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CHAPTER 4
Graded rings
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4.1 Introduction

This chapter contains parts of [18] and [35], the authors of which include
H.W. Lenstra and A. Silverberg.

Let R be a ring. A grading of R is a decomposition R = {Rγ}γ∈Γ of R
as a Z-module such that Γ is an abelian group and for all γ, δ ∈ Γ we have
Rγ ·Rδ ⊆ Rγδ. We will refer to Γ as the group ofR. We equip the collection of
gradings of R with a category structure as we do for module decompositions
(see Preliminaries), where the morphisms {Rγ}γ∈Γ → {Sδ}δ∈∆ are group
homomorphisms f : Γ→ ∆ so that Sδ =

∑
γ∈f−1δ Rγ for all δ ∈ ∆.

By a theorem of Lenstra and Silverberg, every reduced order has a uni-
versal grading [34], see Definition 4.2.1. It proceeds by showing every re-
duced order has a lattice structure and thus a universal orthogonal decom-
position (Theorem 2.5.3), and that every grading is in fact an orthogonal
decomposition of this lattice. We will generalize their results to subrings of
Z.

Theorem 4.3.5. Every subring of Z has a universal grading with a count-
able abelian torsion group, and every countable abelian torsion group occurs.

Theorem 4.3.5 neither implies the results of Lenstra and Silverberg nor
vice versa. In Example 4.7.7 we exhibit an obstruction to a common gener-
alization.

For integrally closed subrings of Z we determine precisely which groups
occur as the group of their universal grading. For Z it turns out to be the
trivial group.

Theorem 4.4.3. The universal orthogonal decomposition and the universal
grading of Z are both trivial.

Theorem 4.5.3. Every integrally closed subring of Z has a universal grad-
ing with a subgroup of Q/Z, and every subgroup occurs.

In [17] we give an algebraic proof of the existence of a universal grading
that applies to a broader class of rings than that of reduced orders. The
following theorem is a similar generalization to Theorem 1.5 in [34]. We say
an element x ∈ R is homogeneous in a grading {Rγ}γ∈Γ of R if there exists
a unique γ ∈ Γ such that x ∈ Rγ .

Theorem 4.6.6. Let R be a commutative ring with a grading R = {Rγ}γ∈Γ

where Γ is a torsion group. Suppose for every prime p such that Γ has an
element of order p, in the ring R both p and 1+px are regular for all x ∈ R.
Then:

1. The ideal nil(R) is homogeneous, i.e. nil(R) =
∑

γ∈Γ(nil(R) ∩Rγ);
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2. The idempotents of R are in R1;
3. If R is connected, then the elements of µ(R) are homogeneous.

In [17] we give an algorithm to compute the universal grading of a re-
duced order. We will show that in a special case we can do this computation
in polynomial time. We write α(R) for the set of x ∈ R for which there ex-
ists some n ≥ 1 such that xn+1 = x. This set includes the idempotents and
roots of unity of R.

Theorem 4.7.13. There exists a polynomial-time algorithm that, given an
order R, decides whether α(R) generates R as a group and if so computes
the universal grading of R.

4.2 Definitions and basic properties

In this section k will be a commutative ring.

Definition 4.2.1. Let R be a k-algebra. A grading of R is a decomposition
{Rγ}γ∈Γ of R as a k-module such that Γ is an abelian group and for all
γ, δ ∈ Γ we have Rγ ·Rδ ⊆ Rγδ. For gradingsR = {Rγ}γ∈Γ and S = {Sδ}δ∈∆

of R, a morphism R → S of gradings is a morphism of decompositions for
which the underlying map Γ→ ∆ is a group homomorphism. A grading R
of R is universal if for every grading S of R there exists a unique morphism
R → S. We say an element x ∈ R is homogeneous in a grading {Rγ}γ∈Γ of
R if there exists a unique γ ∈ Γ such that x ∈ Rγ .

Lemma 4.2.2 (Lemma 2.1.1 in [34]). If {Rγ}γ∈Γ is a grading of a k-algebra,
then 1 ∈ R1.

Example 4.2.3. Let R be a k-algebra. Then R has a trivial grading {R}
with the trivial group. We may naturally grade R[X] with {Rn}n∈Z, where
Rn = RXn for n ≥ 0 and Rn = 0 otherwise. The ring Mat2(R) of 2 × 2-
matrices with coefficients in R admits a grading with the summands

{(
a 0
0 d

)
:

a, d ∈ R
}
and

{(
0 b
c 0

)
: b, c ∈ R

}
. Similarly Q2 can be graded with a group

of order 2 and summands Q · (1, 1) and Q · (1,−1).

Lemma 4.2.4. Suppose R = {Rγ}γ∈Γ is a grading of a k-algebra R and
let Γ′ = 〈γ ∈ Γ | Rγ 6= 0〉. Then:

1. We have that R′ = {Rγ}γ∈Γ′ is a grading of R.
2. The inclusion i : Γ′ → Γ is a morphism R′ → R of gradings.
3. If S is a grading of R and there exists a morphism f : R → S, then

there exists a unique morphism f ′ : R′ → S. It equals f ◦ i.
4. If there exists a morphism from R′ to a universal grading, then R′ is

universal.
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5. If R is universal, then Γ = Γ′.

Proof. Both 1 and 2 are trivial. For 3, clearly f ◦ i is such a morphism. For
uniqueness, it follows from the definitions that f ′ must equal f for all γ ∈ Γ
such that Rγ 6= 0, and such γ generate Γ′. For 4, we have a map from R′
to any other grading by passing through the universal grading, and such a
map is unique by 3. For 5, if R is universal, then so is R′ by 2 and 4, and
then i is a bijection because universal objects are uniquely unique.

Lemma 4.2.5. Let S and T be k-algebras and let π : S × T → S be the
natural projection.

1. Let R = {Rγ}γ∈Γ be a grading of S × T such that (1, 0) is homoge-
neous. Then πR := {π(Rγ)}γ∈Γ is a grading of S.

2. If S = {Sδ}δ∈∆ and T = {Tε}ε∈E are gradings of S and T respectively,
then S × T := {R(δ,ε)}(δ,ε)∈∆×E with

R(δ,ε) =


S1 × T1 if δ = ε = 1

Sδ × 0 if δ 6= 1 and ε = 1

0 × Tε if δ = 1 and ε 6= 1

0 × 0 otherwise

is a grading of S × T .

Note that by Theorem 1.5.ii in [34] the condition that (1, 0) be homo-
geneous is automatically satisfied when S and T are orders. We will show
in Theorem 4.6.6 that this is even true for a broader class of rings.

Proof. One easily verifies that if πR and S × T are decompositions, then
they are also gradings. It is clear that S × T is a decomposition, so this
remains to be shown for πR.

Note that S =
∑

γ∈Γ π(Rγ). We identify S with S × 0 ⊆ R, so that
π(Rγ) = (1, 0) ·Rγ . As (1, 0) ∈ R1, we find π(Rγ) ⊆ Rγ . Hence the sum of
the π(Rγ) is a direct sum, and thus πR is a decomposition.

Proposition 4.2.6. Let S and T be k-algebras, write R = S × T and let
π : R → S be the natural projection. Suppose that (1, 0) is homogeneous in
every grading of R. Then:

1. If R = {Rγ}γ∈Γ is a universal grading of S × T , then {π(Rγ)}γ∈Γ′

with Γ′ = 〈γ ∈ Γ | π(Rγ) 6= 0〉 is a universal grading of S.
2. If S and T are universal gradings of S and T respectively, then with

the notation as in Lemma 4.2.5 the grading S × T is universal.
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Proof. 1. From Lemma 4.2.5.1 and Lemma 4.2.4.1 we conclude that RS =
{π(Rγ)}γ∈Γ′ is a grading of S. Let S = {Sδ}δ∈∆ be a grading of S and let T
be the trivial grading of T . Then S ×T is a grading of R, so by universality
there exists a morphism f : Γ → ∆ × 1 that maps R to S × T . It is easy
to see the induced map f ′ : Γ′ → ∆ sends RS to S. By Lemma 4.2.4.3 this
map is unique, so RS is universal.

2. SupposeR = {Rγ}γ∈Γ is a grading of R and let ∆ and E be the groups
of S and T respectively. Again πR is a grading of S by Lemma 4.2.5.1
and analogously (1 − π)R is a grading of T . Universality gives morphisms
f : ∆→ Γ and g : E→ Γ that respectively map S to πR and T to (1−π)R.
LetR′ = {R′γ}γ∈Γ be the image of S×T under the induced map ∆×E→ Γ.
One easily verifies that πR = πR′. From Lemma 4.2.2 we obtain that
(0, 1) is also homogeneous, so analogously (1 − π)R = (1 − π)R′. Then
Rγ = π(Rγ)+(1−π)(Rγ) = π(R′γ)+(1−π)(R′γ) = R′γ for all γ ∈ Γ. Hence
R = R′ and indeed there exists a map S×T → R. That it is unique follows
from Lemma 4.2.4.3 and Lemma 4.2.4.5 together with the observation that
∆× E is generated by the coordinates where S × T is non-zero.

Example 4.2.7. The conclusion to Proposition 4.2.6 becomes false when
we drop the assumption that (1, 0) be homogeneous in R.

As in Example 4.2.3 the decomposition {Q · (1, 1),Q · (1,−1)} of Q2

gives a grading R with a group of order 2. However, the projection of R
to the first factor of Q2 is not a decomposition, let alone a grading, of S.
Hence 1 becomes false. For 2, note that the trivial decompositions of Q are
universal, while the product of two such trivial decompositions does not give
a universal grading of Q2. Namely, the product of trivial decompositions is
trivial, while a non-trivial grading R of Q2 exists.

Lemma 4.2.8. Suppose R is an commutative k-algebra that is a domain
and integral over the image of k in R. If {Rγ}γ∈Γ is a grading of R, then
Γ′ = {γ ∈ Γ |Rγ 6= 0} is a torsion subgroup of Γ.

Proof. Since 0 is the only zero-divisor in R, we have for γ, δ ∈ Γ′ that
0 ( RγRδ ⊆ Rγδ, so γδ ∈ Γ′. For γ ∈ Γ′ and x ∈ Rγ non-zero we have
xn =

∑n−1
i=0 aix

i for some n ∈ Z≥1 and ai ∈ k, so 0 6= xn ∈ Rγn ∩
∑n−1

i=0 Rγi .
Hence γn = γi for some 0 ≤ i < n, so the order of γ is finite and Γ′ is a
torsion group.

4.3 Universal gradings

In this section we generalize the result of Lenstra and Silverberg [34] that
reduced orders have universal gradings to subrings of Z. Recall that Z is a
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Hilbert lattice; see Theorem 3.2.10.

Lemma 4.3.1. Suppose R ⊆ Z is a subring and {Rγ}γ∈Γ is a grading of
R. Then for all δ, ε ∈ Γ distinct we have 〈Rδ, Rε〉 = 0.

Proof. Let x ∈ Rδ and y ∈ Rε. With Sγ = Rγ∩Z[x, y] we have an order S =⊕
γ∈Γ Sγ with grading {Sγ}γ . Note that our inner product on Z restricted to

S differs from the inner product defined on S in [34] by a factor equal to the
rank of S. Then by Proposition 5.8 in [34] we have that 〈x, y〉 ∈ 〈Sδ, Sε〉 = 0.
Hence 〈Rδ, Rε〉 = 0.

Proposition 4.3.2. Every subring of Z has a universal grading.

Proof. Let R be a subring of Z, which is also a sublattice of Z. Let U =
{Ui}i∈I be a universal decomposition of the lattice R, which exists by The-
orem 2.5.3. We obtain this decomposition by starting with the graph G on
the vertex set indec(R) with an edge between x, y ∈ indec(R) if and only if
〈x, y〉 6= 0, then taking I to be the set of connected components of G and
Ui the group generated by i ∈ I. For u =

∑
i ui ∈ R with ui ∈ Ui write

supp(u) = {i ∈ I |ui 6= 0}. Now consider the free abelian group Z(I) and
let Γ be the group obtained from it by dividing out

N = 〈i+ j − k | i, j ∈ I, k ∈ supp(Ui · Uj)〉.

We have an induced map f : I → Z(I) → Γ which induces a decomposition
f(U) = {Rγ}γ∈Γ of R, which is also a grading. We claim that it is universal.

Let {Sδ}δ∈∆ be a grading of R. Then by Lemma 4.3.1 this is also an
orthogonal decomposition of the lattice R. By universality there exists a
map α : I → ∆ such that α(U) = {Sδ}δ∈∆. This map factor through the
group homomorphism Z(I) → ∆, and we see that N is in the kernel. The
induced map a : Γ → ∆ sends {Rγ}γ∈Γ to {Sδ}δ∈∆. Such a map is neces-
sarily unique: For all γ ∈ Γ we have 0 6= Rγ ⊆ Sa(γ), so b(γ) = a(γ) for any
morphism b : Γ→ ∆ of decompositions.

Lemma 4.3.3. Suppose R ⊆ Z is a subring and {Rγ}γ∈Γ is a grading of
R. If the universal grading of R1 is trivial and Rγ 6= 0 for all γ ∈ Γ, then
{Rγ}γ∈Γ is universal.

Proof. Suppose {Sδ}δ∈∆ is a universal grading of R, which exists by Propo-
sition 4.3.2, and let f : ∆ → Γ be the map given by universality. Then
R1 =

⊕
δ∈ker(f) Sδ, which is a grading of R1. Since the universal grading of

R1 is trivial, it follows that R1 = S1. By Lemma 4.2.8 we have Sδ 6= 0 for
all δ ∈ ker(f), so it follows that ker(f) = 1 and that f is injective. From
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the fact that Rγ 6= 0 for all γ ∈ G it follows that f must be surjective. Thus
f is an isomorphism of gradings and {Rγ}γ∈Γ is universal.

Example 4.3.4. Every countable abelian torsion group occurs as the group
of a universal grading of a subring of Z. Note that such a group is a subgroup
of Ω =

⊕
p∈P(Q/Z), where P is some countably infinite set. We choose P

to be the set of positive prime numbers. Fixing some embedding Z → C
we have a well-defined x-th power of p in Q ∩ R>0 for all x ∈ Q. Let
[·] : Q/Z → [0, 1) ∩ Q be the (bijective) map that assigns to each class
its smallest non-negative representative. It is then easy to verify that R =
Z[px | p ∈ P, x ∈ Q≥0] ⊆ Z has a grading {R(xp)p}(xp)p∈Ω with

R(xp)p =
( ∏
p∈P

p[xp]
)
· Z.

In turn any subgroup Γ ⊆ Ω gives a grading {Rγ}γ∈Γ of the subring⊕
γ∈ΓRγ ⊆ R. This grading is universal by Lemma 4.3.3, as R1 = Z.

Theorem 4.3.5. Every subring of Z has a universal grading with a count-
able abelian torsion group, and every countable abelian torsion group occurs.

Proof. By Proposition 4.3.2 a universal grading {Rγ}γ∈Γ exists. By Lem-
ma 4.2.4.5 and Lemma 4.2.8 the group Γ = {γ ∈ Γ : Rγ 6= 0} is a torsion
group, which is countable by countability of Z. In Example 4.3.4 we show
all such groups occur.

4.4 Decompositions of the lattice of algebraic
integers

In this section we will show that Z is indecomposable as a Hilbert lattice.
The following lemma is a standard result from linear algebra.

Lemma 4.4.1. Let V be a vector space over an infinite field and let S be a
finite set of subspaces of V . If

⋃
U∈S U = V , then V ∈ S.

Proposition 4.4.2. Let S ⊆ Z with S finite and 0 6∈ S. Then there exist
α ∈ indec(Z) such that 〈α, β〉 6= 0 for all β ∈ S.

Proof. Let K be the field generated by S and fix 1 < r <
√

2.
We will construct an element u ∈ OK such that 0 6∈ 〈u, S〉 and |σ(u)| > r

for all σ ∈ X(K). For x ∈ K write x⊥ = {y ∈ K | 〈x, y〉 = 0}, which
is a proper Q-vector subspace of K when x 6= 0 because x 6∈ x⊥. Hence⋃
x∈S x

⊥ 6= K by Lemma 4.4.1, so there exists some non-zero u ∈ K such
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that 0 6∈ 〈u, S〉. By scaling u by some non-zero integer we may assume u ∈ Z
as well. By further scaling u with integers we may assume |σ(u)| > r for all
σ ∈ X(K), as was to be shown.

As |σ(u)| > r for all σ ∈ X(K) we have N(u) > r > 1, where N is as
in Definition 3.2.3, so u is not a unit. Let p ⊆ OK be a prime containing u
and let v ∈ p \ p2. Let fn = Xn − uXn−1 − v ∈ OK [X] for n ≥ 2 and note
that it is Eisenstein at p and therefore irreducible. Let αn ∈ Z be a root of
fn. It suffices to show that for n sufficiently large αn is indecomposable and
satisfies 0 6∈ 〈αn, S〉. By Lemma 3.3.4 and by construction of u it holds for
any n ≥ 2 that

〈αn, S〉 =
〈TrK(αn)/K(αn), S〉

[K(αn) : K]
=

〈u, S〉
[K(αn) : K]

63 0,

so it remains to be shown that αn is indecomposable for n sufficiently large.
Let D ⊆ C be the closed disk of radius r around 0. Let n be sufficiently

large such that we have |σ(v)| · r1−n < |σ(u)| − r for all σ ∈ X(K). Fix
σ ∈ X(K). For all x on the boundary of D we have

|xn − σ(v)| ≤ rn + |σ(v)| = rn−1(r + |σ(v)| · r1−n)

< |σ(u)| · rn−1 = |σ(u) · xn−1|.

Hence by Rouché’s Theorem (Theorem 4.18 in [1]) the analytic functions
σ(u)Xn−1 and σ(fn) = (Xn − σ(v))− σ(u)Xn−1 have the same number of
zeros in D, counting multiplicities, which for σ(u)Xn−1 clearly is n−1. For
the remaining zero xσ,n ∈ C of σ(fn) with |xσ,n| > r we have xn−1

σ,n (xσ,n −
σ(u)) = σ(v) and thus

|xσ,n − σ(u)| = |σ(v)| · |xσ,n|1−n < |σ(v)| · r1−n → 0 (as n→∞),

i.e. limn→∞ xσ,n = σ(u). Now summing over all σ ∈ X(K) we get

q(αn) =
1

n · [K : Q]

∑
σ∈X(K)

∑
ρ∈Xσ(K(αn))

|ρ(αn)|2

≤ 1

n · [K : Q]

∑
σ∈X(K)

(
(n− 1)r2 + |xσ,n|2

)
≤ r2 +

1

n · [K : Q]

∑
σ∈X(K)

|xσ,n|2 → r2 (as n→∞).

Because r2 < 2 we have for sufficiently large n that q(αn) < 2. From
Proposition 3.3.1 we may then conclude that αn is indecomposable, as was
to be shown.
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Theorem 4.4.3. The universal orthogonal decomposition and the universal
grading of Z are both trivial.

Proof. Let β, γ ∈ indec(Z). Then there exists some α ∈ indec(Z) such
that 〈α, β〉 6= 0 6= 〈α, γ〉 by Proposition 4.4.2. Hence α, β and γ must be
in the same connected component of the graph of Theorem 2.5.3. As this
holds for all β and γ the graph is connected and hence Z is orthogonally
indecomposable. Equivalently, the universal orthogonal decomposition is
trivial. It follows then from Lemma 4.3.1 and Lemma 4.2.8 that the universal
grading of Z is also trivial.

4.5 Integrally closed orders

In this section we study the universal gradings of integrally closed subrings
of Z.

Example 4.5.1. We will show that every subgroup of Q/Z occurs as the
group of a universal grading of an integrally closed subring of Z. Let µ =
µ(Z) and µp = µp(Z) be as in the Preliminaries. For a prime number p write

µp∞ = {ζ ∈ µ | (∃n ∈ Z≥0) ζp
n

= 1} and
µ0 = {ζ ∈ µ | (∃n square-free) ζn = 1}.

The map ζ 7→ ζp gives an isomorphism µp∞/µp → µp∞ . Taking the direct
sum over all p we get an isomorphism µ/µ0 → µ. Thus it suffices to show
that for every µ0 ⊆ M ⊆ µ the group Γ = M/µ0 occurs as a universal
grading group.

Consider R = Z[M], the smallest subring of Z containing M, which is
integrally closed. Define Rζ·µ0 = ζ ·Z[µ0] for all ζ ·µ0 ∈ M/µ0 and note that
this gives a grading {Rγ}γ∈Γ of R. To prove this is a universal grading it
suffices by Lemma 4.3.3 to show that the universal grading of Z[µ0] is trivial,
or in turn, by Lemma 4.3.1, that Z[µ0] is indecomposable. The elements of µ0

are indecomposable in Z[µ0] because they are so in Z by Proposition 3.3.1,
and they generate Z[µ0] as an additive group. From Proposition 3.3.5 we
may conclude that no pair ζ, ξ ∈ µ0 is orthogonal, so from Theorem 2.5.3
it follows that Z[µ0] is indecomposable. Hence the grading is universal.

Lemma 4.5.2. Suppose R ⊆ Z is a subring and {Rγ}γ∈Γ is a grading of R.
If K = Q(A) for some subset A ⊆

⋃
γ∈ΓRγ, then {Rγ ∩K}γ∈Γ is a grading

of R ∩K.

Proof. It is clear that {Rγ ∩ K}γ∈Γ is a grading of R ∩ K once we show⊕
γ(Rγ∩K) = R∩K. For this it remains to show that R∩K ⊆

∑
γ(Rγ∩K).
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Let x ∈ R ∩ K. As x ∈ R we may uniquely write x =
∑

γ xγ for some
xγ ∈ Rγ . Without loss of generality A is closed under multiplication, so
that A generates K as a Q-vector space. Then we may write x =

∑
a∈A raa

for some ra ∈ Q which are almost all equal to zero. Hence a positive integer
multiple nx of x satisfies

∑
γ nxγ = nx =

∑
a∈A nraa with nra ∈ Z for all

a and thus nraa ∈ Rγa for some γa ∈ G. It follows from uniqueness of the
decomposition that nxγ =

∑
a∈A, γa=γ nraa and thus xγ ∈ K. We conclude

that xγ ∈ Rγ ∩K and thus x ∈
∑

γ(Rγ ∩K), as was to be shown.

Theorem 4.5.3. Every integrally closed subring of Z has a universal grad-
ing with a subgroup of Q/Z, and every subgroup occurs.

Proof. That every subgroup of Q/Z occurs follows from Example 4.5.1.
Let R be an integrally closed subring of Z and let {Rγ}γ∈Γ be a universal
grading, which exists by Theorem 4.3.5. It suffices to show that every finitely
generated subgroup ∆ of Γ is cyclic.

Let ∆ ⊆ Γ be finitely generated and thus finite by Lemma 4.2.8. More-
over, by Lemma 4.2.8 we have Rδ 6= 0 for all δ ∈ ∆, so we may choose
some non-zero aδ ∈ Rδ. Let A = {aδ | δ ∈ ∆} and K = Q(A). Then by
Lemma 4.5.2 we get a grading {Rδ ∩ K}δ∈∆ of S = R ∩ K. Since K is a
field and R is integrally closed, the ring S is integrally closed. The field of
fractions of S is contained in K and is thus of finite degree over Q. Hence
we may apply Theorem 1.4 from [34] to conclude that the universal grading
of S has a finite cyclic grading group Y. By universality we get a morphism
of gradings and thus a morphism of groups Y → ∆. The latter is surjec-
tive since 0 6= Rδ ∩ K 3 aδ for all δ ∈ ∆. Thus ∆ is cyclic, as was to be
shown.

4.6 Algebraic methods

In this section we will generalize Theorem 1.5 of [34] on the homogeneity of
roots of unity and idempotents in gradings, from orders to a broader class
of rings. For a commutative ring R and an element p ∈ R we will consider
the property that 1 + px is a regular element for all x ∈ R. In particular,
such a p is not a unit, and for R a domain this is in fact equivalent.

Lemma 4.6.1. Let R be a commutative ring and let p ∈ R be such that
1 + px is regular for all x ∈ R. If I ⊆ R is a finitely generated ideal such
that pI = I, then I = 0.

Proof. This is an immediate consequence of Nakayama’s lemma.
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We will use the following notation in this section.

Definition 4.6.2. Let Γ be a finite abelian group. We define the polynomial
ring PΓ = Z[Xγ : γ ∈ Γ], which comes with a natural Γ-grading {Pγ}γ where
Xγ ∈ Pγ for all γ. For m ∈ Z≥0 we define the polynomials em,γ ∈ Pγ by(∑

γ∈Γ

Xγ

)m
=
∑
γ∈Γ

em,γ .

Let ~n = (nγ)γ ∈ (Z≥0)Γ. We define the weight wt(~n) ∈ Z≥0 and degree
deg(~n) ∈ Γ of ~n to be the degree of X~n =

∏
γ X

nγ
γ as monomial and as

element of the grading {Pγ}γ respectively. With m = wt(~n), we write(
m

~n

)
=

m!∏
γ∈Γ(nγ !)

so that
(∑
γ∈Γ

Xγ

)k
=

∑
wt(~n)=k

(
k

~n

)
X~n.

Proposition 4.6.3. Let p be a prime and let q > 1 be a power of p. Let R be
a commutative ring such that 1+px is regular for all x, and let R = {Rγ}γ∈Γ

be a grading with
⋂
n≥0 Γp

n
= 1. Let r ∈ R1 and x ∈ R. If rxq = x, then

x ∈ R1.

Proof. Write x =
∑

γ xγ with xγ ∈ Rγ and ~x = (xγ)γ∈Γ. Suppose first that
Γ is a finite group of exponent p. Note that∑

γ∈Γ

xγ = x = rxq =
∑
γ∈Γ

req,γ(~x)

with req,γ(~x) ∈ Rγ . From the fact that R is a grading we obtain xγ =
req,γ(~x). From congruences modulo p it follows that p -

(
q
~n

)
if and only if

nε = q for some ε, and all such ~n have trivial degree because εq = 1. With
I =

∑
γ 6=1 xγR we obtain xγ ∈ pI for all γ 6= 1, so pI = I. Thus I = 0 by

Lemma 4.6.1 and x = x1 ∈ R1.
Now consider the general case. By replacing Γ by a subgroup and R by

a subring we may assume that Γ is finitely generated by {γ ∈ Γ |xγ 6= 0}.
The quotient map π : Γ → Γ/pΓ induces a grading πR = {Sγ}γ∈Γ/pΓ. By
the special case above we have x ∈ S1, so Γ = 〈γ | xγ 6= 0〉 ⊆ pΓ. Hence
Γ ⊆

⋂
k≥0 p

kΓ = 1 and x = x1 ∈ R1.

Lemma 4.6.4. Let p be a prime and consider the ring P = PZ/pZ. Then
the ideals I =

∑
i 6=j XiXjP and J = p2I +

∑
i 6=0 ep,iP satisfy pep,0I ⊆ J .

Proof. Write ei = ep,i. Let the affine group Aff(Z/pZ) = (Z/pZ) o (Z/pZ)∗

act naturally on the variables of P . Then Z/pZ fixes each ei, while a ∈
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(Z/pZ)∗ maps ei to eai. In particular, the ideals I and J are invariant.
Because the action is 2-transitive, it suffices to show that pX0X1e0 ∈ J .

Consider now the ring P/J , on which Aff(Z/pZ) also acts. We have
iei ∈ J for all i ∈ Z/pZ. Hence

0 ≡ (p+ 1)

p−1∑
i=0

iXie−i = (p+ 1)

p−1∑
i=0

iXi

∑
wt(~m)=p

deg(~m)=−i

(
p

~m

)
X ~m

=
∑

wt(~n)=p+1
deg(~n)=0

(
p+ 1

~n

)( p−1∑
i=0

nii
)
X~n (mod J),

where the first equality is the definition of e−i and the second orders the
terms by monomial. Then note for each term that

∑p−1
i=0 nii ≡ deg(~n) ≡

0 (mod p), and that p |
(
p+1
~n

)
unless ni ≥ p for some i. Hence most terms

are in p2I ⊆ J . The remaining p terms equal

0 ≡
(
p+ 1

p+ 1

)
0Xp+1

0 +

(
p+ 1

p

) p−1∑
i=1

piX0X
p
i ≡ pX0

p−1∑
i=0

iXp
i (mod J).

We now apply the affine transformations a 7→ a and a 7→ 1 − a to this
equality, so that

0 ≡ X1

(
pX0

p−1∑
i=0

iXp
i

)
+X0

(
pX1

p−1∑
i=0

(1− i)Xp
i

)
= pX0X1

p−1∑
i=0

Xp
i ≡ pX0X1e0 (mod J)

by considering e0 modulo p, as was to be shown.

Proposition 4.6.5. Let p be a prime and let R be a connected commutative
ring such that p is regular in R and such that 1+px is regular for all x ∈ R.
Let R = {Rγ}γ∈Γ be a grading with

⋂
n≥0 Γp

n
= 1. Let x ∈ R∗. If xp is

homogeneous, then so is x.

Proof. Write x =
∑

γ∈Γ xγ with xγ ∈ Rγ and ei = ep,i for i ∈ Z/pZ.
First suppose Γ = Z/pkZ for some k. We will apply induction on k. For

k = 0 the statement is trivial. Now suppose k > 0 and that the statement
holds for groups of order less than pk. Consider the natural map ϕ : Γ →
Γ/pk−1Γ. We obtain from the induction hypothesis that x is homogeneous
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in ϕR. Thus there exists some c ∈ Z such that x =
∑

i≡c (pk−1) xi. With
~y = (xc, xc+pk−1 , . . . , xc+(p−1)pk−1) we have

xp =

p−1∑
i=0

ei(~y),

where ei(~y) ∈ Rf(i) with injective f : Z/pZ→ Γ given by i 7→ pc+ pki.
Since xp 6= 0 is homogeneous there exists a unique h such that xp ∈

Rf(h). If h 6= 0, then p | eh and thus p | xp is a unit. By Lemma 4.6.1 we
have pR = R = 0, which contradicts the connectivity assumption. Thus we
may assume xp = e0(~y) and ei(~y) = 0 for i 6= 0.

It follows from Lemma 4.6.4 that pI = p2I for I =
∑

i 6=j xixjR. Since p
is regular we get I = pI, so I = 0 by Lemma 4.6.1. Hence xixj = 0 for all
i 6= j. Let zi = xi/x. Then

zi(1− zi) = x−2xi(x− xi) = x−2xi
∑
j 6=i

xj = 0.

Thus zi is idempotent. Since R is connected we have zi ∈ {0, 1}. From∑
i zi = 1 it follows that zi = 1 for some i. Hence x = xi is homogeneous,

as was to be shown.
It remains to prove the proposition for arbitrary Γ. As per usual we

may assume Γ is finitely generated. Suppose there are distinct γ, δ ∈ Γ
such that xγ , xδ 6= 0. Then by either Pontryagin duality or the fundamental
theorem on finitely generated abelian groups one deduces that there exists
some subgroup ∆ ⊆ Γ such that γ∆ 6= δ∆ and such that Γ/∆ is cyclic
of p-power order. By the specific case above, applied to ϕR for ϕ : Γ →
Γ/∆, we have that δ∆ = γ∆, which is a contradiction. It follows that x is
homogeneous.

Theorem 4.6.6 (cf. Theorem 1.5 in [34]). Let R be a commutative ring
with a grading R = {Rγ}γ∈Γ where Γ is a torsion group. Suppose for every
prime p such that Γ has an element of order p, in the ring R both p and
1 + px are regular for all x ∈ R. Then:

1. The ideal nil(R) is homogeneous, i.e. nil(R) =
∑

γ∈Γ(nil(R) ∩Rγ);
2. The idempotents of R are in R1;
3. If R is connected, then the elements of µ(R) are homogeneous.

Proof. 1. This statement is equivalent to the following: If x =
∑

γ∈Γ xγ ∈ R
is nilpotent, then so is xγ for all γ ∈ Γ. Given x ∈ nil(R), we may pass to
the subgroup of Γ generated by {γ ∈ Γ |xγ 6= 0}, which is finite. Then by
Proposition 4.1.ii in [34] every xγ is nilpotent.
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It suffices for the following statements to prove them when Γ is a p-group
for the relevant primes p. For general Γ one reduces to this special case by
considering the projections to the Sylow subgroups.

2. Let e ∈ R be idempotent. Then ep = e, hence e ∈ R1 by Proposi-
tion 4.6.3.

3. Let ζ ∈ µ(R) be of order n. If (n, p) = 1, then there exists some
k ∈ Z>0 such that pk ≡ 1 ( mod n). Then ζpk = ζ, hence ζ ∈ R1 by Proposi-
tion 4.6.3. For general n we write n = pkm for m, k ∈ Z≥0 with (m, p) = 1.
Then ζp

k ∈ R1 by the special case. Inductively ζp
k−i is homogeneous for

0 ≤ i ≤ k by Proposition 4.6.5, so ζ is homogeneous.

We now present an alternative proof for Proposition 4.6.5 and hence
Theorem 4.6.6.2, with weaker assumptions on p, in the form of Proposi-
tion 4.6.11.

Lemma 4.6.7. Let B ⊆ C be commutative rings and G a group acting
on C via ring automorphisms that fix B pointwise and for which the orbits
under G are finite. Let p be a prime. Suppose p is not a unit in B and that

p
√
B := {x ∈ C | (∃n ∈ Z≥0) xp

n ∈ B}

generates C as a B-module and contains CG = {c ∈ C | (∀g ∈ G) gc = c}.
If B is connected, then C is connected.

Proof. Let p be a prime of B above p. As p
√
B generates C as B-module the

ring extension B ⊆ C is integral. Hence there exists a prime q of C such
that q ∩ B = p by the going up theorem. Let x ∈ C and write x =

∑
s∈S s

for some finite S ⊆ p
√
B. We claim that x ∈ q if and only if there exists

some n ∈ Z≥0 such that
∑

s∈S s
pn ∈ p. Namely, we have∑

s∈S
s ∈ q⇔

(∑
s∈S

s
)pn
∈ q⇔

∑
s∈S

sp
n ∈ q⇔

∑
s∈S

sp
n ∈ p,

where for the forward implications we take n sufficiently large such that
sp
n ∈ B for all s ∈ S. We conclude that membership to q only depends on

p, i.e. q is unique.
Let O be an orbit of non-zero idempotents of C under G, which is finite

by assumption on G. Let M = {
∏
s∈S s |S ⊆ O} be the monoid that O

generates, which has a partial order given by e ≤ f when ef = e. Let P be
the set of minimal non-zero elements ofM and let X be an orbit of P under
G. Then e =

∑
x∈X x ∈ CG ⊆

p
√
B is idempotent, so e = ep

n ∈ B for some
n. But B is connected and e 6= 0, so e = 1. Hence C ∼=

∏
x∈X C/(1 − x)C

and G acts transitively on the factors. In particular, the cardinality of every
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orbit of spec C under G is divisible by #X. However, {q} is an orbit, so
#X = 1. It follows that O = {1}, so C is connected.

Proposition 4.6.8. Let p be a prime and R a connected commutative ring
for which p is regular but not a unit. Then

1. for all ζ ∈ µp∞(Z), the ring R is connected if and only if R⊗Z Z[ζ] is
connected;

2. for all gradings {Rγ}γ∈Γ of R with Γ a finite abelian p-group, the ring
R is connected if and only if R1 is connected.

Proof. 1. Write S = R⊗ZZ[ζ]. As R→ S is injective, the backward implica-
tion holds trivially. It suffices to verify the conditions to Lemma 4.6.7 applied
to R ⊆ S with G = (Z/pkZ)∗ naturally acting: We have SG = R ⊆ p

√
R by

Proposition 3.15 in [17], and 〈ζ〉 ⊆ p
√
R generates S as R-module.

2. Write #Γ = pk and let ζ be a primitive pk-th root of unity. It suffices
by 1 to prove 2 for the grading S = {Sγ}γ∈Γ of S = R ⊗Z Z[ζ] with
Sγ = Rγ ⊗ZZ[ζ]. The forward implication is trivial. We apply Lemma 4.6.7
to S1 ⊆ S with G = Hom(Γ, 〈ζ〉), where χ ∈ G acts on S by sending x ∈ Sγ
to χ(γ) · x: We have that SG =

⊕
γ∈Γ S

G
γ = S1, since for all η ∈ 〈ζ〉 and

x ∈ S we have ηx = x if and only if η = 1 or x = 0, and clearly the
Sγ ⊆ p

√
S1 generate S.

Lemma 4.6.9. Let p be a prime and let R be a connected commutative
Z[ζ]-algebra with ζ a primitive p-th root of unity. Write π = 1 − ζ. Then
f = π−p

(
(1 + πX)p − 1

)
∈ Z[ζ][X] has at exactly p distinct roots in R,

namely the images of (ζi − 1)/π ∈ Z[ζ] in R for i ∈ Z/pZ.

Proof. Recall that p = uπp−1 for some u ∈ Z[ζ]∗. Hence (1 + πX)p − 1 ≡
0 (mod πp), so indeed f ∈ Z[ζ][X]. Moreover, f is monic. We compute f ′ =
u(1 +πX)p−1. Then u−1(1 +πX)f ′−πpf = 1, so fR[X] + f ′R[X] = R[X].
Then by Theorem 1.5 in [32] we have that f has at most p roots in R. Each
ri = (ζi − 1)/π ∈ Z[ζ] for 0 ≤ i < p is a roots of f . For 0 ≤ i < j < p we
have rj − ri = ζi(1 − ζj−i)/π ∈ Z[ζ]∗. The image of rj − ri in R is also a
unit, and since R 6= 0 the images of r0, . . . , rp−1 are all distinct, as was to
be shown.

Lemma 4.6.10. Let p be a prime and let R be a connected commutative
Z[ζ]-algebra with ζ a primitive p-th root of unity. Suppose p is regular in R
and let R = {Rξ}ξ∈〈ζ〉 be a grading of R. Let x ∈ R∗. If xp ∈ R1, then x is
homogeneous.

Proof. Write x =
∑

ξ∈〈ζ〉 xξ with xξ ∈ Rξ. Let σ be the Z[ζ]-algebra homo-
morphism of R that maps y ∈ Rξ to ξy ∈ Rξ. Since xp ∈ R1, the element
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η = σ(x)/x ∈ R satisfies ηp = σ(xp)/xp = 1. Write π = 1 − ζ. Then
σ(x) ≡ x (mod πR), so η = 1 +πy for some y ∈ R. As π, because it divides
p, is regular we obtain (η−1)/π = y = (ζi−1)/π for some i by Lemma 4.6.9,
and η = ζi ∈ R∗1. From σ(x) = ηx it follows that ξxξ = ηxξ for all ξ ∈ 〈ζ〉.
Unless ξ = η, we have that ξ− η is regular as it divides p, and thus xξ = 0.
Hence x = xη is homogeneous.

Proposition 4.6.11. Let p be a prime, let R be a connected commutative
ring such that p ∈ R is regular but not a unit. Let R = {Rγ}γ∈Γ be a
grading of R with

⋂
n≥0 Γp

n
= 1. Let x ∈ R∗. If xp is homogeneous, then x

is homogeneous.

Proof. As in Proposition 4.6.5 we may assume that Γ is a finite p-group.
We apply induction on #Γ. If #Γ = 1, then clearly all elements are ho-
mogeneous. Suppose #Γ > 1. Then we may choose a subgroup ∆ ⊆ Γ
of order p. By induction x is homogeneous in ϕR for the natural map
ϕ : Γ → Γ/∆, so x =

∑
γ∈ε∆ xγ for some ε ∈ Γ and xγ ∈ Rγ . Then

xp = y + pz where y =
∑

γ∈ε∆ x
p
γ ∈ Rεp and z ∈ R. As p is not a unit, xp

can only be a homogeneous unit if xp ∈ Rεp . Let ζ be a primitive p-th root
of unity and consider the ring A = R[ζ][Γ] with grading A = {Aγ}γ∈Γ where
Aγ =

⊕
β∈Γ βRβ−1γ [ζ]. By Proposition 4.6.8 the ring A is connected. Since

A is a free R-module, we conclude that p is regular but not a unit in A. Note
that Rγ = Aγ ∩R and that x is homogeneous in R if and only if w = ε−1x
is homogeneous in A. Since wp ∈ A1 and 〈γ ∈ Γ |wγ 6= 0〉 ⊆ ∆ ∼= 〈ζ〉, we
may apply Lemma 4.6.10 to w in the grading {Aγ}γ∈∆ to conclude that w
is homogeneous, as was to be shown.

Example 4.6.12. Proposition 4.6.11 is an improvement to Proposition 4.6.5,
with the difference being the relaxation of the assumption that 1 + px be
regular for all x ∈ R to simply p not being a unit. We will show that a
similar relaxation is not possible for Proposition 4.6.3.

Let ` and p be primes with ` | p− 1. Consider R = Z[X]/(X`, `X) with
grading {Z ·Xk}k∈Z/pZ. Note that p is regular but not a unit in R, and that
R is even connected. The element x = 1 + X is an `-th root of unity, so
xp = x. However, x 6∈ R1, as was to be shown.

The following proposition can be used, together with other results from
this section, to show that results from Chapter 5 can be similarly generalized
from orders to rings with properties studied here.

Lemma 4.6.13. Let R be a commutative ring and p ∈ R. If
⋂
n≥1 p

nR = 0,
then 1 + px is regular for all x ∈ R. If R is Noetherian, then the converse
holds.
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Proof. This follows from Theorem 10.17 in [2].

Lemma 4.6.14. Let p be a prime, let R be a commutative ring and let
I ⊆ nil(R) be an ideal. Then:

1. 1 + I is a subgroup of R∗;
2. if I ⊆ R[p∞], then 1 + I ⊆ R∗[p∞];
3. if I[p∞] = 0, then (1 + I)[p∞] = 1.

Proof. 1. For 1 − x ∈ 1 + I we have xm = 0 for some m > 0, hence
(1− x)(1 + x+ · · ·+ xm−1) = 1− xm = 1 and 1− x ∈ R∗.

2. One shows inductively that (1 + x)p
k ∈ 1 + xJk for each x ∈ R and

J = pR+xR. Given x ∈ I we may take k sufficiently large so that xJk = 0
to conclude that 1 + x ∈ R∗[pk].

3. We may replace R by R[1/p], since I[p∞] = 0 implies the restriction
of R → R[1/p] to 1 + I is injective. Thus we replace the assumption that
I[p∞] = 0 by p ∈ R∗. We may also assume without loss of generality that I
is finitely generated. Hence there exists some m such that I2m = 0. We will
prove the lemma with induction on m. For m = 0 the statement becomes
trivial.

Suppose I2m+1
= 0 and consider the ideal K = I2m . The image J of

I in R/K satisfies J2m = 0 and thus (1 + J)[p∞] = 1 by the induction
hypothesis. It remains to show that (1 + K)[p∞] = 1. Note that K2 = 0,
so we have a group isomorphism 1 + K → K given by 1 + x 7→ x. Hence
(1 +K)[p∞] ∼= K[p∞] = 0.

Proposition 4.6.15. Let p be a prime and R a Noetherian commutative
ring such that 1 + px is regular for all x ∈ R. Then nil(R)[p∞] is finite if
and only if µp∞(R) is finite.

Proof. (⇐) This follows from Lemma 4.6.14.2.
(⇒) First suppose R is a domain. For k ≥ 0 write

Ik =
∑

ζ∈µ
pk

(R)

(1− ζ)R.

As R is Noetherian, the chain I0 ⊆ I1 ⊆ · · · stabilizes at index say n.
Because R is a domain we may choose a generator ξ for µpn+1(R), and let
us suppose that it is primitive. As 1−ξa = (

∑a−1
i=0 ξ

i)(1−ξ) for all a ∈ Z≥1,
we conclude that (1 − ξ)R = In+1 = In = (1 − ξp)R. Since (1 − ξ)R 6= 0
we obtain π =

∑p−1
i=0 ξ

i ∈ R∗. But πpn ≡ Φp(ξ
pn) = 0 (mod p). Hence

p | πpn is a unit, which contradicts 1 − pp−1 being regular. We conclude
that µp∞(R) = µpn(R) is finite.
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Consider the case where R is reduced. We have an injective map

R→
∏

p min. prime

R/p.

Note that 1 + px 6∈ p for all x ∈ R and minimal primes p, as each p consists
of only zero divisors (Theorem 3.1 in [12]). As R/p is a domain, it follows
that 1+py is regular for all y ∈ R/p. From the previous case we obtain that
µp∞(R/p) is finite for all p. As R is Noetherian, it has only finitely many
minimal prime ideals (Theorem 7.13 in [2]), and thus µp∞(R) is finite.

Consider the case where p acts regularly on nil(R). Consider the map
R → R/nil(R). The induced map µp∞(R) → µp∞(R/nil(R)) is injective,
because its kernel (1 + nil(R))[p∞] is trivial by Lemma 4.6.14.3. It suffices
that µp∞(R/nil(R)) is finite, which is the reduced case.

Consider the general case where T = nil(R)[p∞] is finite. As before we
consider the quotient map R→ R/T . We have that (1 + T )[p∞] is finite as
T is finite, while R/T satisfies the conditions to the previous case. Hence
µp∞(R) is finite.

Example 4.6.16. It is still possible for a reduced Noetherian commutative
ring R to have infinitely many roots of unity when 1 + px is regular for all
primes p and x ∈ R.

Consider Z[µ0] as in Example 4.5.1 and let R be a localization of Z[µ0]
such that for each prime p there is precisely one prime pp ⊂ R above p.
Clearly R has infinitely many roots of unity. Since each prime p is non-
invertible and R is a domain, the element 1 + px is regular for all x ∈ R.
For a prime p and primitive ζp ∈ µp one shows inductively that, for finite
subgroups 〈ζp〉 ⊆ G ⊂ µ0, the unique prime of S = R ∩Q(G) over p equals
pS + (1 − ζp)S. Hence pp = pR + (1 − ζp)R is finitely generated for all p,
and thus R is Noetherian.

4.7 Algorithms

In this section we describe an algorithm to compute the universal grading of
a special type of order in polynomial time. Recall that we have an encoding
for finitely generated abelian groups. To encode a grading {Rγ}γ∈Γ of an
order, where Γ is a finitely generated abelian group, we specify this group Γ
as well as the group Rγ for all γ such that Rγ 6= 0. By Theorem 1.4 in [17]
we may compute the universal grading of any reduced order, but in general
this does not run in polynomial time. We will restrict to orders generated
by autopotents.
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Definition 4.7.1. Let R be a ring. We call x ∈ R autopotent if xn+1 = x
for some n ∈ Z>0. Write α(R) for the set of autopotents of R.

Lemma 4.7.2. Let S and R be rings. Then:
1. The roots of unity and idempotents of R are autopotent;
2. The product of any two commuting autopotents of R is autopotent;
3. We have µ(R× S) = µ(R)× µ(S) and α(R× S) = α(R)× α(S);
4. Let x ∈ R. Then x ∈ α(R) if and only if there exist an idempotent
e ∈ R and ζ ∈ µ(R) such that x = eζ = ζe;

5. If R is commutative, then R is generated as a ring by α(R) if and only
if its additive group is generated by α(R);

6. As groups, R× S is generated by autopotents if and only if each of R
and S is generated by autopotents;

7. If R is connected, then α(R) = µ(R) ∪ {0}.

Proof. Statements 1, 2 and 3 are trivial.
4. The ‘if’-part follows from 1 and 2. Conversely, suppose xn+1 = x.

Then e = xn satisfies e2 = e, so e is idempotent. Assume without loss of
generality that R = Z[x], so R is commutative. Hence we may decompose
R = eR×(1−e)R. As ex ∈ eR is an n-th root of unity, so is ζ = ex+(1−e) ∈
R. Then x = eζ = ζe.

5. By 2 the set of autopotents is closed under multiplication.
6. Combine 3 with the fact that 0 ∈ α(R) and 0 ∈ α(S).
7. This follows trivially from 4.

Lemma 4.7.3. Let R be an order that is generated as a group by α(R).
Then R is reduced.

Proof. It suffices to prove that K = R ⊗Z Q is reduced, because R → K
is injective. Each x ∈ α(R) has a minimal polynomial in K[X] dividing
Xn+1 − X for some n > 0. In particular x is separable, and consequently
so are all elements of K. As 0 is the only separable nilpotent element, the
lemma follows.

We now equip reduced orders with the (Hilbert) lattice structure as
defined in [34], similar to the Hilbert lattice structure defined on Z.

Definition 4.7.4 (Example 3.4 in [34]). For an order R we define a bilinear
map

〈x, y〉R =
∑

σ∈X(R)

σ(x) · σ(y),

where the sum ranges over all ring homomorphisms from R to C, of which
there are only finitely many.
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Remark 4.7.5. Following Example 3.4 in [34], the order R is reduced if
and only if the map from Definition 4.7.4 is non-degenerate, i.e. 〈x, x〉 = 0
implies x = 0 for all x ∈ R. We have a bijective correspondence

{σ : R→ C} ↔ {(p, σp) | p ⊆ R a minimal prime ideal, σp : R/p→ C}

that sends σ : R→ C to (ker(σ), σ̃) where σ̃ : R/ ker(σ)→ C is given by the
homomorphism theorem, and conversely sends (p, σp) to σp composed with
the projection πp : R→ R/p. Thus for all x, y ∈ R we have

〈x, y〉R =
∑
p⊆R
〈πp(x), πp(y)〉R/p,

where the sum ranges over all minimal prime ideals.

Remark 4.7.6. For an order R which is a domain, i.e. R ⊆ Z, we have now
two lattice structures, namely that of a sublattice of Z and the one from
Definition 4.7.4. However, they are equal up to a factor #X(R). In partic-
ular, the property of orthogonality is the same under either inner product.
One might try to construct a common generalization of both inner products
to subrings of Zn for some n ∈ Z≥0. The following example highlights an
obstruction for this.

Example 4.7.7. For arbitrary reduced ordersR ⊆ S the restriction 〈−,−〉S
to R is not a scalar multiple of 〈−,−〉R, as is the case for the inner product
on Z. Consequently, there is no natural definition of an inner product on
any class of rings that includes both Z and reduced orders.

For R = Z × Z[
√

2] and S = Z[
√

2] × Z[
√

2] the element x = (0,
√

2)
satisfies 〈x, x〉R = 4 = 〈x, x〉S , while y = (1, 1) satisfies 〈y, y〉R = 3 and
〈y, y〉S = 4.

Lemma 4.7.8. For all orders R that are generated as a group by α(R)
we have 〈R,R〉R ⊆ Z. There exists a polynomial-time algorithm that, given
an order R that is generated as a group by α(R) and x, y ∈ R, computes
〈x, y〉R.

Proof. Note that R is reduced by Lemma 4.7.3. Let X be the set of minimal
primes of R. Using Theorem 1.10 in [33] we may compute X and for each
p ∈ X the map R → R/p in polynomial time. Note that as a group, R/p
is generated by α(R/p). Then by the formula of Remark 4.7.5 it suffices
to prove the lemma for the ring R/p. Thus we suppose R is a domain and
consequently α(R) = µ(R) ∪ {0} by Lemma 4.7.2.7. For ζ, ξ ∈ µ(R) and
a ring homomorphism σ : R → C we have σ(ζ) · σ(ξ) = σ(ζξ−1). Thus
〈ζ, ξ〉R =

∑
σ∈X(R) σ(ζξ−1), which is the trace of ζξ−1 from R to Z, and
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hence is an integer. As R is generated as a group by µ(R), it follows that
〈R,R〉R ⊆ Z as well. Moreover, this shows that computing 〈x, y〉R reduces to
computing traces of roots of unity, which clearly can be done in polynomial
time.

Lemma 4.7.9. There exists a polynomial-time algorithm that, given a finite-
dimensional commutative Q-algebra A and a finite set X ⊆ A, computes a
Q-basis Y of the subalgebra B of A generated by X, where each element in
Y is a finite (possibly empty) product of elements of X.

Proof. We will write QY for the vector space generated by Y . The algorithm
proceeds as follows. Start with Y = {1}. Compute the set of products
Z = {xy | x ∈ X, y ∈ Y } and update Y to be a maximal Q-linearly
independent subset of Z ∪ Y containing Y . Repeat this until Y is stable.

Writem for the dimension of B. Suppose in some step QY = Q·(Z∪Y ).
Then Z ⊆ QY , so QY is closed under taking products with X. Since X
generates B as a Q-algebra and 1 ∈ QY by the choice of initial Y , it follows
that QY = B. Note that #Y ≤ m and thus there are at most m steps
in the algorithm. Moreover, in each step #Z ≤ #(X × Y ) is polynomially
bounded in the input length, so in total there are only polynomially many
multiplications. Lastly, note that in step i of the algorithm each element
of Y can be written as a product of i elements from X, and therefore the
encoding of every element has length proportional to at most i times that
of the longest element of X. Hence the multiplications can be carried out
in polynomial time.

Example 4.7.10. Although it is possible to compute α(R) for a reduced
order R, we cannot in general do this in polynomial time, even if R is
connected. Note that for the ring

R = {(ai)i ∈ Zn | (∀ i, j) ai ≡ aj mod 2},

the set {−1, 1}n = µ(R) = α(R) is exponentially large.

Proposition 4.7.11. There exists a polynomial-time algorithm that, given
an order R, computes a set Y ⊆ α(R) such that Z · Y = Z · α(R).

Proof. We may factor R into a product of connected orders in polynomial
time using Algorithm 6.1 in [32]. Combined with Lemma 4.7.2.7 we may
assume R is connected and α(R) = µ(R) ∪ {0}. Apply Theorem 1.2 in [32]
to compute in polynomial time a set X of generators of the group µ(R).
Using Lemma 4.7.9 we may compute a basis Z ⊆ µ(R) for the subalgebra
Q · µ(R) of R ⊗ Q as Q-vector space. We claim that |∆| ≤ n3n/2, where
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∆ = det((TrQ·µ(R)/Q(xy))x,y∈Z) is the discriminant of Z · Z and n = #Z =
dimQ(Q ·µ(R)). This follows from Hadamard’s inequality and the fact that
|Tr(ζ)| ≤ n for ζ ∈ µ(R). In particular, # log2(Z·µ(R)/Z·Z) is polynomially
bounded.

First we set Y = Z. Then we iterate over x ∈ X and y ∈ Y and add xy
to Y whenever xy 6∈ Z ·Y . Once Z ·Y stabilizes we have Z ·Y = Z ·µ(R) and
may return Y . Each new element added to Y decreases log2 #(Z·µ(R)/Z·Y )
by at least 1, so the cardinality of Y and the number of steps taken in the
algorithm are polynomially bounded. Finally, we remark that there is a
polynomial upper bound on the lengths of the encodings of the elements of
Y , since each element is the product of at most #Y elements of X and an
element of Z. Hence the algorithm runs in polynomial time.

Example 4.7.12. If R is an order generated as Z-module by µ(R), then
not every set Y ⊆ µ(R) that generates QR as Q-module also generates
R as a Z-modules. In particular, Lemma 4.7.9 is not sufficient to prove
Proposition 4.7.11. Consider the ring R generated by µ(Z[i]2). Then Y =
{(1, 1), (1,−1), (i, i), (−i, i)} is a basis for QR = Q(i)2. However, (1, i) =
1
2

∑
y∈Y y 6∈ ZY .

Theorem 4.7.13. There exists a polynomial-time algorithm that, given an
order R, decides whether α(R) generates R as a group and if so computes
the universal grading of R.

Proof. Using Algorithm 6.1 in [32] we may factor R into a product of con-
nected orders. By Lemma 4.7.2.3 and Proposition 4.2.6 we may reduce to
the case where R be connected, which we will now assume.

We compute V ⊆ µ(R) as in Proposition 4.7.11. We may then simply
decide whether Z · V = R. Next we note that the elements of V are inde-
composable by Corollary 5.6 in [34], as multiplication by elements of V is
an automorphism of the lattice. We simply construct the graph as in Theo-
rem 2.5.3 for this V and compute its connected components explicitly using
Lemma 4.7.8. Thus we obtain the universal orthogonal decomposition of R.
The universal grading of R, as constructed in the proof of Theorem 1.3 of
[34], can then also be explicitly computed.




