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CHAPTER 6
Roots of ideals in number rings



126 6. Roots of ideals in number rings

6.1 Introduction

Let R be an order, not necessarily in a number field. A fractional ideal of
R is a finitely generated R-submodule a ⊆ QR such that Qa = QR. For
fractional ideals a and b of R we write a + b and a · b for the R-submodule
of QR given by {a + b | a ∈ a, b ∈ b} and generated by {ab | a ∈ a, b ∈ b}
respectively. We say a fractional ideal a of R is invertible if there exists a
fractional ideal a−1 of R such that aa−1 = R, and we write I(R) for the
group of invertible fractional ideals of R.

Any fractional ideal of R is a free abelian group of the same rank as
R, and we will encode a fractional ideal of R by a Z-basis in QR. Using
standard techniques as in [5], it is possible to compute a∩ b, a+ b, a · b and
a−1 in polynomial time on input R, a and b. This chapter we dedicate to
the computation of another elementary operation, namely taking roots of
fractional ideals.

A fractional R-ideal can have multiple n-th roots as I(R) can have non-
trivial torsion, while if R is the maximal order the n-th root is unique if it
exists. This makes it impossible to produce such a root functorially under
isomorphisms; see Example 6.7.6. Instead we solve the following problem.

Theorem 6.7.3. There exists a polynomial-time algorithm that, given an
order R in a number field and fractional ideal a of R, computes the maximal
n ∈ Z≥0 with respect to divisibility for which there exist an order R ⊆
S ⊆ QR and fractional ideal b of S such that bn = Sa, where b0 := S,
and additionally computes such S and b. The output of this algorithm is
functorial under isomorphisms of R.

If a fractional R-ideal a has an n-th root say b, then the S-ideal Sa also
has an n-th root, namely Sb, for any order R ⊆ S ⊆ QR. However, if Sa
has an n-th root for some S, then a does not need to have an n-th root; see
Example 6.7.5.

A maximal order in a number field has unique prime factorization of
ideals. However, we cannot expect to compute in polynomial time, given
an ideal a of a number ring R, the set of prime ideals a ⊆ p of R, for the
same reason that factorization of integers is considered hard. An often good
enough substitute is a coprime factorization: For a set X of ideals of R,
we compute a set C of pairwise coprime invertible proper ideals so that
every ideal of X is a (necessarily unique) product of ideals of C, potentially
enlarging the order R in the process as in Theorem 6.7.3. We say C is reduced
if 〈C〉 is a direct summand of I(R). For finite C this is equivalent to the
elements of C having no proper roots in I(R). For orders R ⊆ S ⊆ QR and
a set X of fractional ideals of R we write S ·X = {Sa | a ∈ X}, and we say
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C is strongly reduced if S ·C is reduced for every order R ⊆ S ⊆ QR. Using
the previous theorem we may compute strongly reduced coprime bases.

Theorem 6.8.5. There exists a polynomial-time algorithm that, given a
order R in a number field and a finite set X of fractional ideals contained
in R, computes an order R ⊆ S ⊆ QR such that S · X has a strongly
reduced coprime basis and computes such a coprime basis. The output of
this algorithm is functorial under isomorphisms of R.

For both theorems we produce an order S functorially, so one can wonder
whether this S has a compact definition other than it being the output of
the algorithm, as will be the case in Theorem 6.2.5 and Theorem 6.4.8.
However, we were unable to find such a description.

6.2 Fractional ideals

Let R be a commutative ring. We say x ∈ R is regular if multiplication by
x is injective and invertible if it is surjective. Let S be the set of regular
elements of R. Then S is a multiplicatively closed set, and we write Q(R) =
S−1R, the localization of R by S, for the total ring of fractions of R. The
natural map R→ Q(R) is an injective ring homomorphism, and we treat it
as an inclusion. If R is a reduced order, then Q(R) = QR. If R ⊆ S ⊆ Q(R)
are (sub)rings, then Q(S) = Q(R).

For R-submodules a, b ⊆ Q(R) we write a + b = {a + b | a ∈ a, b ∈ b},
write a · b or ab for the additive group generated by {ab | a ∈ a, b ∈ b} and
write a : b = {x ∈ Q(R) |xb ⊆ a}. A fractional ideal of R, which is not
necessarily an ideal of R, is a finitely generated R-submodule a ⊆ Q(R)
such that Q(R) · a = Q(R). An invertible ideal of R is a fractional ideal a
of R for which there exists an R-submodule b ⊆ Q(R) such that ab = R.

Lemma 6.2.1. Let R be a commutative ring with fractional ideal a. Then
a contains a regular element of R.

Proof. Since Q(R)a = Q(R) we may write
∑n

k=1(rk/sk) · ak = 1 for some
n ∈ Z≥0, rk, sk ∈ R and ak ∈ a with sk regular. Multiplying this equation by
the regular element s =

∏n
k=1 sk we obtain a 3

∑n
k=1 rk(s/sk)ak = s.

Lemma 6.2.2. Let R be a commutative ring and suppose a, b and c are
fractional ideals of R. Then

1. R, a + b and ab are fractional ideals of R;
2. (a + b)c = ac + bc and a : R = a;
3. If b ⊆ c, then a + b ⊆ a + c, ab ⊆ ac, b : a ⊆ c : a and a : b ⊇ a : c;
4. We have c(R : c) = R if and only if c is invertible;
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5. If c is invertible, then ac : bc = a : b, a : c = a(R : c), and ac ⊆ bc
implies a ⊆ b;

6. If R is Noetherian or c is invertible, then a : c is a fractional ideal;
7. If a is of the form Ra for some unit a ∈ Q(R), then a is invertible. If
R is semi-local, then the converse also holds.

Proof. We will prove the non-trivial parts.
4. If cd = R for some d, then d ⊆ R : c and R = cd ⊆ c(R : c) ⊆ R, so

we have equality throughout. Suppose c(R : c) = R. It suffices to show that
R : c is finitely generated. We have 1 =

∑
i∈I cidi for some finite set I and

ci ∈ c and di ∈ R : c. If x ∈ R : c, then x =
∑

i∈I(cix)di ∈
∑

i∈I Rdi, so the
di generate R : c.

5. Write d = R : c. Note that a : b ⊆ ae : be for all e. Hence a : b ⊆ ac :
bc ⊆ acd : bcd = a : b, so we have equality throughout. Using this we have
a : c = ad : cd = ad : R = ad. Note that e ⊆ f is equivalent to R ⊆ f : e,
from which one then deduces the last statement.

6. We have cR ⊆ c for some c ∈ Q(R)∗ by Lemma 6.2.1, so a : c ⊆ a :
cR = 1

ca. Assuming R is Noetherian, a : c is Noetherian because 1
ca
∼= a is

Noetherian. If c is invertible, then a : c = a(R : c) is fractional.
7. For all maximal ideals m choose am ∈ a and bm ∈ R : a so that

ambm ∈ R \m, and choose λm ∈ R \ m with λm ∈ n for all maximal n 6= m.
Then a =

∑
m λmam ∈ a and b =

∑
m λmbm ∈ R : a satisfy ab ≡ λ2

mambm 6≡
0 (mod m) for all m. Hence ab ∈ R∗ and a ∈ Q(R)∗. Finally a = aba ⊆
a(R : a)a = aR ⊆ a and we have equality throughout.

If a is an invertible ideal of R, we write a−1 = R : a for the unique
R-submodule of Q(R) such that aa−1 = R. We write I(R) for the set of
invertible ideals of R, which by Lemma 6.2.2 is closed under taking inverses,
and is thus a group under multiplication.

Example 6.2.3. The group I(R) can contain non-trivial torsion for an
order R in a number field.

Consider R = Z[2i]. Then i ∈ QR \ R is a fourth root of unity, hence
iR ∈ I(R) is non-trivial torsion. More generally, for orders R ⊆ S ⊆ QR
the group S∗/R∗ is torsion and the natural map to I(R) is injective.

Lemma 6.2.4. Let R ⊆ S ⊆ Q(R) be commutative (sub)rings. There is a
map from the set of fractional ideals of R to the set of fractional ideals of S
that sends a to Sa, and it preserves inverses of invertible ideals and respects
addition and multiplication.
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Theorem 6.2.5. There exists a polynomial-time algorithm that, given an
order R in a number field and a fractional R-ideal a, computes the unique
minimal order R ⊆ S ⊆ QR such that Sa is invertible.

Proof. In [8] it is shown that Sa is invertible for the order S = an : an

with n = [K : Q] − 1. Any order R ⊆ T ⊆ QR where Ta is invertible
satisfies S = an : an ⊆ T (an : an) ⊆ (Tan) : (Tan) = T , so S is the unique
minimum.

Theorem 6.2.5 probably also holds when R is any order, with essentially
the same proof. This generalization would be sufficient to prove generaliza-
tions to general orders for all algorithmic theorems in this chapter.

6.3 Lengths of modules

Let R be a commutative ring and M a R-module. A chain in M is a set of
submodules of M that is totally ordered by inclusion. We define the length
of M to be

`R(M) = sup{#C |C a chain in M} − 1 ∈ Z≥0 ∪ {∞}.

Note that we do not distinguish between infinite cardinal numbers. Similarly
we define the Krull dimension of R to be

dim(R) = sup{#C |C a chain in R of prime ideals} − 1.

Note that `R(0) = 0 and dim(0) = −1. We say M has finite length if
`R(M) <∞, which is equivalent toM being both Noetherian and Artinian.
For a prime ideal p ⊆ R write Rp for the localization of R at p and Mp =
Rp ⊗RM . If M has finite length we write

[M ]R =
(
`Rm(Mm)

)
m
∈ Z(max specR)

≥0 .

where max specR is the set of maximal ideals of R.

Lemma 6.3.1 (Theorem 2.13 in [12]). Let R be a commutative ring and
N ⊆M be R-modules. Then `R(M) = `R(N) + `R(M/N) and

`R(M) =
∑
m⊆R

`Rm(Mm),

where the sum ranges over all maximal ideals m.

Lemma 6.3.2. Let R be a Noetherian commutative ring. If dim(R) ≤ 1,
then for every fractional R-ideal a ⊆ R the R-module R/a has finite length.
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Proof. Write chain(R) for the set of chains of prime ideals of R. The primes
ofR/a correspond to the primes ofR containing a, so we get a surjective map
f : chain(R)→ chain(R/a) that discards primes not containing a. Minimal
prime ideals contain no regular elements (Theorem 3.1 in [12]), while a does
(Lemma 6.2.1). Maximal elements of chain(R) contain a minimal prime,
which gets discarded by f . Hence dim(R/a) ≤ dim(R) − 1 ≤ 0. It then
follows from Corollary 9.1 in [12] that R/a has finite length.

Examples of a Noetherian commutative ring with Krull dimension at
most 1 include any order and its localizations.

Proposition 6.3.3. Let R ⊆ S ⊆ Q(R) be commutative (sub)rings. If
dim(R) ≤ 1 and `R(S/R) <∞, then for all invertible ideals a ⊆ R we have
[S/Sa]R = [R/a]R.

Proof. It suffices to prove for local R that `(S/Sa) = `(R/a). In this case
a = αR for some regular α ∈ R. Note that the map S/R → Sa/a given
by x 7→ αx is an isomorphism since α is regular in S. We conclude that
`(Sa/a) = `(S/R) <∞. We have exact sequences of R-modules

0→ R/a→ S/a→ S/R→ 0 and 0→ Sa/a→ S/a→ S/Sa→ 0.

Hence `(R/a) + `(S/R) = `(Sa/a) + `(S/Sa) by Lemma 6.3.2.

Example 6.3.4. With the notation as in Proposition 6.3.3, the R-modules
R/a and S/Sa need not be isomorphic. In fact, if R and S are orders, then
the modules need not even be isomorphic over Z.

Take R = Z[2i] and S = Z[i] with a = 2iR, which is clearly invertible.
Then R/a ∼= Z/4Z and S/Sa ∼= (Z/2Z)2 as Z-modules, which are non-
isomorphic.

Lemma 6.3.5. Let R be a commutative ring with fractional ideals a ⊆ b.
Then there exists some regular r ∈ R such that rb ⊆ a. If R is Noetherian
with dim(R) ≤ 1, then `R(b/a) <∞.

Proof. We may choose generators r1/s1, . . . , rn/sn ∈ Q(R) of b. Then y =∏
i si is regular and satisfies yb ⊆ R. By Lemma 6.2.1 there exists some

regular x ∈ R such that xR ⊆ a. Hence we may take r = xy. We have a
surjection b/xR→ b/a, so it suffices to show `R(b/xR) <∞. The injection
b/xR → 1

yR/xR and the fact that 1
yR/xR

∼= R/xyR has finite length by
Lemma 6.3.2 finish the proof.
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As a consequence of Lemma 6.3.5, every fractional ideal a of R can be
written as b : c for some ideals b, c ⊆ R with c invertible: As ra ⊆ R for some
regular r we may take b = ra and c = rR. Under additional invertibility
assumptions we may even take b and c coprime.

Lemma 6.3.6. Let R be a commutative ring and let a be a fractional R-
ideal such that a and R + a are invertible. Then R + a−1 is invertible and
b = (R+ a−1)−1 and c = (R+ a)−1 satisfy (1) b, c ⊆ R; (2) b + c = R and
(3) a = b : c.

Proof. Note that R + a−1 = a−1(R + a) is invertible. Rearranging gives
a = (R+ a) : (R+ a−1) = b : c. We have b + c = ac + c = (a +R)c = R. In
particular, we have b, c ⊆ R.

Proposition 6.3.7. There exists a polynomial-time algorithm that, given
an order R in a number field and an invertible ideal a of R, decides whether
a is torsion, and if so computes the minimal order R ⊆ S ⊆ QR such that
Sa = S.

Proof. We compute using Theorem 6.2.5 the minimal order R ⊆ S ⊆ QR
where R+a becomes invertible. We claim a is torsion if and only if Sa = S.

(⇒) As Sa is the quotient of b = (S + (Sa)−1)−1 and c = (S + Sa)−1

as in Lemma 6.3.6 with b + c = S, the ideal Sa is torsion if and only if b
and c are. However, since b, c ⊆ S, this is only possible if b = c = S. Hence
Sa = S : S = S.

(⇐) Let k ∈ Z>0. For x ∈ R : S we have xS = xSak ⊆ Rak = ak, so
x ∈ ak. Hence R : S ⊆ ak ⊆ S. By Lemma 6.3.5 the R-module S/(R : S)
has finite length, so in particular it is a finite group. Thus ak can take only
finitely many values, so by invertibility a must be torsion.

Finally, suppose that a is torsion and R ⊆ T ⊆ QR is an order such
that Ta = T . Then T (R + a) = T is invertible, so S ⊆ T . Hence S is the
unique minimal order where Sa = S.

6.4 Coprime bases

It is easy to see that for a set C of pairwise coprime invertible proper ideals
of a commutative ring R the natural map Z(C) → I(R) is injective with
image 〈C〉 and that 〈C〉 is closed under addition. In fact, Z(C) → 〈C〉 is an
isomorphism of partially ordered groups.

Lemma 6.4.1. There exists a polynomial-time algorithm that, given a re-
duced order R and a finite set C of pairwise coprime invertible proper ideals
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of R and some invertible ideal a of R, decides whether a is in the image of
the injection Z(C) → I(R) and if so computes the preimage.

Proof. First verify whether R+ a is invertible, as it should be if a ∈ 〈C〉. If
so, then by Lemma 6.3.6 we may write a = b : c for invertible b, c ⊆ R. We
then proceed using trial division.

Definition 6.4.2. Given a commutative ring R and a set X of fractional
ideals contained in R, we write 〈〈X〉〉 for the multiplicative monoid generated
by X with unit R, and we define the closure of X, written clR(X) or simply
cl(X), to be the smallest set of fractional ideals in R such that 〈〈X〉〉 ⊆ cl(X)
and for all a, b ∈ cl(X) we have ab, a + b ∈ cl(X), and if b is invertible and
a : b ⊆ R also a : b ∈ cl(X).

From Lemma 6.2.4 we deduce the following.

Lemma 6.4.3. Let R ⊆ S ⊆ Q(R) be commutative (sub)rings and let X be
a set of fractional ideals contained in R. Writing S ·X = {Sa | a ∈ X}, we
have S · clR(X) ⊆ clS(S ·X).

Lemma 6.4.4. Let R be a commutative ring R and C a set of invertible
ideals contained in R which are pairwise coprime. Then cl(C) = 〈〈C〉〉.

Proof. Clearly 〈〈C〉〉 ⊆ cl(C). For all a, b ∈ 〈〈C〉〉 we may write a =
∏

c∈C cac

and b =
∏

c c
bc with ac, bc ∈ Z≥0. Then

a + b =
∏
c∈C

cmin{ac,bc} and a : b =
∏
c∈C

cac−bc .

Hence a + b ∈ 〈〈C〉〉, and a : b ∈ 〈〈C〉〉 if a : b ⊆ R. Thus 〈〈C〉〉 = cl(C).

Definition 6.4.5. Let R be a commutative ring and X a set of fractional
ideals contained in R. A coprime basis for X is a set C of invertible proper
ideals of R, which are pairwise coprime and satisfy X ⊆ 〈〈C〉〉.

Note that a coprime basis need not exist for every X. At the very least,
the ideals in X should be invertible.

Lemma 6.4.6. For a commutative ring R and a set X of fractional ideals
contained in R we may equip the set of coprime bases of X with a partial
order where C ≤ D if and only if 〈〈C〉〉 ⊆ 〈〈D〉〉.

Proof. It suffices to verify for coprime bases C and D that 〈〈C〉〉 = 〈〈D〉〉
implies C = D. Let mcd ∈ Z≥0 be such that c =

∏
d∈D dmcd . Since the

elements of C are pairwise coprime, there is for every d ∈ D at most one
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c ∈ C such that mcd > 0. Because 〈〈D〉〉 ⊆ 〈〈C〉〉, there is no d ∈ D such that
for all c ∈ C we have mcd = 0.

Let d ∈ D. Then there exist c ∈ C and m > 0 such that c = dm and
in turn by symmetry e ∈ D and n > 0 such that e = cn. Then e = dmn, so
e = d and m = n = 1. Thus d = c ∈ C and D ⊆ C. By symmetry we have
C = D.

Proposition 6.4.7. Let R be a Noetherian commutative ring and X a set
of fractional ideals contained in R. Then:

1. X has a coprime basis if and only if cl(X) ⊆ I(R);
2. if X has a coprime basis, then it has a unique minimal one;
3. if C is a coprime basis of X, then C is minimal if and only if C ⊆

cl(X).

Proof. (1) Suppose X has a coprime basis D. Then X ⊆ 〈〈D〉〉 = cl(D)
by Lemma 6.4.4, so cl(X) ⊆ cl(D) = 〈〈D〉〉 ⊆ I(R). Suppose instead that
cl(X) ⊆ I(R). We will show that

C = {a ∈ cl(X) | ∀ b ∈ cl(X), a ( b⇔ b = R}

is a coprime basis of X.
First, note that the elements of C are pairwise coprime: For a, b ∈ C

we have a + b ∈ cl(X). If a ( a + b, then a + b = R by definition of C,
and similarly when b ( a + b. Otherwise a = a + b = b. Second, we show
cl(X) ⊆ 〈〈C〉〉 using Noetherian induction: Certainly R ∈ 〈〈C〉〉. Now let
a ∈ cl(X) \ {R} and suppose c ∈ 〈〈C〉〉 for all c ∈ cl(X) with a ( c. Either
a ∈ C, or there is some b ∈ cl(X) such that a ( b ( R, in which case
b, (a : b) ∈ 〈〈C〉〉 by the induction hypothesis and hence a ∈ 〈〈C〉〉. Thus C
is a coprime basis for X, as was to be shown.

(2) Suppose now that X has a coprime basis. We will show that C as
in (1) is the unique minimal coprime basis. Let D be any coprime basis of
X. We have C ⊆ cl(X), so cl(C) ⊆ cl(X). On the other hand, X ⊆ cl(C),
so cl(C) = cl(X). Similarly for D we have cl(X) ⊆ cl(D). Hence 〈〈C〉〉 =
cl(C) = cl(X) ⊆ cl(D) = 〈〈D〉〉 by Lemma 6.4.4. Thus C ≤ D, as was to be
shown.

(3) It is clear that the minimal coprime basis from (2) satisfies C ⊆
cl(X). Let D be any coprime basis of X such that D ⊆ cl(X). Then as
before we obtain 〈〈D〉〉 = cl(D) = cl(X). Hence 〈〈C〉〉 = cl(X) = 〈〈D〉〉 and
C = D by Lemma 6.4.6. Hence D is minimal.

Theorem 6.4.8. There exists a polynomial-time algorithm that, given a
order R in a number field and a finite set X of fractional ideals contained
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in R, computes the unique minimal order S such that R ⊆ S ⊆ QR and
cl(S ·X) ⊆ I(S), and then computes the minimal coprime basis of S ·X.

Note that the output of this algorithm is clearly functorial under iso-
morphisms of R.

Proof. Start with S equal to the minimal order R ⊆ S ⊆ Q(R) where the
elements of X become invertible using Theorem 6.2.5, and let C = X.

Iteratively compute c = Sa + Sb for distinct a, b ∈ C. If c 6= S, replace
S by the unique minimal order S ⊆ T ⊆ Q(R) where T c is invertible using
Theorem 6.2.5, replace a and b in C by Ta : T c and Tb : T c, and add T c
to C. Once Sa + Sb = S for all distinct a, b ∈ C we terminate and return
the order S and coprime basis S · C.

Polynomial run time follows from the fact that
∑

a∈C `R(S/aS), which
is bounded by the length of the input, decreases by at least 1 after every
iteration where c 6= S. For this, the fact that S changes throughout the algo-
rithm is irrelevant by Proposition 6.3.3. This also gives a polynomial bound
on #C and hence the number of pairs a, b ∈ C to check for coprimality
every iteration.

It remains to show correctness. With induction on the number of steps
one shows that during the algorithm S · X ⊆ 〈〈S · C〉〉, so that S · C is
indeed a coprime basis for S ·X, and S ·C ⊆ cl(S ·X), so it is minimal by
Proposition 6.4.7. Suppose R ⊆ T ⊆ Q(R) be such that cl(TX) ⊆ I(T ).
Then at every point of the algorithm we could replace S by S ∩ T and
preserve invertibility, so S ⊆ T at every step by minimality of S guaranteed
by Theorem 6.2.5. Hence S is minimal such that cl(SX) ⊆ I(S), and the
algorithm is correct.

In the above algorithm, once Sa+Sb = S for some S, we will also have
Ta + Tb = T for any S ⊆ T ⊆ Q(R). Keeping track of which pairs are
coprime could speed up the iterative algorithm in practice. Moreover, once
we compute Sa we may replace a in C by Sa to potentially speed up later
computations.

6.5 Fitting ideals

Let R be a commutative ring and M a finitely generated R-module. Then
there exists an exact sequence

R(I) f−→ Rn →M → 0
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for some set I and n ∈ Z≥0, where we interpret f as a matrix. Note that I
can be infinite, as M need not be finitely presentable. For k ≤ n we define
the k-th Fitting ideal of M , written Fitk(M), to be the R-ideal generated
by the determinants of all (n− k)× (n− k) minors of the matrix f , which
is 0 when no such minors exist. Note that Fitk(M) = 0 for k < 0, and
vacuously Fitn(M) = R as the determinant of a 0×0 matrix is 1. It is clear
that Fiti(M) ⊆ Fitj(M) for i ≤ j ≤ n. We extend the definition of Fitk(M)
to arbitrary k ∈ Z where Fitk(M) = R for k > n. By a theorem of Fitting
[14] the Fitting ideals do not depend on the choice of exact sequence.

Lemma 6.5.1. Let R be a non-zero Artinian commutative ring,M a finitely
generated R-module and k ∈ Z≥0. Then:

1. M can be generated by k elements if and only if Fitk(M) = R;
2. M is free of rank k if and only if Fitk−1(M) = 0 and Fitk(M) = R;
3. if M is free of rank k, then every set of generators of M of cardinality
k is a basis.

Proof. The first two follow from Propositions 20.6 and 20.8 in [12], while
the third is elementary.

Proposition 6.5.2. There exists a polynomial time algorithm that, given a
finite commutative ring R and a finitely generated R-module M , computes
the minimal number of generators n for M , and Fitn−1(M).

Proof. Using Theorem 4.1.3 from [5] we may compute such minimal n and
generators m1, . . . ,mn of M . We may then compute an exact sequence
Rm

f−→ Rn →M → 0, so that Fitn−1(M) is the ideal generated by the co-
efficients of f .

It is very possible a more direct proof of Proposition 6.5.2 can be given.

6.6 Finite-étale algebras

Let R be a commutative ring and S an R-algebra. We write So for the
opposite ring of S. Then Se = S ⊗R So is a ring and S is an Se-module
where the module structure is given by (s ⊗ s′) · t = sts′. We say S is
separable if S is projective as Se-module. We say S is finite-étale over R if
S is commutative and S is projective and separable over R.

Lemma 6.6.1. Let R be a commutative ring and S a finite-étale R-algebra.
Then

1. for all ideals a ⊆ R the R/a-algebra S/aS is finite-étale;
2. for all maximal ideals m ⊆ R the Rm-algebra Sm is finite-étale;
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3. if R is a field, then S is a product of fields.

Proof. For 1 and 2 it suffices to verify separability. For 1 it is trivial that R/a
is separable over R, hence S/aS is separable over R/a by Proposition III.1.7
of [28]. For 2 we have Proposition III.2.5 of [28]. Finally, 3 is a consequence
of Theorem III.3.1 of [28].

Proposition 6.6.2. There exists a polynomial-time algorithm that, given
a finite commutative ring R and a finite commutative R-algebra S, decides
whether S is finite-étale over R and if not, computes either some ideal 0 (
a ( R or some ideal 0 ( b ( S. The output of this algorithm is functorial
under isomorphisms.

Proof. Projectivity over finite rings can be tested using Theorem 5.4.1 from
[5], hence the finite-étale property can be tested. Suppose S is not finite-
étale. If S is not free over R, then the ideal a we obtain from Proposi-
tion 6.5.2 satisfies 0 ( a ( R by Lemma 6.5.1. If S is not separable over
Z, we obtain a ideal 0 ( b ( S from Proposition 6.1.3 from [5] which is
functorial under isomorphisms.

Suppose S is free over R and separable over Z. Then certainly S is
projective over R. Hence S is separable over R by Proposition 6.2.14.ii from
[5], so S is finite-étale over R.

6.7 Roots of ideals

In this section we will prove the main theorems on taking roots in orders.

Proposition 6.7.1. Let Z ⊆ R ⊆ S ⊆ Q(R) be commutative (sub)rings
such that Z is Dedekind and S is finitely generated as a Z-module. Let a ⊆ R
be an invertible ideal. Write a = a ∩ Z and suppose R/a is finite-étale over
Z/a. If m ∈ Z≥0 is such that there exists an ideal b ⊆ S with Sa = bm,
then there exists an ideal b ⊆ Z with a = bm.

In this proposition one can think of Z as Z and S as the maximal order
of a number field Q(R).

Proof. It suffices to prove the proposition for local Z: All conditions on the
rings and ideals are preserved by localization at a prime of Z, which for
the finite-étale property is Lemma 6.6.1.2, and the conclusion holds if it
holds everywhere locally. If Z is a field, then Z = R = S = Q(R) and the
proposition holds trivially. Thus we may assume Z is a discrete valuation
ring with maximal ideal p = πZ. Note that Z is Noetherian, hence S and
consequently R are Noetherian Z-modules and in particular Noetherian
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rings. Hence because Z is semi-local and of dimension 1, so are both R and
S.

Suppose b ⊆ S is such that Sa = bm. Write a = pk for some k ≥ 0.
To show there exists an ideal b with a = bm, it suffices to show that m | k.
We may assume that k > 0, otherwise this is trivial. Because a and b are
invertible ideals of a semi-local ring, we have a = αR and b = βS for some
regular α ∈ R and β ∈ S by Lemma 6.2.2.7.

By Lemma 6.3.5 we have `R(S/R) <∞, so by Proposition 6.3.3 we have
[R/αR]R = [S/αS]R. We have inclusions

S ⊇ βS ⊇ · · · ⊇ βmS = αS.

For all i we have an isomorphism S/βS → βiS/βi+1S since βi is regular, so

[R/αR]R = [S/αS]R = m · [S/βS]R.

Write Ai = πi · (R/αR). We have inclusions

A0 ⊇ A1 ⊇ · · · ⊇ Ak = 0.

Because R/αR as Z/πkZ-algebra is finite-étale by assumption, it is pro-
jective and hence free. Therefore multiplication by πi for 0 ≤ i < k is an
isomorphism A0/A1 → Ai/Ai+1 of Z-modules and hence of R-modules. We
conclude that

k · [A0/A1]R = [R/αR]R = m · [S/βS]R.

Note that A0/A1 is finite-étale over Z/πZ by Lemma 6.6.1, and that Z/πZ
is a field. Hence A0/A1 = R/(αR + πR) is a product of fields. In par-
ticular, if we choose any maximal m ⊂ R containing αR + πR we obtain
[A0/A1]R(m) = `Rm((A0/A1)m) = 1. It follows that k = m · [S/βS]R(m), as
was to be shown.

Example 6.7.2. Under the assumptions of Proposition 6.7.1 it need not
be the case that a itself be an m-th power in I(R).

Let R = Z[2
√

2] and a = (2 + 2
√

2)R. Then R/a ∼= Z/a as Z/a-algebra
for a = a ∩ Z = 4Z, so R/a is certainly étale. Since 1 +

√
2 is a unit in the

maximal order S = Z[
√

2], we have that Sa = (S
√

2)2. Suppose c ∈ I(R)
satisfies c2 = a. Square roots of ideals in S are unique, so Sc = S

√
2 and

c ⊆ S
√

2. On the other hand we have

c = a · (R : c) ⊇ a · (S2 : S
√

2) = 2
√

2S.

Thus c corresponds to some R-submodule d of S/2S with square (1+
√

2)R+
2S. Clearly d 6= S/2S, so d = dR + 2S for some d ∈ S/2S. As d2 ∈ {0, 1}
we conclude that d2 6= (1 +

√
2)R+ 2S, so no such c exists.
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Theorem 6.7.3. There exists a polynomial-time algorithm that, given an
order R in a number field and fractional ideal a of R, computes the maximal
n ∈ Z≥0 with respect to divisibility for which there exist an order R ⊆
S ⊆ QR and fractional ideal b of S such that bn = Sa, where b0 := S,
and additionally computes such S and b. The output of this algorithm is
functorial under isomorphisms of R.

Note that n = 0 corresponds to the case where a is torsion.

Proof. First compute some orderR ⊆ S ⊆ Q(R) such that Sa and S+Sa are
invertible using Theorem 6.2.5. Then write Sa = a+ : a− with a+, a− ⊆ S
invertible and coprime as in Lemma 6.3.6, and apply the algorithm recur-
sively to a+ and a− separately with S in the place of R. Since the ideals
are coprime, we may obtain a solution n = gcd(n+, n−) from solutions n+

and n− for a+ and a− respectively, and similarly we may construct S and
b. Hence we may now assume that a ( R.

Suppose that at some point during the algorithm we obtain an ideal a (
d ( R. Then compute some extension T and a coprime basis C for {Ta, Td}
using Theorem 6.4.8. Using Lemma 6.4.1 we may write Ta =

∏
c∈C(T c)mc

for some mc ∈ Z≥0. As before we may solve the problem by applying the
algorithm recursively to all c ∈ C. By the assumption on d we have a ( c
for all c ∈ C, so the recursion is well-founded.

Now we proceed to the actual algorithm. Compute a ∈ Z>1 such that
a∩Z = aZ. By Proposition 6.6.2 we may assume that R/a is finite-étale over
Z/aZ, otherwise we can proceed recursively as above. Then write a = bm for
some b,m ∈ Z>0 withm maximal. If b 6∈ a, then we may proceed recursively
with d = bR + a. Otherwise b ∈ aZ, so a = b and m = 1, in which case the
solution is n = 1 and b = a by Proposition 6.7.1.

That the algorithm runs in polynomial time follows from all theorems
applied.

Corollary 6.7.4. There exists a polynomial-time algorithm that, given an
order R in a number field, a fractional ideal a of R and a positive integer
n, decides whether there exist an order R ⊆ S ⊆ QR and fractional ideal b
of S such that bn = Sa and if so computes such S and b. The output of this
algorithm is functorial under isomorphisms of R.

Example 6.7.5. A fractional ideal of an order R can have a square root
in an order R ⊆ S ⊆ QR, while not having such a square root in R, even
when R is a domain.

Let R = Z[2i] and a = 2R. For S = Z[i] and c = (1 + i)S we have
c2 = 2iS = aS, so a has a square root in a larger order. Since S is Dedekind,
the group I(S) is torsion-free, so c is even the unique square root of aS.



6.8. Reduced coprime bases 139

Suppose b is some fractional ideal of R such that b2 = a. Then bS = c
by uniqueness of c, so b ⊆ c ⊆ S. Let x ∈ b. Then x = s+ ti for s, t ∈ Z. As

2R = b2 3 x2 = (s2 − t2) + 2sti,

we conclude that s, t ∈ 2Z. Hence b ⊆ 2S. But then 2R = b2 ⊆ 4S, which
is false. Hence b does not exist.

Example 6.7.6. It is impossible to functorially take square roots of ideals
in arbitrary number rings without passing to a larger order.

Consider R = Z[2i] with invertible fractional ideals b = 2(1 + i)R ⊆ R
and c = 2(1 − i)R ⊆ R. We have b2 = 8iR = c2. Note that 8iR is invari-
ant under the automorphism group of R, so likewise should a functorially
chosen square root of it be invariant. Since b and c are distinct conjugates,
there should be a third square root of 8iR. We will show that the 2-torsion
subgroup I(R)[2] of I(R) has cardinality 2, giving a contradiction.

Suppose a ∈ I(R) satisfies a2 = R. Write S = Z[i] for the maximal order.
Then (Sa)2 = S, and because S is Dedekind also Sa = S, so a ⊆ S. On the
other hand we have a ⊇ a2(R : a) ⊇ R(R : S) = 2S. Hence a corresponds
to some subgroup of S/2S. Clearly a is neither S nor 2S, leaving 3 possible
subgroups. However, the order of I(R)[2] is a non-trivial power of 2, so this
power must be 2, as was to be shown.

6.8 Reduced coprime bases

Now that we can take roots of ideals we will use this to give a variation on
the coprime basis algorithm (Theorem 6.4.8).

Definition 6.8.1. Let G be a group. We say a subgroup H ⊆ G is pure if
for all h ∈ H and k ∈ Z>0 for which there exists a g ∈ G such that gk = h,
such a g exists in H.

Lemma 6.8.2. Let R be a reduced order. Suppose H ⊆ I(R) is a finitely
generated torsion-free subgroup, then H is a direct summand of I(R) if and
only if it is a pure subgroup.

Proof. We have a natural isomorphism I(R) ∼=
⊕

p I(Rp) and H is a sub-
group of some direct summand G =

⊕
p∈P I(Rp) for a finite set of maximal

ideals P. Note that H is pure in I(R) if and only if it is pure in G. Since
G is finitely generated and H is torsion free, the equivalence follows.

Definition 6.8.3. Let R be a commutative ring, X a set of fractional ideals
contained in R and C a coprime basis ofX. We say that C is reduced if 〈C〉 is
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a pure subgroup of I(R). Let O be the integral closure of R in Q(R). We say
that C is strongly reduced if S · C is reduced for every subring R ⊆ S ⊆ O.

Equivalently, C is strongly reduced if O · C is reduced.

Example 6.8.4. Not every X that admits a coprime basis also admits a
reduced coprime basis.

Consider R = Z[ 2
√

2, 3
√

2] and X = {2R} and suppose C is a reduced
coprime basis of X. As ( 2

√
2R)2 = 2R = ( 3

√
2R)3 the group 〈C〉 should

include a second and third root of 2R. If we uniquely express 2R =
∏

c∈C ckc ,
then 6 | kc for all c. In particular, 2R = b6 for some b ⊆ R. Since R/2R ∼=
(Z/2Z)6 as group, we must have that `Z/2Z(R/b) = 1 and R/b ∼= Z/2Z
as ring. Hence b is a prime above 2, which must be b = 2

√
2R + 3

√
2R. As

b5 ⊆ 2R we have that b6 6= 2R, so we arrive at a contradiction.

Theorem 6.8.5. There exists a polynomial-time algorithm that, given a
order R in a number field and a finite set X of fractional ideals contained
in R, computes an order R ⊆ S ⊆ QR such that S · X has a strongly
reduced coprime basis and computes such a coprime basis. The output of
this algorithm is functorial under isomorphisms of R.

Proof. Compute an order R ⊆ S ⊆ QR and a minimal coprime basis C for
S · X using Theorem 6.4.8. Then compute an order S ⊆ T ⊆ QR where
every T c for c ∈ C has a maximal root bc and compute B = {bc | c ∈ C}
using Theorem 6.7.3. From the fact that the elements of B are pairwise
coprime we may deduce that 〈B〉 is pure, even for larger orders in QR.
Hence B is strongly reduced. One easily verifies that B is minimal.




