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ABSTRACT

Cancer immunotherapy has experienced remarkable advances in recent years. Striking 
clinical responses have been achieved for several types of solid cancers (e.g. melanoma, 
non-small cell lung cancer, bladder cancer and mismatch repair-deficient cancers) after 
treatment of patients with T-cell checkpoint blockade therapies. These have been shown 
to be particularly effective in the treatment of cancers with high mutation burden, which 
places tumour-mutated antigens (neo-antigens) centre stage as targets of tumour immuni-
ty and cancer immunotherapy. With current technologies, neo-antigens can be identified 
in a short period of time, which may support the development of complementary, person-
alized approaches that increase the number of tumours amenable to immunotherapeutic 
intervention. In addition to reviewing the state of the art in cancer immunotherapy, we 
discuss potential avenues that can bring the immunotherapy revolution to a broader 
patient group including cancers with low mutation burden.
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INTRODUCTION

The field of cancer immunotherapy has experienced alternating periods of success and 
failure in the development of cancer therapies. In the late nineteenth century, William 
Coley treated cancer patients by local injection with bacterial toxins, which provoked 
anti-tumour immune responses in some patients1. In the 1960s, Thomas and Burnet postu-
lated the cancer immune surveillance theory, where the immune system would specifically 
eliminate malignant cells, most probably through recognition of tumour-associated anti-
gens2,3. This was followed by the elucidation of the role of T cells in anti-tumour immune 
responses which led to the clinical use of the T-cell growth factor interleukin-2 (IL-2). In 
1991, IL-2 was approved by the FDA for the treatment of metastatic renal cell carcinoma 
and, in 1998, for metastatic melanoma. However, IL-2 treatments produced high toxicity 
and yielded a relatively low response rate, underlining the need to develop improved 
immunotherapeutic strategies4,5.

The transition to targeted immunotherapy was made with the development of the hy-
bridoma technology, in 1975, which supported the production of monoclonal antibodies6. 
Rapidly, monoclonal antibody-based treatments were set up and the first FDA approval 
was obtained for rituximab in 1997 for the treatment of B-cell lymphomas. Rituximab is a 
genetically engineered monoclonal antibody directed against the CD20 antigen which is 
ubiquitously expressed in B cells and triggers cell death by antibody-dependent cell-me-
diated cytotoxicity, complement activation and direct induction of apoptosis7,8. In the 
same decade, chimaeric antigen receptor (CAR) T cells were developed to combine the 
antigen-binding properties of antibodies with the cytolytic and self-renewal capacity of 
T cells9,10. CAR T cells are genetically engineered to express an extracellular antigen-rec-
ognition domain, such as antibody-derived, single chain variable fragments, coupled to 
T-cell activation endodomains. The most significant clinical results have been achieved 
with CD19-targeting CAR T cells in haematological malignancies11,12.

More recently, a number of antibodies targeting cellular immune checkpoints (e.g. PD-1/
PD-L1 and CTLA-4) have been developed to promote the activation of T cells and subse-
quent tumour control. This treatment strategy has been shown to be particularly effective 
in tumours with high mutation burden, putting tumour-mutated antigens (neo-antigens) 
centre stage in cancer immunotherapy13–19.

ANTIGEN PRESENTATION AND CANCER IMMUNOTHERAPY
Antigen processing and presentation enables the immune system to monitor cellular 
processes and to act accordingly upon expression of aberrant/foreign proteins. Human 
leukocyte antigen (HLA) class I molecules present antigens at the surface of most cells 
throughout the organism. Such antigens can, theoretically, be derived from most cellu-
lar proteins as these are processed by the (immuno) proteasome and broken down to 
peptides20. Subsequently, transporter associated with antigen processing (TAP) proteins 
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mediate the intake of these peptides to the endoplasmic reticulum, where they are loaded 
onto HLA class I molecules with the aid of several chaperones21,22. HLA class I/peptide 
complexes translocate via the Golgi apparatus to the cell surface where they are exposed 
to CD8+ T cells23. Nevertheless, an effective anti-tumour immune response is thought 
to be initiated by the taking up of tumour antigens by antigen-presenting cells (APCs) 
which in turn present them, and provide costimulatory signals, to both CD4+ and CD8+ T 
cells24. In order to do so, APCs, particularly dendritic cells, process antigens through an 
exogenous antigen processing pathway where (tumour) cellular material is phagocyto-
sed and converted into HLA class I- and class II-binding peptides that are presented to 
CD8+ (cross-presentation) and CD4+ T cells, respectively25. HLA class II expression is also 
known to occur in some tumour types although its functional significance and how it can 
be exploited from an immunotherapeutic point of view require further investigation26,27.

Antigens that are considered to evoke anti-tumour immune responses and which are 
therefore suitable as immunotherapeutic targets can be divided into three groups: tu-
mour-mutated antigens (or neo-antigens), tumour-associated antigens and cancer-testis 
antigens28. Viral antigens constitute another class of targetable antigens in the context of 
viral oncogenesis but will not be discussed here. Tumour-associated and cancer-testis an-
tigens are both self-antigens that are differentially expressed in tumour tissues and rarely 
expressed (or to lower extent) in normal tissues. The stimulation of endogenous T-cell 
responses against self-antigens can be challenging as auto-reactive T cells are subjected 
to negative selection in the thymus29. Nevertheless, it has been shown that central toler-
ance can be broken and that immune responses can be generated against self-antigens, 
analogous to what is observed in autoimmunity30. Positive clinical indications have been 
described for several tumour-associated antigens (e.g. gp100, MART-1) and cancer-testis 
antigens (e.g. MAGE-A3 and NY-ESO-1)31–34. However, subsequent clinical trials were not 
always able to confirm patient survival benefits and side-effects were regularly observed 
due to expression of the targeted antigens in healthy tissues35–37.

Neo-antigens are by definition tumour-specific as they arise from somatic mutations that 
are not present in healthy tissue. Theoretically, they constitute ideal targets for immuno-
therapy because no off-target reactivity and central tolerance of T cells are expected38. 
The accumulation of somatic mutations is a hallmark of tumour progression, but only a 
minority of mutations is under positive selection and, therefore, recurrently observed in 
different patients. Hence, individual tumour mutation profiles are dominated by the so-
called passenger mutations which are highly variable between cancers and patients39. 
The development of next-generation sequencing (NGS) technologies has made it possible 
to screen entire (coding) genomes for the detection of potential neo-antigens in a clini-
cally applicable timeframe. In silico tools aiming at identifying neo-antigens more likely 
to constitute good immunotherapy targets are also under constant development40–44.
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The requirement of a personalized approach to target neo-antigens can be a time-con-
suming and onerous procedure. While this limitation could be circumvented by the tar-
geting of recurrent mutations at driver genes such as BRAF and KRAS, accumulated 
evidence suggests that such mutations are seldom immunogenic45,46. In fact, this might 
be expected, as it would be unlikely that immunogenic mutations would be so often 
favoured by clonal selection during tumour progression. Another aspect complicating 
the targeting of neo-antigens relates to intra-tumour heterogeneity. The identification of 
neo-antigens requires that the tumour is sampled and further processed for nucleic acid 
isolation and sequencing. Several reports have identified sampling issues as a major 
limitation for a comprehensive characterization of somatic alterations in tumours47,48. On 
the other hand, cancer therapies, including immunotherapies, will probably be the most 
successful when targeting clonal alterations present in any part of a tumour mass13. An-
other caveat that must be considered is that neo-antigens, particularly the ones derived 
from point mutations, have very similar sequences to their wild-type counterpart. If amino 
acid substitutions at anchor residues do not affect the binding affinity to HLA molecules 
or if substitutions at core residues do not significantly alter the molecular properties of 
a peptide, the likelihood that high avidity TCRs are present in an autologous T-cell rep-
ertoire may be low. This supports a fundamental role for frameshift mutations as these 
have the potential to generate highly immunogenic peptides49. However, frameshifts are 
notoriously difficult to detect, particularly in NGS data, and the capacity to identify them 
varies greatly between research groups.

THE STATE OF THE ART IN CANCER IMMUNOTHERAPY
T cells are key players in anti-tumour immunity and, therefore, the bulk of cancer immu-
notherapy research has focused on inducing T-cell-mediated anti-tumour responses. The 
current breakthrough in cancer immunotherapy results from the identification and subse-
quent targeting of checkpoint mechanisms in T cells with antibodies against CTLA-4, PD-1 
and PD-L150–53. CTLA-4 and PD-1 are co-inhibitory receptors found on the cell surface of T 
cells. Upon binding to their corresponding ligands (CD80/86 and PD-L1/-L2, respectively), 
T cells become anergic: a physiological mechanism of peripheral tolerance or halting of 
inflammatory responses54. In the context of the tumour microenvironment, the aberrant 
expression of immune checkpoint ligands (on tumour and immune cells), together with 
chronic exposure to tumour antigens, can lead to the undesirable suppression of T-cell 
activity55. The blocking of such mechanisms can therefore unleash a renovated antitumour 
immune response. Moreover, checkpoint blockers were found to broaden the target of 
cytotoxic T-cell responses in cancer patients56,57.

Treatment with checkpoint blocking antibodies has been approved for a number of can-
cers including melanoma, urothelial bladder cancer, head and neck squamous cell carci-
noma, non-small cell lung cancer and classical Hodgkin lymphoma, while positive indica-
tions has been found for many other malignancies50,58–62. Immune checkpoint blockade 
has been shown to be most effective in tumours with high mutation burden that arises 
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either from chronic exposure to DNA-damaging agents (e.g. smoking and ultraviolet 
radiation) or as a consequence of intrinsic DNA repair defects16,17,63. Accordingly, clinical 
responses have also been correlated with the mutation burden of tumours derived from 
the same organ16,17,62. Notably, pembrolizumab, an anti-PD-1 antibody, constitutes the FDA’s 
first tissue/ site-agnostic, molecular-guided approval as it is indicated for advanced mis-
match repair-deficient cancers. These findings support the central role of neo-antigens in 
the therapeutic responses to immune checkpoint blockers. Nevertheless, the majority of 
patients with the so-called hypermutated tumours do not respond to checkpoint blockade 
and the ability to predict responses by discovering additional biomarkers is a major focus 
of research in the field64. In order for CD8+ T cells to fulfil their cytotoxic activity, they must 
infiltrate tumour tissues and subsequently recognize cancer antigens loaded on HLA class 
I molecules. Therefore, defects in the antigen processing and presentation machinery are 
often observed as immunoediting phenotypes in tumour cells65–69. Additionally, tumour 
cells can escape cytokine-mediated immune responses by mutating components of the 
IFN-γ pathway. Metastatic melanoma patients that did not respond to CTLA-4 treatment 
were found to have tumours with genetic defects in IFNGR1/2, IRF1 and JAK270. Similarly, 
melanoma and MMR-deficient colorectal cancer patients were found to be resistant to 
anti-PD-1 treatment due to inactivating mutations in JAK1/271,72. Neo-antigen availability 
can also change in a tumour, due to clonal selection by immunoediting, enforced by 
neo-antigen-specific T cells73,74.

Spontaneous, neo-antigen-driven, anti-tumour responses arise in many cancer patients, 
as demonstrated by the isolation of neo-antigen-reactive tumour-infiltrating lymphocytes 
(TIL)75. Furthermore, the presence of TIL, particularly with a type 1 inflammatory profile 
(i.e. IFN-γ/IL-2-driven immune responses), is generally associated with an improved prog-
nosis in cancer patients76,77. One approach to boost an autologous lymphocyte-mediated 
anti-tumour response is through adoptive T-cell transfer (ACT), which relies on the ex 
vivo expansion of tumour-reactive T cells and their reinfusion back in the patient78.The 
infusion product can consist of TIL or peripheral blood-derived tumour-specific T cells that 
are expanded in the presence of tumour cells or tumour antigens79,80. ACT-based treat-
ments have produced some encouraging results, particularly for metastatic melanoma 
patients73,80–83. Verdegaal et al. reported on the successful treatment of a metastatic mel-
anoma patient with CD4+ and CD8+ tumour-specific T cells73,80. In a fascinating example, 
the potency of neo-antigen-specific ACT is illustrated by the treatment of a metastatic 
cholangiocarcinoma patient, treated with a neo-antigen-reactive CD4+ T-cell product 
derived from TIL, resulting in stable disease82. These findings underscore the relevance 
that ACT might have for some patients, but similar to for checkpoint blockade, there is 
a need to discover biomarkers that indicate a priori which patients may benefit from it.

Today, many ongoing clinical trials are investigating the clinical effect of combining differ-
ent immunotherapies. The use of anti-CTLA-4 in addition to anti-PD-1 antibodies resulted 
in increased overall survival rates in previously untreated melanoma patients84,85. Fur-
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thermore, other immune regulators, such as LAG-3, TIM-3, ICOS or NKG2D are promising 
new therapeutic targets86–90. Additional research will be important to address resistance 
to first-generation immune checkpoint blockers as, for instance, LAG-3 and TIM-3 up-
regulation is observed following anti-PD-1 treatment86. Likewise, CD137 co-stimulation 
is studied for its synergistic effects with ACT91,92. Finally, checkpoint blockade therapies 
may also be used in combination with standard chemo- and radiotherapy interventions 
which are known to enhance tumour immunogenicity93,94.

Other avenues like therapeutic vaccination with synthetic peptides corresponding to 
neo-antigens are being explored. This strategy aims to prime autologous T cells from 
cancer patients against tumour-specific antigens to unleash anti-tumour immune respons-
es. In addition to providing neo-antigens as immunotherapy products, several co-stimu-
latory factors are needed to induce an effective antitumour T-cell response95, including 
provision of danger signals by adjuvants and/or homing of cellular-based vaccines96–98. 
Encouraging clinical responses were obtained with neo-antigen-based peptides plus 
polyICLC vaccinations in previously untreated metastatic melanoma patients99. This inter-
vention was shown to induce CD4+ and CD8+ antitumour T-cell responses against several 
epitopes. Four out of six patients had no recurrence after 25 months; two patients with 
tumour recurrence received subsequent anti-PD1 therapy leading to complete tumour 
regression 99. In another phase I study, stage III melanoma patients pre-treated with ipili-
mumab and by surgical resection received a vaccine consisting of autologous dendritic 
cells presenting neo-antigens that were determined by sequencing100. Both vaccination 
strategies induced tumour-directed immune responses with concomitant broadening of 
the targeted antigen repertoire without inducing side-effects99,100. Nevertheless, to date, 
the number of vaccination studies involving neo-antigens that reported positive clinical 
outcomes is limited. This might be explained by the fact that the bulk of this research, in 
previous decades, has focused on targeting oncogenes and tumour suppressors (e.g. 
TP53) with recurrent mutations101. Therefore, these studies did not consider the largest 
source of neo-antigens in tumour—passenger mutations.

The requirement that neo-antigens are presented in complex with HLA class I hinders the 
widespread application of neo-antigen-targeted therapies in the form of peptide vacci-
nation or ACT. Therefore, CAR T cells were designed to enable the targeting of any cell 
surface molecule, in an HLA non-restricted fashion9. This strategy has been particularly 
successful for treating haematological malignancies, because highly tissue/cell-restrict-
ed antigens are present on their easily accessible cells of origin10–12. In 2010, the first 
successful CAR T-cell therapy was reported in a lymphoma patient who was pre-treated 
with chemotherapy10. The infusion product consisted of autologous T cells transduced 
with retroviruses encoding the variable region of the anti-CD19, B-cell antigen, which 
was joined to part of the co-stimulatory CD28 molecule and CD3ζ signalling domain 
for T-cell activation. Investigations in larger cohorts showed clinical responses102,103, but 
severe side-effects arose, including treatment-related deaths104–106. These side-effects 
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derive from high cytokine concentrations (cytokine storm), produced by the infused en-
gineered T cells that become hyper-activated as a result of high affinity of their receptor 
to the target molecules. Recently, two second generation CAR therapies targeting CD19 
have been approved by the FDA for treatment of patients with relapsed/refractory diffuse 
large B-cell lymphoma and relapsed/refractory B-cell precursor acute lymphoblastic leu-
kaemia107,108. In search for optimal effectivity and specificity, third generation CARs are 
currently being developed, which contain two co-stimulatory domains109–112. Furthermore, 
investigations are ongoing to improve the treatment of haematological diseases while 
limiting the severity of side-effects, as well as investigations on the clinical efficacy of 
genetically engineered T cells in solid tumours109,113,114. The targeting of the latter has 
proved to be particularly challenging and complicating factors include the identification 
of specific, targetable antigens and the homing of CAR T cells to the tumour tissues where 
in turn they are exposed to a complex tumour microenvironment115. On the other hand, 
CAR T cells are a very attractive tool to treat cancers arising in non-vital organs where 
specific antigens are expressed (e.g. thyroid and ovaries).

THE IMMUNE LANDSCAPE OF LOW MUTATION BURDEN TUMOURS
As discussed, neo-antigens constitute attractive targets for immunotherapy and clinical 
responses with checkpoint blockers have been correlated to the mutation burden of 
tumours16,62. Cancers with 10 mutations/Mb or more have been proposed as suscepti-
ble for checkpoint blockade, indicating the importance of neo-antigen presence for a 
potent immune response116. However, not all patients with high mutation burden tumours 
benefit from these therapies, and the precise determinants of response are undefined 
at the moment. Furthermore, the division between tumours with high, moderate and low 
mutation burden is somewhat arbitrary. In theory, tumours with low/moderate mutation 
burden that present neo-antigens in complex with HLA class I could still be eligible for 
T-cell-mediated immunotherapy. However, several questions remain unanswered: does 
the low number of neo-antigens translate to the improbability that a neo-antigen ‘survives’ 
the antigen processing machinery? On the other hand, if a small number of neo-antigens 
is indeed presented by a tumour cell, is it enough to provoke an inflammatory response 
that is required for tumour elimination?

Medulloblastoma, the most common brain tumour in children, has a low mutation burden, 
but was found to upregulate IDO1 expression117. IDO1 enhances immunosuppressive ef-
fects leading to an increase of Tregs and dampened activity of effector T cells118. There-
fore, upregulation of IDO1 can be classified as an immune escape mechanism, indicating 
a role for the immune system in the control of medulloblastoma progression. Additionally, 
acute myeloid leukaemia (AML) cells are known to overexpress PD-L1119 and IDO1120, and 
AML blasts can secrete arginase II in order to promote immune escape by suppressing 
T-cell proliferation and polarizing monocyte differentiation towards an M2 phenotype121. 
Another tumour with low/moderate mutation burden, Hodgkin lymphoma, is characterized 
by few tumour cells and many immune cells that are attracted by the tumour-secreted cy-

169854_vandenBulk_BNW-def.indd   28169854_vandenBulk_BNW-def.indd   28 04-01-2024   11:1904-01-2024   11:19



29

Cancer immunotherapy: broadening the scope of targetable tumours

tokines122. However, these tumour-infiltrating immune cells display an immunosuppressive 
rather than anti-tumourigenic phenotype122. Immunotherapies are regularly employed to 
treat this disease, including antibodies targeting CD20, CD30 and checkpoint inhibitors 
targeting PD-17,61,123. Effectiveness of the latter may reside in the genetic overexpression 
of PD-L1 by the tumour cells122. TILs in Hodgkin lymphoma were found to express low 
levels of PD-1, but the blockade of this co-inhibitory mechanism was shown to result in an 
enhanced anti-tumour activity61. This finding underlines the existence of a T-cell-mediated 
anti-tumour response, which might be circumvented by the tumour through PD-L1 ex-
pression. Nevertheless, the immune evasive mechanisms observed in AML and Hodgkin 
lymphoma are probably closely connected to the function of their precursor cells and the 
persistent interaction of these pathologies with the immune system. A last example of 
a tumour type with low/moderate mutation burden that has potential for treatment with 
immunotherapeutic strategies is renal cell carcinoma (RCC). Sensitivity to immunother-
apeutic intervention in this tumour type was already known from the clinical responses 
of some RCC patients to IL-2 treatment124. Recently, patient overall survival was shown 
to increase from 19.6 to 25 months with anti-PD-1 therapy compared to standard care 
with the mTOR inhibitor everolimus125. The underlying mechanisms making this tumour 
susceptible for immunotherapeutics are not understood yet, but the composition of the 
tumour microenvironment might play an important role. High lymphocyte infiltration was 
found to correlate with high risk for disease progression, which is a paradox characteristic 
of RCC. This might relate to the exhausted phenotype of infiltrating lymphocytes which 
contributes to an immunosuppressive microenvironment126. Furthermore, neo-antigen 
depletion due to immune selection was demonstrated to occur in RCC and a positive 
correlation was observed between mutations in the antigen-presenting machinery and cy-
totoxic activity by immune cells, suggesting the presence of ongoing anti-tumour immune 
reactions67. Finally, RCC was found to have the highest number of frameshift mutations out 
of 19 different cancer types, which might explain the immunogenicity observed in these 
tumours despite their moderate total mutation burden49. These examples of tumours with 
low mutation burden presenting susceptibility to immunotherapeutic strategies indicate 
the existence of autologous tumour-specific T cells with the potential to recognize (neo-) 
antigens, even when present in small numbers.

IMMUNOTHERAPIES FOR TUMOURS WITH LOW MUTATION BURDEN
Previous works by Tran et al.82,127 support the idea that most tumours present neo-antigens 
and that these can be targeted by the immune system, e.g. gastrointestinal cancers with 
low and moderate mutation burden including a cholangiocarcinoma patient with only 26 
non-synonymous mutations. Therefore, the clinical applicability of neo-antigen-targeted 
ACT or peptide-based vaccination strategies for low mutation burden tumours should 
be explored. The detection rate of autologous T-cell reactivity to neo-antigens is often 
described to be approximately 1% of the non-synonymous mutations that are transcribed 
in a tumour83,127,128. Currently, NGS is regularly used to determine neo-antigen presence, 
but improvements in capture methods for targeted panels (e.g. exome) and mutation de-
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tection algorithms might enhance the initial pool of targetable mutations in tumours with 
low mutation burden. For these, the use of in silico prediction models for antigen process-
ing and HLA binding affinity might not be necessary for a first T-cell reactivity screening 
using long peptides, because the number of mutations is low and all neo-antigens can 
be tested for their ability to induce T-cell activation. However, to directly investigate T-cell 
reactivity against short peptides, in silico tools are still required.

Immunotherapies have a high synergistic potential with standard chemo- and radiother-
apies as these are known to induce immunogenic cell death129,130. This synergy might be 
especially valuable for tumours with low mutation burden which do not respond to immu-
notherapy alone, and which could benefit from the transformation of a ‘cold’ immune mi-
croenvironment into a ‘hot’ microenvironment with an inflammatory profile (Figure 1)131,132. 
The rationale of classical chemotherapy and radiotherapy encompasses the targeting of 
fast-dividing tissues by impairing mitosis and inducing DNA damage. This leads to the 
release of tumour antigens and damage-associated molecular patterns which activate 
APCs133. Macrophages are attracted to consume the damaged tumour cells, which further 
enhances the antitumour response of T cells upon presentation of the tumour antigens134. 
In addition, radiotherapy leads to the release of nuclear DNA in the cytoplasm, activating 
the stimulator of interferon genes (STING) pathway, which is a direct link between the 
innate immune system and DNA damage135,136. Furthermore, the tumour microenvironment 
is disrupted by chemoradiation, thereby disturbing the immune suppressive milieu in 
tumours. This includes increased antigen presentation and expression of co-stimulatory 
molecules as well as inhibition of regulatory T-cell and myeloid-derived suppressor cell 
function129,137–139. In melanoma patients, an improved clinical response rate was observed 
upon treatment with a combination of anti-CTLA-4/PD-1 with radiotherapy, compared to 
treatment without radiation130. Moreover, combined radiotherapy with anti-CTLA-4 treat-
ment induced abscopal effects (shrinkage of tumour lesions outside of the target region 
of radiotherapy), in this case consisting of complete regression of metastases at different 
sites140. Similarly, abscopal effects were observed in a treatment- refractory metastatic 
lung adenocarcinoma patient after therapy with radiotherapy and ipilimumab141. Tumours 
treated pre-surgically with neo-adjuvant therapy might be particularly interesting for the 
investigation of the synergistic effect of chemoradiation and immunotherapy in cancers 
with low mutation burden. Among these, rectal cancers and oesophageal tumours are 
excellent candidates for clinical trials aiming at reducing mortality and treatment-related 
morbidity.
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Figure 1. (Immuno) therapeutic strategies in tumours with ‘hot’ and ‘cold’ immune microenvironments. 
Checkpoint blockade therapies are mostly applicable to ‘hot’ tumours which present an inflammato-
ry profile as a consequence of their high mutation burden. We propose that ‘cold’ tumours might be 
sensitized to checkpoint blockade if this is used in combination with radiotherapy, chemotherapy, 
peptide vaccination or oncolytic viruses, to boost anti-tumour immune responses.

Another avenue that may lead to the sensitization of additional tumours to immunother-
apeutic intervention is epigenetic modulation of cancer cells142. Epigenetic regulation is 
fundamental for gene expression and, consequently, for neo-antigen availability. Further-
more, in order to evade the immune system, tumours might acquire epigenetic footprints 
that change the expression of immunomodulatory genes. For instance, the expression 
of specific HLA alleles, with affinity to neo-antigens, can be suppressed in tumour cells 
due to epigenetic changes143,144. Such observations are strongly supportive of adopting 
epigenetic modifiers to restore or improve immunogenicity of some cancers145. More 
specifically, epigenetic modifiers have been shown to increase CD8+ T-cell infiltration in 
ovarian cancer and the immunogenicity of colorectal cancer cells was increased upon 
treatment with DNA-demethylating agents146,147. Epigenetic drugs could thus tackle the 
heterogenic expression of, among others, HLA molecules and neo-antigens, thereby 
enhancing anti-tumour immunity.

Another obstacle to employing immunotherapies for the treatment of tumours with low 
mutation burden relates to the fact that they are usually poorly infiltrated by immune cells. 
The initiation of an adaptive anti-tumour immune response probably relies on a robust 
inflammatory trigger that is absent in poorly immunogenic tumours. On the other hand, 
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such inflammatory threshold in tumours with high mutation burden is most likely reached 
due to the abundance of mutated antigens. A strategy to artificially induce an inflamma-
tory response that complements immunotherapeutic approaches is oncolytic virotherapy 
(Figure 1). Talimogene laherparepvec, a genetically engineered herpes virus, replicates 
specifically in cancer cells and induces tumour cell death148. It was also shown to induce 
the expression of GM-CSF in tumours, which attracts dendritic cells that take up tumour 
antigens after cancer cell death. A phase Ib clinical trial obtained objective response 
rates (62%) and complete response rates (33%) in advanced melanoma patients, which 
were treated with a talimogene laherparepvec vaccination combined with pembroluz-
imab (anti-PD-1 blocker)149. The vaccination treatment was shown to induce infiltration of 
T cells that often expressed PD-1, especially in otherwise non-infiltrated ‘cold’ tumours, 
explaining the patients’ sensitivity to PD-1 blockade. While such combination therapies 
were mainly performed in immunogenic tumours, their success and rationale supports 
the investigation of their applicability in tumours with low mutation burden.

CONCLUDING REMARKS
Immunotherapy, particularly checkpoint blockade, can induce robust and durable anti-tu-
mour responses in a significant proportion of patients, predominantly when applied for 
the treatment of cancers with high mutation burden. Until today, the applicability of these 
treatments for other cancer types is very limited. During the last decade, different groups 
have demonstrated the possibility of identifying neo-antigen-targeted immune cell re-
sponses in tumours with intermediate/ low mutation burden. Recent work in our laboratory 
confirms that neo-antigen-reactive T cells are present in low mutation burden, mismatch 
repair-proficient colorectal carcinomas (van den Bulk et al. 2018, unpublished data). These 
findings underscore the relevance of developing neo-antigen targeting immunotherapies 
for low mutation burden tumours by tuning anti-tumour inflammatory responses. ‘Cold’, 
poorly immunogenic, tumours will require rationale-based interventions that make use 
of combinatorial therapies, including radio/chemotherapy or oncolytic viruses, to switch 
cancer immune microenvironments to a ‘hot’ state.
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