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CHAPTER 3
Indecomposable

algebraic integers
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3.1 Introduction

This chapter is based on [18]. In number theory, in particular the theory
of the geometry of numbers, one equips a number field K with an inner
product, turning any orderR inK into a lattice in R⊗QK. After normalizing
this inner product, we may define it on an algebraic closure Q of Q as

〈α, β〉 =
1

[Q(α, β) : Q]

∑
σ : Q(α,β)→C

σ(α) · σ(β),

where the sum ranges over all ring homomorphisms from Q(α, β) to C. We
write Z for the ring of integers of Q, i.e. the integral closure of Z in Q, and
we call its elements the algebraic integers. Although Z is not of finite rank,
we may still meaningfully call it a lattice in the sense of Chapter 2.

Theorem 3.2.10. The abelian group Z equipped with the inner product
from Definition 3.2.5 is a Hilbert lattice. Its shortest non-zero vectors are
precisely the roots of unity, which all have length 1, and its packing radius,
see Definition 2.6.1, is 1/2.

We will treat this lattice structure on Z as intrinsically interesting. The
theory in this chapter is motivated by the closest vector problem for Z.
Since Z has infinite rank, it may be that a closest vector does not exist.
Formally we ask the question: ‘Does there exist an algorithm that, given
n ∈ Z>0, some r ∈ R>0 ∩ Q and α ∈ Q, decides whether there exist n
distinct elements β ∈ Z such that ‖α − β‖ < r and if so computes n such
β?’ Since Z is enumerable, once we know such β exist we can find them.
However, it is certainly of interest to compute β efficiently. The following
result derived from classical capacity theory by T. Chinburg, for which we
give a direct proof in Section 3.6, answers the question affirmatively for
r > 1.

Corollary 3.6.7. Suppose r ∈ R and α ∈ Q. If r > 1, then there exist
infinitely many β ∈ Z such that ‖α− β‖ < r.

The proof is sufficiently constructive that we are able to derive an al-
gorithm to compute arbitrarily many such β, see Proposition 3.6.10. This
result also gives an upper bound on the covering radius.

Theorem 3.6.9. The covering radius of Z, see Definition 2.6.1, is between
4
√

1/2 and 1.

Our main result is the following theorem, which is complementary to
Corollary 3.6.7.



3.2. The lattice of algebraic integers 39

Theorem 3.11.2. Suppose r ∈ R and α ∈ Q. If r < 4
√

e/4, then there exist
only finitely many β ∈ Z such that ‖α− β‖ < r.

Again, one can algorithmically enumerate all such β, solving the problem
for r < 4

√
e/4. This leaves a gap for r between 4

√
e/4 and 1 for which we do

not know an answer to the decision problem.
Next we consider the related problem of computing the indecomposable

vectors of Z, see Definition 2.4.1. A consequence of Corollary 3.6.7 is that
for every d ∈ Z>0 there exist only finitely many indecomposable algebraic
integers of degree up to d. We will prove the following effective upper and
lower bounds.

Theorem 3.7.7. There are least exp(1
4(log 2)d2 + O(d log d)) and at most

exp(1
2(1 + log 2)d2 +O(d log d)) indecomposable algebraic integers of degree

up to d.

A decomposition of α ∈ Z corresponds to a lattice point with distance
at most ‖α/2‖ to α/2, and non-trivial decompositions exist if and only if
there are at least 3 such lattice points. Hence deciding whether a lattice
point is indecomposable is easier than the closest vector problem. It is also
a good challenge problem for our algorithms. To this end, we derive the
following numerical results.

Theorem 3.14.1. There are exactly 2 indecomposable algebraic integers of
degree 1, there are exactly 14 of degree 2, and there are at least 354 and at
most 588 of degree 3.

It would be interesting to study other lattice invariants of Z, but most
constructions seem to fail to generalize to infinite rank, like the determinant
and the dual lattice. One that does survive is the isometry group. For Z it
certainly contains µ(Z)oGal(Q/Q), see Lemma 3.2.13, but we do not know
whether that is all.

3.2 The lattice of algebraic integers

We will write Q for an algebraic closure of Q. An algebraic integer is an
element α ∈ Q for which there exists a monic f ∈ Z[X] such that f(α) = 0.
The algebraic integers form a subring of Q, which we denote Z. In this
section we will prove that Z together with a natural choice of square-norm
is a Hilbert lattice.

Definition 3.2.1. For a ring K we define the fundamental set to be the
set X(K) of ring homomorphisms from K to C. For a ring L with subring
K and σ ∈ X(K) we define Xσ(L) = {ρ ∈ X(L) | ρ|K = σ}.
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Lemma 3.2.2. Let α ∈ Q and Q(α) ⊆ L ⊆ Q subfields with [L : Q] < ∞.
Then the quantities∏

σ∈X(L)

|σ(α)|1/[L:Q] and
1

[L : Q]

∑
σ∈X(L)

|σ(α)|2

are in R≥0, equal to zero if and only if α = 0, and do not depend on the
choice of L.

Definition 3.2.3. We define the maps N, q : Q→ R≥0 by

N(α) =
∏

σ∈X(Q(α))

|σ(α)|1/[Q(α):Q] and

q(α) =
1

[Q(α) : Q]

∑
σ∈X(Q(α))

|σ(α)|2.

Lemma 3.2.4. For α, β ∈ Q we have q(α+β) + q(α−β) = 2q(α) + 2q(β).

Proof. By Lemma 3.2.2 the restriction of q to L = Q(α, β) is given by
q(γ) = 1

[L:Q]

∑
σ∈X(L) |σ(γ)|2. The norm | · | on C satisfies the parallelogram

law and we may apply this term-wise to the sum defining q to obtain the
lemma.

Definition 3.2.5. For α, β ∈ Q we write 〈α, β〉 for the inner product on Q
induced by q as given by Theorem 2.2.5 and Lemma 3.2.4. Explicitly, it is
given by

〈α, β〉 =
1

[L : Q]

∑
σ∈X(L)

σ(α)σ(β)

for any field Q(α, β) ⊆ L ⊆ Q with [L : Q] <∞.

Lemma 3.2.6 (AM-GM inequality, Theorem 5.1 in [7]). Let n ∈ Z≥1 and
x1, . . . , xn ∈ R≥0. Then

n
√
x1 · · ·xn ≤

x1 + · · ·+ xn
n

,

with equality if and only if x1 = x2 = · · · = xn.

Definition 3.2.7. An element δ ∈ Q is called uniform if |σ(δ)| = |τ(δ)| for
all σ, τ ∈ X(Q).

Lemma 3.2.8. For all α ∈ Q we have N(α)2 ≤ q(α) with equality if and
only if α is uniform.
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Proof. This follows from a straightforward application of Lemma 3.2.6:

q(α) =
1

[Q(α) : Q]

∑
σ∈X(Q(α))

|σ(α)|2

≥
( ∏
σ∈X(Q(α))

|σ(α)|2
)1/[Q(α):Q]

= N(α)2,

with equality if and only if |σ(α)|2 = |ρ(α)|2 for all σ, ρ ∈ X(Q(α)).

Proposition 3.2.9. If α ∈ Z, then q(α) ≤ 1 if and only if α = 0 or α is a
root of unity. If α is a root of unity, then q(α) = 1.

Proof. Let α ∈ Z. The ‘if’ part of the implication follows directly from the
definition. For the ‘only if’ part, suppose α is non-zero. If q(α) ≤ 1, then
N(α)2 ≤ 1 by Lemma 3.2.8. Then N(α)[Q(α):Q] = |NQ(α)/Q(α)| ∈ Z≥1, so
N(α)2 = q(α) = 1. By Lemma 3.2.8 we have |σ(α)| = 1 for all σ ∈ X(Q(α)),
so α is a root of unity by Kronecker’s theorem (Corollary 5.6 in [38]).

Theorem 3.2.10. The abelian group Z equipped with the inner product
from Definition 3.2.5 is a Hilbert lattice. Its shortest non-zero vectors are
precisely the roots of unity, which all have length 1, and its packing radius,
see Definition 2.6.1, is 1/2.

Proof. By Lemma 3.2.4 and Proposition 3.2.9 respectively the group Z to-
gether with q satisfies the parallelogram law and is discrete, so indeed it
is a Hilbert lattice. The remaining statements follow also from Proposi-
tion 3.2.9.

We may write ‖x‖ for
√
q(x), the 2-norm of x ∈ Q. Similarly, we may

think of N(x) as the 0-norm of x, in the sense that limp→0 ‖x‖p = N(x).

Lemma 3.2.11. Suppose α, δ ∈ Q and δ is uniform. Then q(αδ) = q(α)q(δ).
If also α, δ ∈ Z and αδ is indecomposable, then α is indecomposable.

Proof. Let L ⊇ Q(α, δ). Then for all σ ∈ X(L) we have q(δ) = |σ(δ)|2.
Moreover,

q(αδ) =
1

[L : Q]

∑
σ∈X(L)

|σ(αδ)|2 =
1

[L : Q]

∑
σ∈X(L)

|σ(α)|2 · q(δ) = q(α)q(δ).

Now suppose α, δ ∈ Z and let (β, γ) ∈ dec(α). Then αδ = βδ + γδ and

q(αδ) = q(α)q(δ) ≥ (q(β) + q(γ))q(δ) = q(βδ) + q(γδ),
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so (βδ, γδ) ∈ dec(αδ). If αδ is indecomposable, then δ 6= 0 and 0 ∈ {βδ, γδ},
so 0 ∈ {β, γ} and (β, γ) must be a trivial decomposition. Hence α is inde-
composable.

Definition 3.2.12. Write µ∞ for the group of roots of unity in Z and
Gal(Q) for the group of ring automorphisms of Q. Note that Gal(Q) natu-
rally acts on µ∞, and write µ∞oGal(Q) for their semi-direct product with
respect to this action.

Lemma 3.2.13. The group µ∞oGal(Q) acts faithfully on the Hilbert lattice
Z, where µ∞ acts by multiplication and Gal(Q) by application.

Proof. Let α ∈ Z, ζ ∈ µ∞ and ρ ∈ Gal(Q). Let K be the normal closure of
Q(ζ, α) and n = [K : Q].

First we show that the individual group actions on Z are well-defined.
Clearly ζα ∈ Z and note that ζ is uniform with q(ζ) = 1. Hence multiplica-
tion by ζ is an isometry, i.e. preserves length, by Lemma 3.2.11. Recall that
automorphisms preserve integrality and thus ρ(α) ∈ Z. Since K is normal
over Q we have ρK = K and thus X(K) ◦ ρ = X(K). Hence applying ρ
to α simply results in a reordering of the terms in the sum defining q with
respect to K, and thus ρ is an isometry.

Note that for (χ, σ), (ξ, τ) ∈ µ∞ oGal(Q) we have

(χ, σ)
(
(ξ, τ)α

)
= χ · σ(ξ · τ(α)) = (χσ(ξ))((στ)(α)) =

(
(χ, σ) · (ξ, τ)

)
α,

so the semi-direct product acts on Z as well. Finally, suppose (ζ, ρ) acts as
the identity. Note that Gal(Q) fixes 1, so letting (ζ, ρ) act on 1 shows that
ζ = 1, and thus ρ = id. Hence the action is faithful.

Question 3.2.14. Is µ∞ oGal(Q) the entire isometry group of Z?

Proposition 3.2.15. Let α ∈ Z, r ∈ Z≥0 and s ∈ Z>0 such that r/s ≤ 1.
Then any root β of Xs − αr satisfies q(β) ≤ q(α)r/s.

Proof. Let β be a root of Xs − αr, let K = Q(α, β) and n = [K : Q]. The
case r = 0 follows from Proposition 3.2.9, so suppose r > 0. Then

q(β) =
1

n

∑
σ∈X(K)

|σ(β)|2 =
1

n

∑
σ∈X(K)

|σ(βs)|2/s =
1

n

∑
σ∈X(K)

|σ(αr)|2/s

=
1

n

∑
σ∈X(K)

(
|σ(α)|2

)r/s ≤ ( 1

n

∑
σ∈X(K)

|σ(α)|2
)r/s

= q(α)r/s,

where the inequality is n−1/r‖x‖r ≤ n−1/s‖x‖s from Lemma 2.2.14 applied
to the vector x = (|σ(α)|2/s)σ∈X(K), using that 0 < r ≤ s.
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3.3 Indecomposable algebraic integers

We will now focus on the indecomposables of the lattice Z.

α

0 1

i

β

γ

Figure 3.1: Integral α = 1
2(1 + i

√
7) with q(α) = 2.

Proposition 3.3.1. Let α ∈ Z. If 0 < q(α) < 2, then α is indecomposable.
If q(α) = 2, then α is decomposable if and only if it is the sum of two
roots of unity. Such roots of unity are necessarily orthogonal, unique up to
reordering, and of degree at most 2 over Q(α).

Proof. If 0 < q(α) < 2, then α is indecomposable by combining Theo-
rem 3.2.10 and Lemma 2.4.4. Suppose q(α) = 2. If α = ζ + ξ for roots of
unity ζ, ξ ∈ Q, then q(α) = 2 = q(ζ)+q(ξ), so (ζ, ξ) ∈ dec(α) is non-trivial.
Conversely, suppose (β, γ) ∈ dec(α) is non-trivial. By Theorem 3.2.10 we
have q(β), q(γ) ≥ 1. Then 0 ≤ q(α)− q(β)− q(γ) = 2− q(β)− q(γ) ≤ 0, so
we must have q(β) = q(γ) = 1. It follows that β and γ are orthogonal, and
by Proposition 3.2.9 they are roots of unity.

Suppose (β, γ) ∈ dec(α) is non-trivial. For any σ ∈ X(Q(α)) and ρ ∈
Xσ(Q(α, β)) the points 0, ρ(α), ρ(β) and ρ(γ) form the vertices of a rhom-
bus with unit length sides, as can be seen in Figure 3.1. It follows that
{ρ(β), ρ(γ)} is uniquely determined by ρ(α) = σ(α). As ρ is uniquely de-
termined by ρ(β) there are at most two elements in Xσ(Q(α, β)), in other
words [Q(α, β) : Q(α)] ≤ 2.

Remark 3.3.2. Proposition 3.3.1 gives us a way to decide whether an
α ∈ Z with q(α) = 2 is indecomposable, as it puts an upper bound on the
degree of the roots of unity, leaving only finitely many to check. Knowledge
of Q(α) can further reduce this number.

Example 3.3.3. There exist α ∈ Z with q(α) = 2 which are indecompos-
able. Consider f = X2−X+ 2 with root α ∈ Z, as in Figure 3.1. Note that
the roots of f in C are 1

2(1± i
√

7) with absolute value 1
2

√
12 + 7 =

√
2, so

q(α) = 2. Suppose (β, γ) ∈ dec(α) is a non-trivial decomposition. Proposi-
tion 3.3.1 shows that β and γ are roots of unity. Note that |α2| = 2 under
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all embeddings of α in C, and α2 = |α|2 ·βγ. Hence α2/2 = 1
2α− 1 is a root

of unity. Either one notes that α2/2 is not even integral, or that α2/2 = ±1,
as those are the only roots of unity in Q(α), which is clearly absurd. Hence
we have a contradiction and α is indecomposable.

Lemma 3.3.4. Let Q ⊆ K ⊆ L ⊆ Q be fields with [L : Q] < ∞. Then for
all α ∈ K and β ∈ L we have

[L : K] · 〈α, β〉 = 〈α,TrL/K(β)〉.

Proof. Recall for σ ∈ X(K) the definition Xσ(L) = {ρ ∈ X(L) | ρ|K = σ}
from Definition 3.2.1. For all σ ∈ X(K) and β ∈ L we have σ(TrL/K(β)) =∑

ρ∈Xσ(L) ρ(β). Then with α ∈ K and β ∈ L we have

[L : K] · 〈α, β〉 =
[L : K]

[L : Q]

∑
σ∈X(K)

∑
ρ∈Xσ(L)

ρ(α)ρ(β)

=
1

[K : Q]

∑
σ∈X(K)

σ(α)
∑

ρ∈Xσ(L)

ρ(β)

=
1

[K : Q]

∑
σ∈X(K)

σ(α)σ(TrL/K(β))

= 〈α,TrL/K(β)〉,

as was to be shown.

One could phrase Lemma 3.3.4 in terms of adjoint linear maps. For
number fields K ⊆ L, the linear map tL/K = [L : K]−1 · TrL/K : L → K,
the trace, is adjoint to the inclusion K → L with respect to the induced
inner products.

Proposition 3.3.5. Roots of unity ζ, ξ ∈ Z are orthogonal, i.e. 〈ζ, ξ〉 = 0,
if and only if ζ−1ξ does not have square-free order.

Proof. Let K = Q(ζ−1ξ). We have [K : Q] · 〈ζ, ξ〉 = [K : Q] · 〈1, ζ−1ξ〉 =
TrK/Q(ζ−1ξ) by Lemma 3.2.13 and Lemma 3.3.4. Recall that the trace of an
n-th root of unity equals µ(n), the Möbius function, which is zero precisely
when n has a square divisor in Z>1.

For α, β ∈ Z we say β divides α, and write β | α, if there exists some
γ ∈ Z such that α = βγ. We write β - α if β does not divide α. Recall from
Definition 3.2.7 that for δ ∈ Z we say δ is uniform if |σ(δ)| = |τ(δ)| for all
σ, τ ∈ X(Q).
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Proposition 3.3.6. If α ∈ Z is such that
√

2 | α or
√

3 | α, then α 6∈
indec(Z).

Proof. Let ζ ∈ Q be a primitive 8-th root of unity, which we may choose
such that ζ + ζ−1 =

√
2. Thus (ζ, ζ−1) ∈ dec(

√
2), because 〈ζ, ζ−1〉 = 0 by

Proposition 3.3.5. Moreover,
√

2, ζ and ζ−1 are all uniform. For any β ∈ Z
we get from Lemma 3.2.11 that

q(ζβ) + q(ζ−1β) = (q(ζ) + q(ζ−1)) · q(β) = q(
√

2) · q(β) = q(
√

2β),

so
√

2β has a non-trivial decomposition.
With ξ a primitive twelfth root of unity we have ξ+ξ−1 =

√
3 with ξ, ξ−1

and
√

3 uniform. We have a decomposition because 〈ξ, ξ−1〉 = 〈1, ξ−2〉 =
1
2 ≥ 0, so the argument from before applies.

Lemma 3.3.7. If α ∈ Z is such that
√

2 - α | 2 and α is uniform, then
α ∈ indec(Z).

Proof. By assumption we may write 2 = αγ for some non-zero γ ∈ Z. Note
that γ is not a unit, since otherwise

√
2 | 2 | α. Now let (β, α−β) ∈ dec(α).

Then by Lemma 2.4.3 and Lemma 3.2.11 we have q(α) ≥ q(α − 2β) =
q(α − αβγ) = q(α) · q(1 − βγ), so q(1 − βγ) ≤ 1. As γ is not a unit we
have βγ 6= 1, so βγ = 1 − ζ for some root of unity ζ of order say n by
Proposition 3.2.9. Suppose n is not a power of 2. Then 1 − ζ and 2 are
coprime. As 2 | 2β = α(1− ζ) we have that 2 | α, which contradicts

√
2 - α.

Hence n is a power of 2. If n > 2, then 1− ζ |
√

2 so
√

2 | α, which is again
a contradiction. Therefore n = 1 or n = 2, which correspond to the trivial
decompositions with β = 0 and β = α respectively. We conclude that α is
indecomposable.

Proposition 3.3.8. It holds that

2
√

2 ≤ sup{q(α) |α ∈ Z is indecomposable}.

Proof. We will prove that for each r ∈ Q∩ [1, 3/2) there exists α ∈ indec(Z)
such that q(α) = 2r.

Consider β = 1+
√
−7

2 as in Example 3.3.3 and write β = 1 − β for its
conjugate. Write r = a

b with integers a ≥ b > 0 and let γ ∈ Z be a zero of
Xb − β. Now take α = β · γa−b. We will show α satisfies the conditions to
Lemma 3.3.7. Because |σ(α)| = |σ(β)|r = 2r/2 for all σ ∈ X(Q), and hence
α is uniform, we then have that α is indecomposable and q(α) = 2r.

Note that α · γ2b−a = β · β = 2, so α | 2. Let v : K → R ∪ {∞} be a
valuation over 2 for some number field K which is Galois over Q containing
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the relevant elements. Because 0 = v(1) = v(β + β) ≥ min{v(β), v(β)}, we
have v(β) = 0 or v(β) = 0. By potentially composing v with an automor-
phism swapping β and β we obtain a valuation v′ such that v′(β) = 0.
We have 1 = v′(2) = v′(β · β) = v′(β) and thus v′(γ) = 1/b. Then
v′(α) = r − 1 < 1/2 = v′(

√
2), from which we conclude that

√
2 - α.

Thus α satisfies the conditions to Lemma 3.3.7, as was to be shown.

3.4 Enumeration of degree-2 indecomposables

The indecomposables of Z of degree 1 are 1 and −1. In this section we
compute the indecomposables of degree 2. The fields of degree 2 over Q are
Q(
√
d) for d ∈ Z \ {1} square-free. The following lemma is easily verified by

separating the cases d negative and positive.

Lemma 3.4.1. Let d ∈ Z \ {1} be square-free and let a, b ∈ Q. Then
q(a+ b

√
d) = a2 + |d| · b2.

Lemma 3.4.2. Let α ∈ Z and suppose one of the following holds:
1. the real part of α2 is at least 2 under every embedding Q(α)→ C;
2. the real part of α2 is at most −2 under every embedding Q(α)→ C;
3. α = (1 +

√
d)/2 with d ∈ Z square-free such that 9 ≤ d ≤ 25.

Then α has a non-trivial decomposition in a degree 2 extension of Q(α).

Proof. LetK = Q(α) and γ = α2/4. Let f = X2−αX+1 ∈ K[X], let β ∈ Z
be a root of f and write L = K(β). Then (β − α/2)2 = β2 − αβ + α2/4 =
α2/4 − 1 = γ − 1. For 1 and 3 we will show q(β − α/2) ≤ q(α/2). Then
(β, α− β) is a decomposition of α by Lemma 2.4.3, and since neither 0 nor
α is a root of f we conclude that this decomposition is non-trivial.

1. Let σ ∈ X(L). For δ ∈ L write Reσ(δ) and Imσ(δ) for the real
respectively imaginary part of σ(δ). By assumption Reσ(γ) ≥ 1/2. Thus
Reσ(γ− 1)2 = (Reσ(γ)− 1)2 ≤ Reσ(γ)2. As Imσ(γ− 1)2 = Imσ(γ)2 we may
conclude that |σ(γ − 1)| ≤ |σ(γ)|. Then

q(β − α/2) =
1

[L : Q]

∑
σ∈X(L)

|σ(γ − 1)| ≤ 1

[L : Q]

∑
σ∈X(L)

|σ(γ)| = q(α/2),

as was to be shown.
2. Let i ∈ Q be a primitive fourth root of unity. Then iα satisfies the

conditions to 1, hence it has a non-trivial decomposition (β, iα−β), where β
is a root ofX2−iαX+1. In turn, (−iβ, α+iβ) is a non-trivial decomposition
of α, where −iβ is a root of X2 − αX − 1. In particular −iβ is of degree at
most 2 over Q(α).
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3. Since d > 0 the field K is totally real. Let γ1, γ2 ∈ R be the images
of γ under X(K) such that γ1 < γ2. Because 9 ≤ d ≤ 25 we have γ1 =
(
√
d− 1)2/16 ≤ 1 and γ2 = (

√
d+ 1)2/16 ≥ 1. Hence

q(β − α/2) =
1

2

(
|γ1 − 1|+ |γ2 − 1|

)
=

1

2

(
(1− γ1) + (γ2 − 1)

)
=

2
√
d

16
≤ 1 + d

16
= q(α/2),

as was to be shown.

Theorem 3.4.3. The indecomposable elements of Z of degree 2 up to con-
jugacy and sign are

√
−1, 1+

√
−7

2 , 1+
√
−3

2 and 1+
√

5
2 , for a total of 14 inde-

composables.

Proof. First note that the 4 listed elements indeed are indecomposable: We
treated (1 +

√
−7)/2 in Example 3.3.3, and the remaining 3 have square-

norm less than 2, so Proposition 3.3.1 applies. Since conjugation and multi-
plication by −1 are isometries by Lemma 3.2.13, all 14 are indecomposable.

Let α ∈ Z be of degree 2 over Q. It remains to show that α, up to
conjugation and sign, admits a non-trivial decomposition or is one of the
4 listed indecomposables. Since α is of degree 2 over Q it is an element of
Q(
√
d) for some square-free d ∈ Z\{1}. Then we may write α = (a+b

√
d)/2

for some a, b ∈ Z with a+ b ∈ 2Z and by conjugating and changing sign we
may assume a, b ≥ 0. If a ≥ 2 we have

q(α/2−1) =
(a

4
−1
)2

+ |d|
( b

4

)2
=
((a

4

)2
+ |d|

( b
4

)2)
+
(

1− a
2

)
≤ q(α/2),

so (1, α − 1) is a decomposition of α. Since α 6= 1, this decomposition is
non-trivial. Similarly we get a decomposition (

√
d, α−

√
d) if b ≥ 2, so either

this decomposition is non-trivial or α =
√
d.

First suppose α =
√
d. If |d| < 2 then d = −1, and

√
−1 is listed. Oth-

erwise α2 = d satisfies the hypotheses of Lemma 3.4.2.1 or Lemma 3.4.2.2,
so
√
d is not indecomposable.

For α 6=
√
d the remaining cases are α = (1 +

√
d)/2, which is integral

only if d ≡ 1 mod 4. If d ≤ −9 the real part of α2 is (1 + d)/4 ≤ −2
under either embedding, so α satisfies the conditions to Lemma 3.4.2.2. If
−9 < d < 9 we have d ∈ {−7,−3, 5} and thus α = (1 +

√
d)/2 is listed. For

9 ≤ d ≤ 25 we may apply Lemma 3.4.2.3. The remaining case is 25 < d,
where we have that σ(α2) = [(1 ±

√
d)/2]2 ≥ (

√
d − 1)2/4 ≥ 2 for all

σ ∈ X(Q(
√
d)), so Lemma 3.4.2.1 applies. Hence α is either listed or not

indecomposable.
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It is interesting to note that all non-trivial decompositions of α ∈ Z of
degree 2 over Q that are produced in Theorem 3.4.3 live in a field extension
of degree at most 2 over Q(α).

3.5 Geometry of numbers

In this section we gather some known results about the geometry of num-
bers.

Definition 3.5.1. Let K be a number field. We write KR = R ⊗Q K and
KC = C⊗Q K.

Recall for a number field K the definition of X(K), the set of ring
homomorphisms from K to C.

Lemma 3.5.2. We have an isomorphism of C-algebras ΦK : KC → CX(K)

given by
ΦK(z ⊗ α) = (z · σ(α))σ∈X(K).

We have a natural inclusion KR → KC → CX(K), and its image is given by
the subspace of elements invariant under the involution (xσ)σ 7→ (xσ)σ. This
inclusion induces an isomorphism of R-algebras KR ∼= Rr ×Cs for integers
r, s ≥ 0 such that r = #{σ ∈ X(K) |σ[K] ⊆ R} and r + 2s = [K : Q].

Definition 3.5.3. We equip KC with the inner product induced by the
standard Hermitian inner product on CX(K) and KR with its restriction,
turning KR into a real inner product space. Since KR is an inner product
space we have an induced measure on KR we denote vol.

Remark 3.5.4. For a number field K and α ∈ K we have

‖α‖2 =
1

[K : Q]
‖ΦK(α)‖2.

In fact, KR is the universal Hilbert space of the lattice Z∩K. Note that the
norm on KR is not the ‘standard’ norm on Rr × Cs. In terms of the latter
vector space it is given by

(x1, . . . , xr, z1, . . . , zs) 7→
√
|x1|2 + · · ·+ |xr|2 + 2|z1|2 + · · ·+ 2|zs|2.

Theorem 3.5.5 (Proposition 4.26 in [38]). Let R be an order in a number
field K. Then ΦK [R] is a full rank lattice in KR with determinant |∆(R)|1/2,
where ∆(R) is the discriminant of R.

Definition 3.5.6. For a commutative ring R and d ∈ Z≥0 we write R[X]d =
{f ∈ R[X] | deg(f) < d}.
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Lemma 3.5.7. The functor −[X]d commutes with finite products.

Lemma 3.5.8. For a number field K we have an isomorphism of real vec-
tor spaces KR[X]d ∼= (R[X]d)

r × (C[X]d)
s for all d ∈ Z≥0 induced by the

isomorphism KR ∼= Rr × Cs of Lemma 3.5.2.

Theorem 3.5.9 (Minkowski, Theorem 4.19 in [38]). Let n ∈ Z≥0, let Λ ⊆
Rn be a full rank lattice and let S ⊆ Rn be a symmetric convex body. If
vol(S) > 2n det(Λ), then there exists a non-zero element in Λ ∩ S.

Definition 3.5.10. For all α ∈ Q the set X(Q) · α is finite. Hence we may
equip Q with the max-norm

|x|∞ = max
σ∈X(Q)

|σ(x)|.

We extend this definition to the universal Hilbert space containing Q, and
in turn restrict it to KC and KR for any number field K.

Lemma 3.5.11. For α ∈ Q we have ‖α‖ ≤ |α|∞ and for n ≥ 0 we have
|αn|∞ = |α|n∞.

3.6 Szegő capacity theory

In this section we will give a proof of a specialization of a theorem on ca-
pacity theory due to Szegő. As a corollary (Corollary 3.6.7) to this theorem
T. Chinburg derives a solution to the closest vector problem for large radii
as discussed in the introduction of this chapter. We will present the proof
in a manner to be explicit enough to derive an algorithm.

Definition 3.6.1. Let X be a metric space with metric d and let S ⊆ X
be a subset. A rounding function from X to S is a map b·e : X → S for
which there exists some constant ε ∈ R≥0 such that for all x ∈ X we have
d(x, bxe) ≤ ε. We call such an ε an error constant for b·e.

Example 3.6.2. For Z in Q with the metric induced by the usual absolute
value we may round to a nearest integer, giving a rounding function with
error constant 1/2. For a naive rounding map for an arbitrary order R with
basis (αi)i of a number field K with metric induced by q we may simply
send

∑
i xiαi ∈ K with xi ∈ Q to

∑
ibxieαi ∈ R. An error constant for this

rounding function is for example 1
2

∑n
i=1 |αi|∞. The same method works for

R in KR.
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Definition 3.6.3. Let A be a commutative ring, let c ∈ A, and let | · | be
a norm on A. We define the induced c-norm on A[X] to be the norm

f =

∞∑
k=0

fk · (X − c)k =

∞∑
k=0

fkY
k 7→ max

k
|fk|

for Y = X−c. Let R ⊆ A be a subring and [·] : A→ R a rounding function.
We say this rounding function is translation invariant if [a+ r] = [a] + r for
all a ∈ A and r ∈ R. We recursively define the induced rounding function
with respect to c to be the rounding function b·e : A[X]→ R[X] with respect
to the c-norm on A[X] given by b0e = 0 and

baXn + fe 7→ [a]Xn +
⌊
(a− [a])(Xn − Y n) + f

⌉
for all a ∈ A and f ∈ A[X]n.

We will verify that this is indeed a rounding function.

Proposition 3.6.4. Using the same notation as in Definition 3.6.3, the
map b·e : A[X]→ R[X] is a rounding function with the same error constant
as the rounding function [·] : A → R. If the latter is translation invariant,
then so is the former.

Proof. Let ε be the error constant for [·] and Y = X− c. We with induction
on n that b·e restricts to a rounding function A[X]n+1 → R[X]n+1 with
error constant ε. Clearly ‖0− b0e‖ = 0 ≤ ε. Suppose n ∈ Z≥0 and consider
aXn + f for a ∈ A and f ∈ A[X]n. Write

g = (a− [a])(Xn − Y n) + f ∈ A[X]n.

Then by the induction hypothesis

‖f − bfe‖ = ‖(a− [a])Y n + (g − bge)‖ = max{|a− [a]|, ‖g − bge‖} ≤ ε,

as was to be shown. Hence b·e : A[X] → R[X] is a rounding function with
error constant ε.

Suppose [·] is translation invariant. To show b·e is translation invariant,
it suffices to show with induction to n that for all a ∈ A, b ∈ R, f ∈ A[X]n
and g ∈ R[X]n we have b(aXn + f) + (bXn + g)e = baXn + fe+ (bXn + g).
The base case reduces to translation invariance of [·]. For n ≥ 0 we have

b(aXn + f) + (bXn + g)e
= [a+ b]Xn + b((a+ b)− [a+ b])(Xn − Y n) + f + ge
= ([a] + b)Xn + b(a− [a])(Xn − Y n) + fc+ g

= baXn + ge+ (bXn + g),

as was to be shown.
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Recall the the max-norm from Definition 3.5.10.

Theorem 3.6.5 (Szegő). Let R be an order of a number field K and let
r > 1. Then for each c ∈ K there exists a monic non-constant g ∈ R[X]
such that for all z ∈ KC satisfying |g(z)|∞ < r we have |z − c|∞ < r.

This theorem is a special case of a theorem of Szegő, adapted from [40].
For simplicity we take c ∈ K instead of c ∈ KR. The proof of this theorem
will be sufficiently constructive that one can easily distill an algorithm from
it.

Proof. Let [·] : K → R be some translation invariant rounding function, for
example as in Example 3.6.2, and let ε be its error constant. Let b·e be the
induced rounding function with respect to c. Let d ∈ Z>0 such that dc ∈ R,
which exists since c ∈ QR. Successively choose b, n ∈ Z>0 such that

(1) 2εr−b ≤ r − 1, (2) b! · db | n and (3) rn−1 ≥ 2.

We claim g = b(X − c)ne satisfies the conclusion to the theorem.
Write f = (X−c)n =

∑
k fkX

k. It follows from (2) that for all k ≤ b we
have dk | b!dbk! |

(
n

n−k
)
. Hence for all k ≥ n− b we have fk =

(
n

n−k
)
cn−k ∈ R.

Thus by translation invariance we have e : = f − g ∈ K[X]n−b. Let X(K)
act on K[X] coefficient-wise and fix σ ∈ X(K). Let z ∈ C such that s :=
|z − σ(c)| ≥ r. Then∣∣∣∣ σ(e)(z)

σ(f)(z)

∣∣∣∣ ≤ s−n n−b−1∑
i=0

ε · si ≤ εs−b

s− 1
≤ cr−b

r − 1

(1)

≤ 1

2
.

It follows that ∣∣∣∣σ(g)(z)

σ(f)(z)

∣∣∣∣ =

∣∣∣∣1− σ(e)(z)

σ(f)(z)

∣∣∣∣ ≥ 1

2
and

|σ(g)(z)| ≥ |σ(f)(z)|
2

≥ rn

2

(3)

≥ r.

Thus, if |σ(g)(z)| < r, then |z − σ(c)| < r. Taking the maximum over all
σ ∈ X(K) proves the theorem for c ∈ K.

Theorem 3.6.6 (Szegő). Suppose r ∈ R and α ∈ Q. If r > 1, then there
exist infinitely many β ∈ Z such that |α− β|∞ < r.

Proof. Consider K = Q(α) and let R ⊆ K be some order of K. By Theo-
rem 3.6.5 there exists some monic non-constant g ∈ R[X] such that for all
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z ∈ KC satisfying |g(z)|∞ < r we have |z − α|∞ < r. Now gn − 1 ∈ R[X] is
monic and non-constant for all n ∈ Z≥1, so

S = {β ∈ Z | (∃n ∈ Z≥1) gn(β) = 1}

is infinite. Let β ∈ S and L = K(β). It suffices to show that |α− β|∞ < r.
We have that

|g(β)|n∞ = |g(β)n|∞ = |1|∞ = 1,

so |g(β)|∞ < r. Thus by definition of g we have |α− β|∞ < r.

Combined with Lemma 3.5.11 we obtain the following.

Corollary 3.6.7. Suppose r ∈ R and α ∈ Q. If r > 1, then there exist
infinitely many β ∈ Z such that ‖α− β‖ < r.

Proposition 3.6.8. If α ∈ Z satisfies ‖α‖ > 2, then α has infinitely many
decompositions in Z.

Proof. Let γ = α/2. By Corollary 3.6.7 there are infinitely many β ∈ Z
such that ‖γ− β‖ < ‖γ‖ as ‖γ‖ = ‖α‖/2 > 1. By Lemma 2.4.3 each such β
gives a decomposition (β, α− β) of α.

It follows from this proposition, as we will show later in the form of
Proposition 3.7.4, that there are only finitely many indecomposables in Z
of a given degree.

Theorem 3.6.9. The covering radius of Z, see Definition 2.6.1, is between
4
√

1/2 and 1.

Proof. By Proposition 3.3.8 we have 23/4 ≤ sup{‖α‖ |α ∈ indec(Z)} and
consequently we get the lower bound 2−1/4 ≤ sup{‖α/2‖ |α ∈ indec(Z)}.
For any α ∈ indec(Z) we have by Lemma 2.4.3 for all x ∈ Z that ‖α/2‖ ≤
‖α/2 − x‖, and thus α/2 ∈ Vor(Z) by Corollary 2.6.12. Therefore 2−1/4 ≤
r(Z) by Proposition 2.6.10. For all r > 1 and α ∈ Q there exist β ∈ Z
such that ‖α − β‖ < r by Corollary 3.6.7. Taking the limit of r down to
1 and noting that Q = Q · Z is dense in the Hilbert space of Z proves the
theorem.

Proposition 3.6.10. There exists an algorithm that, given n ∈ Z>0, some
r ∈ R ∩Q and α ∈ Q, decides whether r > 1 and if so computes n distinct
β ∈ Z such that ‖α− β‖ < r, each represented by their minimal polynomial
over Q(α).
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Proof. Since r ∈ Q we may decide whether r = 1, and if it is not we may
approximate r to arbitrary precision so that we may decide whether r > 1.
We may compute an error constant ε ∈ Q>1 for the rounding function and
then the polynomial g as in Theorem 3.6.5. For sufficiently many m we then
compute the irreducible factors of gm−1 over Q(α) as in [31], following the
proof of Theorem 3.6.6.

Corollary 3.6.11. There is an algorithm that takes as input an n ∈ Z≥0

and an element α ∈ Z given by its minimal polynomial, and decides whether
‖α‖ > 2 and if so computes n non-trivial decompositions (β, γ) ∈ dec(α),
each represented by the minimal polynomial of β over Z[α].

Proof. We apply Proposition 3.6.10 with α/2 in the place of α and ‖α/2‖
in the place of r. Note that r ∈ R ∩Q.

3.7 Bounds on indecomposable algebraic integers

In this section we will prove an effective upper bound on the total number
of indecomposable algebraic integers of a given degree. In particular, we will
show that this number is finite. We do this by constructing a complete list
of candidates for indecomposability among all algebraic integers of given
degree. We also give a lower bound on the number of indecomposables.

Proposition 3.7.1. Suppose α ∈ indec(Z) has minimal polynomial f =∑n
k=0 fn−kX

k ∈ Z[X]. Then |fk| ≤
(
n
k

)
2k for all 0 ≤ k ≤ n.

Proof. Let α1, . . . , αn ∈ C× be the roots of f . We have Maclaurin’s inequal-
ities (Theorem 11.2 in [7])

s1 ≥ s1/2
2 ≥ s1/3

3 ≥ · · · ≥ s1/n
n , where sk =

(
n

k

)−1

·
∑

I⊆{1,...,n}
|I|=k

∏
i∈I
|αi|.

By Proposition 3.6.8 we have that ‖α‖ ≤ 2. Then by Lemma 2.2.14 we have

s1 =
1

n

∑
i

|αi| ≤
( 1

n

∑
i

|αi|2
)1/2

= ‖α‖ ≤ 2.

Then |fk| ≤
(
n
k

)
sk ≤

(
n
k

)
sk1 ≤

(
n
k

)
2k for all k, as was to be shown.

Corollary 3.7.2. Suppose α ∈ indec(Z) has degree at most m. Then there
exists a monic polynomial g =

∑m
k=0 gm−kX

k ∈ Z[X] of degree m such that
g(α) = 0 and |gk| ≤

(
m
k

)
2k for all 0 ≤ k ≤ m.
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Proof. Let f as in Proposition 3.7.1 and g = Xm−n · f . Then |gk| = |fk| ≤(
n
k

)
2k ≤

(
m
k

)
2k.

Proposition 3.7.3. Considered as functions of n ∈ Z≥1, the following hold:

log(n!) = n log n− n+O(log n);1.

log
( n∏
k=1

kk
)

= 1
2n

2 log n− 1
4n

2 +O(n log n);2.

log
( n∏
k=0

(k!)
)

= 1
2n

2 log n− 3
4n

2 +O(n log n);3.

log
( n∏
k=0

(
n

k

))
= 1

2n
2 +O(n log n).4.

Proof. 1. This is Stirling’s approximation, which is classical.
2. Note that f(x) = x log x is an increasing function on R≥1. Hence

log
( n∏
k=1

kk
)

=

n∑
k=1

f(k) ≤
∫ n+1

1
f(x) dx =

[
1
2x

2 log(x)− 1
4x

2
]n+1

x=1

= 1
2n

2 log(n)− 1
4n

2 +O(n log(n)).

We analogously get the same estimate for a lower bound by considering∫ n
1 f(x) dx.

3. From 1 and 2 we get

log
( n∏
k=0

(k!)
)

=

n∑
k=1

(
k log(k)− k +O(log(k))

)
=
(

1
2n

2 log(n)− 1
4n

2
)
− 1

2n
2 +O(n log(n)).

4. We first rewrite the binomials in terms of factorials and then apply 1
and 3, so that

log
( n∏
k=0

(
n

k

))
= log

(
(n!)n(∏n
k=0(k!)

)2) = n log(n!)− 2 log
( n∏
k=0

(k!)
)

= (n2 log(n)− n2)− 2(1
2n

2 log n− 3
4n

2) +O(n log n)

= 1
2n

2 +O(n log n),

as was to be shown.
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Proposition 3.7.4. Let n ∈ Z≥1. There are at most

n

n∏
k=1

(
2

(
n

k

)
2k + 1

)
= exp

(
log(2)+1

2 n2 +O(n log(n))
)

indecomposable elements in Z of degree up to n.

Proof. By Corollary 3.7.2 every indecomposable of degree at most n is the
root of a monic polynomial f =

∑n
k=0 fn−kX

k such that |fk| ≤
(
n
k

)
2k for

all 0 ≤ k ≤ n. Hence every such polynomial corresponds to at most n
indecomposables. For every 0 < k ≤ n there are 2

(
n
k

)
2k + 1 choices for fk,

and f0 = 1, proving the first upper bound. We may bound 2
(
n
k

)
2k + 1 ≤

3
(
n
k

)
2k, so that by Proposition 3.7.3.4 we get

n
n∏
k=1

(
2

(
n

k

)
2k + 1

)
≤ n · 3n · 2(n+1

2 ) ·
n∏
k=0

(
n

k

)
= exp

(
log(2)+1

2 n2 +O(n log(n))
)
,

as was to be shown.

For f ∈ Q[X] monic write q(f) for the average of the square length of the
roots of f in C, such that for all α ∈ Z with minimal polynomial fα ∈ Q[X]
we get q(α) = q(fα). Note that f = (X+ 2)n, although it is not irreducible,
has q(f) = 4 and attains the bounds of Proposition 3.7.1. However, that
does not imply that Proposition 3.7.4 cannot be improved, as it is not clear
that all combinations of coefficients occur for polynomials f with q(f) ≤ 4.
Some small degree numerical results might suggest improvements can be
made.

degree 1 2 3 4

# monic f ∈ Z[X] s.t. (∀k) |fk| ≤
(
n
k

)
2k 5 81 5525 1786785

# monic f ∈ Z[X] s.t. q(f) ≤ 4 5 49 989 48422
# α ∈ Z s.t. q(α) ≤ 4 5 39 739 40354

We also have the following lower bound.

Proposition 3.7.5. Let n ∈ Z≥1. There are at least

exp
( log 2

4
n2 +O(n log n)

)
indecomposable algebraic integers of degree n.
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Proof. Let n ∈ Z≥1 and recall the definition of Z[X]n from Definition 3.5.6.
Consider the set

Sn =

{
f =

n−1∑
k=0

fkX
k ∈ 2XZ[X]n−1 + 2

∣∣∣∣∣ (∀k) |fk|(
√

2)kn ≤ (
√

2)n−1

}
.

For f ∈ Sn consider g = Xn−f and note that g is irreducible by Eisenstein’s
criterion. Consider the ball D ⊆ C of radius r = (

√
2)1−1/n <

√
2 around 0.

For all z on the boundary of D we have

|f(z)| ≤
n−1∑
k=0

|fk||z|k ≤
n−1∑
k=0

|fk|(
√

2)k
(i)
≤

n−1∑
k=0

(
√

2)n−1

n
= (
√

2)n−1 = |z|n,

where (i) is strict for n sufficiently large due to |f0|n = 2n < (
√

2)n−1.
Hence by Rouché’s theorem (Theorem 4.18 in [1]) the polynomials Xn and
g have the same number of roots in D. It follows that all roots of g in C
have length less than

√
2. Thus q(α) < 2 for all roots α ∈ Z of g, so α is

indecomposable by Proposition 3.3.1.
We conclude that for n sufficiently large there are at least n · #Sn

indecomposable algebraic integers of degree n, so it remains to prove a
lower bound on #Sn. Note that the coefficients of f ∈ Sn satisfy indepen-
dent inequalities, so we may simply give a lower bound per coefficient. Let
B = n− 3 log2(n)− 2, which is positive for n sufficiently large. For k > B
we consider only fk = 0 and get a lower bound of 1 for this coefficient. For
0 < k ≤ B we have

2

⌊
(
√

2)n−k−1

2n

⌋
+ 1 ≥ 2

((
√

2)n−k−1

2n
− 1
)

+ 1 =
(
√

2)n−k−1

n
− 1 = (ii)

choices for fk. Then for n sufficiently large we have

n

(
√

2)n−k−2
≤ n

n3/2
≤
√

2− 1, so that (ii) ≥ (
√

2)n−k−2

n
.

Hence Sn contains, for n sufficiently large, at least

B∏
k=1

(
√

2)n−k−2

n
= exp

( log 2

2

B∑
k=1

(n− k − 2)−B log n
)

= exp
( log 2

4
n2 +O(n log n)

)
elements, from which the proposition follows.
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Corollary 3.7.6. Let n ∈ Z≥1. There are at least

exp
( log 2

4
n2 +O(n log n)

)
indecomposable algebraic integers of degree up to n.

From the upper and lower bound we may now conclude the following.

Theorem 3.7.7. There are least exp(1
4(log 2)d2 + O(d log d)) and at most

exp(1
2(1 + log 2)d2 +O(d log d)) indecomposable algebraic integers of degree

up to d.

3.8 Fekete capacity theory

In this section we present a proof of a special case of Fekete’s theorem
using Minkowski’s convex body theorem. Fekete’s theorem can be thought
of as a partial converse to Theorem 3.6.6 of Szegő. Although this does not
give us a converse to Corollary 3.6.7, using similar techniques as in this
section we will later prove Theorem 3.11.2 mentioned in the introduction.
The goal of this section is to showcase the proof technique we will use to
prove Theorem 3.11.2 so that we may later improve clarity by brevity. Recall
the definition of the norm | · |∞ from Definition 3.5.10.

Theorem 3.8.1 (Fekete). Suppose r ∈ R and α ∈ Q. If r < 1, then there
exist only finitely many β ∈ Z such that |β − α|∞ ≤ r.

Just like for Szegő’s theorem, it is possible to derive an algorithmic coun-
terpart to Fekete’s theorem. Combining Theorem 3.8.1 and Theorem 3.6.6,
the point r = 1 is still a singularity. For α ∈ Z and r = 1 clearly all
β ∈ α + µ∞ satisfy |β − α|∞ ≤ r. However, when α 6∈ Z we do not know
what happens in general. We start with a volume computation.

Definition 3.8.2. Let A be an R-algebra equipped with a real inner prod-
uct. We equip A[Y ] with an inner product

〈 ∞∑
k=0

fkY
k,

∞∑
k=0

gkY
k
〉

=

∞∑
k=0

〈fk, gk〉,

which is the ‘standard’ inner product when we naturally identify A[Y ] with
A(Z≥0). For n ∈ Z≥0 we equip A[Y ]n, as defined in Definition 3.5.6, with
the restriction of this inner product.
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Remark 3.8.3. Obviously R is an R-algebra with a real inner product. We
identify C with R2 by choosing R-basis {1, i}, and equip C with the inner
product induced by the natural inner product on R2. For a number field K
we remark that KR has a real inner product as in Definition 3.5.3.

Lemma 3.8.4. Let A be an R-algebra of dimension d <∞. For all a, b ∈ R,
c ∈ A and n ∈ Z≥0 we have an R-linear transformation φ on A[X]n given
by f 7→ bf(a(X − c)) with detφ = (an(n−1)/2 · bn)d.

Proof. Note that φ is trivially an R-linear transformation. Choose an R-
basis {e1, . . . , ed} for A. Writing φ as a matrix with respect to the basis
{eiXj | 1 ≤ i ≤ d, 0 ≤ j < n} for A[X]n we note that φ is a lower tri-
angular matrix with diagonal entries b, ba, ba2, . . . , ban−1, each occurring
with multiplicity d. The determinant of φ is then simply the product of the
diagonal.

Lemma 3.8.5. Let F be either R or C and let r ∈ R>0. For n ∈ Z≥0

consider

Sn(r) = {f ∈ F[Y ]n | (∀ z ∈ C) |z| ≤ r ⇒ |f(z)| ≤ r}.

Then as function of n we have

log vol(Sn(r)) ≥ −1
2n

2 · [F : R] · log r +O(n log n).

Proof. Write Sn = Sn(1). By applying the transformation f 7→ rf(r−1Y )
to F[Y ]n we bijectively map Sn to Sn(r). From Lemma 3.8.4 it follows that
log vol(Sn(r)) = −1

2n
2 · [F : R] · log r + log vol(Sn) + O(n log n). It remains

to prove log volSn ≥ O(n log n).
First suppose F = R. Consider the set

Tn =
{ n−1∑
k=0

fkY
k ∈ R[Y ]n

∣∣∣ n−1∑
k=0

|fk| ≤ 1
}
.

Note that for all f ∈ Tn and z ∈ C such that |z| ≤ 1 we have |f(z)| ≤∑n−1
k=0 |fk| ≤ 1, so f ∈ Sn. Hence Tn ⊆ Sn and vol(Tn) ≤ vol(Sn). With

Proposition 3.7.3.1 we compute log vol(Tn) = log(2n/n!) = O(n log n), from
which the lemma follows for F = R.

For F = C, note that we have an isometry R[X]2n → C[X]n given by
(f, g) 7→ f + i · g. For f, g ∈ 1

2Tn and z ∈ C such that |z| ≤ 1 we have
|f(z) + i · g(z)| ≤ |f(z)| + |g(z)| ≤ 1

2 + 1
2 = 1, so f + i · g ∈ Sn. Hence

log vol(Sn) ≥ log(vol(1
2Tn)2) = 2 log vol(Tn) − 2n log 2 = O(n log n), from

which the lemma follows for F = C.
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Theorem 3.8.6. Let R be an order of a number field K and let 0 < r < 1.
For all c ∈ KR there exists a non-zero g ∈ R[X] such that for all z ∈ KR,
if |z − c|∞ ≤ r then |g(z)|∞ ≤ r.

Proof. Write d = [K : Q]. Let n ∈ Z≥0 and consider the lattice Λn =
R[X]n in the inner product space KR[Y ]n, where Y = X − c. Note that
dimRKR[Y ]n = dn and that Λn is a full-rank lattice in KR[Y ]n with
det(Λn) = |∆(R)|n/2 by Lemma 3.8.4 and Theorem 3.5.5. Consider

Sn =
{
f ∈ KR[Y ]n

∣∣ (∀σ ∈ X(K)) (∀ z ∈ C) |z| ≤ r ⇒ |σ(f)(z)| ≤ r
}

and note that it is both symmetric and convex. Moreover, it follows from
Lemma 3.8.5 that log vol(Sn) ≥ −1

2n
2d log r +O(n log n). Hence

log
( vol(Sn)

2dn · det(Λn)

)
≥ −1

2n
2d log r +O(n log n).

Because −1
2d log r > 0 there exists some n sufficiently large such that

vol(Sn) > 2dn det(Λn). By Theorem 3.5.9 there then exists some non-zero
g ∈ Λn ∩ Sn which as polynomial in X satisfies the requirements.

Proof of Theorem 3.8.1. Let K = Q(α) and let R ⊆ K be some order of
K. Then by Theorem 3.8.6 there exists some non-zero g ∈ R[X] such that
for all z ∈ KR, if |z − α|∞ ≤ r then |g(z)|∞ ≤ r. Suppose β ∈ Z satisfies
|β − α|∞ ≤ r. Then |g(β)|∞ ≤ r, or equivalently |ρ(g(β))| ≤ r for all
ρ ∈ X(L). Hence

|NL/Q(g(β))| =
∏

ρ∈X(L)

|ρ(g(β))| ≤ r[L:Q] < 1.

As g(β) ∈ Z, we must then have g(β) = 0. As β must be a root of g and g
is non-zero, there can only be finitely many β.

3.9 Reduction to exponentially bounded
polynomials

We now prepare to prove the main theorem. If there are only finitely many
decompositions of an algebraic integer α, then certainly there exists a non-
zero polynomial f ∈ Z[X] such that f(β) = 0 for all decompositions (β, α−
β) of α. The goal is to exhibit such a polynomial when α is short using a
lattice argument, similarly to the proof of Theorem 3.8.1. In this section
we derive an analytic sufficient condition for a polynomial f to have this
property.
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Definition 3.9.1. Let K be a number field. We define S(K) = X(K)×C,
the coproduct (i.e. disjoint union) of measurable spaces of # X(K) copies
of C, where C has the standard Lebesgue measurable space structure. We
writeM(K) for the set of probability measures µ on S(K), i.e. all measures
µ such that µ(S(K)) = 1.

Definition 3.9.2. Let K be a number field and r ∈ R>0. For f ∈ KR[Y ]
we say f is exponentially bounded at radius r if for all µ ∈M(K) satisfying∫
|z|2 dµ(σ, z) < r2 it holds that

∫
log |σ(f)(z)| dµ(σ, z) < 0.

Proposition 3.9.3. Let α ∈ Z, K = Q(α) and r > ‖α/2‖. If f ∈ OK [X]
is exponentially bounded at radius r ∈ R>0 as polynomial in the variable
Y = X − α/2, then for all (β, γ) ∈ dec(α) we have f(β) = 0.

Proof. Suppose (β, γ) ∈ dec(α). Then ‖β−α/2‖ ≤ ‖α/2‖ < r by Lemma 2.4.3.
Let L = K(β) and

B = {(ρ|K , ρ(β − α/2)) | ρ ∈ X(L)} ⊆ S(K),

which has #B = [L : Q] and #(B ∩ ({σ} ×C)) = [L : K] for all σ ∈ X(K).
Let µ ∈M(K) be the uniform probability measure on B and write fY for f
as a polynomial in the variable Y . Because

∫
|x|2 dµ(σ, x) = ‖β−α/2‖2 < r2

and fY is exponentially bounded at radius r we get

log
(
N(f(β))[L:Q]

)
= log

∏
ρ∈X(L)

|ρ(f(β))| =
∑

ρ∈X(L)

log |ρ(fY (β − α/2))|

= [L : Q] ·
∫

log |σ(fY )(x)|dµ(σ, x) < 0.

We conclude that N(f(β)) < 1. Since f(β) is integral we have f(β) = 0, as
was to be shown.

Example 3.9.4. The set of polynomials of KR exponentially bounded at
radius r is closed under multiplication and is symmetric. However, we will
show that it is not convex.

Let r = 1 and K = Q. For all c ∈ (−1, 1) the constant polynomial
c is trivially exponentially bounded at any positive radius, in particular
at radius 1. Also the polynomial Y 2 is exponentially bounded: For any
µ ∈M(K) such that

∫
|z|2 dµ(σ, z) < 1 we have∫

log |z2|dµ(σ, z) ≤ log

∫
|z|2 dµ(σ, z) < log 1 = 0.

Here the first inequality is Jensen’s inequality for integrals. When µ has
finite support, this comes down to Lemma 3.2.6. For c ∈ (−1, 1) and
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k ∈ Z≥0 the product cY 2k of exponentially bounded polynomials at ra-
dius 1 is exponentially bounded at radius 1. We claim that 1

4(1 + Y 2k)
for k sufficiently large, which is a convex combination of 1

2 and 1
2Y

2k, is
not exponentially bounded at radius 1. Taking µ ∈ M(Q) with weight
1
5 at 2 and remaining weight at 0 we have

∫
|z|2 dµ(σ, z) = 4

5 < 1, yet∫
log |14(1 + Y 2k)| dµ(σ, z) = 1

5 log(1 + 22k) − log 4 → ∞ as k → ∞. We
conclude that the set of exponentially bounded polynomials at radius 1 is
not convex. A similar argument works for all radii and number fields.

Lemma 3.9.5. Let D ⊆ C be a convex subset and let f : D → C be analytic.
Then for distinct x, y ∈ D we have∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ sup
z∈D
|f ′(z)|.

Proof. Let γ : [0, 1] → D be the parametrization of the straight line con-
necting x and y, which is well-defined since D is convex. First note that∫ 1

0
f ′(γ(t)) dt =

∫ 1

0
f ′(tx+ (1− t)y) dt

=
1

x− y

[
f(tx+ (1− t)y)

]1

t=0

=
f(x)− f(y)

x− y
.

Then ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ =

∣∣∣∣ ∫ 1

0
f ′(γ(t)) dt

∣∣∣∣ ≤ ∫ 1

0

∣∣f ′(γ(t))
∣∣ dt

≤
∫ 1

0

(
sup
z∈D
|f ′(z)|

)
dt = sup

z∈D
|f ′(z)|,

as was to be shown.

We will now translate the measure theoretic property of Definition 3.9.2
to an analytic one. Our results in the coming sections only depend on the
‘if’ part of the following equivalence.

Theorem 3.9.6. Let K be a number field, 0 < r < 1 and f ∈ KR[Y ]. Then
f is exponentially bounded at radius r if and only if there exists an a ∈ R>0

such that for all σ ∈ X(K) and z ∈ C we have

|σ(f)(z)| ≤ exp(a(|z|2 − r2)).
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Proof. (⇐) Suppose such a exists. Let µ ∈M(K) such that∫
|z|2 dµ(σ, z) < r2.

Then∫
log |σ(f)(z)|dµ(σ, z) ≤

∫
a(|z|2 − r2) dµ(σ, z) < ar2 − ar2 = 0,

so f is exponentially bounded at radius r.
(⇒) Let D0 = {z ∈ C | |z| < r} and D∞ = {z ∈ C | |z| > r}. For

c ∈ {0,∞} let

Ac =
{
a ∈ R

∣∣ (∀ ρ ∈ X(K)) (∀ z ∈ Dc) |ρ(f)(z)| ≤ exp(a(|z|2 − r2))
}
.

Firstly, we show that A0 is non-empty. Let ρ ∈ X(K) and z0 ∈ D0, and
let µ ∈M(K) be the measure with weight 1 at (ρ, z0). Then

∫
|x|2 dµ(σ, x) =

|z0|2 < r2, so by exponential boundedness

|ρ(f)(z0)| = exp
(∫

log |σ(f)(x)| dµ(σ, x)
)
< 1.

It follows that 0 ∈ A0, and even (−∞, 0] ⊆ A0. This argument also shows
that ρ(f) is bounded by 1 on the boundary of D0, the circle of radius r.

Secondly, we show that A∞ is non-empty. Since exp(|z|2 − r2) grows
faster than any polynomial, there exists some b > r such that |ρ(f)(z)| ≤
exp(|z|2− r2) for all |z| ≥ b. Write B = {z ∈ C | |z| ≤ b}. Let ρ ∈ X(K) and
z ∈ B ∩D∞, and write g = ρ(f) and θ = z/|z|. As remarked at the end of
the previous paragraph we have |g(rθ)| ≤ 1, so that

log |g(z)| ≤ log(1 + |g(z)− g(rθ)|)
≤ |g(z)− g(rθ)|

=
|z|2 − r2

|z|+ r
·
∣∣∣∣g(z)− g(rθ)

z − rθ

∣∣∣∣
∗
≤ (|z|2 − r2) · supx∈B |g′(x)|

2r
≤ a(|z|2 − r2),

where ∗ follows from Lemma 3.9.5 and a is the maximum of 1 and all
(2r)−1 supx∈B |ρ(f)′(x)| for ρ ∈ X(K). Thus a ∈ A∞.

Thirdly, we show that A0 ∩ A∞ is non-empty. Suppose for the sake
of contradiction that A0 ∩ A∞ is empty. Clearly A0 and A∞ are closed.
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Hence there exist reals that are neither in A0 nor A∞, and let a be such
a real number. It follows that a > 0. In turn, there exist z0 ∈ D0 and
z∞ ∈ D∞ with ρ0, ρ∞ ∈ X(K) such that |ρ0(f)(z0)| > exp(a(|z0|2 − r2))
and |ρ∞(f)(z∞)| > exp(a(|z∞|2 − r2)). Choose some t ∈ (0, 1) such that
(1− t)|z0|2 + t|z∞|2 < r2 and let µ be the measure that assigns weight 1− t
to (ρ0, z0) and weight t to (ρ∞, z∞). Then

∫
|z|2 dµ(σ, z) < r2 and thus

0 >

∫
log |σ(f)(z)| dµ(σ, z) = (1− t) log |ρ0(f)(z0)|+ t log |ρ∞(f)(z∞)|.

Taking the limit of t up to s ∈ R such that (1− s)|z0|2 + s|z∞|2 = r2 we get

0 ≥ (1− s) log |ρ0(f)(z0)|+ s log |ρ∞(f)(z∞)|
> a((1− s)|z0|2 + s|z∞|2 − r2) = 0,

a contradiction. Hence A0 ∩A∞ is non-empty, as was to be shown.
Note that D0∪D∞ is dense in C, so any positive a ∈ A0∩A∞ gives the

inequality we set out to prove. Suppose a ∈ A0 ∩ A∞ is such that a ≤ 0.
Thus |ρ(f)(z)| ≤ exp(a(|z|2 − r2)) ≤ 1 for all z ∈ D∞ and ρ ∈ X(K), so
ρ(f) is a constant function. However, as |ρ(f)(z)| < 1 for z ∈ D0 as shown
before, this constant is strictly less than 1. Let c ∈ (0, 1) be a constant that
bounds ρ(f) for all ρ ∈ X(K). Then −r−2 log c ∈ A0∩A∞ is positive. Hence
A0 ∩A∞ always contains a positive element.

3.10 Volume computation

The next step is to compute the volume of a symmetric convex set of expo-
nentially bounded polynomials. As in Lemma 3.8.5 it suffices for the sake
of volume computation to consider the case where the radius is 1 and the
base field is R. In view of Theorem 3.9.6, we consider the unit-ball of the
following norm.

Definition 3.10.1. Let F be either R or C. We equip F[Y ] with the exp-
norm

‖f‖e = max
z∈C

|f(z)|
exp(|z|2)

,

not to be confused with ‖−‖p for p = e from Definition 2.2.11.

Lemma 3.10.2. Consider the map φ : Z≥0 → R≥0 given by

φ(n) =

{(
n
2

)
! if n is even(

n−1
2

)
! ·
√

n+1
2 if n is odd

.
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Then we have

log
( n∏
k=0

φ(k)
)

= 1
4n

2 log n− (3
8 + 1

4 log 2)n2 +O(n log n)

and for all x ∈ R≥0 and m ∈ Z≥0 we have

x2m+1

φ(2m+ 1)
≤ 1

2

(
x2m

φ(2m)
+

x2m+2

φ(2m+ 1)

)
.

Proof. Writing out the product we have

n∏
k=0

φ(k) =

( bn/2c∏
m=0

φ(2m)

)( b(n−1)/2c∏
m=0

φ(2m+ 1)

)

=

( bn/2c∏
m=0

m!

)( b(n−1)/2c∏
m=0

m!

)( b(n−1)/2c∏
m=0

√
m+ 1

)
.

We then apply Proposition 3.7.3 to compute

log
( n∏
k=0

φ(k)
)

= bn2 c
2
(

1
2 logbn2 c −

3
4

)
+ bn−1

2 c
2
(

1
2 logbn−1

2 c −
3
4

)
+ bn−1

2 c
(

logbn−1
2 c − 1

)
+O(n log n)

=
(
n
2

)2(1
2 log n

2 −
3
4

)
+
(
n
2

)2(1
2 log n

2 −
3
4

)
+O(n log n)

= 1
4n

2 log n− (3
8 + 1

4 log 2)n2 +O(n log n),

proving the first part. For the second, let m ∈ Z≥0 and x ∈ R≥0. Then

1

φ(2m)
+

x2

φ(2m+ 2)
=

1

m!

((
1− x√

m+ 1

)2
+

2x√
m+ 1

)
≥ 1

m!

2x√
m+ 1

= 2 · x

φ(2m+ 1)
,

from which the second part follows.

Recall the notation R[X]n from Definition 3.5.6, the subset of R[X] of
polynomials of degree strictly less than n.

Proposition 3.10.3. Write S = {f ∈ R[Y ] | ‖f‖e ≤ 1}. Then for n ∈ Z≥0

we have

log vol(S ∩ R[Y ]n) ≥ −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n).
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Proof. Consider φ as in Lemma 3.10.2 and define

T =
{ ∞∑
i=0

fiY
i ∈ R[Y ]

∣∣∣ (∀i) |fi| ≤ 1

2φ(i)

}
.

Then for all f ∈ T and z ∈ C we have using Lemma 3.10.2 that

|f(z)| ≤
∞∑
i=0

|fi| · |z|i ≤
∞∑
i=0

|z|i

2φ(i)

=
1

2

[ ∞∑
k=0

|z|2k

k!
+
∞∑
k=0

|z|2k+1

φ(2k + 1)

]

≤ 1

2

[ ∞∑
k=0

|z|2k

k!
+
∞∑
k=0

1

2

(
|z|2k

k!
+
|z|2k+2

(k + 1)!

)]

≤
∞∑
k=0

|z|2k

k!
= exp |z2|,

so f ∈ S and T ⊆ S. Then by Lemma 3.10.2 we have

log vol(T ∩ R[Y ]n) = −n log 2− log
( n−1∏
k=0

φ(k)
)

= −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n),

from which the proposition follows.

Proposition 3.10.3 is sufficient for our purposes. It may interest a reader
that the lower bound of Proposition 3.10.3 is actually an equality, which we
will show in the remainder of this section.

Theorem 3.10.4 (Brunn–Minkowski inequality, Theorem 4.1 in [16]). Let
n ∈ Z≥1 and let A,B ⊆ Rn be bounded non-empty measurable sets. Then
for all t ∈ [0, 1] such that

(1− t)A+ tB = {(1− t)a+ tb | a ∈ A, b ∈ B}

is measurable we have the inequality

vol((1− t)A+ tB)1/n ≥ (1− t)vol(A)1/n + tvol(B)1/n.

We will only apply this theorem to compact subsets of Rn, which are
indeed measurable and bounded. Moreover, for A,B ⊆ Rn compact and
t ∈ (0, 1) also the set (1− t)A+ tB is compact, hence measurable.
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Corollary 3.10.5. Let n ∈ Z≥0, let V ⊆ Rn be a subspace and let S ⊆ Rn
be a symmetric convex body. Then the map that sends x ∈ Rn to volV (V ∩
(S − x)) takes a maximum at 0.

Proof. Let x ∈ Rn and writem = dimV and Hx = V ∩(S−x). Ifm = 0 the
corollary holds trivially, so suppose m > 0. Note that H−x = −Hx since S
and V are symmetric. Because S and V are convex we have 1

2Hx+ 1
2H−x ⊆

H0. Hence by Theorem 3.10.4 we have

vol(H0)1/m ≥ vol(1
2Hx + 1

2H−x)1/m

≥ 1
2vol(Hx)1/m + 1

2vol(H−x)1/m

= vol(Hx)1/m,

from which the corollary follows.

Recall the definition of from Definition 2.5.1.

Corollary 3.10.6. Let n ∈ Z≥0, let U, V ⊆ Rn be subspaces such that
U V = Rn and write π for the projection U V → U . If S ⊆ Rn is a
symmetric convex body, then volRn(S) ≤ volU (πS) · volV (S ∩ V ).

Proof. By Corollary 3.10.5 we have

vol(S) =

∫
πS

volV (V ∩ (S − x)) dx

≤
∫
πS

volV (V ∩ S) dx

= volU (πS) · volV (V ∩ S).

Theorem 3.10.7. Write S = {f ∈ R[Y ] | ‖f‖e ≤ 1}. Then for n ∈ Z≥0 we
have

log vol(S ∩ R[Y ]n) = −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n).

Proof. We already proved a lower bound in Proposition 3.10.3, so it remains
to prove an upper bound. We will inductively show that

vol(S ∩ R[Y ]n) ≤ 2n
n−1∏
k=1

(2e
k

)k/2
.

It then follows from Proposition 3.7.3 that

log vol(S ∩ R[Y ]n) ≤ n log 2 +
1

2

n−1∑
k=1

k
(

log(2e)− log k)

= −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n).



3.11. Proof of the main theorem 67

For n = 0 and n = 1 the inequality certainly holds. Now suppose the in-
equality holds for n ≥ 1. Write R[Y ]n+1 = (RY n) R[Y ]n and let π : R[Y ]n+1

→ RY n be the projection map. By Corollary 3.10.6 it suffices to show for
n > 0 that vol(π(S ∩ R[Y ]n+1)) ≤ 2( n2e)−n/2. We do this by proving

π(S ∩ R[Y ]n+1)
(i)
⊆ S ∩ (RY n)

(ii)
⊆ [−1,+1]

(2e
n

)n/2
Y n.

(i) Suppose f ∈ R[Y ]n+1 and ‖f‖e < ‖π(f)‖e. Since π(f) is a monomial,
the function z 7→ |π(f)(z)| exp(−|z|2) takes its maximum on a circle of
radius say r. Then for all z on this circle we have

|f(z)| ≤ ‖f‖e exp(r2) < ‖π(f)‖e exp(r2) = |π(f)(z)|.

Hence by Rouché’s theorem (Theorem 4.18 in [1]), the polynomial f −
π(f) has as many roots as π(f) in the disk {z ∈ C | |z| ≤ r}, counting
multiplicities. However, since f − π(f) has degree at most n − 1 and π(f)
has n such roots, this is a contradiction. Hence ‖π(f)‖e ≤ ‖f‖e, from which
(i) follows.

(ii) Consider the map g : R≥0 → R≥0 given by x 7→ xn exp(−x2). Then

dg

dx
= xn−1(n− 2x2) exp(−x2) = 0 ⇐⇒ x = 0 ∨ x =

√
n/2.

Hence g takes a maximum at (n/2)1/2, so we conclude that ‖Y n‖e =
g((n/2)1/2) = ( n2e)n/2. Thus max{c ∈ R | cY n ∈ S} = (2e

n )n/2, as was to
be shown.

The theorem now follows by induction.

3.11 Proof of the main theorem

We are now ready to give a proof of Theorem 3.11.2.

Proposition 3.11.1. Let R be an order of a number field K, let α ∈ K
and 0 < r2 < 1

2 exp(1
2). Then there exists some non-zero f ∈ R[X] such

that f(X − α) is exponentially bounded at radius r.

Proof. Let n ∈ Z≥1 and d = [K : Q]. Write Y = X − α and consider
the real vector space KR[Y ]n, which we equip with an inner product as
in Definition 3.8.2 with respect to the variable Y . By Theorem 3.5.5 and
Lemma 3.8.4 the lattice R[X]n in KR[Y ]n is full rank and has determinant
det(R[Y ]n) = |det(R)|n = |∆(R)|n/2. For b ∈ R≥0 consider

Sn = {f ∈ KR[Y ]n | (∀σ ∈ X(K), z ∈ C) |σ(f)(z)| ≤ exp(bn(|z|2 − r2))}
= {f ∈ KR[Y ]n | (∀σ ∈ X(K)) ‖ exp(bnr2)σ(f)((bn)−1/2Y )‖e ≤ 1}.
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We have a natural orthogonal decomposition KR ∼= Ru×Cv for some u, v ∈
Z≥0 which in turn gives an orthogonal decomposition KR[Y ]n = (R[Y ]n)u×
(C[Y ]n)v. Note that Sn is simply a product over σ ∈ X(K) of

Sn(σ) = {f ∈ F[Y ]n | ‖ exp(bnr2) · σ(f)((bn)−1/2 · Y )‖e ≤ 1}

where F = R or F = C depending on whether σ(K) ⊆ R. Then using
Lemma 3.8.4 and Proposition 3.10.3 we compute

log vol(Sn) ≥ d
((
− 1

4n
2 log n+ (3

8 + 1
4 log 2)n2

)
+
(

1
4n

2 log(bn)− bn2r2
))

+O(n log n)

= dn2 · ε(b) +O(n log n),

with ε(b) = 1
4 log(2b) + 3

8 − r
2b. Choosing b = (2r)−2 we get ε(b) = 1

4(1
2 −

log(2r2)) > 0. Hence

log
( vol(Sn)

2dn · |∆(R)|n/2
)
≥ dn2 · ε(b) +O(n log n)→∞ (as n→∞).

Thus by Minkowski’s theorem there exists for n sufficiently large some non-
zero g ∈ Sn ∩ R[X]. Because g ∈ Sn, this polynomial is exponentially
bounded at radius r by Theorem 3.9.6.

Theorem 3.11.2. Suppose r ∈ R and α ∈ Q. If r < 4
√

e/4, then there exist
only finitely many β ∈ Z such that ‖α− β‖ < r.

Proof. Let γ = α/2, let K = Q(γ) and let R be some order in K. Choose
r ∈ R>0 such that ‖γ‖ < r < 4

√
e/4. Then by Proposition 3.11.1 there

exists some non-zero polynomial f ∈ R[X] which as polynomial in Y =
X − γ is exponentially bounded at radius r. Hence by Proposition 3.9.3 all
(β, α−β) ∈ dec(α) satisfy f(β) = 0. As f has only finitely many roots, the
theorem follows.

From the proof of Theorem 3.11.2 one easily derives the following result.

Proposition 3.11.3. There exists an algorithm that, given some r ∈ R∩Q
and α ∈ Q, decides whether r < 4

√
e/4 and if so computes all β ∈ Z such

that ‖α− β‖ ≤ r, each represented by their minimal polynomial over Q(α).

Proof. Clearly r 6= 4
√

e/4 as the latter is not algebraic. However, both are
computable, and after finitely many steps of approximation we can decide
whether r < 4

√
e/4. We have an explicit formula for a lower bound on the

volume of the set S as defined in the proof of Proposition 3.10.3. So moreover
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we can compute a sufficiently large n such that Minkowski’s theorem, as in
the proof of Proposition 3.11.1, guarantees the existence of a non-zero lattice
point in S. We may then simply enumerate all lattice points to eventually
find a polynomial f as in Proposition 3.11.1. We determine using [31] the
monic irreducible factors of f and decide which factors g have a root β
satisfying ‖α− β‖ ≤ r.

Corollary 3.11.4. There is an algorithm that takes as input an element
α ∈ Z given by its minimal polynomial, and decides whether ‖α‖ < 4

√
4e

and if so, computes all non-trivial (β, γ) ∈ dec(α), each represented by the
minimal polynomial of β over Q(α).

Proof. We apply Proposition 3.11.3 with α/2 in the place of α and ‖α/2‖
in the place of r. By Lemma 2.4.3 each β found gives a decomposition
(β, α− β). Note that we can filter out the trivial decompositions.

3.12 Remarks on the proof of the main theorem

In this section we briefly discuss the proof of Theorem 3.11.2 and make
some practical remarks for explicit computation.

The proof of Theorem 3.11.2 proceeds in the following steps:
1. We determine a sufficient condition for a polynomial to have all lattice

points close to α as roots.
2. We translate this condition into an analytic one.
3. We determine the volume of a symmetric convex set of polynomials

satisfying this condition.
4. We apply Minkowski’s convex body theorem to find integral polyno-

mials in this set.
Theorem 3.9.6 suggests that step (2) can hardly be improved upon. By
Theorem 3.10.7 we correctly computed the volume of our symmetric convex
set in step (3). However, in order to make it convex we fixed the constant a
that comes out of Theorem 3.9.6. It is easy to verify that we indeed made an
optimal choice of a in Proposition 3.11.1, although that does not guarantee
we chose the best convex subset. If the weakest link in the proof is step
(4), we likely require a completely different approach. It should be noted
however that Minkowski’s convex body theorem is powerful enough to prove
the classical Theorem 3.8.6.

One could also ask for stronger results in the case we are only interested
in decompositions of lattice points, i.e. when α ∈ 1

2Z. A piece of information
we can exploit is the following symmetry: For all α ∈ Z we have an involution
x 7→ α− x on Z which induces action on dec(α), given by (β, γ) 7→ (γ, β).
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Lemma 3.12.1. Let α ∈ Z and let Z[α] ⊆ R be an order of Q(α). For all
f ∈ R[X] such that f(β) = 0 for all (β, γ) ∈ dec(α), also g = f(α −X) ∈
R[X] satisfies g(β) = 0 for all (β, γ) ∈ dec(α).

Lemma 3.12.1 turns the involution on Z into an R-algebra automor-
phism on R[X]. We can incorporate this automorphism in our proof of
Theorem 3.11.2.

Proposition 3.12.2. Let α ∈ Z, let Z[α] ⊆ R be an order of K = Q(α) and
let r ∈ R>0. For all f ∈ R[X] such that f as a polynomial in Y = X − α/2
is exponentially bounded at radius r, so is f(X) · f(α−X) ∈ K[Y 2].

Proof. Note that the involution X 7→ α −X is with respect to Y given by
Y 7→ −Y . Hence if f as a polynomial in Y is exponentially bounded at radius
r, then so is f(α −X). As noted in Example 3.9.4, the set of polynomials
exponentially bounded at r is closed under multiplication. Hence g = f(X) ·
f(α − X) is exponentially bounded at radius r. Now g is invariant under
Y 7→ −Y , meaning all coefficients at odd degree monomials in Y are zero,
i.e. g ∈ K[Y 2].

An interesting question to ask is how dissimilar f and f(α − X) can
be for exponentially bounded f . Certainly both should have β as root for
all (β, γ) ∈ dec(α) by Lemma 3.12.1. In the context of finding ‘small’ f
algorithmically it seems that often f and f(α − X) are the same (up to
sign).

As a consequence of Proposition 3.12.2, when proving a specialization
of Theorem 3.11.2 to α ∈ 1

2Z we may look at the lattice R[X(α − X)] in
KR[Y 2] instead of R[X] inKR[Y ]. The effect is two-fold. Firstly, it simplifies
the volume computation of Proposition 3.10.3, as we no longer require the
ad-hoc function φ from Lemma 3.10.2. Secondly, any integral polynomial in
our symmetric body can be found in a lower dimensional lattice in Proposi-
tion 3.11.1. This follows from the suggested changes to Proposition 3.10.3,
but can heuristically be seen as follows. If f is a solution in the original lat-
tice R[X], then f(X) ·f(α−X) is a solution in our new lattice R[X(α−X)]
at the same dimension. However, as discussed before, f is likely to be an
element of R[X(α −X)] anyway, and if so we would have found f at half
the dimension in R[X(α −X)]. Neither of these changes have an effect on
the quality of our theoretical results. However, when we want to compute
decompositions in practice, the latter ‘dimension reduction’ is very useful.



3.13. Computational example 71

3.13 Computational example

We will now work out an example proving an algebraic integer α is inde-
composable.

Showing that α is indecomposable will be trivial when ‖α‖ ≤
√

2 as we
have seen in Proposition 3.3.1, so we will choose α such that ‖α‖ >

√
2 ≈

1.414. On the other hand, the algorithm from Proposition 3.11.3 terminates
faster the smaller ‖α‖ is, so for this example we will consider α = 3

√
3 with

‖α‖ = 31/3 ≈ 1.442.
Setup. Let α = 3

√
3 and let r2 = 6/11, so that ‖α/2‖ < r < 4

√
e/4.

Write K = Q(α) and R = Z[α] and consider the ring R[X]. Writing Y =
X−α/2, we are looking for a polynomial f ∈ R[X] such that f as polynomial
in Y is exponentially bounded at radius r. However, writing Z = X(α −
X) we may instead look for such a polynomial in R[Z], as follows from
Lemma 3.12.1.

Finding a polynomial. It is quite involved to systematically find short
vectors in a lattice. Instead we will employ a more ad-hoc approach, more
along the lines of Theorem 3.6.6. We guess that our polynomial f will be
monic in Z of some degree n. We start with Zn and then greedily subtract
Z[α]-multiples of lower degree powers of Z such that the resulting polyno-
mial in Y becomes ‘small’, i.e. has small coefficients under every embedding
K → C with lower degree terms weighing more heavily. Effectively, we are
applying a rounding function in the sense of Definition 3.6.3. Note that
Z = −Y 2 + α2/4. Similarly as in the proof of Theorem 3.6.6, taking n = 4
the Y 6 term becomes integral, which is useful. Thus we will try n = 4. We
compute:

Z4 = Y 8 −α2Y 6 +9
8αY

4 − 9
16Y

2 + 9
256α

2

α2Z3 = −α2Y 6 +9
4αY

4 −27
16Y

2 + 9
64α

2

Z4 −α2Z3 = Y 8 −9
8αY

4 +9
8Y

2 − 27
256α

2

−αZ2 = −αY 4 +3
2Y

2 − 3
16α

2

Z4 −α2Z3 +αZ2 = Y 8 −1
8αY

4 −3
8Y

2 + 21
256α

2

The remaining coefficients with respect to Y look pretty small in every
embedding K → C, so we guess

f(Y ) = Y 8 − 1
8αY

4 − 3
8Y

2 + 21
256α

2 = Z4 − α2Z3 + αZ2 ∈ R[Z].

is going to be exponentially bounded at radius r as polynomial in Y .
Proving exponentially boundedness. If we take b : R≥0 → R≥0

given by
b(w) = w4 + 1

8 · 3
1/3 · w2 + 3

8 · w + 21
256 · 3

2/3,
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then for all σ ∈ X(K) and z ∈ C we have |σ(f)(z)| ≤ b(|z|2). To prove that
f is exponentially bounded at radius r it suffices to find a ∈ R such that
b(w) ≤ exp(a(w − r2)) for all w ∈ R≥0. Because b(0) = 21

25632/3, we must
have a ≤ − log(b(0))/r2 ≈ 3.4. We will try a = 3 for simplicity. Consider
the function B(w) = b(w) · exp(−a(w − r2)), for which we want to show
B(w) ≤ 1 for all w. Then

0 = B′(w) = exp(−a(w − r2))(b′(w)− ab(w))

if and only if ab(w) − b′(w) = 0. Since the latter is simply a polynomial
equation we will find using standard techniques that it has no positive real
roots. We compute:

ab(w)− b′(w) = 3w4 − 4w3 + 3
831/3w2 + (9

8 −
1
431/3)w + ( 63

25632/3 − 3
8)

> 3w4 − 4w3 + 3
5w

2 + 3
4w + 1

4 .

For 1 ≤ w we get ab(w)− b′(w) > 3w4− 4w3 + 3
2 = w2(31/2w− 2 · 3−1/2)2 +

(3
2−

4
3w

2) ≥ 0 and for 0 < w ≤ 1 we get ab(w)−b′(w) > 3w4−4w3 + 3
2w

2 =

3w2(w2 − 4
3w + 1

2) ≥ 3w2(w − 2−1/2)2 ≥ 0. Hence B has no local maxima
besides possibly at 0, and because B(w) → 0 as w → ∞ we conclude that
B takes a maximum at 0. Therefore b is bounded by w 7→ exp(a(w − r2))
and thus f is exponentially bounded at radius r.

Finding decompositions. Writing f as a polynomial in X we get

f = X8 − 4αX7 + 7α2X6 − 21X5 + 13αX4 − 5α2X3 + 3X2

= X2 · (α−X)2 · (X4 − 2αX3 + 2α2X2 − 3X + α).

By Proposition 3.9.3 all decompositions of α can be found among the roots
of f . The factors X and α − X correspond to the trivial decompositions
(0, α) and (α, 0) of α. The polynomial h = X4−2αX3 +2α2X2−3X+α is
irreducible as it is Eisenstein at the prime (α). Let β ∈ Z be a root of h. By
Lemma 3.2.8 we have ‖β‖ ≥ N(β) = N(h(0)) = 31/3 = ‖α‖. We can only
have ‖β‖2 +‖α−β‖2 ≤ ‖α‖2 if ‖α−β‖ = 0, i.e. α = β, which is impossible.
Hence α is indecomposable by Lemma 2.4.3.

3.14 Enumeration of degree-3 indecomposables

In this section we discuss our attempt to compute the indecomposable al-
gebraic integers of degree 3 and derive Theorem 3.14.1. We will refer to
tables of computational results, which can be found in the appendix, and
are obtained by a computer program [19] written in Sage [41].
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We will write fα ∈ Z[x] for the minimal polynomial of α ∈ Z. We will
consider α up to ‘trivial isometries’ of Z, namely those of µ∞oGal(Q) as in
Lemma 3.2.13. Using Proposition 3.7.1 we compute a set of 5525 polynomi-
als among which we can find all minimal polynomials of the indecomposable
algebraic integers of degree 3. Among those 5525 polynomials f only 700 are
in fact irreducible with q(α) ≤ 4 for all roots α of f . We already eliminated
the Galois action by considering minimal polynomials instead of elements,
and by choosing only one element of each µ∞-orbit {f,−f(−x)} we elim-
inate the action of µ∞, and end up with ‘only’ 350 polynomials to check.
Of those 350, there are 27 polynomials fα such that q(α) < 2, so that α is
indecomposable by Proposition 3.3.1.

Small degree decompositions. For 95 polynomials f , the roots α of
f have a non-trivial decomposition in the ring of integers of Q(α). For 116
of the remaining polynomials fα we can find a non-trivial decomposition
(β, α − β) of α with β in the ring of integers of a degree 2 extension of
Q(α). Of those 116 there are 84 for which the minimal polynomial gβ of β
over Q(α) is of the form x2 − αx ± 1, a polynomial we encountered in the
proof of Lemma 3.4.2. The remaining 32 polynomials and corresponding de-
compositions can be found in Table 1. We are now left with 112 polynomials
to check.

Large degree decompositions. To find decompositions in higher de-
gree extensions we implemented a lattice algorithm. Since we are interested
in finding only one decomposition instead of all of them, and since verifying
whether something is a decomposition is computationally easy, we can get
away with a lot of heuristics. For (β, α−β) ∈ dec(α) we have, on average of
squares over all embeddings of Q(α, β) in C, that |β−α/2| ≤

√
q(α/2) = r

by Lemma 2.4.3. Hence if we write gβ =
∑

i ci(x − α/2)i we have that∑
i |ci|ri should be small. It is useful for our lattice algorithm to instead

consider the 2-norm (
∑

i r
i
∑

σ |σ(ci)|2)1/2 and hope this does not affect
the quality of our results for the worse. We enumerate small polynomials
ε ∈ Q(α)[x] of degree less than d ∈ Z>0 such that (x − α/2)d − xd + ε is
in the lattice of integral polynomials, and thus (x − α/2)d + ε is monic,
integral and small. We then verify for each of those whether they induce
a decomposition of α. The 41 polynomials fα for which this method has
found a non-trivial decomposition (β, α− β) of α with gβ of degree greater
than 2 are listed in Table 2 together with the polynomial gβ found. This
leaves 71 polynomials to check and gives an upper bound of 6 · 98 = 588 on
the number of indecomposable algebraic integers of degree 3.

Indecomposables. On the other hand, we want to prove that certain α
are indecomposable. To this end, we implemented a lattice algorithm similar
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to that of Proposition 3.11.3. To hopefully speed up the algorithm we also
apply the dimension reducing symmetry trick discussed from Lemma 3.12.1.
Writing R for the ring of integers of Q(α) and z = x(α− x), we enumerate
short g ∈ R[z] for which we verify whether g as polynomial in y = x− α/2
is exponentially bounded. The 32 polynomials fα for which we found such
a g proving indecomposability of α are listed in Table 3. We present g in
factored form for compactness. This leaves 39 polynomials undetermined
and gives a lower bound of 6 · 59 = 354 on the number of indecomposable
algebraic integers of degree 3.

Theorem 3.14.1. There are exactly 2 indecomposable algebraic integers of
degree 1, there are exactly 14 of degree 2, and there are at least 354 and at
most 588 of degree 3.

Proof. The degree 1 case is obvious: 1 and −1 are the only indecomposable
integers. The degree 2 case is Theorem 3.4.3. The bounds for degree 3 are
the result of the computation in this section.




