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CHAPTER 5
Group rings
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5.1 Introduction

This chapter is based on [35], the authors of which include H.W. Lenstra and
A. Silverberg. Given a ring A and a (multiplicatively written) group G we
may construct the group ring A[G], a ring whose additive group is simply the
free A-module with basis G, and multiplication is given by ag ·bh = (ab)(gh)
for a, b ∈ A and g, h ∈ G. This construction describes a functor

Ring×Group→ Ring.

The Isomorphism Problem for Group Rings asks to describe the fibers of
this map up to isomorphism, i.e. given a ring R, what can one say about the
pairs (A,G) such that A[G] ∼= R? We will refine this question by not just
asking for the existence of an isomorphism, but asking for the isomorphism
as well, meaning we study the triples (A,G, φ) such that φ : A[G] → R is
an isomorphism. We will specialize to the case where A and G, and hence
R, are commutative. Equivalently, for non-zero rings R, we study the set

D(R) = {(A,G) | subring A ⊆ R, subgroup G ⊆ R∗, A[G] = R},

where A[G] = R is to mean that the natural map A[G] → R is an isomor-
phism of rings. We say a ring R is stark if it is non-zero, commutative and
can only be written as a group ring in the trivial way, i.e. #D(R) = 1. Our
main result reads as follows.

Theorem 5.6.4. Let R be a non-zero reduced order. Then there exist a
stark ring A, unique up to ring isomorphism, and a finite abelian group G,
unique up to group isomorphism, such that R ∼= A[G] as rings.

Clearly, if A is a ring and I and H are groups, then A[I × H] and
(A[I])[H] are isomorphic as rings. The following result, which is more or
less equivalent to Theorem 5.6.4, expresses that, among reduced orders,
group rings can only be isomorphic if they are so for this obvious reason.

Theorem 5.6.3. Suppose A and B are reduced orders and G and H are
finite abelian groups. Then the following are equivalent:
(i) A[G] ∼= B[H] as rings,
(ii) there exist an order C and finite abelian groups I and J such that

A ∼= C[I] and B ∼= C[J ] as rings and I ×G ∼= J ×H as groups.

If R, A and G are as in Theorem 5.6.4, then A is isomorphic to a subring
of R, and G is isomorphic to a subgroup of µ(R), but as Example 5.5.20
shows, this subring and subgroup need not be uniquely determined. How-
ever, the following theorem shows that in an important special case there is
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a sense in which the subrings and subgroups that can be used are entirely
independent. To a connected reduced order R we associate a group U∗(R)
acting on R by ring automorphisms (Definition 5.5.16), and Aut(R) in turn
clearly acts on D(R).

Theorem 5.5.19. Let R be a connected reduced order and suppose (A,G),
(B,H) ∈ D(R) are such that A and B are stark. Then A ∼= B as rings,
G ∼= H as groups, and (A,G), (A,H), (B,G) and (B,H) are all in D(R)
and in particular in the same U∗(R)-orbit.

As can be seen in Example 5.5.21, we cannot drop the assumption that
R be connected in Theorem 5.5.19.

We will prove Theorem 5.5.19 using the theory of gradings from Chap-
ter 4. For a non-zero commutative ring R and (A,G) ∈ D(R) we have a
natural grading R = {Rζ}ζ∈µ(R) where Rζ = Aζ if ζ ∈ G and Rζ = 0
otherwise. If R has a universal grading, we write Γ(R) for the group of
this grading, and we obtain a homomorphism f : Γ(R)→ µ(R) correspond-
ing to R. For a connected reduced order R we also get a homomorphism
dR : µ(R)→ Γ(R), the degree map, from Proposition 4.6.5. It turns out that
the morphisms f : Γ(R)→ µ(R) for which the induced grading comes from
a group ring are precisely those for which fdRf = f . We proceed to study
dR by commutative algebra on the Mitchell embedding.

Throughout this chapter, for abelian groups M and N we write the
group Hom(M,N) additively, regardless of the notation used for N . Let
A be a connected reduced order and G a finite abelian group. We have a
left action of Aut(A) on Hom(G,µ(A)) given via the restriction Aut(A)→
Aut(µ(A)) and a right action of Aut(A) on Hom(Γ(A), G) via the natural
map Aut(A)→ Aut(Γ(A)). This is used implicitly in the following theorem,
where we describe the automorphism group of a group ring over a stark
reduced connected order.

Theorem 5.7.8. Let A be a stark connected reduced order with degree map
dA : µ → Γ and let G be a finite abelian group. We equip the cartesian
product

M =

(
Aut(A) Hom(G,µ)

Hom(Γ, G) Aut(G)

)
of Aut(A), Hom(G,µ), Hom(Γ, G), and Aut(G) with the following multi-
plication:(

α1 s1

t1 σ1

)(
α2 s2

t2 σ2

)
=

(
α1α2 + s1t2 α1s2 + s1σ2

t1α2 + σ1t2 t1dAs2 + σ1σ2

)
,
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where the sum in Aut(A) is as in Lemma 5.7.7 and the sum in Aut(G)
is taken inside End(G). For x ∈ A and g ∈ G write ( xg ) for the element
x · g ∈ A[G]. Then:

1. M is a group;
2. there is a natural isomorphism M ∼−→ Aut(A[G]) such that the evalu-

ation map M ×A[G]→ A[G] is given by(
α s

t σ

)(
x

g

)
=

(
α(x) · s(g)

t(γ) · σ(g)

)

for all g ∈ G, γ ∈ Γ and x ∈ Aγ.

We also have an algorithmic result. We call a ring element x autopotent
if xn+1 = x for some n ≥ 1.

Theorem 5.8.4. There is an algorithm that, given a non-zero reduced order
R, computes a stark subring A ⊆ R and a subgroup G ⊆ µ(R) such that
A[G] = R. This algorithm runs (a) in polynomial time when the additive
group of R is generated by autopotents, and generally (b) in time nO(m)

where n is the length of the input and m is the number of minimal prime
ideals of R.

Note that the algorithm runs in polynomial time when m is bounded
by a constant. The case m = 1 is precisely the case where R is a domain,
in which case one necessarily has A = R and G = 1. A notable special case
for (a) is when R is the product of finitely many group rings over Z. We
do not know whether there exists a polynomial-time algorithm that decides
whether a given reduced order is stark.

5.2 Modules and decompositions

In this section we gather some results on modules, by which we mean left
modules.

Definition 5.2.1. Let R be a ring and M an R-module. We write Dec(M)
for the set

Dec(M) = {(D,N) | D, N are submodules of M with D ⊕N = M},

or equivalently the set of {1, 2}-indexed decompositions of M . We equip
Dec(M) with a partial order given by (D,N) ≤ (D′, N ′) if and only if there
exists a submodule C ⊆M such that D = D′ ⊕ C and N ⊕ C = N ′.
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Theorem 5.2.2 (Krull–Remak–Schmidt; see Theorem X.7.5 of [30]). Sup-
pose R is a ring and M is an R-module of finite length. Then there exists
a decomposition of M into finitely many indecomposable submodules, and
such a decomposition is unique up to automorphisms of M and relabeling of
the indices.

Definition 5.2.3. Let R be a ring, and let M be a non-empty set of R-
modules of finite length. For an R-module M we call an R-module D a
divisor of M if M ∼= D ⊕ N for some R-module N . As a consequence of
Theorem 5.2.2, there exists up to isomorphism exactly one R-module D
that is a divisor of every M ∈ M with the property that every R-module
that is a divisor of everyM ∈M is also a divisor of D; it is called a greatest
common divisor of the setM. Every such D is of finite length. We say R-
modules M and N are coprime if the greatest common divisor of {M,N}
is 0. Likewise, ifM is a finite set of R-modules of finite length, then there
exists up to isomorphism exactly one R-module L of which each M ∈ M
is a divisor with the property that L is a divisor of each R-module of finite
length of which eachM ∈M is a divisor; it is called a least common multiple
ofM. Every such L is of finite length.

Definition 5.2.4. Suppose R is a ring, M is an R-module, and h ∈
End(M). We define the R-modules

lim im(h) =
∞⋂
n=1

im(hn) and lim ker(h) =
∞⋃
n=1

ker(hn).

Lemma 5.2.5 (Fitting; see Theorem X.7.3 of [30]). Suppose R is a ring, M
is an R-module of finite length, and h ∈ End(M). Then M = lim im(h) ⊕
lim ker(h), the restriction of h to lim im(h) is an automorphism, and the
restriction of h to lim ker(h) is nilpotent.

Lemma 5.2.6. Suppose R is a ring,M and N are R-modules, and f : M →
N and g : N →M are morphisms. Then f restricts to morphisms

i : lim im(gf)→ lim im(fg) and k : lim ker(gf)→ lim ker(fg).

If M and N have finite length, then i is an isomorphism.

Proof. For all n ≥ 1 we have

f(im((gf)n)) = im((fg)nf) ⊆ im((fg)n).

Hence f(lim im(gf)) ⊆ lim im(fg), so i is well-defined. As

f(ker((gf)n+1)) ⊆ ker(g(fg)n) ⊆ ker((fg)n+1)
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for all n ≥ 1 we also get f(lim ker(gf)) ⊆ lim ker(fg), so k is well-defined.
By symmetry we obtain a restriction j : lim im(fg) → lim im(gf) of g.
Under the finite length assumption both ji and ij are automorphisms by
Lemma 5.2.5, hence i is an isomorphism.

Proposition 5.2.7. Suppose R is a ring,M is an R-module of finite length,
and A1, A2, B1, B2 ⊆M are submodules such that A1 and A2 are coprime,
A1 ⊕A2 = B1 ⊕B2 = M , and A1

∼= B1. Then A1 ⊕B2 = B1 ⊕A2 = M .

Note that under the above assumptions it immediately follows that A1⊕
B2
∼= B1⊕B2 = M . This is not equivalent to A1⊕B2 = M , as this concerns

a specific isomorphism A1 ⊕ B2 → M . We need to show that the natural
map B1 →M → A1 is an isomorphism.

Proof. From Theorem 5.2.2 it follows that A2
∼= B2 and thus B1 and B2

are coprime as well. By symmetry it therefore suffices to show B1 ⊕ A2 =
M . We consider the maps as in the following commutative diagram, where
ϕ : A1 → B1 is an isomorphism, the maps to and from M are the natural
inclusions and projections, and the fi and gi are defined to make the diagram
commute.

A1 A1

A1 B1 M M B1 A1

A2 A2

e1

g1

ϕ

f1

f2

e

p1

p2

p ϕ−1

e2

g2

Note that idB1 = pe and idM = e1p1 + e2p2, so

idA1 = ϕ−1peϕ = ϕ−1p(e1p1 + e2p2)eϕ

= ϕ−1pe1 · p1eϕ+ ϕ−1pe2 · p2eϕ = g1f1 + g2f2.

Lemma 5.2.6 shows that D = lim im(g2f2) ∼= lim im(f2g2), so D is a di-
visor of both A1 and A2 by Lemma 5.2.5. Since A1 and A2 are coprime,
we must have that D = 0 and thus g2f2 is nilpotent. We conclude that
g1f1 = idA1 −g2f2 is an automorphism of A1. Hence f1 is injective, and
since A1 is of finite length it must be an automorphism. It follows that
p1e = f1ϕ

−1 : B1 → A1 is an isomorphism, so M = B1 ⊕ A2, as was to be
shown.

Definition 5.2.8. Let R be a ring. A class S of R-modules is multiplicative
if 0 ∈ S and for all R-modulesM , N and D withM ∼= N⊕D and N , D ∈ S
one hasM ∈ S. We say a multiplicative class S of R-modules is saturated if
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for all M ∈ S and all divisors D of M one has D ∈ S. For a multiplicative
class S of R-modules and an R-module M , write

DecS(M) = {(M1,M2) ∈ Dec(M) |M2 ∈ S},

where Dec(M) is as in Definition 5.2.1. We equip DecS(M) with the par-
tial order inherited from Dec(M), and write max(DecS(M)) for its set of
maximal elements.

Proposition 5.2.9. Let R be a ring, let S be a multiplicative class of R-
modules, and let M and N be R-modules. Then:

1. if M ∼= N and N ∈ S, then M ∈ S;
2. the set DecS(M) is non-empty.

Suppose also that S is saturated and (A1, A2) ∈ DecS(M). Then
3. one has (A1, A2) ∈ max(DecS(M)) if and only if 0 is the only divisor

of A1 that is in S;
Suppose also that M is of finite length and (B1, B2) ∈ DecS(M). Then

4. the set max(DecS(M)) is non-empty and consists of one orbit of
DecS(M) under the action of Aut(M);

5. if (A1, A2), (B1, B2) ∈ max(DecS(M)), then (A1, B2), (B1, A2) ∈
max(DecS(M)).

Proof. 1. Apply the definition of multiplicative with D = 0.
2. The trivial element (M, 0) is in DecS(M).
3. If (A1, A2) is maximal but A1 = D ⊕ B1 for some D ∈ S and some

B1, then (A1, A2) ≤ (B1, A2 ⊕D) ∈ DecS(M) and thus A2 = A2 ⊕D and
D = 0. Conversely, suppose 0 is the only divisor of A1 that is in S and
(A1, A2) ≤ (B1, B2). Then there is some C such that A1 = B1 ⊕ C and
B2 = A2 ⊕C. Since S is saturated we have C ∈ S, and since C is a divisor
of A1 we must have that C = 0. Hence (A1, A2) = (B1, B2) is maximal.

4. Let M =
⊕

i∈IMi with each Mi indecomposable. If A2, respectively
A1, is the direct sum of those Mi that are, respectively are not, in S, then
(A1, A2) is in DecS(M) and it is maximal by 3. If (B1, B2) is also max-
imal, then B2, respectively B1, is a direct sum of indecomposables that
are, respectively are not, in S; this follows from the definition of DecS(M)
and from 3. Since together these decompositions give a decomposition ofM
into indecomposables, Theorem 5.2.2 implies that A1

∼= B1 and A2
∼= B2,

so (B1, B2) belongs to the Aut(M)-orbit of (A1, A2). Because the action
of Aut(M) preserves the partial order, this orbit is conversely contained in
max(DecS(M)).

5. By 3 we have that A1 and A2 are coprime and by 4 we have A1
∼= B1

andA2
∼= B2. We may conclude from Proposition 5.2.7 that (A1, B2), (B1, A2) ∈

DecS(M). Applying 3 again we may conclude they are maximal.
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5.3 Morphisms as modules

In this section we will interpret a morphism of (finite) abelian groups as a
(finite length) module, as expressed by Proposition 5.3.2. We will then study
decompositions of this module and what this decomposition corresponds to
in terms of the original morphism. This will enable us in the next section
to apply the Krull–Remak–Schmidt theorem to morphisms of finite abelian
groups.

We write
( Z 0
Z Z
)
for the ring of lower-triangular 2 × 2 matrices with

integer coefficients, Ab for the category of abelian groups, and ab for the
category of finite abelian groups.

Definition 5.3.1. Let C be a category. We define the arrow category of C,
written Arr(C), to be the category where the objects are the morphisms of
C and for objects f : A→ B and g : C → D the morphisms from f to g are
the pairs (α, β) ∈ HomC(A,C)×HomC(B,D) such that βf = gα.

The following proposition can be thought of as an explicit instance of
Mitchell’s embedding theorem for abelian categories.

Proposition 5.3.2. There is an equivalence of categories, specified in the
proof, between the category Arr(Ab) and the category of

( Z 0
Z Z
)
-modules. This

equivalence restricts to an equivalence of categories between the subcategory
Arr(ab) and the subcategory of

( Z 0
Z Z
)
-modules of finite length.

Proof. WriteM for the category of
( Z 0
Z Z
)
-modules. We will define functors

F : Arr(Ab)→M and G : M→ Arr(Ab)

such that FG and GF are naturally isomorphic to the identity functors of
their respective categories. For an object f : A → B we take F (f) to be
A⊕B, where the

( Z 0
Z Z
)
-module structure is given by(
x 0

y z

)(
a

b

)
=

(
xa

yf(a) + zb

)
,

for x, y, z ∈ Z, a ∈ A and b ∈ B. For a
( Z 0
Z Z
)
-module M we take G(M) to

be the morphism E11M → E22M given by multiplication with E21, where
Eij is the 2×2 matrix having a 1 at position (i, j) and zeros elsewhere. The
remainder of this proposition is a straightforward verification.

Definition 5.3.3. Write I for the class of
( Z 0
Z Z
)
-modules that correspond

to isomorphisms under the equivalence of categories of Proposition 5.3.2.
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One readily checks that the class I is multiplicative and saturated in the
sense of Definition 5.2.8. We observe that a

( Z 0
Z Z
)
-moduleM belongs to I if

and only if its
( Z 0
Z Z
)
-module structure can be extended to a

( Z Z
Z Z
)
-module

structure. This fact will not be needed, and we omit the proof.

Remark 5.3.4. Using the equivalence of categories of Proposition 5.3.2,
one can translate terminology related to modules into terminology about
morphisms of abelian groups. We briefly go through what is most relevant
to us:

1. If f : A → B is a morphism of abelian groups, then a submodule of
the

( Z 0
Z Z
)
-module corresponding to f corresponds to a restriction of f , i.e.

a morphism f ′ : A′ → B′ where A′ ⊆ A and B′ ⊆ B are subgroups and
f ′(a′) = f(a′) ∈ B′ for all a′ ∈ A′.

2. For morphisms f : A → B and g : C → D of abelian groups and for
r = (α, β) ∈ Hom(f, g), the image im(r) equals the restriction im(α) →
im(β) of g, and the kernel ker(r) equals the restriction ker(α) → ker(β) of
f .

3. If (fi)i∈I is a family of morphisms fi : Ai → Bi of abelian groups,
then we write

⊕
i∈I fi for the natural map

⊕
i∈I Ai →

⊕
i∈I Bi and we

write f/fi for the induced map A/Ai → B/Bi. One verifies that
⊕

i∈I fi
corresponds to the coproduct of the

( Z 0
Z Z
)
-modules that the fi correspond

to. If f : A→ B is a morphism and fi : Ai → Bi is a family of restrictions of
f then, just as we do for modules, we will write

⊕
i∈I fi = f if the natural

map
⊕

i∈I fi → f is an isomorphism.
4. For a morphism f : A → B, the set Dec(f) is the set of all pairs

(f0, f1) of restrictions of f such that f0⊕f1 = f , which is a partially ordered
set as in Definition 5.2.1. The set DecI(f) is the set of (f0, f1) ∈ Dec(f)
such that f1 is an isomorphism.

Definition 5.3.5. Let f : A → B be a morphism of abelian groups. We
say f is nil if for all morphisms g : B → A the element fg ∈ End(B) is
nilpotent, or equivalently gf ∈ End(A) is nilpotent.

Lemma 5.3.6. Suppose f : A→ B is a morphism of abelian groups.
1. If f is a nil isomorphism, then A = B = 0.
2. If f is nil, then every divisor of f is nil.

Proof. 1. If f is a nil isomorphism, then ff−1 = idB is nilpotent, hence
A = B = 0. 2. Suppose f = f0 ⊕ f1 for morphisms fi : Ai → Bi. Let
g1 : B1 → A1 be a morphism. Then g = g1 ⊕ 0 : B1 ⊕ B2 → A1 ⊕ A2 is a
morphism such that fg is nilpotent if and only if f1g1 is nilpotent. Hence
f1 is nil if f is nil.
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Lemma 5.3.7. Let f : A→ B be a morphisms of finite abelian groups.
1. Then f is nil if and only if all isomorphisms dividing f are trivial.
2. Suppose f = f0 ⊕ f1. Then f is nil if and only if f0 and f1 are nil.
3. We may uniquely, up to automorphisms of f , write f = f0 ⊕ f1 with
f0 nil and f1 an isomorphism.

4. Suppose (f0, f1) ∈ DecI(f). Then (f0, f1) is maximal if and only if f0

is nil.

Proof. 1. If f is nil, then every divisor is nil and the only nil isomorphism is
trivial by Lemma 5.3.6. Suppose all isomorphisms dividing f are trivial. Let
g : B → A be a morphism. Then lim im fg = 0 by Lemma 5.2.6, otherwise
the restriction of f to lim im fg → lim im gf is an isomorphism and a non-
trivial divisor of f . Hence fg is nilpotent by Lemma 5.2.5 and f is nil.

Both 2 and 3 follow from 1 combined with Theorem 5.2.2, while 4 follows
from 1 and Proposition 5.2.9.3.

5.4 The group U ∗

In this section we fix a morphism d : A → B of abelian groups. We will
define a group U∗ that acts on d and study some of its properties.

Definition 5.4.1. For f, g ∈ Hom(B,A), we define f ?g = fdg and extend
? to a ring multiplication on the additive group Q = Q(d) = Z⊕Hom(B,A)
by

(m, f) ? (n, g) = (mn,mg + nf + fdg)

for m,n ∈ Z and f, g ∈ Hom(B,A). We define the multiplicative monoid

U = U(d) = 1 + Hom(B,A) ⊆ Z⊕Hom(B,A) = Q

and write U∗ = U∗(d) = U ∩Q∗.

It is easy to check that Q is indeed a ring with unit element 1 = (1, 0),
and that the projection map Q → Z is a ring homomorphism with kernel
Hom(B,A). The inverse image of 1 equals U , and U∗ is a group because it
is the kernel of the induced group homomorphism Q∗ → Z∗. The following
lemma is easy to verify.

Lemma 5.4.2. We have a ring homomorphism q : Q→ End(d) defined by
sending 1 to the identity idd and f ∈ Hom(B,A) to (fd, df). It restricts to
a group homomorphism U∗ → Aut(d).

Remark 5.4.3. Note that A and B are End(d)-modules. The map q makes
A and B into Q-modules in such a way that d is Q-linear.
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In the following results, we use the terminology from Remark 5.3.4. We
let U∗ act on Dec(d) via the map U∗ → Aut(d) from Lemma 5.4.2.

Lemma 5.4.4. Let di : Ai → Bi with i ∈ {−1, 0, 1} be restrictions of d such
that (d0, d1) and (d0, d−1) belong to Dec(d), and suppose that d0 or d1 is an
isomorphism. Then (d0, d−1) ∈ U∗ · (d0, d1).

Proof. We have A0⊕A1
∼= A ∼= A0⊕A−1. Hence the map A1 → A−1 given

by x 7→ x−1 where x = x0 + x−1 with xi ∈ Ai is an isomorphism. Similarly,
we have a natural isomorphism g1 : d1 → d/d0 → d−1, and its extension g =
idd0 ⊕ g1 ∈ Aut(d) maps (d0, d1) to (d0, d−1). Letting r = idd−g ∈ End(d),
then r(d1) ⊂ d0 and r(d0) = 0, so r2 = 0. We first construct f ∈ Hom(B,A)
that maps to r under q : Q→ End(d). Write r = (rA, rB) with rA ∈ End(A)
and rB ∈ End(B). Since d0 or d1 is invertible, there exists f1 : B1 → A0

such that the diagram

A1 B1

A0 B0

d1

rA rB
f1

d0

commutes. Then f = 0 ⊕ f1 with 0: B0 → A1 satisfies (fd, df) = r, so f
does map to r under q : Q→ End(d). From f ? f ? f = fdfdf = r2

Af = 0 we
see that f is nilpotent, so the element 1− f ∈ U belongs to U∗. Since 1− f
maps to idd−r = g via q, it sends (d0, d1) to (d0, d−1).

The proof of the following proposition, which can be considered a sharp-
ening of Proposition 5.2.9.4 when R =

( Z 0
Z Z
)
, is the main reason for con-

sidering d as a module.

Proposition 5.4.5. Assume A and B are finite. Then the set of maximal
elements of DecI(d) equals one orbit of DecI(d) under the action of U∗.

Proof. By Proposition 5.3.2 we may apply Proposition 5.2.9.4. Thus it suf-
fices to show that any two maximal elements (d0, d1), (e0, e1) ∈ DecI(d) are
in the same U∗-orbit. Recall that (d0, e1) ∈ DecI(d) by Proposition 5.2.9.5.
Applying Lemma 5.4.4 we obtain (d0, e1) ∈ U∗ · (d0, d1) since d1 is an iso-
morphism, and (e0, e1) ∈ U∗ · (d0, e1) since e1 is an isomorphism. Thus
(e0, e1) ∈ U∗ · (d0, e1) = U∗ · (d0, d1).
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5.5 The degree map

In this section we will prove facts about group rings and interpret them as
a special case of gradings. We will rely heavily on [34].

Definition 5.5.1. For a ring A and a group G the group ring A[G] is an
A-algebra with as underlying group the free A-module with basis G where
multiplication is given by(∑

g∈G
agg
)
·
(∑
g∈G

bgg
)

=
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.

We associate with A[G] its natural grading {Ag}g∈G.

First we observe that that the properties of being reduced and being
connected are preserved under construction of group rings, as a consequence
of Theorem 1.5 in [34] or Theorem 4.6.6.

Corollary 5.5.2. Let A be an order and G a finite abelian group. Then:
1. We have nil(A[G]) = nil(A)[G], and A is reduced if and only if A[G]

is reduced;
2. We have Id(A[G]) = Id(A), and A is connected if and only if A[G] is

connected;
3. If A is connected, then µ(A[G]) = µ(A)×G.

Definition 5.5.3. Let R be a reduced order. By Theorem 1.3 in [34] or
Theorem 6.21 in [17] the ring R has a universal grading {Rγ}γ∈Γ (see Def-
inition 4.2.1). We will write Γ(R) for this group Γ.

Remark 5.5.4. If R and R′ are commutative rings that have universal
gradings, then any ring isomorphism R→ R′ induces a group isomorphism
Γ(R) → Γ(R′), so Γ(R) behaves functorially under ring isomorphisms; in
particular, the group Aut(R) of ring automorphisms of R acts in a natural
way on Γ(R).

Lemma 5.5.5. Let R be a connected reduced order and let {Rγ}γΓ(R) be
its universal grading. Then there exists a morphism of finite abelian groups
d : µ(R) → Γ(R) that sends ζ ∈ µ(R) to the unique γ ∈ Γ(R) such that
ζ ∈ Rγ.

Proof. The group Γ(R) is finite by Theorem 1.3 of [34], and µ(R) is finite by
Lemma 3.3.ii in [32]. By Theorem 1.5.iii of [34], if ζ ∈ µ(R), then there exists
a γ ∈ Γ(R) such that ζ ∈ Rγ . The element γ is unique, since Rγ ∩ Rδ = 0
for all γ 6= δ. That d is a homomorphism follows from the definitions.
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Definition 5.5.6. For a connected reduced order R we call the map d : µ(R)
→ Γ(R) from Lemma 5.5.5 the degree map of R.

The above definition depends on the choice of universal grading. How-
ever, the universal grading of R is uniquely unique. Moreover, the proof
of Theorem 1.3 of [34], which states that a reduced order has a universal
grading, exhibited an explicit canonical choice of universal grading. Thus
we can confidently refer to the degree map of a connected reduced order.
We now describe the degree map dA[G] of A[G].

Proposition 5.5.7. Let A be a connected reduced order and let G be a
finite abelian group. Let (Γ(A), (Aγ)γ) and (Γ(A[G]), (Rγ)γ) be the universal
grading of A and A[G] respectively. Then

1. we have Γ(A[G]) = Γ(A) × G, and R(γ,g) = Aγ · g for all γ ∈ Γ(A)
and g ∈ G;

2. if we identify µ(A[G]) with µ(A)×G as in Proposition 5.5.2.iii, then
the degree map dA[G] : µ(A)×G→ Γ(A)×G equals dA × idG;

3. we have Γ(A) = 〈γ ∈ Γ(A[G]) : Rγ ∩A 6= 0〉.

Proof. Let A = (Γ(A), (Aγ)γ) and R = (Γ(A[G]), (Rγ)γ) be the univer-
sal gradings of A and A[G] respectively and write A[G] = (Γ(A)×G, (Aγ ·
g)(γ,g)). By universality there exists a unique morphism of gradings ϕ : R →
A[G], which by Definition 4.2.1 is a group homomorphism Γ(A[G]) →
Γ(A)×G, and we will show that it is an isomorphism. Let π : Γ(A)×G→ G
be the projection and ∆ = ker(πϕ). For g ∈ G we have g ∈ RdA[G](g) and
g ∈ A1 ·g, so πϕdA[G] is the identity on G. It follows that Γ(A[G]) = ∆×G.
Then RA = (∆, (Rδ)δ) is a grading of A, and ϕ restricts to a morphism of
gradings ϕ′ : RA → A with ϕ = ϕ′ × idG. With ∆′ = 〈δ ∈ ∆ : Rδ 6= 0〉 we
have ⊕

(δ,g)∈∆′×G

Rδ · g = A[G],

so by Lemma 4.2.4.5 we obtain ∆′×G = Γ(A[G]) = ∆×G. Hence ∆′ = ∆,
so RA is universal by Lemma 4.2.4.4. It follows that ϕ′ and hence ϕ is an
isomorphism, proving 1. Now 2 and 3 follow by inspection.

Proposition 5.5.7.2 expresses the degree map of A[G] in terms of G and
the degree map of A, but we will mainly use it in the opposite direction.
Specifically, for a connected reduced order R, an element (A,G) ∈ D(R)
corresponds to a certain decomposition (dA, idG) ∈ DecI(d) of the degree
map d of R, as defined in Definition 5.2.1 and Definition 5.3.3.
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Example 5.5.8. Note that the conclusion to Proposition 5.5.7 becomes
false when we drop the assumption that A be connected.

Let A = Z × Z, which has a trivial universal grading A by Propo-
sition 4.2.6.2, and let G be a non-trivial finite abelian group. Because
A[G] ∼= Z[G]× Z[G] we get Γ(A[G]) = G×G by Proposition 4.2.6.2, while
A[G] is G-indexed. Hence A[G] is not universal.

Definition 5.5.9. Suppose R is a commutative ring. We define the set

D(R) =

(A,G)

∣∣∣∣∣∣∣
A ⊆ R is a subring,
G ⊆ R∗ is a subgroup,
A[G] = R


which we equip with a partial order ≤ given by (B,H) ≤ (A,G) if and only
if H ⊆ G and B ⊇ A.

Lemma 5.5.10. Suppose R is a non-zero order. Then for each (A,G) ∈
D(R) the order of G is at most the rank of R as Z-module, and D(R)
contains a maximal element.

Proof. By definition of D(R) the elements of G are linearly independent,
from which the first claim follows. We have (R, 1) ∈ D(R), so D(R) is not
empty. Thus if (A,G) ∈ D(R) and #G is maximal, then (A,G) is a maximal
element of D(R).

Lemma 5.5.11. Let R be a connected order and let (A,G), (B,H) ∈ D(R).
Then (B,H) ≤ (A,G) if and only if there exists some subgroup J ⊆ µ(R)
such that B = A[J ] and G = J ×H.

Proof. The implication (⇐) is obvious, so it remains to prove (⇒). By
Lemma 5.5.10 the group H is finite, and by Proposition 5.5.2.3 the multi-
plication map µ(B)×H → µ(R) is an isomorphism. Since the inverse image
of G is J×H, we have G = J×H. Thus A[J ][H] = A[J×H] = A[G] = B[H]
and therefore A[J ] = B.

Example 5.5.12. The conclusion to Lemma 5.5.11 does not hold in general
for non-connected orders. Let p be prime and let G = Cp × Cp with Cp
a group of order p. Then G is a 2-dimensional Fp-vector space and thus
there are precisely p + 1 subgroups H0, . . . ,Hp of G of order p. We have
Hi ·Hj = G if and only if i 6= j. Let R = Z[G]×Z[G] and let ∆: G→ µ(R)
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be the map given by g 7→ (g, g). Now consider the elements (Z×Z,∆(G)) ≥
(Z[H0]× Z[H1],∆(Hp)) of D(R). As Proposition 5.5.2 implies

µ(Z[H0]× Z[H1]) = µ(Z[H0])× µ(Z[H1])

= {(±h0,±h1) : h0 ∈ H0, h1 ∈ H1},

we get J = ∆(G) ∩ µ(Z[H0]× Z[H1]) = 1 and (Z× Z)[J ] 6= Z[H0]× Z[H1].

Recall that we say a commutative ring R is stark if there do not exist
a ring A and a non-trivial group G such that R is isomorphic to the group
ring A[G], or equivalently for R non-zero, if #D(R) = 1.

Lemma 5.5.13. Let R be a non-zero commutative ring and let (A,G) ∈
D(R). If (A,G) is maximal, then A is stark. When R is a connected order,
the converse also holds.

Proof. If A = B[J ] for some J ⊆ µ(A), then (A,G) ≤ (B, J ×G) ∈ D(R).
Hence if (A,G) is maximal we have (A,G) = (B, J×G) and thus J = 1, so A
is stark. For connected orders, the converse follows from Lemma 5.5.11.

Note that from Theorem 5.6.3 it follows that maximality of (A,G) ∈
D(R) for a non-zero reduced order R is equivalent to A being stark even
when R is not connected. However, we have not proved this yet.

Remark 5.5.14. Let R be a connected reduced order with universal grad-
ing {Rγ}γ∈Γ and degree map d : µ→ Γ. Note that the group Aut(R) acts on
the category of gradings of R. Under this action, σ ∈ Aut(R) sends {Rγ}γ∈Γ

to {σ(Rγ)}γ∈Γ, which is again a universal grading of R. Thus, by universal-
ity this induces a unique isomorphism f : Γ → Γ between them. It follows
that Aut(R) acts on Γ. Clearly Aut(R) acts on µ(R), and it is then easy to
see that the combination of these actions gives an action Aut(R)→ Aut(d).
Through this map the group Aut(R) acts on DecI(d).

Theorem 5.5.15. Let R be a connected reduced order. We have a natural
isomorphism

D(R)→ DecI(dR)

of partially ordered Aut(R)-sets given by

(A,G) 7→ (dA : Γ(A)→ µ(A); idG : G→ G)( ⊕
γ∈Γ0

Rγ , µ1

)
7→(d0 : Γ0 → µ0; d1 : Γ1 → µ1),

where the first map is as induced by Proposition 5.5.7.2 and {Rγ}γ∈Γ(R) is
the universal grading of R.
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Proof. That the maps are well-defined and mutually inverse can be easily
deduced from Proposition 5.5.7. Both maps are functorial, and thus com-
mute with the action of Aut(R). That they respect the partial order follows
from Lemma 5.5.11.

Definition 5.5.16. For a connected reduced order R with degree map
d : µ→ Γ we write U∗(R) or U∗(d) for the group as in Definition 5.4.1.

Lemma 5.5.17. Let R be a connected reduced order with degree map d. Let
ϕ : U∗(d) → Aut(d) be as in Lemma 5.4.2 and χ : Aut(R) → Aut(d) as in
Remark 5.5.14. We then have a commutative diagram

U∗(d)

Aut(R) Aut(d)

ψ ϕ

χ

where ψ is a morphism given in terms of the universal grading {Rγ}γ∈Γ of
R by 1 + f 7→ (x ∈ Rγ 7→ f(γ) · x).

Proof. Let 1 + f, 1 + g ∈ U∗ and recall that their product equals (1 + f) ?
(1 + g) = 1 + f + g + fdg in U∗. It is easy to see that ψ(1 + f) is an
endomorphism of R. For γ ∈ Γ we have

x ∈ Rγ
ψ(1+g)7−−−−→ g(γ) · x ∈ Rdg(γ) ·Rγ ⊆ Rdg(γ)·γ
ψ(1+f)7−−−−→ f(dg(γ) · γ) · g(γ) · x = f(γ)g(γ)fdg(γ) · x,

so indeed ψ(1+f)◦ψ(1+g) = ψ((1+f)?(1+g)). It follows that ψ(1+f) ∈
Aut(R) and that ψ is a morphism.

Let 1+f ∈ U∗ and write F = ψ(1+f). For ζ ∈ µ we have F (ζ) = f(dζ)ζ,
so F |µ(R) = idµ +fd. For γ ∈ Γ and x ∈ Rγ non-zero we have F (x) =
f(γ) ·x, so the induced action on Γ sends γ to df(γ)γ. Hence 1+f gets sent
to idΓ +df , since {γ ∈ Γ | Rγ 6= 0} is a generating set of Γ by Lemma 4.2.4.5.
We conclude that χ(ψ(1 + f)) = (idµ +fd, idΓ +df) = ϕ(1 + f), as was to
be shown.

Example 5.5.18. The map ψ : U∗ → Aut(R) need not be injective, even
when R is stark. Consider the subring R = Z · (1, 1) + 2S of S = Z[i]× Z[i]
where i2 = −1, which is clearly connected, reduced, and has µ(R) = {±1}×
{±1}. Let Γ = µ(R) and write

R1,1 = R ∩ (Q×Q) = Z · (1, 1) + Z · (1,−1),

R1,−1 = 2i · (Z× {0}), R−1,1 = 2i · ({0} × Z), R−1,−1 = 0.
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Then (Γ, (Rγ)γ) is the universal grading of R. Consider the identity id : Γ→
µ. Note that 2 id = 0 and d = 0, hence (1+id)2 = 1 in Q and so 1+id ∈ U∗.
Moreover, ψ(1 + id) is the identity of R, so ψ is not injective. To see R is
stark, we can apply Lemma 5.7.1 below since d = 0.

Note that U∗(R) acts on D(R) through Aut(R).

Theorem 5.5.19. Let R be a connected reduced order and suppose (A,G),
(B,H) ∈ D(R) are such that A and B are stark. Then A ∼= B as rings,
G ∼= H as groups, and (A,G), (A,H), (B,G) and (B,H) are all in D(R)
and in particular in the same U∗(R)-orbit.

Proof. Let d be the degree map of R and let Φ: DecI(d) → D(R) be the
map from Theorem 5.5.15. Suppose (A,G), (B,H) ∈ D(R) are such that A
and B are stark. Then (A,G) and (B,H) are maximal elements of D(R)
by Lemma 5.5.13, and thus Φ(A,G) = (d0, d1) and Φ(B,H) = (e0, e1) are
maximal in DecI(d). Then by Proposition 5.2.9.5 and Proposition 5.4.5 all
of (d0, d1), (d0, e1), (e0, d1), and (e0, e1) are maximal and in the same U∗-
orbit. Note that the action of U∗ on DecI(d) factors through Aut(R) by
Lemma 5.5.17, so Φ respects the action of U∗. Since Φ(d0, e1) = (A,H)
and Φ(e0, d1) = (B,G), the last assertion of the theorem follows. As a
consequence, (A,G) and (B,H) are in the same orbit of Aut(R), so A ∼= B
as rings and G ∼= H as groups.

Example 5.5.20. Let C2 = 〈σ〉 be a group of order 2 and let R = Z[i][C2],
where i2 = −1. We will compute D(R).

By Proposition 5.5.2 the ring R is both reduced and connected. With
Γ = (Z/2Z)2, consider the grading (Γ, (Ra,b)(a,b)) of R with Ra,b = Ziaσb,
where although ia is not well-defined, Zia is. Since a universal grading ex-
ists, and all Ra,b are of rank 1 over Z, this must be the universal grading.
Let d : µ → Γ be the degree map. It follows from Proposition 5.5.2.3 that
µ = 〈i, σ〉 ∼= Z/4Z×Z/2Z. We will first compute DecI(d). Suppose we have
(d0, d1) ∈ DecI(d) with di : µi → Γi. If µ1 = 1, then d0 = d, and (d0, d1)
corresponds via Theorem 5.5.15 to the trivial element (R, 1) of D(R). Now
suppose µ1 6= 1. Since d1 is an isomorphism, the groups µ1 and Γ1 are
isomorphic, so µ1 is isomorphic to a direct summand of µ and of Γ. Since
Z/2Z is the greatest common divisor of µ and Γ as Z-modules (in the sense
of Definition 5.2.3), we have that µ1 is a direct summand of µ isomor-
phic to Z/2Z. It follows that µ1 = 〈(−1)bσ〉 for some b ∈ Z/2Z, and the
corresponding group Γ1 equals 〈(0, 1)〉 in both cases. On the other hand
µ0 = 〈iσa〉 for some a ∈ (Z/2Z) since it must be a cyclic group of order 4,
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and Γ0 = 〈(1, a)〉. Upon inspection, all pairs (a, b) do indeed give a decom-
position (d0, d1) ∈ DecI(d). The rings corresponding to the possible d0 are
Z[iσa], and the groups corresponding to d1 are 〈(−1)bσ〉. This gives

D(R) = {(R, 1)} ∪ {(Z[iσa], 〈(−1)bσ〉) | a, b ∈ Z/2Z}.

Interesting to note is that, although (Z[iσ], 〈σ〉) differs from (Z[iσ], 〈−σ〉),
the corresponding gradings are isomorphic, since Z[iσ] · σ = Z[iσ] · (−σ).

Example 5.5.21. The conclusion to Theorem 5.5.19 does not hold in gen-
eral for non-connected reduced orders. Let C be a non-trivial finite abelian
group and consider R = Z[C × C]× Z[C]. Let

A = Z[C × 1]× Z, G = {((1, γ), γ) | γ ∈ C},
B = Z[1× C]× Z, H = {((γ, 1), γ) | γ ∈ C}.

Then A and B are stark, and A[G] = R = B[H]. However, the natural map
A[H]→ R has image Z[C × 1]× Z[C] 6= R.

5.6 Proofs of main theorems

In this section we prove Theorems 5.6.3 and 5.6.4 by reducing to the con-
nected case, where we can apply Theorem 5.5.19. Recall the definition of D
from Definition 5.5.9.

Lemma 5.6.1. Let S and T be orders with S non-zero, let R = S × T
with projection map π : R → S, and let (A,G) ∈ D(R). Then we have
(π(A), π(G)) ∈ D(S) and the restriction G→ π(G) of π is a group isomor-
phism.

Proof. We have a natural map π(A)[G] � π(A)[π(G)] → S. Since S
equals π(A[G]) =

∑
g∈G π(A)π(g), this map is clearly surjective. Suppose∑

g∈G π(ag)g is in its kernel. Writing e = (1, 0) ∈ R and identifying S with
S × {0}, we have π(x) = ex for all x ∈ R. By Proposition 5.5.2.2 we have
e ∈ A and therefore

∑
g∈G eagg = 0 in A[G]. We conclude that for all g ∈ G

we have π(ag) = eag = 0, so the map π(A)[G]→ S is an isomorphism. Then
the maps π(A)[G]→ π(A)[π(G)] and π(A)[π(G)]→ S are isomorphisms as
well. Since S 6= 0, this implies that the map G → π(G) is an isomorphism
and that (π(A), π(G)) ∈ D(S).

Given a group ring structure on a product of orders, Lemma 5.6.1 con-
structs on each of the factors a group ring structure, with the same group.
The following proposition does the opposite. For the definition of greatest
common divisors, see Definition 5.2.3.
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Proposition 5.6.2. Let X be a finite non-empty set. For all x ∈ X let Rx
be a connected order, let (Ax, Gx) ∈ D(Rx), and suppose we write Gx =
Dx ⊕ Ex for some subgroups Dx, Ex ⊆ Gx such that for all y, z ∈ X we
have Dy

∼= Dz. Consider

R =
∏
x∈X

Rx and A =
∏
x∈X

Ax[Ex], and let D ⊆
∏
x∈X

Dx

be a subgroup for which all the projection maps πx : D → Dx are isomor-
phisms. Then (A,D) ∈ D(R). If in addition (Ax, Gx) is maximal in D(Rx)
for all x ∈ X, and D is a greatest common divisor of {Gx |x ∈ X}, then
(A,D) is maximal in D(R).

Proof. Clearly A ⊆ R and D ⊆ µ(R). There is a sequence of ring isomor-
phisms

A[D] ∼=
∏
x∈X

(Ax[Ex][D]) ∼=
∏
x∈X

(Ax[Ex][Dx]) ∼=
∏
x∈X

Ax[Gx] = R,

where one obtains the first isomorphism by tensoring A =
∏
x∈X Ax[Ex]

with Z[D] over Z and the second isomorphism is induced by the group
isomorphisms πx. The resulting isomorphism A[D] → R restricts to the
inclusion on both A and D, so A[D] = R and indeed (A,D) ∈ D(R).

Now suppose that (Ax, Gx) is maximal in D(Rx) for all x ∈ X, and that
D is a greatest common divisor of {Gx |x ∈ X}. Let (B,H) ∈ D(R) be such
that (A,D) ≤ (B,H). For x ∈ X let Bx and Hx be the projection of B
and H to Rx respectively. By Lemma 5.6.1 we have (Bx, Hx) ∈ D(Rx) and
H ∼= Hx. Choose (Cx, Ix) ∈ D(Rx) to be maximal such that (Bx, Hx) ≤
(Cx, Ix). Since Rx is connected, Lemma 5.5.11 implies that there exists a
finite abelian group Fx such that Ix ∼= Hx ⊕ Fx. Since both (Ax, Gx) and
(Cx, Ix) are maximal in D(Rx), we have Gx ∼= Ix by Theorem 5.5.19. Hence
Gx ∼= Ix ∼= Hx ⊕ Fx ∼= H ⊕ Fx. Thus H is a common divisor of all Gx, and
H contains D. Since D is a greatest common divisor, we obtain H = D.
From A[D] = B[H] = B[D] and A ⊇ B we see A = B, so (A,D) = (B,H)
and (A,D) is maximal.

Theorem 5.6.3. Suppose A and B are reduced orders and G and H are
finite abelian groups. Then the following are equivalent:
(i) A[G] ∼= B[H] as rings,
(ii) there exist an order C and finite abelian groups I and J such that

A ∼= C[I] and B ∼= C[J ] as rings and I ×G ∼= J ×H as groups.
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Proof. If A = 0 or B = 0, then Theorem 5.6.3 holds trivially. Hence assume
A and B are non-zero. (ii ⇒ i) Assuming (ii), we have ring isomorphisms

A[G] ∼= C[I][G] ∼= C[I ×G] ∼= C[J ×H] ∼= C[J ][H] ∼= B[H].

(i ⇒ ii) First assume A[G] is connected. Let (C, V ) ≥ (A,G) and
(D,W ) ≥ (B,H) be a maximal element of D(A[G]), respectively D(B[H]).
By Lemma 5.5.13 the orders C and D are stark, so by Theorem 5.5.19 there
exists a ring isomorphism σ : B[H] → A[G] that sends (D,W ) to (C, V ).
It follows that (C, V ) ≥ (σ(B), σ(H)), so applying Lemma 5.5.11 twice, we
find subgroups I, J ⊆ V such that I × G = V = J × σ(H) ∼= J ×H and
C[I] = A and C[J ] = σ(B) ∼= B. This concludes the proof of the connected
case.

Next consider the general case, where A[G] =
∏
x∈X Rx is a non-empty

product of connected reduced orders Rx. Without loss of generality we may
assume A[G] = B[H]. Let x ∈ X. Write Ax and Bx for the image of A,
respectively B, of the projection onto Rx. Then Ax[G] ∼= Rx ∼= Bx[H] by
Lemma 5.6.1. Since Rx is connected and we proved (i⇒ ii) in the connected
case, there exist a reduced order Cx and finite abelian groups Ix and Jx such
that Cx[Ix] ∼= Ax and Cx[Jx] ∼= Bx and Ix ×G ∼= Jx ×H = Px. Replacing
Cx by Cx[Dx] for some greatest common divisor Dx of Ix and Jx, we may
assume that Ix and Jx are coprime. It follows that Px is a least common
multiple of G and H, as defined in Definition 5.2.3. In particular, when x
ranges over X, the finite abelian groups Px are pairwise isomorphic, and
as a consequence the same holds for the groups Ix. Hence there exists a
subgroup I ⊆

∏
x∈X Ix such that all projections I → Ix are isomorphisms,

so from Proposition 5.6.2.1 it follows that C[I] ∼= A with C =
∏
x∈X Cx.

Similarly we find a finite abelian group J that is isomorphic to all Jx such
that C[J ] ∼= B. Now I and J together satisfy I×G ∼= J×H, as desired.

Theorem 5.6.4. Let R be a non-zero reduced order. Then there exist a
stark ring A, unique up to ring isomorphism, and a finite abelian group G,
unique up to group isomorphism, such that R ∼= A[G] as rings.

Proof. Let (A,G) ∈ D(R) be a maximal element (Lemma 5.5.10). Then
A is stark by Lemma 5.5.13. Suppose B is a stark ring and H is a finite
abelian group such that B[H] ∼= R. By Theorem 5.6.3 there exist an order
C and finite abelian groups I and J such that A ∼= C[I] and B ∼= C[J ] and
I ×G ∼= J ×H. Since both A and B are stark we conclude that I = J = 1,
so G ∼= H and A ∼= C ∼= B. Hence A and G are unique up to ring and group
isomorphism, respectively.
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5.7 Automorphisms of group rings

In this section we will describe Aut(A[G]), for a stark connected reduced
order A with degree map d and a finite abelian group G, in terms of U∗(d),
G, and Aut(A). In this section we write Q(A) for Q(d) and similarly for
U and U∗ as defined in Definition 5.4.1. In our context U∗(A) is equal to
U(A) due to the following.

Lemma 5.7.1. Let A be a connected reduced order with degree map d : Γ→
µ. Then the following are equivalent:
(i) A is stark;
(ii) d is nil;
(iii) Hom(Γ, µ) = nil(Q(A));
(iv) Hom(Γ, µ) = Jac(Q(A));
(v) U∗(A) = U(A);

Proof. We will write Q = Q(A) and similarly for U and U∗.
(i ⇔ ii) This follows from Theorem 5.5.15 and Lemma 5.3.7.4.
(ii ⇔ iii) This follows immediately from the definition of nil and the

multiplication on Q, and the fact that in general nil(Q) ⊆ Hom(Γ, µ).
(iii ⇒ iv) Since nil(Q) is a nil two-sided ideal we have Hom(Γ, µ) ⊆

nil(Q) ⊆ Jac(Q). The surjection Q � Z must map Jac(Q) to Jac(Z) = 0,
so in general Jac(Q) ⊆ Hom(Γ, µ), hence we have equality.

(iv ⇒ v) We have U = 1 + Jac(Q) ⊆ Q∗, so U = U∗.
(v ⇒ iii) The involution x 7→ 1− x on Q maps U to Hom(Γ, µ). Hence

both sets have the same number of idempotents, which by assumption is
only 1 for U . Since Hom(Γ, µ) is finite, every element has some power which
is idempotent and hence 0, so Hom(Γ, µ) ⊆ nil(Q). The reverse inclusion
holds in general.

A category C is small if the class of objects of C is a set, and for any
two objects A and B of C the class Hom(A,B) is a set. A category C is
preadditive (see Section 1.2 in [4]) if for any two objects A and B of C the
class Hom(A,B) is an abelian group such that composition of morphisms is
bilinear, i.e. for all objects A, B, and C and morphisms f, f ′ : A → B and
g, g′ : B → C we have g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) and (g + g′) ◦ f =
(g ◦ f) + (g′ ◦ f).

Lemma 5.7.2. Let C be a preadditive small category with precisely two
objects 0 and 1. Then:

1. With Mij = Hom(j, i) for i, j ∈ {0,1} both M00 and M11 are rings
and M01 and M10 are a M00-M11-bimodule and M11-M00-bimodule
respectively.
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2. The product of groups

M(C) =
∏

i,j∈{0,1}

Mij =

(
M00 M01

M10 M11

)

is a ring with respect to the addition and multiplication implied by the
matrix notation.

3. If M01 ·M10 = im(M01 ⊗M10 →M00) ⊆ Jac(M00), then

M10 ·M01 ⊆ Jac(M11),

Jac(M(C)) =

(
Jac(M00) M01

M10 Jac(M11)

)
and

M(C)∗ =

(
M∗00 M01

M10 M∗11

)
.

Proof. That the Mij are groups, and that the addition is compatible with
the composition of morphisms, follows from the fact that C is preadditive.
It is then easy to verify that the Mij are rings and modules as claimed, and
that M(C) is a ring, giving 1 and 2.

Now supposeM01 ·M10 ⊆ Jac(M00). We will show that for all m ∈M01

and n ∈ M10 we have nm ∈ Jac(M11). Let s ∈ M11. Then (ms)n ∈
M01 ·M10 ⊆ Jac(M00), so 1 +msn has an inverse r ∈M00. Then

(1− snrm)(1 + snm) = 1− sn(r(1 +msn)− 1)m

= 1− sn(1− 1)m = 1.

Hence 1 + snm has a left inverse 1 − snrm, and similarly 1 − snrm is a
right inverse of 1 + snm. Thus 1 + snm ∈ M∗11 and nm ∈ Jac(M11). We
conclude that M10 ·M01 ⊆ Jac(M11). Consider

T =

(
Jac(M00) M01

0 0

)
and B =

(
0 0

M10 Jac(M11)

)

and write J = T + B. We will first show that T ⊆ Jac(M(C)). For x =(
a b
0 0

)
∈ T it suffices to show for all y =

(
r m
n s

)
∈ M(C) that 1 + xy ∈

M(C)∗. As 1 + xy =
(

1+ar+bn ma+bs
0 1

)
is upper triangular, it is invertible

if its diagonal elements are. The element 1 + ar + bn is invertible because
ar+ bn ∈ Jac(M00), so T ⊆ Jac(M(C)). Analogously B ⊆ Jac(M(C)). Thus
we have a two-sided ideal J ⊆ Jac(M(C)). To see equality, note that the
ring M(C)/J ∼= (M00/Jac(M00))× (M11/Jac(M11)) has a trivial Jacobson
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radical. An element of M(C) is a unit if and only if it maps to a unit
in M(C)/Jac(M(C)), hence if and only if its diagonal elements are units,
proving the final statement.

Naturally, the construction M(C) can be generalized to categories C with
any finite number of objects. We call M(C) the matrix ring of C.

Remark 5.7.3. Given four abelian groups Mij with i, j ∈ {0, 1} together
with compatible (i.e. associative) multiplications Mij ⊗ Mjk → Mik for
all i, j, k ∈ {0, 1} with appropriate unit elements, we can construct the
preadditive category C with two objects 0 and 1, with Hom(j, i) = Mij , and
with composition being these multiplications. In particular, ifM00 andM11

are rings, M01 is an M00-M11-bimodule, and M10 is an M11-M00-bimodule,
then it remains only to specify the multiplications M01 ⊗M10 → M00 and
M10 ⊗M01 →M11.

Let A be a connected reduced order and G a finite abelian group.
Recall that µ(A) and Γ(A) are Q(A)-modules by Remark 5.4.3, hence
Hom(G,µ(A)) and Hom(Γ(A), G) are respectively left and right Q(A)-
modules. We next describe U∗(A[G]) in terms of A and G.

Proposition 5.7.4. Let A be a connected reduced order and G a finite
abelian group. Then:

1. We have a matrix ring

E =

(
Q(A) Hom(G,µ(A))

Hom(Γ(A), G) End(G)

)
,

where Hom(G,µ(A))⊗Hom(Γ(A), G)→ Hom(Γ(A), µ(A)) ⊆ Q(A) is
the composition map and Hom(Γ(A), G) ⊗ Hom(G,µ(A)) → End(G)
is given by g ⊗ f 7→ gdf .

2. There is a natural ring isomorphism E ∼−→ Q(A[G]) that respects the
action of Aut(A).

3. If A is stark, then the map in 2 restricts to an isomorphism(
U∗(A) Hom(G,µ(A))

Hom(Γ(A), G) Aut(G)

)
∼−→ U∗(A[G]).

Proof. 1. Apply Remark 5.7.3 and Lemma 5.7.2.2. Since all multiplications
are defined in terms of compositions of morphisms, the associativity condi-
tions are trivially satisfied.
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2. Write Γ = Γ(A) and µ = µ(A). We have by Proposition 5.5.7.ii that

Q(A[G]) = Z⊕Hom(Γ×G,µ×G) ∼= Z⊕

(
Hom(Γ, µ) Hom(G,µ)

Hom(Γ, G) End(G)

)
,

where the isomorphism is one of abelian groups. Then the map Q(A[G])→
E with respect to the latter representation given by

(
n,

(
p q

r s

))
7→

(
(n, p) q

r n+ s

)

is an isomorphism of rings that by functoriality respects the action of
Aut(A).

3. Suppose A is stark. Then Hom(Γ, µ) = Jac(Q(A)) by Lemma 5.7.1.
It follows that the ideal Hom(G,µ) · Hom(Γ, G) ⊆ Hom(Γ, µ) is contained
in Jac(Q(A)). Now apply Lemma 5.7.2.3.

In Remark 5.7.5 and Proposition 5.7.6 we describe Aut(A[G]) in terms
of A and U∗(A[G]).

Remark 5.7.5. Let G be a finite abelian group. Then −[G] and U∗ act
functorially on isomorphisms of connected reduced orders. Let A be a con-
nected reduced order. From Proposition 5.5.7.ii we get a natural inclusion
Hom(Γ(A), µ(A))→ Hom(Γ(A[G]), µ(A[G])), which extends to an inclusion
of rings Q(A)→ Q(A[G]). Then we have a commutative diagram

U∗(A) Aut(A) Aut(U∗(A))

U∗(A[G]) Aut(A[G]) Aut(U∗(A[G])),

Lem 5.5.17 U∗

−[G]

Lem 5.5.17 U∗

and the composition U∗(A)→ Aut(U∗(A)) is the conjugation map.

Proposition 5.7.6. Let A be a stark connected reduced order and G a finite
abelian group. Then the maps and actions from Remark 5.7.5 fit in an exact
sequence

0→ U∗(A)
ι−→ U∗(A[G]) o Aut(A)

π−→ Aut(A[G])→ 0,

where ι and π are homomorphisms such that ι(u) = (u−1, u) and π maps
each component to Aut(A[G]).
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Proof. For all u, v ∈ U∗(A) we have

ι(u)ι(v) = (u−1, u)(v−1, v) = (u−1(uv−1u−1), uv) = ι(uv)

by Remark 5.7.5, so ι is a homomorphism. Moreover, ι is injective because
it maps injectively to the first factor. By the same lemma π is a homomor-
phism.

We will now show that π is surjective. Suppose σ ∈ Aut(A[G]). By The-
orem 5.5.19 there exists 1+f ∈ U∗(A[G]) that maps (A,G) to (σ(A), σ(G)),
so without loss of generality we may assume σ(A) = A and σ(G) = G. By
applying the restriction σ|A ∈ Aut(A) we may assume σ is the identity on
A. Consider the map f : Γ(A) × G → µ(A[G]) given by (δ, g) 7→ σ(g)g−1

and note that 1 + f ∈ U(A[G]) gets mapped to σ. We similarly obtain the
inverse of 1 + f in U(A[G]) from (δ, g) 7→ σ−1(g)g−1, so 1 + f ∈ U∗(A[G]).
It follows that σ is in the image of π and thus π is surjective.

To show the sequence is exact, it remains to show im(ι) = ker(π). It is
clear that im(ι) ⊆ ker(π), so suppose (1 + f, α) ∈ ker(π). As α−1 equals the
restriction of 1 + f by assumption, it suffices to show that 1 + f ∈ U∗(A).
For g ∈ G we have g = (1 + f)α(g) = f(g)g, and since g is a unit we have
f(g) = 1, i.e. G ⊆ ker(f). Moreover im(f) ⊆ µ(A), since multiplication by
any unit (ζ, g) ∈ µ(A) × G = µ(A[G]) not in µ(A) sends A to Ag 6= A.
Hence f ∈ Hom(Γ(A), µ(A)) and 1 + f ∈ U(A). The same holds for the
inverse 1 + e ∈ U∗(A[G]) of 1 + f , so 1 + e ∈ U(A) and thus 1 + f ∈ U∗(A).
It now follows that (1 + f, α) = ι(1 + e), so ker(π) ⊆ im(ι), as was to be
shown.

Proposition 5.7.4 and Proposition 5.7.6 combined gives us a description
of Aut(A[G]) in terms ofA andG. We now prove Theorem 5.7.8 and describe
Aut(A[G]) by less canonical means.

Lemma 5.7.7. Let A be a stark connected reduced order. Then the group
Hom(Γ(A), µ(A)) has a (right) action on the set Aut(A), which for α ∈
Aut(A) and f ∈ Hom(Γ(A), µ(A)) is given by

(α, f) 7→ α+ f =
(
x ∈ Aγ 7→ α(x) · f(γ)

)
.

Proof. Let α ∈ Aut(A) and f, g ∈ Hom(Γ(A), µ(A)). Note that α + f =
α◦ (1+α−1f) ∈ Aut(A), where 1+α−1f ∈ U(A) = U∗(A) by Lemma 5.7.1
and the composition is taken inside Aut(A) via Lemma 5.5.17. For γ ∈ Γ(A)
and x ∈ Aγ we clearly have

[(α+ f) + g](x) = [α+ f ](x) · g(γ)

= α(x) · f(γ) · g(γ)

= [α+ (f + g)](x),
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so the action is well-defined.

Theorem 5.7.8. Let A be a stark connected reduced order with degree map
dA : µ → Γ and let G be a finite abelian group. We equip the cartesian
product

M =

(
Aut(A) Hom(G,µ)

Hom(Γ, G) Aut(G)

)
of Aut(A), Hom(G,µ), Hom(Γ, G), and Aut(G) with the following multi-
plication:(

α1 s1

t1 σ1

)(
α2 s2

t2 σ2

)
=

(
α1α2 + s1t2 α1s2 + s1σ2

t1α2 + σ1t2 t1dAs2 + σ1σ2

)
,

where the sum in Aut(A) is as in Lemma 5.7.7 and the sum in Aut(G)
is taken inside End(G). For x ∈ A and g ∈ G write ( xg ) for the element
x · g ∈ A[G]. Then:

1. M is a group;
2. there is a natural isomorphism M ∼−→ Aut(A[G]) such that the evalu-

ation map M ×A[G]→ A[G] is given by(
α s

t σ

)(
x

g

)
=

(
α(x) · s(g)

t(γ) · σ(g)

)
for all g ∈ G, γ ∈ Γ and x ∈ Aγ.

Proof. To check that M is a group it remains to verify that t1ds2 + σ1σ2 ∈
Aut(G). This follows from Lemma 5.7.1, namely t1ds2 ∈ Jac(End(G)). Note
that the map ϑ : M → Aut(A[G]) can be written as the composition of the
homomorphism ϕ : M → U∗(A[G]) o Aut(A) given by(

α s

t σ

)
7→

(
1 s

tα−1 σ

)
· α

where U∗(A[G]) is written in terms of the matrix representation of Propo-
sition 5.7.4, and the homomorphism π : U∗(A[G]) o Aut(A) → Aut(A[G])
from Proposition 5.7.6. The map π is still surjective when restricted to the
image of ϕ. Namely any

(
u s
t σ

)
·α ∈ U∗(A[G])oAut(A) has the same image

as
( 1 s
tβ−1 σ

)
· βα, where β is the image of u in Aut(A). Hence the map ϑ

is surjective. By Proposition 5.7.4.3 and Proposition 5.7.6, respectively, we
have

#M

#U∗(A[G])
=

# Aut(A)

#U∗(A)
=

# Aut(A[G])

#U∗(A[G])
,
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so the groups M and Aut(A[G]) have the same (finite) cardinality, so ϑ is
bijective.

5.8 Algorithms

In this section we will prove Theorem 5.8.4, the algorithmic counterpart to
Theorem 5.6.4.

Lemma 5.8.1. For each of R = Z and R =
( Z 0
Z Z
)
there exists a polynomial-

time algorithm that, given finite R-modulesM1 andM2, computes a greatest
common divisor D of M1 and M2 as defined in Definition 5.2.3, together
with injections ιi : D →Mi and a complement Ni ⊆Mi such that Ni⊕ιiD =
Mi.

Proof. By Theorem 2.6.9 in [5] we may compute the exponents of M1 and
M2, and their least common multiple n, in polynomial time. Note that M1

and M2 are R/nR-modules and that replacing R by R/nR does not change
the problem. Since R/nR is a finite ring, the problem reduces to Theorem
4.1.1 in [5].

Proposition 5.3.2 allows us to interpret a morphism of finite abelian
groups as a finite length

( Z 0
Z Z
)
-module. Although both types of objects

are represented differently, one easily deduces from the proof of Proposi-
tion 5.3.2 that we can change representations in polynomial time.

In the following result, DecI(d) is as defined in Definition 5.2.8, Re-
mark 5.3.4, and Definition 5.3.3.

Proposition 5.8.2. There exists a polynomial-time algorithm that, given
finite abelian groups A and B and a morphism d : A → B, computes a
maximal element of DecI(d).

Proof. By Lemma 5.8.1 we may compute in polynomial time a greatest
common divisor D of A and B as Z-modules. Similarly we may compute a
greatest common divisor E of d and idD as

( Z 0
Z Z
)
-modules. We also obtain

submodules d0 and d1 of d such that d1
∼= E and d = d0 ⊕ d1. We claim

that (d0, d1) is a maximal element of DecI(d).
First note that d1 is a divisor of idD and thus must be an isomorphism.

As d = d0⊕d1 we indeed have that (d0, d1) ∈ DecI(d). Let (e0, e1) ≥ (d0, d1)
be maximal in DecI(d). Since e1 is an isomorphism, it is isomorphic to idF
for some finite abelian group F . Since e1 is a direct summand of d, the
group F is a direct summand of both A and B, so F is a divisor of their
greatest common divisor D. Thus e1 is a divisor of idD. It follows that e1
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is a divisor of E ∼= d1, so (d0, d1) = (e0, e1) and thus (d0, d1) is maximal, as
was to be shown.

Recall that we have specified an encoding for gradings of orders in Sec-
tion 4.7.

Proposition 5.8.3. There exists a polynomial-time algorithm that, given a
reduced order R and a universal grading of R, computes a maximal element
of D(R) as defined in Definition 5.5.9.

Proof. First suppose R is connected. By Theorem 1.2 in [32] we may com-
pute µ = µ(R) in polynomial time and thus also the group homomor-
phism d : µ→ Γ as defined in Definition 5.5.6. We may compute a maximal
element (d0, d1) ∈ DecI(d) with di : µi → Γi in polynomial time using
Proposition 5.8.2. Under the isomorphisms of partially ordered sets of The-
orem 5.5.15 this d corresponds to a maximal element (A,G) ∈ D(R), where
A =

∑
γ∈Γ0

Rγ and G = µ1, which we may compute in polynomial time.
Now consider the general case. By Theorem 1.1 in [32] we may compute

in polynomial time connected reduced orders {Rx}x∈X for some index set
X such that R ∼=

∏
x∈X Rx, together with the projections πx : R → Rx.

Using Proposition 4.2.6 we may construct universal gradings for the Rx in
polynomial time. Hence by the special case we may compute a maximal
element of D(Rx) for all x ∈ X in polynomial time. Finally, we may apply
Proposition 5.6.2 to compute a maximal element of D(R), observing that
the construction in Proposition 5.6.2 can be carried out in polynomial time
using Lemma 5.8.1.

Computing a maximal element of D(R) for a reduced order R is now
reduced to finding a universal grading of R.

Theorem 5.8.4. There is an algorithm that, given a non-zero reduced order
R, computes a stark subring A ⊆ R and a subgroup G ⊆ µ(R) such that
A[G] = R. This algorithm runs (a) in polynomial time when the additive
group of R is generated by autopotents, and generally (b) in time nO(m)

where n is the length of the input and m is the number of minimal prime
ideals of R.

Proof. We compute the universal grading of R. For (a), we use Theo-
rem 4.7.13, while for (b) we use Theorem 1.4 in [17]. The theorem now
follows from Proposition 5.8.3.




