let F .P1.Q/;
/ be the �-module of 
-valued functions on P1.Q/, equipped with
the natural �-action arising from the action of � on P1.Q/ by Möbius transforma-
tions. It fits into the exact sequence of ZŒ��-modules

0�!
�! F
�
P1.Q/;


� d
�!MS.
/�! 0; (11)
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where df ¹r; sº WD f .s/ � f .r/. The lemma follows from taking the long exact �-
cohomology sequence associated to this short exact sequence and invoking Shapiro’s
lemma to identify Hi .�;F .P1.Q/;
// with Hi .�1;
/.

The cohomology class ˆ WD ı.ˆ0/ associated to ˆ0 2 MS�.
/ is defined by
choosing a basepoint r 2 P1.Q/ and setting

ˆ.�/Dˆ0¹r; �rº:

The parabolic representative of ˆ that vanishes on �1 is obtained by choosing r D 0
in this assignment.

Let

S D

�
0 1

�1 0

�
; U D

�
0 1

�1 1

�
; D D

�
p 0

0 1=p

�
(12)

denote the standard matrices in � satisfying S2 D U 3 D �1. Given m 2MS�.
/,
the element ! WDm¹0;1º 2
 satisfies the so-called two- and three-term relations

! C S! D 0; ! CU! CU 2! D 0; (13)

which follow from the modular symbol relations

m¹0;1ºCm¹1; 0º D 0; m¹0;1ºCm¹1; 1º Cm¹1; 0º D 0

after noting that S interchanges 0 and 1 while U induces the cyclic permutation
.0 11/ on these three elements of P1.Q/. Let 
� �
 be the set of elements satis-
fying (13).

The proposition below is a well-known assertion about the cohomology of
SL2.Z/. A concrete form of its proof, although certainly not new, is included for the
convenience of the reader, because of the key role it will later play in algorithms for
calculating rigid meromorphic cocycles efficiently.

PROPOSITION 1.4
The assignment m 7!m¹0;1º identifies MSSL2.Z/.
/ with 
�.

Proof
A pair of elements .a=b; c=d/ of P1.Q/ (expressed in lowest terms, with the conven-
tion that1D 1=0) is said to be unimodular if ad � bc D˙1. The fact that any two
elements of P1.Q/ can be inserted into a unimodular sequence, in which all consecu-
tive terms form unimodular pairs, implies that a modular symbol is completely deter-
mined by its values on such pairs. The injectivity of the assignment m 7! m¹0;1º



36 DARMON and VONK

then follows from the fact that SL2.Z/ acts transitively on the set of unimodular pairs.
To prove surjectivity, observe that any ! 2
� determines a well-defined function m
on the set of unimodular pairs by setting

m
°a
b
;
c

d

±
WD

�
c a

d b

�
!;

where .a=b; c=d/ have been adjusted so that the matrix appearing on the right belongs
to SL2.Z/. If r and s are arbitrary elements of P1.Q/, then the unimodular sequences
joining r and s are far from unique, but the theory of Farey sequences implies that
any two unimodular sequences admit a common refinement, where a refinement is
obtained by making a finite number of replacements of the form

a

b
;
c

d
;
�a

�b
� a

b
;

a

b
;
c

d
� a

b
;
aC c

bC d
;
c

d
:

The two- and three-term relations satisfied by ! imply that

m
°a
b
;
c

d

±
Cm

° c
d
;
a

b

±
D 0; m

°a
b
;
c

d

±
Dm

°a
b
;
aC c

bC d

±
Cm

° aC c
bC d

;
c

d

±
;

for all unimodular pairs .a=b; c=d/. It follows that m extends uniquely to an SL2.Z/-
invariant 
-valued modular symbol and, hence, that the map MSSL2.Z/.
/!
� is
surjective. Proposition 1.4 follows.

Let
� �
� denote the image of the group MS�.
/ under the assignmentm 7!
m¹0;1º.

LEMMA 1.5
If ! belongs to 
�, then ! satisfies the two- and three-term relations in (13) along
with the further relation

D! D !: (14)

Proof
This follows directly from the fact that both 0 and1 are fixed by the diagonal matri-
ces.

Remark 1.6
The equation (14) does not characterize 
�: in general, its elements may need to
satisfy further relations, which are less simple to write down explicitly and whose
complexity presumably grows as a function of p.
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1.3. Basic definitions
For all even k � 0, the continuous weight k action (cf. [18, Section 1]) of the group
� WD SL2.ZŒ1=p�/ on O and on M is given by

.f jk�/.�/ WD .�
�1 �

k
f /.�/ WD .c� C d/�kf

�a� C b
c� C d

�
; where � WD

�
a b

c d

�
:

(15)

The underlying additive groups of O and M endowed with this weight k action are
denoted Ok and Mk , respectively, with the convention that O and M will be used to
denote O0 and M0, respectively.

The following is the additive counterpart of Definition 1 of the Introduction.

Definition 1.7
A rigid meromorphic (resp., analytic) cocycle of weight k � 0 is a class in H1par.�;

Mk/ (resp., in H1par.�;Ok/).

Remark 1.8
The multiplicative group H1.�;M�/ should not be confused with the vector space
H1.�;M/. Although elements of the latter can be evaluated at RM points just as well
as their multiplicative counterparts, it is known (cf. [7]) that

H1par.�;M/D 0;

and hence, no interesting class invariants for real quadratic fields are to be extracted
from the additive theory.

Of greatest importance for our study are the rigid meromorphic cocycles of
weight 2, which are related to rigid meromorphic cocycles via the map

dlog WH1f .�;M
�/�!H1par.�;M2/

arising from the logarithmic derivative

dlog WM� �!M2; dlog.g/D g0=g;

which is compatible with the �-actions on source and target and therefore induces a
map on the associated parabolic cohomology groups. The first step in classifying rigid
meromorphic cocycles will be to do the same for their additive, weight 2 counterparts,
with the advantage that the latter are endowed with a natural Cp-linear structure.

Let us first specialize the discussion of the previous section on modular symbols
to the setting where 
DM� or Mk for k � 0.
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LEMMA 1.9
The �1-invariants of M� and Mk are given by

H0.�1;M
�/DC�p; H0.�1;Mk/D

´
Cp if k D 0;

0 if k > 0:

Proof
For any m � 1, consider the restriction of a �1-invariant rigid meromorphic func-
tion �.�/ to the affinoid H�mp , which is preserved by the action of SL2.Z/. By the
Weierstrass preparation theorem, the set of poles of � in H�mp is finite and stable
under translation—hence, empty. Likewise, by choosing �0 2H�mp , the set of zeroes
of the analytic function �.�/ � �.�0/ is nonempty and preserved by translations—
hence, is equal to H�mp . Therefore, � is constant on H�mp for all m, and the lemma
follows.

COROLLARY 1.10
For all k � 0, the map ı of Lemma 1.3 induces isomorphisms

MS�.M�/
�
�!H1par.�;M

�/; MS�.Mk/
�
�!H1par.�;Mk/: (16)

Proof
Lemma 1.9 implies that

H0.�;M�/DH0.�1;M
�/; H0.�;Mk/DH0.�1;Mk/;

and the corollary follows from Lemma 1.3.

Corollary 1.10 allows us to work with elements of MS�.Mk/ in studying rigid
meromorphic cocycles of weight k, with the advantage that many arguments tend to
become more transparent when couched in the language of modular symbols.

Recall the multiplicative group R� �M� of rigid meromorphic period functions
given after Definition 2 of the Introduction, which is identified with H1

f
.�;M�/ via

the assignment J 7! J.S/. The following is the additive counterpart of Definition 2.

Definition 1.11
A rigid meromorphic period function of weight k is the value at S of the parabolic
representative of a rigid meromorphic cocycle of weight k.

Let Rk denote the Cp-vector space of rigid meromorphic period functions of
weight k. The assignment ˆ 7! ' WD ˆ¹0;1º identifies MS�.Mk/ with Rk . Just
as in the multiplicative setting, these functions necessarily satisfy a set of functional
equations, including the following.
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LEMMA 1.12
A function ' 2Rk satisfies the two- and three-term relations

'
�
�
1

z

�
D�zk'.z/; '.z/C z�k'

�z � 1
z

�
C .z � 1/�k'

� �1
z � 1

�
D 0;

as well as the further linear relation

'.p2z/D p�k'.z/:

In conclusion, we have obtained canonical maps

H1par.�;M
�/DMS�.M�/�R�; H1par.�;Mk/DMS�.Mk/DRk :

1.4. Prelude: Rational cocycles and period functions
The classification of rigid meromorphic cocycles and rigid meromorphic period func-
tions of weight 2, which will be described in what follows, parallels closely—and its
proof is strongly inspired by—the classification of so-called rational modular cocy-
cles and their associated rational period functions that were introduced by Marvin
Knopp and arise, notably, in the work of Knopp [16], Ash [1], Choie and Zagier [2],
and Duke, Imamoḡlu, and Tóth [12].

Let C be an algebraically closed field of characteristic 0, and let Mrat
k

denote the
C -vector space of rational functions on P1.C /, endowed with the weight k action of
SL2.Z/ as in (15).

Definition 1.13
A rational modular cocycle of weight k is a class in H1par.SL2.Z/;Mrat

k
/. A rational

period function of weight k is an element of .Mrat
k
/�, that is, a rational function � 2

Mrat
k

satisfying the two- and three-term relations

�
�
�
1

z

�
D�zk�.z/; �.z/C z�k�

�z � 1
z

�
C .z � 1/�k�

� �1
z � 1

�
D 0; (17)

for all z 2 C .

Proposition 1.4 shows that the assignment ˆ 7! � WD ˆ¹0;1º identifies
MSSL2.Z/.Mrat

k
/ with the space of rational period functions of weight k.

We now focus on the case k D 2, where the assignment r.z/ 7! r.z/dz identifies
Mrat
2 with the space 
1rat of rational differentials on P1=C . We henceforth view ratio-

nal period functions of weight 2 interchangeably as elements of 
1rat or as rational
functions on P1 endowed with the weight 2 �-action. We begin by describing two
simple examples of rational period functions. Instead of a direct algebraic verifica-
tion of the relations (17), we obtain them as a formal consequence by exhibiting the
corresponding modular symbols.
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LEMMA 1.14
The function �ı1.z/ WD

1
z

is a rational period function of weight 2.

Proof
Recall the classical terminology whereby a differential with at worst simple poles
and integer residues is called a differential of the third kind. Such a differential is
determined by its residual divisor, and the space of differentials of the third kind with
divisors supported on P1.Q/ is thereby identified with the group of degree 0 divisors
on P1.Q/, as an SL2.Z/-module. Consider the function

ˆı1 W P1.Q/� P1.Q/�!
1rat;

.r; s/ 7�! !¹r; sº;

where !¹r; sº is the unique differential of the third kind on P1.Cp/ having .r/� .s/ as
its residual divisor. The fact that ˆı1 is an SL2.Z/-invariant modular symbol follows
directly from this description. For instance,

ˆı1¹�r; �sº D !¹�r; �sº D �!¹r; sº;

where the last equality follows from the fact that both differentials have the same
poles and residues and are of the third kind. The lemma follows after noting that

ˆı1¹0;1ºD
dz

z
D �ı1.z/dz:

LEMMA 1.15
The function �ı1;0.z/ WD 1�

1
z2

is a rational period function of weight 2.

Proof
Consider the function

ˆı1;0 W P1.Q/� P1.Q/�!
1rat;

.r; s/ 7�! .dz � b/�2 � .cz � a/�2;

where r D a=c and s D b=d are expressions as fractions in lowest terms, where we
set 1D 1=0. These expressions are well defined up to sign, so that .cz � a/�2 is
well defined. The additivity of ˆı1;0 is manifest, whereas the SL2.Z/-invariance fol-
lows since SL2.Z/ preserves the set of column vectors .a; c/ with gcd.a; c/D 1. The
lemma follows after noting that

ˆı1;0¹0;1ºD 1�
1

z2
:
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In addition to the two modest examples furnished by Lemma 1.14 and 1.15, we
now describe a more interesting class of examples. Recall that if w is a real quadratic
irrationality, then the notation w0 is used to denote its algebraic conjugate. Let � be
any real quadratic irrationality in R, and let F� .x; y/ be the primitive integral binary
quadratic form for which F� .�; 1/D 0. The SL2.Z/-orbit of � is dense in R, but the
subset

†ı� WD
®
w 2 SL2.Z/ � � such that ww0 < 0

¯
(18)

is finite and nonempty. Indeed, its elements are the roots of F.z; 1/, where F.x;y/D
Ax2CBxyCCy2 is a primitive integral quadratic form in the same class as F� .x; y/,
and hence of a fixed positive discriminant satisfying AC < 0, and the coefficients of
such a quadratic form are bounded in absolute value. The set †ı� is endowed with a
natural sign function ı1 W†ı� �!˙1, which partitions †ı� into its subsets of positive
and negative elements. These sets are of equal cardinality, since they are interchanged
by the involution z 7! �1=z.

More generally, if r and s are elements of P1.Q/, let �.r; s/ denote the geodesic
on NH WDH [R[ ¹1º joining r to s and oriented in the direction from r to s. The
complement of this geodesic in NH is partitioned into two disjoint connected subsets

NH � �.r; s/ WDHC.r; s/[H�.r; s/;

labeled with the convention that, as one is traveling along �.r; s/ in the direction from
r to s, the region HC.r; s/ is to one’s right and the region H�.r; s/ is to one’s left. If
w 2 SL2.Z/ � � is any real quadratic irrationality in the SL2.Z/-orbit of � , we say that
it is linked to �.r; s/ if it and its algebraic conjugate w0 belong to distinct connected
components of NH � �.r; s/, and we write †ı� .r; s/ � SL2.Z/ � � for the set of w’s
that are linked to �.r; s/ in this way. We define the function ır;s to be the signed
intersection number of the geodesic from w to w0 and �.r; s/. Explicitly, we have

ır;s.w/D

8̂̂
<
ˆ̂:
1 if w 2HC.r; s/ and w0 2H�.r; s/;

�1 if w 2H�.r; s/ and w0 2HC.r; s/;

0 else,

(19)

which partitions †ı� .r; s/ into its subsets of positive and negative elements, respec-
tively, and

†ı� .0;1/D†
ı
� ; ı0;1 D ı1:

Let Div.P1.C // denote the free abelian group consisting of finite formal Z-linear
combinations of points of P1.C /, let Div0.P1.C // denote its subgroup of degree 0
divisors, and define
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ı�¹r; sº WD
X

w2SL2.Z/�

ır;s.w/Œw� 2Div
�
P1.C /

�
: (20)

Note that this sum is finite and supported on †ı� .r; s/ by the comments above.

LEMMA 1.16
The function

ı� W P1.Q/� P1.Q/�!Div
�
P1.C /

�
is an element of MSSL2.Z/.Div0.P1.C ///.

Proof
To check the modular symbol property of ı� , observe that, for all r; s; t 2 P1.Q/, we
have the equality

ır;s C ıs;t D ır;t ; (21)

which implies the additivity of ı� . The SL2.Z/-invariance

ı�¹�r; �sº D �
ı
�¹r; sº

follows directly from the definitions and the fact that

ı�r;�s.�w/D ır;s.w/:

Finally, since an SL2.Z/-invariant modular symbol is completely determined by its
value on the unimodular pair .0;1/, all the divisors ı�¹r; sº inherit from ı�¹0;1º

the property of being of degree 0.

LEMMA 1.17
The function

�ı� .z/ WD
X

w2SL2.Z/�

ı1.w/
1

z �w

is a rational period function of weight 2.

Proof
Consider the function ˆı� W P1.Q/� P1.Q/�!
1rat given by

ˆı�¹r; sº WD
X

w2SL2.Z/�

ır;s.w/
dz

z �w
DW !ı� ¹r; sº: (22)
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The differential !ı� ¹r; sº is the unique rational differential of the third kind on
P1.C / whose residual divisor is equal to ı�¹r; sº. It follows from Lemma 1.16 that
ˆı� defines an element of MSSL2.Z/.
1rat/. Lemma 1.17 now follows from the fact that

�ı� .z/dz Dˆ
ı
�¹0;1º:

Lemmas 1.14 and 1.17 have exhibited an explicit collection of distinct rational
period functions �ı� of weight 2, as � ranges over the infinite index set

I D ¹1º[
�
SL2.Z/nC

RM
�
;

where C RM denotes the collection of real quadratic irrationalities in C . The following
classification of rational period functions of weight 2, whose statement can be read
off by setting k D 1 in Theorem 1 of [2], asserts that the �ı� ’s almost form a basis for
the C -vector space of rational period functions of weight 2. More precisely, we have
the following result.

THEOREM 1.18 (Knopp, Ash, Choie–Zagier)
Any rational period function of weight 2 is a finite linear combination of the functions
�ı1, �ı1;0, and �ı� of Lemmas 1.14, 1.15, and 1.17.

Since some of the steps of the proof will be used in our classification of rigid
meromorphic period functions, we briefly recall them here. Let � be any rational
period function, and let †	 � C denote its set of nonzero poles. The relations (17)
imply that

w 2†	 ) S.w/ 2†	 and U.w/ 2†	 or U 2.w/ 2†	 :

(23)

Recall the sets †ı� described in (18) for � 2 C RM, and set †ı1 D ¹0;1º.

LEMMA 1.19
If †	 is any finite subset of C satisfying (23), then the set †	 is a finite union of the
sets of the form †ı� with � ranging over a finite subset I	 � I .

Proof
This is just a restatement of Lemma 2 of [2], whose proof relies solely on the fact
that † satisfies (23). Although it is formulated as a statement about rational period
functions over C, the argument carries over to the more abstract setting where C is
replaced by any algebraically closed field C of characteristic 0, by fixing an embed-
ding C �!C.
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We record the following closure property of the sets †ı� refining (23).

LEMMA 1.20
For all positive w 2†ı� ,
(1) the negative element S.w/D�1=w also belongs to †ı� ;
(2) the set ¹U.w/;U 2.w/º contains exactly one element w[ 2†ı� that is negative.

It is given by

w[ D

´
U 2.w/D w�1

w
if 0 < w < 1;

U.w/D 1
1�w

if w > 1:

Proof
The first statement is clear. For the second, observe that U cyclically permutes the
elements 0, 1, and12 P1.R/ and, hence, does the same to the open intervals .0; 1/,
.1;1/, and .�1; 0/. It follows that if .w0;w/ belongs to .�1; 0/ � .0; 1/, then the
translate U.w/ has positive norm while U 2.w/ is a negative element of†ı� . Likewise,
if .w0;w/ belongs to .�1; 0/ � .1;1/, then the translate U 2.w/ has positive norm
while U.w/ is a negative element of †ı� .

Concerning the behavior of � at its poles, one has the following.

LEMMA 1.21
Every nonzero pole of the differential �.z/dz is simple. Given any real quadratic
� 2 I for which †ı� �†	 , there is a �� 2 C satisfying

resw�.z/dz D

´
��� if w < 0;

�� if w > 0;
for all w 2†ı� :

Proof
The proof, which is described in Lemmas 4 and 5 of [2], exploits the invariance of
the principal part of � at w under any nontrivial matrix of SL2.Z/ that fixes w. More
precisely, consider the Laurent expansion �w.z/ around z Dw, and write

�w.z/D PPw.z/CO.1/D .z �w/
�mCO

�
.z �w/�mC1

�
;

where PPw.z/ denotes the principal part of � at w, a polynomial of some degree
m� 1 in .z �w/�1 with no constant term. Let � be a generator of the stabilizer of w
in SL2.Z/. It is shown in Lemmas 4 and 5 of [2] that PPw j2� D PPw , while

.�j2�/.z/D .rwC s/
2�2m.z �w/�mCO

�
.z �w/�mC1

�
; where � D

�
p q

r s

�
:
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The quantity .rwCs/ is a fundamental unit in an appropriate quadratic order of Q.w/
and is hence nontorsion in C�. It follows that 2 � 2mD 0, that is, that mD 1 and
therefore that � has at most simple poles. The relations (17) satisfied by � imply, in
light of Lemma 1.20 below, that all of its residues are equal up to sign on any given
†ı� , and the two-term relation shows that the sign of the residue depends only on the
sign of w 2†ı� .

Proof of Theorem 1.18
Let � be a rational period function. Write †	 D

S
�2I�

†ı� , where I	 is the finite
subset of I given in Lemma 1.19. Let .�� /�2I� be the vector of scalars indexed by
� 2 I	 determined by Lemma 1.21. The difference � �

P
�2I�

���
ı
� is a rational

period function without poles, except possibly at z D 0. Its pole at this point must
be of order at most 2, and therefore, we can subtract a suitable combination of �ı1
and �ı1;0 until we are left with a rational function without singularities, which hence
is constant. Since there are no constant rational period functions of weight 2, the
theorem follows.

1.5. Classification of rigid meromorphic cocycles of weight 2
We will now adapt the ideas of the previous section to classify elements of MS�.M2/.
Recall that the rigid meromorphic period function ' WD ˆ¹0;1º attached to a rigid
meromorphic cocycle ˆ satisfies the properties

' j .1C S/D 0; ' j .1CU CU 2/D 0; ' jD D '; (24)

where the matrices S , U , and D 2 � are defined in (12). The matrix P 2

GL2.ZŒ1=p�/ defined by

P WD

�
p 0

0 1

�

satisfies P 2 DD in PGL2.ZŒ1=p�/ and hence induces an involution on the space of
rigid meromorphic period functions of weight 2, defined by

$p.'/.z/D�' j P.z/D�p'.pz/:

(Note the presence of the minus sign in this definition.) A rigid meromorphic period
function is said to be p-even (resp., p-odd) if it satisfies

$p.'/D ';
�
resp., $p.'/D�'

�
: (25)

As in the previous section, a rigid meromorphic period function of weight 2 shall be
viewed as an element of the space
1mer of rigid meromorphic differentials on Hp and
a rigid meromorphic cocycle as an element of MS�.
1mer/.
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We begin by constructing some basic examples of rigid meromorphic period
functions of weight 2, modeled on the construction of the rational period functions
�ı� of Lemma 1.17. Let � be any RM point in Hp , and fix an embedding of the real
quadratic field Q.�/ into R. Recall that the image of � in T under the reduction map
either belongs to T0 or is the midpoint of an edge in T1. The �-orbit of � is dense in
Hp for the rigid analytic topology. As in (18), consider the subset

†� WD ¹w 2 � � � such that ww0 < 0º: (26)

It is endowed with the sign function ı1 defined as in Section 1.4. Other notation
and terminologies similar to those in Section 1.4 are also adopted. Notably, for each
r; s 2 P1.Q/, let †� .r; s/� � � � denote the set of w 2 �� that are linked to �.r; s/ in
the sense of that section, and let ır;s denote the same sign function as in (19). Finally,
imitating (20), we denote Div.Hp/ for the �-module of infinite formal sums of points
in Hp and set

�¹r; sº WD
X

w2†� .r;s/

ır;s.w/Œw� 2Div.Hp/: (27)

For the same reason as in Lemma 1.16, the function � defines a �-invariant,
Div.Hp/-valued modular symbol.

A subset of Hp is said to be discrete if its intersection with each affinoid sub-
set of Hp is finite. The module of divisors on Hp with discrete support is denoted
Div�.Hp/.

LEMMA 1.22
For all r; s 2 P1.Q/, the sets†� .r; s/ are discrete. Furthermore, the finite intersection
†� .r; s/\Av contains equal numbers of positive and negative elements and likewise
for †� .r; s/\Wv .

Proof
Proposition 1.1 implies that the intersection †� \H�np is finite for all n � 0, since
it consists of RM points that are roots of reduced binary quadratic forms of bounded
discriminant. By letting

v� ¹r; sº WD
X

w2†� ¹r;sº\Av

ır;s.w/Œw�; for v 2 T0; r; s 2 P1.Q/;

it follows that v� ¹0;1º has finite support, for all v 2 T0. The �-equivariance prop-
erty

�v� ¹0;1ºD
�v
� ¹�0; �1º
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then implies that v� ¹r; sº has finite support for all v 2 T0 and all unimodular pairs
.r; s/ of elements of P1.Q/, since the group � acts transitively on the latter. But
then the same conclusion must hold for all pairs .r; s/, by the additivity properties of
modular symbols. The discreteness of†� .r; s/ follows. To verify the second assertion
in the lemma, consider the functions

degAv ;degWv WDiv�.Hp/�! Z;

degAv ./ WD deg.jAv /; degWv ./ WD deg.jWv /:

These functions are �v WD Stab�.v/-equivariant and, hence, induce maps

degAv ;degWv WMS�
�
Div�.Hp/

�
�!MS�v .Z/:

Since �v ' SL2.Z/, there are no nontrivial �v-invariant modular symbols, and hence,
for all v 2 T0,

degAv
�
�¹r; sº

�
D deg

�
v� ¹r; sº

�
D 0:

The lemma follows since the degree of v� ¹r; sº is precisely the difference between
the number of positive and negative elements in †� .r; s/\Av and likewise when Av

is replaced by Wv .

The following lemma is the natural extension of Lemma 1.17 to the setting of
rigid meromorphic period functions.

THEOREM 1.23
For any � 2 �nH RM

p , the infinite sum

'� .z/ WD
X
w2†�

ı1.w/
1

z �w

converges to a rigid meromorphic period function of weight 2.

Proof
Every element z 2 P1.Cp/ can be expressed as a ratio z D .z1 W z2/ with z1; z2 2OCp

and at least one of them a unit. For all .c; d/ 2 Z2 with gcd.c; d/D 1, let cz C d WD
z�12 .cz1C dz2/, with the obvious convention when z2 D 0. The affinoid region H�np
of (8) is the set of z D .z1 W z2/ 2 P1.Cp/ satisfying

jcz1C dz2j � p
�n; for all .c; d/ 2 Z2 with gcd.c; d/D 1:

Since jz2j � 1, this implies that
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jczC d j�1 � pn; for all z 2H�np : (28)

Because Hp is an increasing union of the affinoid regions H�np , it suffices to study
the convergence of the infinite sum '� .z/ on H�np , for each n� 0. This infinite sum
is the limit as N �!1 of the rational functions

X
w2†

�N
�

ı1.w/
1

z �w
; where †�N� WD†� \H�Np : (29)

Assume for simplicity that � and, hence, all w 2 �� reduce to vertices of T . By
Lemma 1.22, the rational function in (29) is a finite sum of terms of the form

1

z �w1
�

1

z �w2
;

wherew1 andw2 belong to the same vertex affinoid Av , and v 2 T0 is distance h�N
from v0. This term is regular on H�np as soon as h is greater than n. To bound it on
H�np , observe that, for all � 2 SL2.Z/,

� 1

z �w1
�

1

z �w2

�
dz D

� 1

�z � �w1
�

1

�z � �w2

�
d.�z/;

since the differentials on both sides are of the third kind and have the same residual
divisor. Because the Möbius action of SL2.Z/ preserves the domain H�np , it follows
from (28) that

Supz2H�np

ˇ̌̌ 1

z �w1
�

1

z �w2

ˇ̌̌
� p2n � Supz2H�np

ˇ̌̌ 1

z � �w1
�

1

z � �w2

ˇ̌̌
: (30)

The group SL2.Z/ acts transitively on the set of vertices that are at distance h from
the standard vertex v0, and hence, we can choose � sending w1 and w2 to elements
of OCp � P1.Cp/ and such that j�w1 � �w2j D p�h. It can be checked directly that,
as soon as h > n,ˇ̌̌ 1

z � �w1

ˇ̌̌
� pn;

ˇ̌̌ 1

z � �w2

ˇ̌̌
� pn;

ˇ̌̌ 1

z � �w1
�

1

z � �w2

ˇ̌̌
� p2n�h;

whenever z 2H�np . Then (30) implies that

Supz2H�np

ˇ̌̌ 1

z �w1
�

1

z �w2

ˇ̌̌
� p4n�h: (31)

It follows that the rational functions in (29) form a Cauchy sequence relative to the sup
norm on the affinoid H�np for all n � 0 and, thus, converge to a rigid meromorphic
function on Hp . By the same reasoning, the infinite sums



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 49

ˆ�¹r; sº WD
X

w2†� .r;s/

ır;s.w/
dz

z �w
(32)

converge to rigid meromorphic differentials on Hp , with residual divisor equal to
�¹r; sº. In particular, the function

ˆ� W P1.Q/� P1.Q/�!
1mer

is an
1mer-valued modular symbol, just as in the proof of Lemma 1.17. Theorem 1.23
now follows from the fact that

'� .z/Dˆ�¹0;1º:

To handle the case when � and, hence, all w’s in its �-orbit reduce to midpoints of
edges of T rather than to vertices, which happens precisely when � is defined over a
real quadratic field in which p is ramified, it suffices to replace the system of affinoids
¹Avºv2T0 by the system of wide open subsets ¹Wvºv2T C

0

in the above argument.

Theorem 1.23 provides an explicit collection of rigid meromorphic period func-
tions '� of weight 2, as � ranges over the infinite index set

I .p/ D �nH RM
p :

These functions are linearly independent, since their residual divisors have disjoint
support.

The following result extends Theorem 1.18 to the rigid meromorphic setting.

THEOREM 1.24
Any rigid meromorphic period function of weight 2 is a finite linear combination of
the functions '� of Theorem 1.23 and of a rigid analytic period function of weight 2.

Proof
Let ' be a rigid meromorphic period function of weight 2. Any such ' can be written
as the average of 'C WD ' C$p.'/ and '� WD ' �$p.'/, which are p-even and
p-odd, respectively. Hence, we may assume without loss of generality that ' satisfies
(25), and even, for the sake of definiteness, that it is p-even, since the case where it
is p-odd will be disposed of by the same argument. Let †' �Hp be the set of poles
of '. While the invariance of ' under the matrix D shows that †' is either empty or
infinite, the intersection

†<1' WD†' \H<1
p
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is finite, since a rigid differential on Hp has finitely many poles when restricted to
any affinoid. Since H<1

p is preserved by the action of SL2.Z/, the two- and three-
term relations satisfied by ' imply that the set †<1' satisfies the closure properties of
(23). It follows from Lemma 1.19 that

†<1' D
[
�2I'

†ı� ;

where

I' � SL2.Z/n.H
RM
p \H<1

p /

is a finite set, and †ı� is defined as in (18), but is now being viewed as a subset of
Hp . Lemma 1.21, whose proof applies just as well, mutatis mutandis, to the setting
where ' is a rigid meromorphic period function, shows that ' has only simple poles
on H<1

p and that, for each � 2 I' , there is a �� 2Cp satisfying

resw'.z/dz D

´
�� if w > 0;

��� if w < 0;
for all w 2†ı� :

The difference

' �
X
�2I'

��'
C
�

is a p-even rigid meromorphic period function having no singularities in H<1
p . The-

orem 1.24 now follows from Proposition 1.25 below.

PROPOSITION 1.25
Let ' be any rigid meromorphic period function of weight 2. Assume that it satisfies
(25), that is, that it is either p-odd or p-even. If ' is regular on H<1

p , then it is regular
everywhere.

Proof
Suppose that ' has a pole at � 2 Hp and hence at all w 2 †ı� . Since � does not
belong to H<1

p , Proposition 1.1 implies that it is an RM point of discriminant D0pn

with n� 2 and p �D0. Let

D D

´
D0 if n is even;

D0p if n is odd;
mD Œn=2�� 1;

where Œx� denotes the largest integer that is less than or equal to x. The set †ı� then
contains an element of the form pmw0, where w0 is an RM point in Hp of discrimi-
nant D. The invariance property (25) of ' shows that ' is singular at w0 as well. But
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w0 belongs to H<1
p by Proposition 1.1, contradicting the regularity assumption that

was made on '.

Theorem 1.24 classifies the rigid meromorphic period functions only up to rigid
analytic period functions of weight 2. The latter have been classified in [3] and are
intimately connected to classical modular forms of weight 2 on �0.p/. For a descrip-
tion of this classification that is further geared to the point of view of this article,
see [7].

The following describes the action of the Hecke operators on the cocycles ˆ� of
(32).

LEMMA 1.26
Suppose D is a discriminant and `¤ p is a prime not dividing D.
(1) If � 2H RM

p is of discriminantD, then T`.ˆ� / is a linear combination of cocy-
cles of the formˆ
, where � is of discriminantD orD`2, and involves at least
one ˆ
 in which � is of discriminant D`2.

(2) Suppose that �1; �2 2H RM
p are both of discriminant D, and the linear combi-

nations for T`.ˆ�1/ and T`.ˆ�2/ both involve ˆ
. Then ˆ�1 Dˆ�2 .

The proof of this lemma is by a direct calculation, using the coset representatives²�
1 j

0 `

�
W 0� j � `� 1

³
[

²�
0 �1

` 0

�³
(33)

for the Hecke operator T`. Note that if we have two RM points �1 and �2 with the
same discriminant and if P�1 DMQ�2 for two coset representatives P and Q and
a matrix M 2 SL2.Z/, then �1 and �2 must be SL2.Z/-equivalent, since P�1MQ
can be shown to have integral entries. This implies the second statement, and the
first statement follows from a similar calculation of the action of these coset repre-
sentatives on binary quadratic forms. Alternatively, the lemma can be shown by an
argument identical to Step 1 in the proof of [14, Theorem 3.1], where the argument
is presented in the setting of rational period functions, and ps is used where we have
used `. Indeed, as in [14, p. 376], we see that T`ˆ�¹0;1º is a linear combination of
ˆ�¹0;1º.l=z/, which has a pole at l� , and terms of the form

ˆ�¹0;1º j .MMb0;d 0/;

where M 2 SL2.Z/ and Mb0;d 0 2M2.Z/ of determinant `, which can be shown not
to cancel the pole at l� , using the arguments in [14, Theorem 3.1].

We note that the definition of the Hecke operator OTn in [14, Theorem 3.1] relies
on the existence of a modular integral. Though we do not need it, we mention that the
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algebraically defined Hecke action on period functions in this paper (which makes no
reference to modular integrals) may also be described explicitly in terms of matrix
representatives, as in [2, Theorem 3].

COROLLARY 1.27
Any finite-dimensional subspace of MS�.M2/ that is stable under the Hecke opera-
tors is contained in MS�.O2/. If � is a nonzero Hecke operator and ˆ 2MS�.M2/

belongs to the kernel of � , then ˆ belongs to MS�.O2/.

Proof
These assertions follow from Lemma 1.26 combined with Theorem 1.24, just as
in [2, Theorem 3.1]. For the first assertion, let † be a finite-dimensional subspace
of MS�.M2/. Theorem 1.24 implies that, for any rigid meromorphic cocycle ˆ of
weight 2, the poles of the rigid meromorphic differentials ˆ¹r; sº as r and s range
over P1.Q/ are concentrated in a finite collection of �-orbits of RM points and,
hence, have bounded (prime-to-p) discriminants. The same is therefore true for this
collection of poles as ˆ ranges over the elements of †. Lemma 1.26 shows that no
nonempty Hecke-stable subsets of the set of RM points are concentrated in a finite
collection of �-orbits of RM points. Hence, the set of poles of ˆ¹r; sº must be empty,
for all ˆ 2†. It follows that any such ˆ is analytic. The second assertion is proved
by writing � D

P
n �nTn and letting n be the largest integer for which �n ¤ 0. If ˆ

is not analytic, then the set of poles of ˆ¹r; sº, as r , s range over P1.Q/, is nonempty
and, hence, is contained in a finite collection of �-orbits of RM points. Let D be the
maximal discriminant of an RM point in this collection. By Lemma 1.26, the rigid
meromorphic differentials �ˆ¹r; sº have poles at RM points of discriminantDn2, for
suitable r; s 2 P1.Q/, and hence cannot be analytic; a fortiori, �ˆ is nontrivial.

For future reference, it is also worth recording the following corollary of the fact
that rigid meromorphic period functions of weight 2 have at worst simple poles.

COROLLARY 1.28
Any rigid meromorphic modular cocycle of weight 0 is analytic, that is, the natural
inclusion MS�.O/�!MS�.M/ is an isomorphism.

Proof
The image of the derivative d WM �!M2 consists of rigid meromorphic functions
with vanishing residues, and the image of the induced map

d WMS�.M/�!MS�.M2/
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on �-invariant modular symbols is therefore contained in MS�.O2/. It follows that
any M-valued �-invariant modular symbol is necessarily O-valued, as claimed.

2. Multiplicative cocycles of weight 0
This section focuses on the multiplicative theory, parlaying the understanding of the
space H1par.�;M2/ gained in the previous sections into a description of H1

f
.�;M�/,

which maps to the former by the logarithmic derivative map

dlog WH1f .�;M
�/�!H1par.�;M2/:

2.1. Prelude: Rational multiplicative cocycles
As a prelude to rigid meromorphic cocycles, we start by introducing multiplicative
lifts of the rational cocycles appearing in Section 1.4. We determine their lifting
obstructions and prove a reciprocity law for their RM values.

The rational cocycle ˆı� of weight 2 and its associated rational period function
�ı� described in (22) of Section 1.4 have natural multiplicative counterparts defined
by

NJ ı� ¹r; sº WD
Y

w2†ı� .r;s/

.z �w/ır;s.w/; N|ı� WD
NJ ı� ¹0;1ºD

Y
w2†ı�

.z �w/ı1.w/:

(34)

These functions satisfy the relations

dlog NJ ı� ¹r; sº Dˆ
ı
�¹r; sº; dlog N|ı� D �

ı
� ;

which characterize them up to multiplicative scalars. It follows that NJ ı� can be viewed
as an SL2.Z/-invariant modular symbol with values in the quotient M�rat=C

�, where
M�rat is the multiplicative group of nonzero rational functions on P1.C /, endowed
with the weight 0 action of SL2.Z/. The obstruction to lifting

NJ ı� 2H1par

�
SL2.Z/;M

�
rat=C

�
�

to an element of H1
f
.SL2.Z/;M�rat/—that is, to a genuine multiplicative cocycle that is

parabolic modulo constants, but not necessarily parabolic—is the image of NJ ı� under
the connecting homomorphism ı in the exact sequence

H1
�
SL2.Z/;C

�
�
�!H1

�
SL2.Z/;M

�
rat

�
�!H1

�
SL2.Z/;M

�
rat=C

�
�

ı
�!H2

�
SL2.Z/;C

�
�
:

By a standard argument, the presentation SL2.Z/D Z=4 	Z=2 Z=6 reduces the com-
putation of cohomology groups to that of finite cyclic groups via the Mayer–Vietoris
exact sequence (see for instance [19, Chapter II, Section 2.8]), showing that
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H1
�
SL2.Z/;C

�
�
D �12;

H2
�
SL2.Z/;C

�
�
D 1:

The latter statement implies that NJ ı� lifts to an element of H1.SL2.Z/;M�rat/, while
the ambiguity in making this lift is in �12.

In summary, we obtain a rational multiplicative cocycle J ı� 2 H1
f
.SL2.Z/;M�rat/

attached to any SL2.Z/-orbit of real quadratic irrationalities, which is well defined up
to 12-torsion and satisfies

J ı� .�/D
NJ ı� .�/ .mod C�/: (35)

Note that J ı� is not just a cohomology class but a specific cocycle, characterized by
the fact that its values on the parabolic subgroup P1 of upper triangular matrices in
SL2.Z/ are constant functions. See also the discussion after Definition 1.

It will be useful to have explicit formulae for J ı� in terms of the rational period
function N|ı� . The following lemma examines the extent to which the latter fails to
satisfy the two- and three-term relations.

LEMMA 2.1
The function N|ı� satisfies

N|ı� j .1C S/D˙�
2
� ;

N|ı� j .1CU CU
2/D˙�3� � "

3
� ;

with �� WD
Y

w2†ı� ;w>0

w;

where "� is the unique fundamental unit of O� of norm 1 in the interval .0; 1/.

Proof
We invoke Lemma 1.20 to write

N|ı� .z/D
Y
w2†ı�

.z �w/ı1.w/ D
Y

w2†ı� ;w>0

t .2/w .z/D
Y

w2†ı� ;w>0

t .3/w .z/;

where the rational functions t .2/w and t .3/w are obtained by grouping together the factors
that are in the same orbits for the groups ¹1;Sº and ¹1;U;U 2º, respectively, that is,

t .2/w .z/D
z �w

zC 1=w
; t .3/w .z/D

´
z�w

z�.w�1/=w
if 0 < w < 1;

z�w
z�1=.1�w/

if w > 1:

The functions t .2/w and t .3/w satisfy the two- and three-term relations, respectively, up
to scalars. More precisely, a direct if slightly tedious computation reveals that



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 55

t .2/w j .1C S/D�w
2; t .3/w j .1CU CU

2/D

´
�w3 if 0 < w < 1;

.w � 1/3 if w > 1:

With products taken over the relevant subsets of †ı� , it follows that

N|ı� j .1C S/D˙�
2
� ;

N|ı� j .1CU CU
2/D˙�3� �

Y
0<w<1

w3 �
Y
w>1

.w � 1/3

D˙�3� �
Y

0<w<1

w3 �
Y

0<w0<1

w�3;

where the last equality is obtained by replacing w > 1 by U.w/. The theory of cycles
of reduced quadratic irrationalities implies, as in [21, Equation (6.4)], thatY

0<w<1

w �
Y

0<w0<1

w�1 D "� ;

where "� is the unique norm 1 fundamental unit of O� in the interval .0; 1/.

Remark
The undetermined sign in the above statement could have been made explicit, but
since it only reflects a 2-torsion ambiguity in the multiplicative group, it plays an
accessory role in what follows, and there is little to be gained from being more precise.

LEMMA 2.2
The cocycle J ı� 2H1

f
.SL2.Z/;M�rat/ is determined by the relations

J ı� .S/D �
�1
� � N|

ı
� ; J ı� .U /D �

�1
� "�1� � N|

ı
� .mod �12/:

Proof
The function J ı� .S/ is the unique scalar multiple (up to ˙1) of N|ı� satisfying the
two-term relation, while J ı� .U / is the unique scalar multiple (up to cube roots of
unity) of that same function satisfying the three-term relation. The result follows from
Lemma 2.1.

As a corollary, we obtain that the cocycle J ı� is itself never parabolic, but is
parabolic modulo "Z� . More precisely, we have the following result.

COROLLARY 2.3
The class J ı� 2H1

f
.SL2.Z/;M�rat/ satisfies
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J ı� .T /D "� .mod �12/;

where T D
�
1 1
0 1

�
is the standard generator of P1.

Proof
Since T �1 D SU , Lemmas 2.2 and 2.1 imply that

J ı� .T /
�1 D J ı� .S/� SJ

ı
� .U /D �

�2
� "�1� .1C S/ N|

ı
� D "

�1
� :

We now turn to a Weil reciprocity law for the RM values of these cocycles, proved
in Proposition 2.5. We introduce the setup by first giving another proof of the fact
that NJ ı� lifts to a parabolic cocycle modulo "Z� , by identifying the modular symbol
representing it.

LEMMA 2.4
The parabolic class NJ ı� 2H1par.SL2.Z/;M�rat=C

�/ lifts to a class

OJ ı� 2H1par

�
SL2.Z/;M

�
rat="

Z
�

�
;

where "� is a fundamental unit of norm 1 in the order O� .

Proof
Let ƒ� �K WDQ.�/ be a rank 1 projective O� -module attached to the class of � (for
instance, the Z-module Œ�; 1� spanned by � and 1), and let B� denote the set of positive
Z-bases of ƒ� , where a basis Œ!1;!2� is said to be positive if !1!02 �!

0
1!2 > 0. The

assignment Œ!1;!2� 7! !1=!2 defines a surjective map

� WB� �! SL2.Z/�

which is compatible with the natural SL2.Z/-action on both sets and whose fibers are
principal homogeneous spaces for the group "Z� . Given w 2 SL2.Z/� , set

tw.z/Dw2z �w1;

where Œw1;w2� is any element of B� satisfying �.Œw1;w2�/ D w. The function tw
has divisor .w/� .1/ and is well defined up to multiplication by elements of "Z� . It
also satisfies the pleasant transformation formula

t�w.�z/D .czC d/
�1tw.z/ .mod "Z� /; for all � D

�
a b

c d

�
2 SL2.Z/: (36)

One can use these distinguished functions with prescribed divisor to refine the func-
tion NJ ı� ¹r; sº of (34) by setting



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 57

OJ ı� ¹r; sº D
Y

w2†ı� .r;s/

tw.z/
ır;s.w/ .mod "Z� /: (37)

It is immediate from (36) and the fact that the divisors ı¹r; sº are of degree 0 that
OJ ı� satisfies the rule

OJ ı� ¹�r; �sº.�z/D
OJ ı� ¹r; sº.z/ .mod "Z� /; for all � 2 SL2.Z/

and, thus, defines an element of MSSL2.Z/.M�rat="
Z
� /D H1par.SL2.Z/;M�rat="

Z
� / lifting

NJ ı� .

It is natural to study the quantity

J ı.�1; �2/ WD OJ
ı
�1
Œ�2� .mod "Z1 ; "

Z
2/

associated to real quadratic elements �1 and �2, where the right-hand side is defined
in (3). The following proposition, which shows that it is antisymmetric in its two
arguments, can be viewed as a “Weil reciprocity formula” for the rational parabolic
cocycles OJ ı� .

PROPOSITION 2.5
For all real quadratic irrationalities �1 and �2 with associated orders O1 and O2,
respectively, we have

OJ ı�1 Œ�2�D
OJ ı�2 Œ�1�

�1 .mod O�1 O�2 /;

that is, J.�1; �2/D J.�2; �1/�1 modulo the group of units in O�1 and O�2 .

Proof
Following the notation that was used in the proof of Lemma 2.4, let Œw.1/1 ;w

.1/
2 � and

Œw
.2/
1 ;w

.2/
2 � be elements of B�1 and B�2 , respectively, satisfying

�
�
Œw
.1/
1 ;w

.1/
2 �
�
D �1; �

�
Œw
.2/
1 ;w

.2/
2 �
�
D �2;

and define

det.�1; �2/ WD det

 
w
.1/
1 w

.2/
1

w
.1/
2 w

.2/
2

!
;

which is well defined modulo the group generated by the units ˙"1 and ˙"2. Since

t�1.�2/D�.w
.2/
2 /�1 � det.�1; �2/;

we can invoke (37) to write
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J ı.�1; �2/D OJ
ı
�1
Œ�2�D OJ

ı
�1
¹r; �2rº.�2/D

Y
�2SL2.Z/=�

Z

1

det.��1; �2/
ır;�2r .��1/;

where �i is the automorph of �i , and the replacement of t��1.�2/ by det.��1; �2/ is
justified by the fact that the intersection number ır;�2r.w/ 2 ¹�1; 0; 1º defined in (19)
satisfies X

�2SL2.Z/=�
Z

1

ır;�2r.��1/D 0;

since this quantity is the intersection pairing in homology between images of the
geodesics ¹r ! �2rº and ¹�1! � 01º in SL2.Z/nH , which is a curve of genus 0. Let
ı.w1;w2/ 2 ¹�1; 0; 1º be the signed intersection between the geodesic on H going
from w1 to w01 and the geodesic from w2 to w02. Then

1X
jD�1

ı
�
j
2
r;�
jC1
2

r
.��1/D ı.��1; �2/;

as follows immediately from the additivity of the intersection number (21). Therefore,
we obtain

J ı.�1; �2/D
Y

�2�Z
2
nSL2.Z/=�

Z

1

det.��1; �2/
ı.��1;�2/: (38)

Proposition 2.5 can be deduced from (38) in light of the fact that, for all � 2 SL2.Z/,

det.��1; �2/D det.�1; �
�1�2/D�det.��1�2; �1/

and that

ı.��1; �2/D ı.�1; �
�1�2/D�ı.�

�1�2; �1/:

It will be useful later to have a formula for the valuation of J ı.�1; �2/ at certain
rational primes p. Recall that two RM points �1 and �2 of discriminants D1 and D2,
respectively, correspond to embeddings '1 and '2 of the associated orders O1 and O2
into the matrix ring M2.Z/. The intersection multiplicity at p of '1 and '2 is defined
by setting

Œ'1 � '2�p WDmax t � 0 such that '1.O1/; '2.O2/

have the same image in M2.Z=p
tZ/: (39)

To motivate the following definition, we remark that the finite sum
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�2�Z

2
nSL2.Z/=�

Z

1

ı.��1; �2/

is supported on intersection points of the closed geodesics on SL2.Z/nH attached to
�1 and �2, and each such point contributes the sign of its intersection with respect to
the induced orientation of the quotient surface. Therefore, this sum equals the homo-
logical intersection of the closed geodesics and, hence, is equal to 0 since SL2.Z/nH
is a Zariski-open subset of a curve of genus 0.

Definition 2.6
The p-weighted intersection number of �1 and �2 is the sum (involving only finitely
many nonzero terms)

.'1 � '2/p1 WD
X

�2�Z
2
nSL2.Z/=�

Z

1

Œ�'1�
�1 � '2�p � ı.��1; �2/; (40)

where, as above, ı.��1; �2/ 2 ¹�1; 0; 1º is the signed intersection number between the
geodesic on H going from ��1 to �� 01 and the geodesic from �2 to � 02.

PROPOSITION 2.7
Let p �D1D2 be a rational prime that is inert in K1 and in K2. Then

ordpJ
ı.�1; �2/D .'1; '2/p1:

Proof
This follows directly from the formula (38) for J ı.�1; �2/ in light of the fact that
ordp det.��1; �2/D Œ�'1��1 � '2�p .

Remark 2.8
In their suggestive work [12] on linking numbers and modular cocycles, Duke,
Imamoḡlu, and Tóth show that the quantities J ı.�1; �2/ are closely related to the
linking number between the modular geodesics attached to �1 and �2 on the threefold
SL2.Z/nSL2.R/. As noted in the acknowledgements, the implicit use of multiplica-
tive rational cocycles in [12] was an important source of inspiration for this paper.

2.2. A review of p-adic theta-functions
This section briefly recalls the theory of rigid analytic theta functions following the
treatment in [13]. Given w 2 P1.Cp/, let tw.z/ denote the linear polynomial on
P1.Cp/ defined by
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tw.z/ WD

8̂̂
<
ˆ̂:
z �w if jwj � 1;

z=w � 1 if jwj> 1;

1 if wD1:

(41)

Meromorphic functions on Hp with prescribed divisors can be constructed in a sys-
tematic way using the following adaptation of a result of Gerritzen and Van der Put
[13, Chapter II, Section 2.2, Lemma] (see also Van der Put [20, Proposition 2.2]).

LEMMA 2.9
Let .wCi / and .w�i / be sequences of points in Hp such that, for all i , the elements
w˙i are either both integral or both nonintegral, and satisfy the following.
(i) For any " > 0 there is an N such that for all i > N we have

jwCi �w
�
i j< " if jwCi j � 1;

j1=wCi � 1=w
�
i j< " if jwCi j> 1:

(ii) The sets of w˙i are discrete, that is, for all n � 0, the affinoid H�np contains
finitely many of the wCi ’s and w�i ’s.

Then the infinite product

J.z/D

1Y
iD1

� t
w
C
i

.z/

tw�
i
.z/

�
(42)

converges to a rigid meromorphic function on Hp with zeroes only at the wCi ’s and
poles only at the w�i ’s, whose logarithmic derivative is

dlogJ.z/D
1X
iD1

� dz

z �wCi
�

dz

z �w�i

�
:

Proof
The infinite product in (42) converges to a rigid meromorphic function on Hp because
its general factor converges uniformly to 1 on any affinoid H�np . More precisely, we
have

ˇ̌̌ t
w
C
i

.z/

tw�
i
.z/
� 1

ˇ̌̌
� "pn; for all i > N; z 2H�np ; (43)

as can be checked from a direct verification in the cases jw˙i j > 1 and jw˙i j � 1
separately. All of the other properties of J.z/ are a direct consequence of the defini-
tions.
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For this section (and this section only), let � be a subgroup of PSL2.Qp/ acting
discretely and without fixed points on Hp by Möbius transformations. This excludes
finite index subgroups of SL2.ZŒ1=p�/, whose nontrivial fixed points consist of the
RM points in Hp . Examples of such discrete groups arise for instance from suitable
finite index subgroups of p-arithmetic groupsR�1 consisting of the elements of norm 1

in a maximal ZŒ1=p�-order R in a definite quaternion algebra B over Q that is split at
p so that B ˝Qp can be identified with M2.Qp/. After fixing such an identification,
the group

� WDR�1 =h˙1i � PSL2.Qp/

acts on Hp with discrete orbits. The quotient �nHp can be identified with the Cp-
points of a complete rigid analytic curve X over Qp : a Shimura curve, which has
a model over Q and enjoys many of the same rich arithmetic properties as classical
modular curves.

Let D ŒwC�� Œw�� be a simple divisor of degree 0 on Hp . After enumerating
the elements of � D ¹�1; �2; : : : ; �i ; : : :º, one can show that the sequences

wCi WD �i .w
C/; w�i D �i .w

�/

satisfy the conditions in Lemma 2.9 and, hence, that the function

NJwC�w�.z/ WD
Y
�2�

� t�wC.z/
t�w�.z/

�
(44)

converges to a meromorphic function on Hp which is rigid analytic on Hp ��w
C �

�w� and has zeroes and poles on �wC and �w�, respectively.
The definition of NJwC�w� can be extended by multiplicativity to allow the

replacement of ŒwC� � Œw�� by any degree 0 divisor  on Hp . The function NJ� is
�-invariant up to multiplicative scalars:

NJ� 2H0.�;M�=C�p/;

but need not be �-invariant itself. An arbitrary lift J� of NJ� to M� satisfies the
transformation formula

J�.�z/D ��.�/J�.z/;

where �� 2H1.�;C�p/ is the period function attached to J�. This class represents the
obstruction to lifting the image of NJ� to an element of H0.�;M�/ and encodes the
image of  in the Jacobian of X over Cp . More precisely, taking the �-cohomology
of the exact sequence
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0�!C�p �!M� �!M�=C�p �! 0

yields

.M�/� �! .M�=C�p/
� �
�!H1.�;C�p/=Q �! 0; (45)

where Q is the period lattice of X WD �nHp spanned by the elements of the form ��

as  ranges over divisors of the form .�z/ � .z/ with � 2 � . In particular, J� is a
�-invariant function if and only if �� 2Q, that is, the image of  in Div0.X/ is a
principal divisor.

2.3. Rigid meromorphic cocycles
We return to the original setting of rigid meromorphic cocycles, where � WD

SL2.ZŒ1=p�/ acts on Hp by Möbius transformations and on M� with the weight 0
action.

Recall the definition given in (32) of the rigid meromorphic cocycleˆ� of weight
2 attached to � 2 �nH RM

p . For each r; s 2 P1.Q/, let wCi and w�i be a complete list
of the positive and negative elements of †� .r; s/, paired together so that w�i and wCi
belong to the same wide open subset of the form Wv , with v 2 T0, for all i � 0. This
collection of elements satisfies the conditions in Lemma 2.9, and hence, by letting
tw.z/ be the rational functions given in (41), the infinite products

N|� WD
Y
w2†�

tw.z/
ı1.w/; NJ�¹r; sº WD

Y
w2†� .r;s/

tw.z/
ır;s.w/ (46)

converge to rigid meromorphic functions satisfying

dlog N|� D '� ; dlog NJ�¹r; sº Dˆ�¹r; sº: (47)

The function NJ�¹r; sº is completely determined by (47) up to multiplication by a
nonzero scalar in K�p , where Kp is the completion of K DQ.�/ at the unique prime
of K above p. Hence, the system of NJ�¹r; sº determines an element

NJ� 2MS�.M�=K�p /DH1par.�;M
�=K�p /: (48)

The cocycle NJ� is called the projective rigid meromorphic cocycle attached to � .
Recall, following Definition 1 of the Introduction, that H1

f
.�;M�/ consists of

classes represented by rigid meromorphic multiplicative cocycles whose restrictions
to �1 take values in the group of constant functions. It fits into the exact sequence

0�!H1.�;K�p /�!H1f .�;M
�/�!H1par.�;M

�=K�p /
ı
�!H2.�;K�p /: (49)

It follows from Section 1.5 that the cocycles J � generate H1par.�;M
�=K�p /, up to

the well-understood finite rank subgroup of analytic cocycles. In the remainder of
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this section, we analyze their lifting obstructions in H2.�;K�p / and show they are
annihilated by a finite rank Hecke algebra Ip . Any combination of cocycles T J �
with T 2 Ip therefore lifts to H1

f
.�;M�/.

Let TD ZŒT2; T3; T5; : : :� be the algebra of Hecke operators whose elements are
polynomials in the Hecke operators T` with `¤ p a prime, and let

Ip WDAnnT
�
M2

�
�0.p/;Z

��
;

where M2.�0.p/;Z/ is the space of weight 2 modular forms on �0.p/ with integral
Fourier coefficients. Lemmas 2.10 and 2.11 analyze the structure of the T-modules
arising in (49).

LEMMA 2.10
(1) The group H1.�;K�p / is finite of exponent dividing 12.
(2) There is a natural map

� WH1
�
�0.p/;K

�
p

�
�!H2.�;K�p /

whose kernel and cokernel are of exponent dividing 12.
(3) The module H2.�;K�p / is a torsion T-module which is annihilated by 12 � Ip .

Proof
Let F .T0;K

�
p / and F .T1;K

�
p / denote the �-modules of K�p -valued functions on

the sets of vertices and edges of the Bruhat–Tits tree T . Recall that every edge e 2 T1
contains a unique positive vertex vC 2 T C0 and a unique negative vertex v� 2 T �0 . For
all f 2 F .T0;K

�
p /, one can define a function df 2 F .T1;K

�
p / by setting df .e/D

f .v�/=f .vC/. The map d fits into the short exact sequence

1�!K�p �! F .T0;K
�
p /

d
�! F .T1;K

�
p /�! 1; (50)

which provides a resolution of K�p by the induced �-modules

F .T0;K
�
p /D F .T C0 ;K

�
p /˚F .T �0 ;K

�
p /D Ind�SL2.Z/

K�p ˚ Ind�SL0
2
.Z/
K�p ;

F .T1;K
�
p /D Ind��0.p/.K

�
p /;

where

SL02.Z/D P
�1SL2.Z/P D

²�
a b=p

pc d

�
with a; b; c; d 2 Z

³
;

�0.p/D SL2.Z/\ SL02.Z/:
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Taking the �-cohomology of (50) and invoking Shapiro’s lemma yields the long exact
sequence

1 �! H1.�;K�p / �! H1.SL2.Z/;K�p /˚H1.SL02.Z/;K
�
p / �! H1.�0.p/;K�p /


�! H2.�;K�p / �! H2.SL2.Z/;K�p /˚H2.SL02.Z/;K

�
p / �! � � � :

The first two statements in the lemma follow after noting that the first and second
cohomologies of SL2.Z/ with values in K�p have exponent 12. Eichler–Shimura the-
ory, which asserts that

Ip WDAnnT
�
H1
�
�0.p/;K

�
p

��
DAnnT

�
M2

�
�0.p/;Z

��
;

implies the third statement.

A point � 2 �nH RM
p is said to be fundamental if its associated order is the max-

imal ZŒ1=p�-order of the real quadratic field Q.�/, that is, if it is the root of a binary
quadratic form whose discriminant, up to powers of p, is equal to a fundamental
discriminant.

LEMMA 2.11
The quotient

H1par.�;M
�=K�p /=H1par.�;O

�=K�p /

is torsion-free over T. The classes NJ� , as � ranges over the fundamental elements of
�nH RM

p , are multiplicatively independent over T.

Proof
The logarithmic derivative identifies M�=K�p with the group MZ

2 of rigid meromor-
phic differentials of the third kind on Hp (i.e., having at worst simple poles and inte-
ger residues). Given any NJ 2H1par.�;M

�=K�p /, let ˆ WD dlog NJ 2 H1par.�;M2/ be its
logarithmic derivative. If � is a nonzero element of T, then NJ j � can only be analytic
if the same is true of ˆj2� . But then ˆ must be analytic, by Corollary 1.27, which
implies that NJ has to be analytic as well. The first assertion in the proposition follows.
The second is an immediate consequence of Lemma 1.26, which implies that the rigid
meromorphic differentials of the form '� j2� , as � ranges over the primitive elements
of �nH RM

p , have nontrivial, mutually disjoint residual divisors.

We are now ready to prove the main theorem of this section, from which one
recovers Theorem 1 of the Introduction.



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 65

THEOREM 2.12
For all primes p, the group H1

f
.�;M�/ is of infinite rank over Z. The zeroes and

poles of a rigid meromorphic period function are contained in a finite collection of
�-orbits of RM points of Hp .

Proof
The first assertion follows immediately from Lemma 2.10, which asserts that the left-
most and rightmost modules in (49) are torsion T-modules (with a specific annihilator
Ip), combined with Lemma 2.11, which asserts that the term H1par.�;M

�=K�p / has a
nonfinitely generated, T-torsion-free quotient. As to the second assertion, it follows
immediately from Theorem 1.24 applied to the logarithmic derivative of an element
of H1

f
.�;M�/.

As in Section 2.1, the class ı. NJ� / 2 H2.�;K�p / represents the obstruction to lift-
ing NJ� 2H1par.�;M

�=K�p / to a genuine multiplicative cocycle in H1
f
.�;M�/. By the

second statement in Lemma 2.10, we may write

ı. NJ 12� /D �.�� /;

where �� 2H1.�0.p/;K�p / is well defined up to the 12-torsion group ker�. The class
�� measures the obstruction to lifting the class NJ 12� 2 H1par.�;M

�=K�p / to a genuine
rigid meromorphic cocycle.

Definition 2.13
The class �� is called the lifting obstruction attached to the class NJ 12� .

It will be useful to have an explicit description of the lifting obstruction �� .
Recall the standard vertex v0 2 T0 whose stabilizer in � is SL2.Z/, and recall the
standard edge e D .v0; v00/ whose stabilizer in � is �0.p/. The restrictions of NJ 12� 2
H1par.�;M

�=K�p / to the groups

SL2.Z/D Stab�.v0/; SL02.Z/D Stab�.v
0
0/

lift uniquely to classes

J v0� 2H1f
�
SL2.Z/;M

�
�
; J

v0
0
� 2H1f

�
SL02.Z/;M

�
�
;

where we suppress the 12th power from the notation. They are related by the rule

J
v0
0
� .�/D J

v0
� .P �P

�1/:

The restriction to �0.p/D SL2.Z/\ SL02.Z/ of the ratio J v0� =J
v0
0
� lies in the kernel

of the natural map
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H1
�
�0.p/;M

�
�
�!H1

�
�0.p/;M

�=K�p
�
;

which is equal to H1.�0.p/;K�p /, and for all � 2 �0.p/,

�� .�/D J
v0
� .�/=J

v0
0
� .�/D J

v0
� .�/=J

v0
� .P �P

�1/: (51)

Assume below that p does not divide the discriminant of the fieldK DQ.�/, that
is, that the elements of �� �Hp reduce to vertices of T . Recall that the element � is
then said to be even if these images are even vertices and is said to be odd otherwise.

PROPOSITION 2.14
For all � 2H RM

p , the class J v0� 2H1
f
.SL2.Z/;M�/ satisfies

J v0� .T /D "
.p/
� ;

where ".p/� is the unique element of K�p satisfying

".p/� 


´
"� .mod p/ if � is even;

1 .mod p/ if � is odd;
.".p/� /1�p

2

D "1Cp� :

Proof
Any w 2 �� is the root of a unique (up to sign) primitive integral binary quadratic
form, whose discriminant is of the form Dp2m with p �D (see Proposition 1.1). The
exponentm is called the level of w. It is an even integer if � is even and an odd integer
if � is odd, which is constant on SL2.Z/-orbits but not, of course, on the full �-orbit
of � . Upon setting

†.m/� .r; s/D
®
w 2†� .r; s/ with level.w/Dm

¯
;

the sets †� .r; s/ decompose as a disjoint union of the form

†� .r; s/D

´
†
.0/
� .r; s/t†

.2/
� .r; s/t†

.4/
� .r; s/t � � � if � is even;

†
.1/
� .r; s/t†

.3/
� .r; s/t†

.5/
� .r; s/t � � � if � is odd:

It follows that

NJ�¹r; sº.z/D

1Y
mD0

NJ .m/� ¹r; sº.z/; where NJ .m/� ¹r; sº.z/ WD
Y

w2†
.m/
� .r;s/

tw.z/
ır;s.w/;

(52)

adopting the convention that NJ .m/� ¹r; sº D 1 if � and m are of different parity.
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For any fixed m � 0, the finite set †.m/� .r; s/ decomposes as a finite union of
SL2.Z/-orbits of the form

†.m/� .r; s/D†ı�1.r; s/t � � � t†
ı
�d
.r; s/;

where �1; : : : ; �d are the distinct representatives of the SL2.Z/ orbits of RM
points of discriminant Dp2m that are �-equivalent to � . Recall the classes J ı� 2
H1.SL2.Z/;M�rat/ associated to � 2 SL2.Z/nC RM in (35) of Section 2.1, and set

J .m/� WD J ı�1 � � � � � J
ı
�d
: (53)

By Lemma 2.3, we have

J ı�j .T /D "m D "
em
� ; (54)

where "� is the fundamental unit of the real quadratic order of discriminant Dp2m.
Recall that p is inert in Q.�/, so one has e0 D 1, and for m � 1, the exponent em is
given by the class number formula

hC.Dp2m/em D p
m�1.pC 1/hC.D/;

which implies that

em D

´
1 if mD 0;

.pC 1/pm�1d�1 if m� 1:
(55)

By combining (53), (54), and (55), one obtains

J .m/� .T / WD J ı�1.T /� � � � � J
ı
�d
.T /D "dm D

´
"� if mD 0;

"
.pC1/pm�1

� if m� 1:

The uniqueness of J v0� implies that

J v0� D J
.0/
� � J

.1/
� � J

.2/
� � � � � : (56)

It follows that

J v0� .T /D

´
"
1C.pC1/pC.pC1/p3C.pC1/p5C			
� if � is even;

"
.pC1/C.pC1/p2C.pC1/p4C.pC1/p6C			
� if � is odd:

The infinite series expressing the exponents in the equation above converge in the
group Z=.pC1/Z�Zp to the elements .1; 1=.1�p//when � is even and to .0; 1=.1�
p// when � is odd. The proposition follows.
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THEOREM 2.15
For all � 2H RM

p , the class �� satisfies

�� .T /D "� mod .K�p /tor:

Proof
This follows directly from (51) and from Proposition 2.14, in light of the identity

PTP�1 D T p:

2.4. Explicit examples
Although Theorem 2.12 guarantees a large supply of rigid meromorphic cocycles
for any prime p, it is useful for numerical experiments to single out some notably
simple instances of these objects, in which complicated Hecke translates of the basic
projective cocycles NJ� need not be invoked. Such constructions are available for the
small primes given in Definitions 2.16 and 2.18 below.

Definition 2.16
A prime p is said to be a genus 0 prime if the modular curve X0.p/ has genus 0, that
is, if pD 2, 3, 5, 7, or 13.

Theorem 2.15 implies that the cocycles NJ� themselves never lift to an element of
H1
f
.�;M�/. However, one has the following.

THEOREM 2.17
If p is a genus 0 prime, then the cocycle NJ 12� lifts, modulo torsion .K�p /tor in K�p , to

a cocycle OJ� 2H1.�;M�="Z� /, where "� is the fundamental unit of the real quadratic
order attached to � . This lift is well defined up to a torsion class, and

OJ v0� .T /D "
.p/
� mod .K�p /tor; (57)

OJ v0� .S/D˙.�
.p/
� /�1 � N|� mod .K�p /tor; where �.p/� WD

Y
vp.w/2Œ0;2/;w>0

w:

(58)

Proof
When p is a genus 0 prime, the abelianization of �0.p/ is generated by the image
of the parabolic matrix T , and hence, the existence of the lift OJ� follows from Theo-
rem 2.15. It follows from Theorem 2.14 that OJ� .T /D "

.p/
� . To calculate OJ� .S/, note

that we may write
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N|� .z/D
Y

w2†� ;w>0

tw.z/

tSw.z/
:

A direct calculation shows that

tw.z/

tSw.z/
�
tw.Sz/

tSw.Sz/
D

´
�w2 if w 2O�Cp ;

�1 if w …O�Cp ;

from which it follows that .�.p/� /�1� N|� is a lift of N|� to M� that satisfies the two-term
relation. Since OJ� .S/ is the unique such lift, up to sign, the lemma follows.

Definition 2.18
A prime p is said to be monstrous if it satisfies one of the following equivalent con-
ditions:
(1) p divides the cardinality of the monster sporadic simple group;
(2) the modular curve X0.p/=wp has genus 0;
(3) p is equal to 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

(The equivalence of the first and second conditions, first observed by Andrew
Ogg, is part of the empirical panoply of “monstrous moonshine.”)

THEOREM 2.19
If p is a monstrous prime and � is any RM point in Hp of discriminant prime to p,
then the p-even projective cocycle

.1C$p/ NJ
12
� D

NJ 12� = NJ 12p� (59)

lifts uniquely to a rigid meromorphic cocycle JC� 2 H1
f
.�;M�/ modulo .K�p /tor

whose associated rigid meromorphic period function jC� is given in Theorem 2 of the
Introduction.

Proof
The proof of Lemma 1.4 of [3] explains that the “lifting obstruction” map

12��1 ı ı WH1par.�;M
�=K�p /�!H1

�
�0.p/;K

�
p

�
;

where ı is the map of (49) and � is given in the second part of Lemma 2.10, inter-
twines the involution wp on the domain with the Atkin–Lehner involution at p on
the target. When p is a monstrous prime, the subspace H1.�0.p/;K�p /

wpD1 is triv-
ial. It follows that the projective cocycle in (59) lifts to a genuine rigid meromorphic
cocycle in H1

f
.�;M�/.
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2.5. The efficient calculation of rigid meromorphic cocycles
To simplify the presentation, we assume henceforth that p is inert in K DQ.�/. Our
ultimate aim is to be able to compute the values of a rigid meromorphic cocycle J
at any z in H RM

p . We go about this via a series of simplifications. The first crucial
remark is that every element of Hp is �-equivalent to an element of H�1p . Hence, by
the �-equivariance property mentioned right after (3) in the Introduction and proved
in Lemma 3.3 below, it is enough to be able to evaluate the RM values of J at such
elements z of Hp . We may assume without loss of generality that z > 1 and �1 <
z0 < 0, in which case the continued fraction

z D a1C
1

a2C
1

a3C			

.ai � 1/

is purely periodic, of minimal even length n. Let �z be the unique (modulo torsion)
generator of �z for which z is the stable, or attractive, fixed point, that is, for which

�z

�
z

1

�
D "

�
z

1

�
; with j	j> 1:

We can then write

�z D �n � �n�1 � : : : � �1; where �i D ST
.�1/iai :

Using the cocycle relations and the fact that J.T / is constant, we compute that

J.�z/D J.T /
�a1Ca2�a3C			Can �

nY
iD1

.�n � � ��iJ /.S/: (60)

In the special case where J D OJ� , it was shown above that OJ� .T /D "
.p/
� , so that it is

enough to efficiently compute the rigid meromorphic function OJ� .S/.
To compute O|� WD OJ� .S/, it is enough by (58) to compute N|� . The infinite product

expansion (46) defining N|� gives a theoretically effective way to evaluate it at arbitrary
� 2Hp , but this method is hardly efficient. Indeed, the estimate (43) shows that the
evaluation of N|� .z/ for z 2H0

p toM significant digits of p-adic accuracy requires the
infinite product defining it to be taken over all

w 2†.�M/
� .r; s/D†� .r; s/\H�Mp :

The latter set has size roughly pM , and it is impractical to take a product over such
an index set for even moderate values of M , whereas many of the experiments that
will be reported on later required p-adic precision on the order of hundreds of digits.
This section describes how rigid meromorphic period functions can be calculated and
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stored efficiently on a computer, in a way that enables the calculation of their RM
values to large p-adic accuracy.

We first describe a polynomial time recursive algorithm for computing N|� , which
is somewhat in the spirit of the algorithm based on overconvergent modular sym-
bols for computing the rigid analytic cocycles described in [6]. Recall from (52) the
decomposition

NJ�¹r; sº D NJ
.0/
� ¹r; sº �

NJ .1/� ¹r; sº �
NJ .2/� ¹r; sº � � � � :

By the estimate (43) we have that

NJ .m/� ¹0;1º.A/� 1C p
2mOCp ;

where A is the standard affinoid, defined in Section 1.1. This implies that, in order to
evaluate N|� at a point in A to a p-adic accuracy of pM , it suffices to evaluate the finite
collection of rational functions NJ .t/� ¹0;1º for t �M � 1. To compute NJ .m/� ¹0;1º,
the key idea is to represent it as a multiplicative Mittag-Leffler expansion on the stan-
dard wide open subset rather than as a rational function. More precisely, for allm� 1,

NJ .m/� ¹r; sº D

p�1Y
aD0

F .m/a ¹r; sº �F
.m/
1 ¹r; sº;

where F .m/a ¹r; sº.z/D
Y

w2†
.m/
� \.aCpOCp /

tw.z/
ır;s :

The explicit knowledge of the multiplicative Mittag-Leffler expansion suffices for the
explicit evaluation of NJ .m/� ¹0;1º and, therefore, N|� at points of the standard affinoid
A. This is particularly convenient, since the functions F .m/a ¹r; sº satisfy the following
recursion formulae, for aD 0; 1; : : : ; p � 1 given by

F .mC1/a ¹0;1º.z/D

p�1Y
`D0

F
.m/

`

°
�
a

p
;1

±�z � a
p

�
.mod K�p /; (61)

whereas for aD1 we have

F .mC1/1 ¹0;1º.z/D

p�1Y
`D1

F
.m/

`
¹0;1º.pz/�F .m/1 ¹0;1º.pz/ .mod K�p /: (62)

These recursion formulae follow from the observation that both sides define rational
functions with the same divisor and must therefore be equal up to a constant. Observe
that
(1) for each fixed m and a, the function F

.m/
a ¹r; sº is a modular symbol in

MS.M�/;
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(2) for all � 2 SL2.Z/, we have

F .m/�a ¹�r; �sº.�z/D F
.m/
a ¹r; sº.z/ .mod K�p /:

Note that the function F .m/a ¹�a=p;1º is easily expressed, up to a multiplicative
constant, as a combination of the functions F .m/a ¹0;1º by finding a unimodular path
from �a=p to1 and using the two observations above. By using the recursions (61)
and (62), this allows us to compute the functions F .mC1/a ¹0;1º from the functions
F
.m/
a ¹0;1º, up to a multiplicative constant. To determine this constant, set

ta D
1

z � a
for aD 0; : : : ; p � 1 and t1 D z:

It is straightforward to check that

F .m/a ¹0;1º 2 1C pOCp htai; a 2 ¹0; : : : ; p � 1;1º;

so that the implicit constant is easily found in practice, by normalizing the right-hand
side to have constant term 1.

We summarize this discussion in the following steps, which describe how to com-
pute the values OJ� Œz� at an RM point z in the standard affinoid A, up to precision pM :
� Step 1. Compute the rational function OJ ı� ¹0;1º as well as the p C 1 power

series

F .1/a ¹0;1º.ta/ 2 1C pOCp htai; aD 0; 1; : : : ; p � 1;1:

� Step 2. Use (61) and (62) as well as the modular symbol relations for the
functions Fa.r; s/ to compute for any 2�m�M � 1 the power series

F .m/a ¹0;1º.ta/ 2 1C pOCp htai; aD 0; 1; : : : ; p � 1;1;

up to precision pM . Store the data of N|� WD NJ�¹0;1º to that accuracy, express-
ing it as a product of p C 1 power series in the variables ta, up to precision
tMa .

� Step 3. Compute the quantity OJ� .S/D .�
.p/
� /�1 � O|� via the identity

.�.p/� /2 D

p�1Y
aD1

Fa¹0;1º.0/:

� Step 4. Compute OJ� Œz�D OJ� .�z/.z/ via (60) and the identity OJ� .T /D "
.p/
� .

This algorithm has been implemented in magma, and the resulting code is avail-
able on the authors’ webpages. It will be used in the next section to give numerical
examples in support of the proposed conjectures on RM values of rigid meromorphic
cocycles.
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3. Real quadratic singular moduli
This section is devoted to the most important notion explored in this paper: the val-
ues of rigid meromorphic cocycles at RM points, which are conjecturally defined
over composita of ring class fields of real quadratic fields and otherwise exhibit many
striking parallels with singular moduli arising in the classical theory of complex mul-
tiplication.

3.1. RM values of rigid meromorphic cocycles
Let J 2 H1

f
.�;M�/ be a rigid meromorphic cocycle. By Theorem 1.24, its logarith-

mic derivative is of the form

dlogJ Dˆ0C
X
�2†J

��ˆ� ;

whereˆ0 2H1
f
.�;O2/ is a rigid analytic cocycle of weight 2 and†J is a finite subset

of the orbit space �nH RM
p .

Given any � 2H RM
p , the discriminant of � , denoted D� , is the prime-to-p part

of the discriminant of any primitive integral binary quadratic form having � as a root.
This discriminant is well defined on Q�-orbits, that is,

D�� DD� ; for all � 2 Q�; � 2H RM
p :

Let H� denote the narrow ring class field attached to the order of discriminant D� .
It is an abelian extension of K WD Q.�/ whose Galois group over K is canonically
identified with the class group in the narrow sense of the order of discriminant D� .

Definition 3.1
The field of definition of J , denoted HJ , is the compositum of the narrow ring class
fields H� , as � ranges over the set †J .

As explained in the Introduction, one of the principal interests of rigid meromor-
phic cocycles is that they can be meaningfully evaluated at RM points. Recall the
automorph �� 2O�� of � 2H RM

p that was defined in the Introduction.

Definition 3.2
The value of J at an RM point � is the element

J Œ�� WD J.�� /.�/:

The following lemma shows how the values of J vary over �-orbits.
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LEMMA 3.3
For all � 2 � and all � 2H RM

p ,

J Œ���D J Œ��:

Proof
If � belongs to � , then this follows from the fact that the automorph of �� is �����1

and, hence, that

J Œ���D J.����
�1/.��/D J.�/.��/� J.�� /.�/� J.�

�1/.�/D J Œ��:

Remark 3.4
Whereas the value at an RM point � of a rigid meromorphic cocycle is independent of
the choice of � in its �-orbit, it is not necessarily true that this value is also indepen-
dent of the chosen cocycle representing the same class as J in H1

f
.�;M�/. Indeed,

when we modify the representative of J by a coboundary � 7! f �=f for a function
f that has a pole at � , the RM value changes by a unit in O� . We thank Ehud de Shalit
for pointing this out. This ambiguity is lifted when, as we do in this paper, we identify
a rigid meromorphic cocycle with its distinguished quasiparabolic representative.

The main conjecture of this section concerns the algebraicity of the RM values of
rigid meromorphic cocycles and was already stated as Conjecture 1 in the Introduc-
tion.

CONJECTURE 3.5
Let J 2H1

f
.�;M�/ be a rigid meromorphic cocycle, and let � 2H RM

p . Then J Œ�� is
contained in the compositum of HJ and H� .

The following examples describe the calculations of RM values for various small
discriminants, using the computational techniques from Section 2.5.

Example 3.6
The golden ratio ' D 1C

p
5

2
, which is a root of the binary quadratic form x2Cxy�y2

of discriminant 5, is the simplest real quadratic irrationality, and it is therefore natural
to examine the RM values of the rigid meromorphic cocycle JC' attached to it, which,
(for p a monstrous prime) is the only interesting rigid meromorphic cocycle whose
zeroes and poles are concentrated in the Q�-orbit of the golden ratio.

Some of the values of JC' , at the RM points of discriminants 8 and 892, were
already described in the Introduction. The algorithms of Section 2.5 were also used
to compute the value of the 2-adic cocycle JC' at the RM points of discriminant 21 to
1000 significant digits, yielding
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JC'

h�3Cp21
2

i
D
37˙ 48

p
�3

7 � 13
.mod 21000/:

This experimental finding is consistent with Conjecture 3.5, since the ring class field
of discriminant 21 is Q.

p
�3;
p
�7/.

We also computed JC' at p D 7 and p D 17 to 400 and 100 significant digits,
respectively, as well as the RM values of these cocycles at the four classes of RM
points of discriminant 96, whose associated ring class field is Q.

p
2;
p
�3;
p
�1/. In

this way we found

JC' Œ2
p
6�D

3˙ 8
p
2˙ 12

p
�1˙ 2

p
�2

17
.mod 7400/;

JC' Œ2
p
6�D

2˙ 1
p
�3˙ 3

p
2˙ 2

p
�6

7
.mod 17100/:

Notice that the 7-adic valuation of the 17-adic invariant is equal to the 17-adic val-
uation of the corresponding 7-adic invariant. This phenomenon will be addressed in
Section 3.4. Just as in the Introduction, the values JC' Œ� � seem to be defined over H�
rather than H� .

p
5/, an observation that will be explained by the Shimura reciprocity

law formulated in Section 3.2 below.
Finally, Table 3.7 below lists the values of the cocycle JC' at a few arguments in

Q.'/, for the primes p D 2; 3; 7; 13; 17, and 23. This is the full list of the monstrous
primes that are inert in Q.'/, with the exception of the largest prime p D 47, which
was omitted for lack of space and because the column attached to this prime is the
least varied: all its entries are equal to 1 with the exception of

JC' Œ11'�
‹
D
3C
p
�55

23
in C47:

Finally, consider p D 37, which is the smallest prime that does not divide the
order of the monster group. The Hecke module H2.�;C�p/ is killed by the Hecke
operator

P WD T2.T2 � 3/.T2C 2/:

Table 3.7. The values of the p-adic cocycle JC' Œn'�.

� pD 2 pD 3 pD 7 pD 13 pD 17 pD 23

3'
�313C713

p
�3

2�72 �13
�

1C
p
�15

4

�1C
p
�15

4
1 1

4' �
174C832

p
�1

2�52 �17

�10C24
p
�1

2�13

�4C6
p
�5

2�7

�2�
p
�5

3
1

6' � �
�34C8

p
�15

2�23

67C3
p
�15

22 �17

�1C15
p
�3

2�13

2C8
p
�3

2�7

7'
8693C1675

p
�35

2�3�133
1129C357

p
�7

26 �23
�

�3C
p
�7

22
�1�3

p
�7

23
�1C
p
�35

2�3

9'
18012458C56391392

p
�3

2�74 �13�37�43
�

�14C8
p
�15

2�17

�61C5
p
�15

26
1C4
p
�3

7
1

11'
1394644289C132949133

p
�11

2�3�5�23�37�47�53

�3826843C133719
p
�55

25 �132 �17�43

�106C32
p
�11

2�3�52
1

5�
p
�11

2�3

�3C
p
�55

23
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The cocycle

P. NJ'/ 2H1.�;M�=C�p/

then lifts to a rigid meromorphic cocycle, denoted J';P , and we compute that

J';P Œ2
p
2�D

�76
p
10� 247

p
�5C 8

p
�2C 26

603
.mod 3740/;

which is in the compositum of the field of definition Q.
p
5/ of J';P and the ring

class field Q.
p
2;
p
�1/ attached to discriminant 2 D 32, in accordance with Con-

jecture 3.5.

Example 3.8
The next positive discriminant after 5 is 8, corresponding to the fieldK WDQ.

p
2/. Its

narrow class number is 1, so that once again the essentially unique rigid meromorphic
cocycle with zeroes and poles in the Q�-orbit of

p
2 is JCp

2
.

There are four distinct classes of RM points �105 of discriminant 105, and the
monstrous primes that are inert for both 8 and 105 are precisely p D 11; 19; 29. We
compute that

JCp
2
Œ�105�

‹
D
2˙ 10

p
�3˙ 15

p
5˙
p
�15

2 � 19
.mod 11100/;

JCp
2
Œ�105�

‹
D
6˙ 3

p
�7˙ 7

p
5˙ 2

p
�35

2 � 11
.mod 19100/;

JCp
2
Œ�105�

‹
D 1 .mod 29100/:

When p D 11, these are the four roots of 19x4 � 4x3 � 21x2 � 4x C 19, whereas
for pD 19 these are the roots of 11x4 � 12x3C 3x2 � 12xC 11. Both sets generate
distinct fields of degree 4 over Q, and the compositum of either field with Q.

p
105/

is the ring class field of discriminant 105. As in the previous example, notice the
linear independence with the field of definition K and the reciprocity occurring in the
denominators, both of which will be discussed in Sections 3.2 and 3.4. To conclude
the discussion of discriminant 8 cocycles, Table 3.9 below lists the values of JCp

2
at

small integer multiples of
p
2, for all the monstrous primes that are inert in Q.

p
2/.

Example 3.10
The real irrationality

p
3 has discriminant 12, its associated narrow ring class field is

the biquadratic fieldHp3 DQ.
p
3;
p
�1/, and it defines an RM point in the standard

affinoid of Hp , for any prime p 
 5; 7 mod 12. For each such p, one may consider
the rigid meromorphic cocycle JCp

3
. This cocycle was computed to a 5-adic accuracy
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Table 3.9. Some values of the p-adic cocycle JCp
2
Œn
p
2�.

� pD 3 pD 5 pD 11 pD 13 pD 19 pD 29 pD 59

2
p
2

204C253
p
�1

52 �13

7�6
p
�2

11

3�4
p
�1

5

1�2
p
�2

3
1 1 1

3
p
2 �

11CC21
p
�3

2�19

�1C15
p
�3

2�13

5C4
p
�6

11

�1C2
p
�6

5
1 1

4
p
2

6063�7216
p
�1

52 �13�29

�31C8
p
�2

3�11

3C4
p
�1

5

41�28
p
�2

3�19

5C12
p
�1

13

1C2
p
�2

3
1

5
p
2 1 � 1 1 1 1 1

Table 3.11. Some RM values JCp
3
Œ� �, for pD 5.

� Minimal polynomial of JCp
3
Œ�� Field

p
2 9x4 � 36x3C 40x2C 12xC 9 Q.�8/

1C
p
13

2
2401x8C 19404x7C 72589x6C 166716x5C 121944x4 Q.

p
�1;
p
3;
p
13/

� 166716x3C 72589x2 � 19404xC 2401

1C
p
17

2
194481x8 � 1100736x7C 20364174x6 � 71994624x5 Q.

p
�1;
p
3;
p
17/

C 840839779x4C 71994624x3C 20364174x2

C 1100736xC 194481

of 5200. Table 3.11 below lists the minimal polynomials of its values at a few � ’s of
small discriminant, as well as the number field defined by these polynomials.

Example 3.12
Now let !13 WD

1C
p
13

2
be the RM point of discriminant 13 in H RM

p for p D 5, 11,

19, and 59, which are monstrous primes that are inert in both Q.
p
13/ and Q.

p
2/.

Table 3.13 collects a few values of the cocycles JC!13 for those primes, at RM points

of the form � D n
p
2 for those small values of n for which the order O� has wide

class number 1.

3.2. The Shimura reciprocity law
We begin by briefly recalling the classical Shimura reciprocity law in the setting of the
theory of complex multiplication. Let D < 0 be a negative discriminant, and letH=Q
be the associated ring class field of K D Q.

p
D/, whose Galois group canonically

splits as the semidirect product:

Gal.H=Q/'Gal.H=K/� hFr1i D Cl.D/� hFr1i; (63)

where Cl.D/ is the class group of SL2.Z/-equivalence classes of positive definite
binary quadratic forms of discriminant D, equipped with the usual Gaussian compo-
sition, and the identifications

rec W Cl.D/�!Gal.H=K/; rec W Cl.D/� hFr1i �!Gal.H=Q/
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Table 3.13. The values of the p-adic cocycle JC!13 Œn
p
2� for 1� n� 11.

� pD 5 pD 11 pD 19 pD 59
p
2 1 1 1 1

2
p
2

47C144
p
�2

11�19

3�4
p
�1

5

3�4
p
�1

5
1

3
p
2

121�551
p
�3

2�13�37

11C21
p
�3

2�19

5�4
p
�6

11
1

4
p
2

2806273�1604736
p
�2

11�59�67�83

57�176
p
�1

5�37

5�12
p
�1

13

3C4
p
�1

5

7
p
2

13349623871C1962731160
p
�7

112 �37�109�149�197

118393�8328
p
�14

52 �59�83

93C95
p
�7

22 �67

37C9
p
�7

22 �11

8
p
2

1920792095831C651036999168
p
�2

113 �192 �59�227�331

1312�1425
p
�1

13�149

43C924
p
�1

52 �37

3C4
p
�1

5

9
p
2

1012867083636287C3520320389376383
p
�3

2�132 �372 �229�349�397�421

11387C12320
p
�3

192 �67

43C4100
p
�6

112 �83
1

11
p
2

1898087439462554809969C25021359226682861760
p
�22

13�192 �109�149�293�461�541�557�613
�

209711�130467
p
�11

2�52 �59�163

3C4
p
�22

19

arise from global class field theory. There is a canonical bijection between Cl.D/�
hFr1i and the set of SL2.Z/-orbits of CM points of discriminant D on the union of
the upper and lower half-planes H˙, defined by

g WD Œa; b; c� � Frı1 7�! �g WD .�1/
ı
��bCpD

2a

�
; (64)

where Œa; b; c� denotes the class of the binary quadratic form ax2C bxy C cy2.
Let J be a meromorphic modular function on SL2.Z/nH with Fourier expansion

coefficients in a field HJ , extended to a meromorphic function on the union H˙ of
upper and lower complex upper half-planes by requiring J.�z/D J.z/. If � is any
CM point for which H� is linearly disjoint from HJ , then the restriction of automor-
phisms induces isomorphisms

GD WDGal.HJH�=HJ /DGal.H�=Q/
rec
 � Cl.D/� hFr1i: (65)

The Shimura reciprocity law can then be stated as

J.�gh/D J.�h/
rec.g/�1 ; for all g;h 2 Cl.D/� hFr1i: (66)

Turning to the RM setting, let D > 0 be a discriminant for which p is inert, and
let H=Q be the ring class field associated to D whose Galois group can be described
as a semidirect product via the formula, which is almost identical to (63):

Gal.H=Q/'Gal.H=K/� hFrpi D Cl.D/� hFrpi: (67)

The latter identification arises, as before, from the isomorphism rec of global class
field theory. As in (64), there is a canonical bijection between cl.D/� hFrpi and the
set of �-orbits of RM points of discriminant D on Hp , defined by

g WD Œa; b; c� � Frıp 7�! �g WD p
ı
��bCpD

2a

�
: (68)
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Recall that by Conjecture 3.5 the RM values J Œ�� of a rigid meromorphic cocycle
J should be algebraic, contained in the compositum of the field of definition HJ of
J and the ring class field H� of � . If these two fields are linearly disjoint, then one
has the same identifications as in (65):

Gal.HJH�=HJ /DGal.H�=Q/D Cl.D/� hFrpi:

The conjectural Shimura reciprocity law is the statement.

CONJECTURE 3.14
For all g 2 Cl.D/� hFrpi as above,

J Œ�gh�D J Œ�h�
rec.g/�1 :

We now present a number of examples that lend credence to this conjecture.

Example 3.15
Let ' be the golden ratio, and let �1; : : : ; �6 be the roots of the narrow equivalence
classes of binary quadratic forms of discriminant 321, which has narrow class num-
ber 6. The monstrous prime 23 is inert in both the real quadratic fields Q.

p
5/ and

Q.
p
321/. Let JC' 2 H1

f
.�;M�/ be the rigid meromorphic cocycle attached to '

as in Theorem 2.19. Since JC' is p-even, its values on the RM points � and p�
coincide. The Shimura reciprocity conjecture therefore predicts that the six values
J Œ�j � lie in the Hilbert class field of Q.

p
321/ and are permuted by Gal. NQ=Q/. Using

the algorithms described in Section 2.5, we have verified that the values JC' Œ�j � for
j D 1; : : : ; 6 agree with the distinct roots of the polynomial

63x6 � 6x5C x4C 76x3C x2 � 6xC 63D 0;

to within fifty 23-adic digits. The roots of this polynomial generate the Hilbert class
field of Q.

p
321/.

Example 3.16
The discriminants D1 D 13 and D2 D 621 D 32 � 69 have narrow class numbers 1
and 6, respectively. The prime p D 71 is inert in both real quadratic fields, and it is
the largest prime factor of the order of the monster group. The values of the cocycle

JC!13 , where !13 D
1C
p
13

2
, were computed on the six RM points of discriminant 621

and ostensibly (namely, modulo 7130) give the distinct roots of the polynomial

7x6C 6x5C 6x4C 10x3C 6x2C 6xC 7D 0;

whose splitting field is the ring class field of conductor 3 of Q.
p
69/.
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3.3. p-Adic intersection numbers
Let p 2 ¹2; 3; 5; 7; 13º be a genus 0 prime, and let �1 and �2 be two RM points of Hp

with discriminants D1 and D2, respectively.

Definition 3.17
The p-adic intersection number of �1 and �2 is the quantity

Jp.�1; �2/ WD OJ�1 Œ�2� 2C
�
p=h"

Z
�1
i;

where OJ�1 2H1
f
.�;M�="Z1/ is the rigid meromorphic cocycle of Theorem 2.17.

The following proposition summarizes a few of the basic properties of the p-adic
intersection number.

PROPOSITION 3.18
The invariants Jp.�1; �2/ satisfy:
(1) Jp.��1;��2/D Jp.�1; �2/

�1 .mod "Z1/;
(2) Jp.p�1; p�2/D Jp.�1; �2/ .mod "Z1/.

Proof
To show the first part, letM be the diagonal matrix with entries 1 and �1. This matrix
normalizes � , and hence, the cocycle OJ 0�1 determined by

OJ 0�1.�/.z/ WD
OJ��1.M�M�1/.�z/

belongs to H1
f
.�;M�="Z1/. A direct calculation shows that

dlog OJ 0�1 D�dlog OJ�1 :

It follows from the uniqueness of the rigid meromorphic cocycle OJ�1 that

OJ 0�1 D
OJ�1�1 .mod "Z1/;

and hence, evaluating at �2, that

OJ��1 Œ��2�D
OJ�1 Œ�2�

�1 .mod "Z1/:

The first part of the proposition follows. The second assertion is proved by similar
reasoning and is left to the reader.

Remark 3.19
Proposition 2.5 suggests that the invariant Jp satisfies the antisymmetry



SINGULAR MODULI FOR REAL QUADRATIC FIELDS 81

Jp.�1; �2/D Jp.�2; �1/
�1 .mod h"Z1 ; "

Z
2i/;

which indeed is verified on numerous examples.

Since OJ�1 is not quite a rigid meromorphic cocycle but only a cocycle “modulo
O�K1 ,” it falls slightly outside the purview of the conjectures formulated in the pre-
vious two sections. Nonetheless, we conjecture that it satisfies a natural extension of
the Shimura reciprocity law. In general, the statement of this extension takes place in
H1˝QH2, but for simplicity, we state it only in the case where the discriminants D1
and D2 are relatively prime, so that the associated ring class fields H1 and H2 are
linearly disjoint over Q. As before, let rec denote the reciprocity map of global class
field theory:

GD1;D2 WD
�
Cl.D1/� hFr1i

�
�
�
Cl.D2/� hFr1i

�
rec
�!Gal.H1=Q/�Gal.H2=Q/DGal.H12=Q/:

CONJECTURE 3.20 (Shimura reciprocity)
Let hD .h1; h2/ be any element of GD1;D2 . Then Jp.�h1 ; �h2/ belongs to H12, and
for all gD .g1; g2/ 2GD1;D2 ,

Jp.�g1h1 ; �g2h2/D Jp.�h1 ; �h2/
rec.g/�1 .mod "Z1/:

Example 3.21
Let .D1;D2/D .5; 32/, which have narrow class numbers 1 and 2, respectively. As
previously, let ' denote the golden ratio. We computed the quantities J3.'; 2

p
2/ and

J3.';�2
p
2/ to 800 digits of 3-adic precision, obtaining

J3.'; 2
p
2/

‹
D .�70� 40

p
2C 35

p
5C 16

p
10C 40

p
�1

� 70
p
�2� 20

p
�5C 28

p
�10/=65

D .35� 8
p
10� 20

p
�1� 14

p
�10/	�31 ;

J3.';�2
p
2/

‹
D J3.'; 2

p
2/:

Up to powers of the fundamental unit of Q.
p
5/, these values appear to lie in the

subfield Q.
p
�1;
p
�10/, the subfield of the triquadratic field H12 which is fixed by

the product of Frobenius at p and complex conjugation.

Remark 3.22
The Shimura reciprocity law combined with the properties of Jp.�1; �2/ stated
in Proposition 3.18 imply certain restrictions on the Galois-theoretic behavior of
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these intersection numbers. For instance, the Shimura reciprocity law implies that
Jp.�1; �2/ and Jp.��1;��2/ are complex conjugates of each other relative to any
complex embedding of H12. (Indeed, the complex conjugation is independent of
the choice of complex embedding since Fr1 is a well-defined central involution
in Gal.H12=Q/.) It then follows from Proposition 3.18(1) that the Jp.�1; �2/ are
complex numbers of norm 1 relative to any complex embedding of H12, that is, that

Jp.�1; �2/
Fr1 D Jp.�1; �2/

�1:

In particular, the p-adic intersection number is forced to be trivial whenever H1 and
H2 are both totally real, which occurs when the class numbers in the wide and narrow
sense agree for both D1 and D2.

3.4. Gross–Zagier-style factorizations
The goal of this section is to propose a conjectural recipe for the prime factorizations
of the p-adic intersection numbers Jp.�1; �2/, modeled on the analogous recipe in
[15] for the factorization of J1.�1; �2/ when �1 and �2 are CM points on the complex
upper half-plane.

We begin by recalling the latter, in a form that best lends itself to an extension to
the real quadratic setting. If �1 and �2 are CM points of H with associated ring class
fields H1 and H2, then the quantity J1.�1; �2/ belongs to the compositum H12 D

H1H2. It will be assumed that complex and q-adic embeddings of H12 for all primes
q have been fixed at the outset, so that one can speak of the normalized valuation at q
of J1.�1; �2/ for any rational prime q.

Let q be such a prime, and let B be the definite quaternion algebra ramified at q
and1. A q-oriented maximal order in B is a maximal order R � B equipped with
a surjective homomorphism � W R �! Fq2 called the “orientation at q.” Likewise, a
q-oriented quadratic order is a quadratic order O equipped with a similar structure.
An orientation at q in this sense exists if and only if q does not divide the conductor
of O and is inert in its fraction field. The q-oriented orders form a category in which
the morphisms from .R1; �1/ to .R2; �2/ are ring homomorphisms ' WR1 �!R2 sat-
isfying �2' D �1.

Definition 3.23
A q-oriented optimal embedding of a q-oriented quadratic order O �K into B is a
pair .';R/, where ' W K �! B is an algebra homomorphism and R is a maximal
q-oriented order in B , satisfying '.K/ \ R D '.O/ and for which ' is compatible
with the q-orientations on O and on R.

Write Emb.O;B/ for the set of oriented optimal embeddings of O into B . The
multiplicative group B� acts on this set by the rule
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b ? .';R/ WD .b'b�1; bRb�1/;

and the set of B�-orbits for this action is denoted †.O;B/. By letting D be the dis-
criminant of O, the class group Cl.D/ of that discriminant acts naturally on †.O;B/
by setting, for any projective O-module a�K:

a ? .';R/D .';R0/; where R0 WD
®
b 2B such that R'.a/b �R'.a/

¯
: (69)

Recall the set HD of CM points on the complex upper half-plane of discriminant
D, and let H be the associated ring class field. The quotient SL2.Z/nHD is also
equipped with a simply transitive action of Cl.D/ by the theory of complex multipli-
cation, which is compatible with the action of Gal.H=K/ on the singular moduli j.�/
via the reciprocity map of global class field theory.

LEMMA 3.24
The choice of complex and q-adic embeddings of H determines a canonical bijection

SL2.Z/nH
D �!†.O;B/

which is compatible with the simply transitive actions of Cl.D/ on both sides.

Proof
Of crucial importance in constructing this canonical bijection is the fact that, for all
� 2HD , the complex number j.�/ (which can be viewed as an element of H via the
chosen embedding ofH into C) is the j -invariant of an elliptic curveE=H with com-
plex multiplication, admitting a smooth integral model over OH Œ1=D� and equipped
with a canonical identification O D EndH .E/, in which � 2 O is sent to the unique
endomorphism of E acting as multiplication by � on its cotangent space. Since q
is inert in K , the unique prime of K that lies above q splits completely in H=K .
Hence, j.�/ can be viewed (via our chosen q-adic embedding of H ) as an element of
the unramified quadratic extension Cq of Qq , with residue field Fq2 . Let NE denote the
special fiber ofE over the residue field Fq2 . It is a supersingular elliptic curve, whose
endomorphism ring is isomorphic to a maximal order R in the quaternion algebra B
ramified at q and1, equipped with a q-orientation describing the action of endomor-
phisms on the cotangent space of NE . The quadratic order O � End. NE/ is equipped
with a q-orientation for the same reason. To any � 2HD one can thus associate an
optimal embedding '� WO �!R of q-oriented orders by taking the composition

'� WO D End.E/ ,! End. NE/'R:

The order R is well defined up to conjugation in B�, and hence, the image of the pair
.'� ;R/ in †.O;B/ is well defined. The lemma follows.
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The intersection multiplicity at q of two elements .'1;R1/ 2 Emb.O1;B/ and
.'2;R2/ 2 Emb.O2;B/ is defined by setting Œ'1 �'2�q WD 0 ifR1 ¤R2 (as q-oriented
orders) and, if R1 DR2 DWR, setting

Œ'1 � '2�q WDmax t � 1 such that '1.O1/; '2.O2/ have the same image in R=qt�1R:

(70)

This definition can be extended to the classes in †.O1;B/ and †.O2;B/ represented
by .'1;R1/ and .'2;R2/, respectively, by setting

.'1 � '2/q WD
X
b2B�

1

Œ'1 � b'2b
�1�q; (71)

where B�1 is the group of units of norm 1 in B . Observe that all but finitely many of
the terms in the above sum are 0, because the normalizer of a given maximal oriented
order R in B�1 is equal to R�, which (since B is a definite quaternion algebra) is a
discrete subgroup of a compact Lie group and hence is finite.

THEOREM 3.25 (Gross–Zagier)
Let �1 2HD1 and �2 2HD2 be CM points, and let q �D1D2 be a rational prime. If
q is split in either K1 or K2, then ordqJ1.�1; �2/D 0. Otherwise, let '1 2†.O1;B/
and '2 2†.O2;B/ be the classes of q-oriented optimal embeddings associated to �1
and �2, respectively, via Lemma 3.24. Then

ordqJ1.�1; �2/D .'1 � '2/q :

Let us now turn to the factorization of Jp.�1; �2/, where �1 and �2 are RM points
of Hp . Assume that p is inert in the real quadratic fields K1 D Q.�1/ and K2 D
Q.�2/.

In contrast with the study of ordqJp.�1; �2/ for q ¤ p, which is at least as deep as
the assertion that Jp.�1; �2/ is algebraic, the calculation of ordpJp.�1; �2/ is entirely
elementary and turns out to be instructive. We will therefore start with a formula for
this valuation, which can be phrased in terms of embeddings of the real quadratic
orders attached to �1 and �2 in the maximal order R DM2.Z/ of the global split
quaternion algebra B DM2.Q/. The RM points �1 and �2 of discriminants D1 and
D2 (which are prime to p by definition) have associated ZŒ1=p�-orders of the form
O1Œ1=p� and O2Œ1=p�, where O1 and O2 are the orders of discriminants D1 and D2,
respectively. These points thus give rise to optimal embeddings of ZŒ1=p�-orders

'1 WO1Œ1=p��!RŒ1=p�; '2 WO2Œ1=p��!RŒ1=p�;

where R WDM2.Z/ is the standard maximal order of M2.Q/, which is conjugate to
any other maximal order. If �1 and �2 reduce to distinct vertices of T , then we set
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Œ'1; '2�p D 0:

Otherwise, �1 and �2 reduce to the same vertex. It suffices to consider the case where
�1 and �2 both reduce to the standard vertex of Hp , so that they induce a pair of
optimal embeddings

'1 WO1 �!R; '2 WO2 �!R:

Consider now the classes in †.O1;R/ and †.O2;R/ represented by these oriented
optimal embeddings, and recall the p-weighted intersection multiplicity .'1 � '2/p1
of (40) in Definition 2.6. The valuation at p of Jp.�1; �2/ is intimately connected to
this quantity.

THEOREM 3.26
Let �1 and �2 be RM points on Hp with associated quadratic orders O1 and O2,
attached to classes of optimal embeddings '1 2†.O1;R/ and '2 2†.O2;R/. Then

ordpJp.�1; �2/D .'1 � '2/p1:

Proof
We can assume without loss of generality that �2 belongs to the standard affinoid. By
definition,

Jp.�1; �2/D OJ�1 Œ�2�D
OJ�1¹r; �2rº.�2/:

Furthermore,

OJ�1¹r; �2rº.�2/D
Y

w12†�1 .r;�2r/

tw1.�2/ .mod O�Cp /:

However, one can observe that

ordptw1.�2/D 0 if level .w1/¤ 0:

It follows that

ordp OJ�1¹r; �2rº.�2/D ordp
Y

w12†
ı
�1
.r;�2r/

tw1.�2/D ordpJ
ı
�1
Œ�2�D ordpJ

ı.�1; �2/:

The theorem now follows from Proposition 2.7.

We now turn to the (conjectural!) arithmetic intersection number of Jp.�1; �2/
at a rational prime q ¤ p. For simplicity, it will also be assumed that q � D1D2.
The recipe for the q-adic valuation of this p-adic invariant involves the quaternion
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algebra B ramified at q and p. Because B is an indefinite quaternion algebra, all
the maximal orders in B are conjugate to each other. Let R be a fixed choice of
maximal order, and fix an identification of B˝R withM2.R/. Via this identification,
the multiplicative group R�1 acts discretely and cocompactly on H , and the compact
Riemann surface R�1 nH is identified with the set of complex points of the Shimura
curve of discriminant pq.

Just as before, the sets †.O1;R/ and †.O2;R/ of R�1 -conjugacy classes of ori-
ented optimal embeddings are equipped with natural fixed-point-free actions of the
class groups Cl.D1/ and Cl.D2/, respectively, and have the same cardinality as H

D1
p

and H
D2
p , respectively. Hence, one can fix bijections

�nHD1
p

�
�!†.O1;R/; �nHD2

p

�
�!†.O2;R/ (72)

which are compatible with the actions of Cl.D1/ and Cl.D2/ on both sides. Given
�1 2H

D1
p and �2 2H

D2
p , let '1 and '2 be the optimal embeddings associated to �1

and �2 under these bijections, and let �1 and �2 2R�1 be the images of the fundamen-
tal units of O�1 and O�2 under '1 and '2. The q-weighted intersection number of '1
and '2 is defined to be

.'1 � '2/q1 WD
X

�2�Z
2
nR�
1
=�Z
1

Œ�'1�
�1 � '2�q � ı.��1; �2/;

where the symbol Œ'1 � '2�q is defined exactly as in (70), and the remaining terms in
the expression are otherwise exactly as in Definition 2.6, with M2.Z/ replaced by R.

The following conjecture proposes a formula for ordqJp.�1; �2/ involving a syn-
thesis of Theorems 3.25 and 3.26.

CONJECTURE 3.27
If q is split in eitherK1 orK2, then ordqJp.�1; �2/D 0. Otherwise, there is an embed-
ding of H12 into NQq for which

ordqJp.�1; �2/D .'1 � '2/q1;

for all �1 2H
D1
p and all �2 2H

D2
p .

Remark 3.28
In the proof of Lemma 3.24 before the statement of Theorem 3.25, we were able
to give a precise recipe for the assignment �1 7! '1 and �2 7! '2, which depended
on a choice of complex and q-adic embeddings of H12, by relying on the theory of
CM elliptic curves and their supersingular reductions at the primes above q. These
arithmetic ingredients are (at least for the time being) conspicuously absent in the
RM setting, and one must therefore be content with a slightly vaguer formulation, in
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which the bijections (72) of transitive Cl.D1/- and Cl.D2/-sets and their dependence
on choices of p-adic and q-adic embeddings of H12 are not spelled out.

We now give a sampling of the experimental evidence that has been gathered in
support of Conjecture 3.27. James Rickards has devised efficient algorithms for cal-
culating the q-weighted topological intersection numbers .'1 �'2/q1 on the Shimura
curve of discriminant pq and has implemented them on the computer (see [17]).
Rickards’ programs have generated a wealth of data on q-weighted intersection num-
bers, running to over 600 pages of tables, which have been invaluable in verifying
Conjecture 3.27. The examples below are but a small sample of the experiments that
were carried out in support of Conjecture 3.27.

Given pairwise coprime positive discriminants D1 and D2 that are nonsquares
modulo p, let G12 WD Cl.D1/ � Cl.D2/. For each prime q that is nonsplit in both
K1 and K2, Rickards defines elements of the integral group ring ZŒG12� by choos-
ing basepoints '1 2 Emb.O1;R/ and '2 2 Emb.O2;R/, letting '01 be the embedding
obtained from '1 by conjugating it by an element of norm p, and considering the
following sums over g D .g1; g2/ 2 G12, viewed as elements of the integral group
ring of G12:

Ip;q.D1;D2/D
X
g2G12

.'
g1
1 � '

g2
2 /q1 � g;

I 0p;q.D1;D2/D
X
g2G12

.'
0g1
1 � '

g2
2 /q1 � g:

Instead of directly identifying the quantity Jp.�1; �2/ as an algebraic number, it has
turned out to be easier to work with the related quantities

JCp .�1; �2/D Jp.�1; �2/� Jp.p�1; �2/D J
C
�1
Œ�2�;

J�p .�1; �2/D Jp.�1; �2/� Jp.p�1; �2/;

which are predicted to lie in a slightly smaller field extension of Q. A refinement
of Conjecture 3.27 (combined with the Shimura reciprocity conjecture) predicts that,
after fixing a prime q of H12 above q and setting

ICp;q.D1;D2/D Ip;q.D1;D2/C I
0
p;q.D1;D2/;

I�p;q.D1;D2/D Ip;q.D1;D2/� I
0
p;q.D1;D2/;

one must haveX
g2G12

ordqg
�
J˙p .�1; �2/

�
� gD I˙p;q.D1;D2/ .mod G12/; (73)
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Table 3.30. Valuations for D1 D 5, D2 D 473

q Iq;13.5;473/ I 0q;13.5;473/ ordqJ
C
13.�1; �

.j/

2 / ordqJ�13.�1; �
.j/

2 /

3 3.1� g3/ 0 31, 04, �31 31, 04, �31
5 .1� g3/ .1� g3/ 21, 04, �21 06
37 .1� g3/ 0 11, 04, �11 11, 04, �11

where the equality in (73) is to be interpreted in the group ring ZŒG12� modulo
the multiplication by grouplike elements in G12. The coefficients appearing in the
group ring element on the left-hand side of (73) can be computed from the slopes
of the Newton polygon at q of the polynomials in ZŒx� satisfied by JCp .�1; �2/ and
J�p .�1; �2/, respectively. Our experiments have largely consisted in comparing these
Newton slopes with the coefficients that appear in Rickard’s group ring elements
ICp;q.D1;D2/ and I�p;q.D1;D2/. The fact that we have consistently obtained a perfect
match in hundreds of experiments can be viewed as convincing empirical evidence for
Conjecture 3.27.

Example 3.29
Let .D1;D2/ D .5; 473/, and let p D 13. The RM values with discriminant 473 of
JC' coincide up to 100 digits of 13-adic precision with the roots of the polynomial

4995x6 � 4141x5 � 1570x4C 1443x3 � 1570x2 � 4141xC 4995;

whereas those of J' � J13' satisfy, up to the same precision, the polynomial

999x6 � 2933x5C 3361x4 � 2829x3C 3361x2 � 2933xC 999:

We have that Gal.H473=Q/' hgi� hFr2i, where g is of order 6. Table 3.30 lists the
nontrivial intersection numbers computed by James Rickards, as encoded in the group
ring elements Iq;13.5; 473/ and I 0q;13.5; 473/, alongside the nontrivial Newton slopes
of the ostensibly algebraic numbers J˙13.�1; �2.j // for 1� j � 6.

As predicted by Conjecture 3.27, the last two columns are the multisets of coeffi-
cients appearing in the sum and difference of the group ring elements in the first two
columns.

Example 3.31
Let .D1;D2/ D .13; 621/ and p D 7. We have that Gal.H621=Q/ ' hgi � hFr7i,
where g is of order 6. The element g3 corresponds to complex conjugation
in Gal.H621=Q/. There is a unique �1 2 �nH13

7 , and there are six RM points

�
.1/
2 ; : : : ; �

.6/
2 2H621

7 . The resulting invariants JC7 .�1; �
.j /
2 / coincide up to 200 digits

of 7-adic precision with the roots of the polynomial
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Table 3.32. Valuations for D1 D 13, D2 D 621

q Iq;7.13;621/ I 0q;7.13;621/ ordqJ
C
7 .�1; �

.j/

2 / ordqJ�7 .�1; �
.j/

2 /

2 .1� g3/.2C 5g C 2g2/ .1� g3/.�3� 2g � 3g2/ 31, 12, �12, �31 71, 52, �52, �71
41 .1� g3/ 0 11, 04, �11 11, 04, �11
47 .1� g3/ 0 11, 04, �11 11, 04, �11
71 .1� g3/ 0 11, 04, �11 11, 04, �11

4378144x6 � 5762700x5C 9490680x4 � 11616641x3C 9490680x2

� 5762700xC 4378144:

We compute furthermore that the invariants J�7 .�1; �
.j /
2 / satisfy, up to the same pre-

cision, the polynomial

17932877824x6C 69949203456x5C 143523182304x4C 177833888503x3

C 143523182304x2C 69949203456xC 17932877824:

Table 3.32 shows all the nontrivial intersection numbers computed by James Rickards,
followed by the nontrivial Newton slopes for these two polynomials.

Example 3.33
Consider .D1;D2/D .13; 285/, and set p D 2. The narrow class group of discrimi-
nant 285D 3 � 5 � 19 is isomorphic to the Klein 4-group V4, generated by involutions
s1, s2. There is, up to translation by Q� , a unique �1 2 �nH13

2 , and there are four RM

points � .1/2 ; : : : ; �
.4/
2 in any Cl.285/-orbit in H285

2 .

We have checked that the 2-adic intersection numbers JC2 .�1; �
.j /
2 / for j D

1; : : : ; 4 are distinct and coincide with 800 digits of 2-adic precision with the roots
of the polynomial

77360972841758936947502973998239x4

C 140181070438890831721314135099803x3

C 209895619549791255199413489899292x2

C 140181070438890831721314135099803x

C 77360972841758936947502973998239; (74)

which generate the extension Q.
p
�3;
p
�19/ over Q. Likewise, the 2-adic intersec-

tion numbers J�2 .�1; �
.j /
2 / are also distinct and coincide with 800 digits of 2-adic

precision with the roots of the polynomial
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Table 3.34. Newton slopes for D1 D 13, D2 D 285, pD 2

q Iq;2.13;285/ I 0q;2.13;285/ ordqJ
C
2 .�1; �

.j/

2 / ordqJ�2 .�1; �
.j/

2 /

7 .1� s1/.1C 2s2/ .1� s1/.1C 3s2/ 51, 21, �21, �51 11, 02, �11
19 .1� s1/.1� s2/ .1� s1/.1� s2/ 22, �22 04
31 .1� s1/.1� s2/ 0 12, �12 12, �12
73 .1� s1/ 0 11, 02, �11 11, 02, �11
109 .1� s1/.1� s2/ 0 12, �12 12, �12
151 .1� s1/.1� s2/ 0 12, �12 12, �12
163 .1� s1/ 0 11, 02, �11 11, 02, �11
397 .1� s1/ 0 11, 02, �11 11, 02, �11
457 .1� s1/ 0 11, 02, �11 11, 02, �11
463 .1� s1/ 0 11, 02, �11 11, 02, �11

1821488696558254611662551x4C 203729098486198913585801x3

� 3016614164551653876723804x2C 203729098486198913585801x

C 1821488696558254611662551; (75)

which generate the extension Q.
p
57;
p
�195/. The constant terms of these polyno-

mials factor as

77360972841758936947502973998239

D 77 � 192 � 312 � 73 � 1092 � 1512 � 163 � 397 � 457 � 463;

1821488696558254611662551

D 7 � 312 � 73 � 1092 � 1512 � 163 � 397 � 457 � 463:

The first two columns of Table 3.34 list the arithmetic intersection numbers computed
by James Rickards, and the last two give the Newton slopes for the polynomials (74)
and (75) at the primes that arose in these factorizations.

Once again, the two last columns are precisely the coefficients of the sum and
difference, respectively, of the group ring elements Iq;2.13; 285/ and I 0q;2.13; 285/
given in the first two columns of Table 3.34.

Now, let p D 7. We computed that the invariants JC7 .�1; �
.j /
2 / for j D 1; : : : ; 4

coincide to at least 200 digits of 7-adic precision with the solutions of

1936x4C 308x3 � 1887x2C 308xC 1936D 0:

Likewise, the invariants J�7 .�1; �
.j /
2 / satisfied, to the same precision, the polynomial

12390400x4 � 41050240x3C 57394209x2 � 41050240xC 12390400D 0:

The corresponding data in this situation is listed in Table 3.35.
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Table 3.35. Newton slopes for D1 D 13, D2 � 285, pD 7

q Iq;7.13;285/ I 0q;7.13;285/ ordqJ
C
7 .�1; �

.j/

2 / ordqJ�7 .�1; �
.j/

2 /

2 2.1� s1/.2C s2/ 2.1� s1/.�1� 2s2/ 22, �22 62, �62
5 .1� s1/.1� s2/ .1� s1/.�1C s2/ 04 22, �22
11 .1� s1/.1� s2/ 0 12, �12 12, �12

We similarly verified Conjecture 3.27 for all other prime pairs .p; q/ in this exam-
ple.
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