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CHAPTER 2
Hilbert lattices



16 2. Hilbert lattices

2.1 Introduction

This chapter is based on [18]. A set of R-linearly independent vectors
{b1, . . . , bk} of some Euclidean vector space such as Rn gives rise to a dis-
crete subgroup { k∑

i=1

xibi

∣∣∣x1, . . . , xk ∈ Z
}
,

which we call a lattice. In particular, a lattice is a free abelian group of
finite rank. In preparation of Chapter 3 we study a generalization of lattices
that includes ‘infinite rank lattices’. These will be the discrete subgroups of
Hilbert spaces, which we call Hilbert lattices, and they include the ‘Euclidean
lattices’ as a special case. We will primarily generalize existing theory from
the finite dimensional case, and highlight the things that fail to generalize.

Theorem 2.3.13. Every countable subgroup of a Hilbert lattice is free.

Whether or not all Hilbert lattices are free themselves is still an open
problem. Let Λ be a Hilbert lattice. An orthogonal decomposition of Λ is
a decomposition {Λi}i∈I of Λ as abelian group, as defined in the Prelimi-
naries, such that 〈Λi,Λj〉 = {0} for all distinct i, j ∈ I. The collection of
orthogonal decompositions of Λ inherit the structure of a category. We say
an orthogonal decomposition is universal if it is an initial object in this
category.

Theorem 2.5.4. Every Hilbert lattice has a universal orthogonal decompo-
sition.

Let Λ be a Hilbert lattice in a Hilbert space H. The Voronoi cell of Λ
is the set

Vor(Λ) = {z ∈ H | (∀x ∈ Λ \ {0}) ‖z‖ < ‖z − x‖},

i.e. the set of all points which have the origin as their unique closest lattice
point. It is almost a ‘fundamental domain’ for Λ.

Theorem 2.6.9. Let Λ be a Hilbert lattice in a Hilbert space H and consider
the natural map H → H/Λ. Its restriction to Vor(Λ) is injective and for all
ε > 0 its restriction to (1 + ε) Vor(Λ) is surjective.

A decomposition of z ∈ Λ is a pair (x, y) ∈ Λ2 such that x + y = z
and 〈x, y〉 ≥ 0. We say x ∈ Λ is indecomposable or Voronoi relevant if it has
precisely 2 decompositions, i.e. (0, x) and (x, 0) are the only decompositions
and x 6= 0. One can interpret the Voronoi cell as the intersection of half
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spaces Hx = {z ∈ H | ‖z‖ < ‖z−x‖}, but we do not need all x ∈ Λ \ {0} to
carve out Vor(Λ). For example, Hx ∩H2x = Hx.

Theorem 2.6.11. Let Λ be a Hilbert lattice in a Hilbert space H. Then there
exists a unique set S ⊆ Λ \ {0} which is minimal with respect to inclusion
such that Vor(Λ) = {z ∈ H | (∀x ∈ S) ‖z‖ < ‖z− x‖}, and S equals the set
of indecomposable vectors.

2.2 Inner products and Hilbert spaces

Definition 2.2.1. Let R ⊆ C be a subring. An R-norm on an R-module
M is a map ‖ · ‖ : M → R≥0 that satisfies:

(Absolute homogeneity) For all x ∈M and a ∈ R we have ‖ax‖ = |a| · ‖x‖;
(Triangle inequality) For all x, y ∈M we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

(Positive-definiteness) For all non-zero x ∈M we have ‖x‖ ∈ R>0.
A normed R-module is an R-moduleM together with an R-norm onM . For
normed R-modules M and N an R-module homomorphism f : M → N is
called an isometric map if ‖x‖ = ‖f(x)‖ for all x ∈M . The isometric maps
are the morphisms in the category of normed R-modules.

Note that an isometric map is injective, but not necessarily surjective.

Definition 2.2.2. Let R ⊆ C be a subring and M be an R-module. An
R-inner product on M is a map 〈 · , · 〉 : M2 → C that satisfies:
(Conjugate symmetry) For all x, y ∈M we have 〈x, y〉 = 〈y, x〉;

(Left linearity) For all x, y, z ∈M and a ∈ R we have

〈x+ ay, z〉 = 〈x, z〉+ a〈y, z〉;

(Positive-definiteness) For all non-zero x ∈M we have 〈x, x〉 ∈ R>0.
We say it is a real inner product if 〈M,M〉 ⊆ R, which implies R ⊆ R
when M 6= 0. An R-inner product space is an R-module together with an
R-inner product. For R-inner product spaces M and N a morphism is an
R-module homomorphism f : M → N for which there exists an R-module
homomorphism f∗ : N → M such that 〈f(x), y〉 = 〈x, f∗(y)〉 for all x ∈ M
and y ∈ N . This f∗ is unique if it exists, and we call it the adjoint of f .

Remark 2.2.3. An R-inner product spaceM comes with an R-norm given
by ‖x‖ =

√
〈x, x〉, which in turn induces a metric d(x, y) = ‖x− y‖ and a

topology. One can then speak about the completeness of M with respect to
this metric.
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Lemma 2.2.4. Suppose R ⊆ C is a subring and M is a real R-inner
product space. Then the induced norm satisfies the parallelogram law: For
all x, y ∈M we have

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

The following is an exercise in many standard texts.

Theorem 2.2.5 (Jordan–von Neumann [26]). Let R ⊆ Q be a subring,
M an R-module and suppose a map ‖ · ‖ : M → R≥0 satisfies positive-
definiteness and the parallelogram law. Then ‖·‖ is an R-norm onM induced
by a real R-inner product 〈 · , · 〉 : M2 → R given by

〈x, y〉 = 1
2(‖x+ y‖2 − ‖x‖2 − ‖y‖2).

Proof. Note that taking x = y = 0 in the parallelogram law shows 2‖0‖2 =
4‖0‖2, hence ‖0‖ = 0. For all x ∈ M we have ‖x+ x‖2 = 2‖x‖2 + 2‖x‖2 −
‖x− x‖2 = 4‖x‖2, hence 〈x, x〉 = 1

2(‖2x‖2 − 2‖x‖2) = ‖x‖2. It now suffices
to show that 〈 · , · 〉 is an inner product, as ‖ · ‖ is then the associated norm
as in Remark 2.2.3. Clearly 〈 · , · 〉 satisfies conjugate symmetry and positive
definiteness, so it remains to prove left linearity. It suffices to show for all
x ∈ M that x 7→ 〈x, z〉 is Z-linear: Since R is in the field of fractions of
Z, any Z-linear map to R is also R-linear. Let x, y, z ∈ M and note that
〈x, y〉 = 1

4(‖x+ y‖2 − ‖x− y‖2). By the parallelogram law we have

2‖y + z‖2 + 2‖x‖2 − ‖ − x+ y + z‖2 = ‖x+ y + z‖2

= 2‖x+ z‖2 + 2‖y‖2 − ‖x− y + z‖2.

so

2‖x+ y + z‖2 + ‖ − x+ y + z‖2 + ‖x− y + z‖2

= 2‖x+ z‖2 + 2‖y + z‖2 + 2‖x‖2 + 2‖y‖2.

Applying this equation also with z replaced by −z, we obtain

8〈x+ y, z〉 = 2‖x+ y + z‖2 − 2‖x+ y − z‖2

= 2‖x+ z‖2 + 2‖y + z‖2 − 2‖x− z‖2 − 2‖y − z‖2

= 8〈x, z〉+ 8〈y, z〉,

as was to be shown. We conclude that 〈 · , · 〉 is an R-inner product.

Inner product spaces over Z or Q can be extended to R in a ‘canonical’
way. This can best be expressed in a categorical sense in terms of universal
morphisms. We proceed as in Chapter III of [37].
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Definition 2.2.6. Let C be a category. An object U of C is called universal
if for each object X of C there exists a unique morphism U → X in C.

Definition 2.2.7. Let C and D be categories. Let F : C → D be a functor
and Z an object of D. A universal morphism from Z to F is a pair (X, η)
with X an object of C and η ∈ HomD(Z,F (X)) such that for all objects Y
of C and every g ∈ HomD(Z,F (Y )) there exists a unique f ∈ HomC(X,Y )
for which F (f) ◦ η = g. Equivalently, for all objects Y of C and morphisms
g : Z → F (Y ) we have the following diagram:

Z F (X) X

F (Y ) Y

η

g F (f) !f

For a reader familiar with category theory we remark that, if for a
functor F : C → D every object Z of D has a universal morphism to F ,
then F is a right adjoint functor.

Example 2.2.8. We will give a concrete example of a universal morphism.
1. Let k be a field. Consider the forgetful functor F from the category of

k-vector spaces to the category of abelian groups, i.e. the functor that sends
a k-vector space to its underlying abelian group. Now let Z be an abelian
group. We take X = k ⊗Z Z, which is a k-vector space, and η : Z → F (X)
the map z 7→ 1⊗ z. Because F is a forgetful functor, as will always be the
case in our applications, we may omit it in the notation for simplicity and
state that η is a morphism Z → X of abelian groups.

Now let g : Z → Y be a morphism of abelian groups, and take f : X → Y
to be the morphism a⊗ z 7→ a · g(z) of k-vector spaces. Then (f ◦ η)(z) =
f(1⊗z) = g(z) for all z ∈ Z, so f ◦η = g. Suppose f ′ also satisfies f ′◦η = g.
Then (f −f ′)◦η = 0. Since η(Z) generates X as a k-vector space we obtain
f − f ′ = 0, so f is unique and (X, η) is a universal morphism.

Since (X, η) is universal the vector space X corresponding to Z is
‘uniquely unique’, meaning that any other universal morphism (X ′, η′) in-
duces a unique isomorphism ϕ : X → X ′ such that ϕ ◦ η = η′.

Note that η need not be injective. For k = Q it is only injective when
A is torsion-free. Then η can be thought of as a canonical embedding.

2. Similarly, we can consider a forgetful functor F from the category
of Q-inner product spaces to the category of Z-inner product spaces. The
underlying universal morphism (X, η) is the same as before, and we equip
X with the inner product we extend Q-bilinearly from Z. To show that
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this inner product is positive definite we use that A is torsion-free, being a
Z-inner product space.

Definition 2.2.9. A Hilbert space is an R-module H equipped with a real
R-inner product such thatH is complete with respect to the induced metric.
The morphisms of Hilbert spaces are the isometric maps.

Theorem 2.2.10 (Theorem 3.2-3 in [29]). Let F be the forgetful functor
from the category of Hilbert spaces to the category of Q-inner product spaces.
Then every Q-inner product space V has an injective universal morphism
to F , and a morphism f : V → H for some Hilbert space H is universal
precisely when f is injective and the image of f is dense in H.

The Hilbert space constructed for V in Theorem 2.2.10 can be obtained
as the topological completion of V with respect to the metric induced by
the inner product, and the inner product is extended continuously.

Definition 2.2.11. For a set B and p ∈ R>0 we define the R-vector space

`p(B) =

{
(xb)b ∈ RB

∣∣∣∣ xb = 0 for all but countably many b ∈ B
and

∑
b∈B |xb|p <∞

}
and ‖x‖p = (

∑
b∈B |xb|p)1/p for all x = (xb)b ∈ `p(B).

Theorem 2.2.12 (Minkowski’s inequality, Theorem 1.2-3 in [29]). For any
set B and p ∈ R≥1 the map ‖ · ‖p is an R-norm on `p(B).

Lemma 2.2.13 (Example 3.1-6 in [29]). For any set B the space `2(B)
is a Hilbert space with inner product given by 〈x, y〉 =

∑
b∈B xb · yb for

x = (xb)b, y = (yb)b ∈ `2(B), such that 〈x, x〉 = ‖x‖22.

Lemma 2.2.14. Let n ∈ Z≥1, x ∈ Rn and let 0 < p ≤ q be real. Then we
have

‖x‖q ≤ ‖x‖p and n−1/p · ‖x‖p ≤ n−1/q · ‖x‖q.

Proof. Clearly we may assume x 6= 0. For the first inequality, consider
y = x/‖x‖p. Then |yi| ≤ 1 for all i, from which |yi|q ≤ |yi|p follows. Now

‖y‖qq =

n∑
i=1

|yi|q ≤
n∑
i=1

|yi|p = ‖y‖pp = 1.

Hence ‖x‖q/‖x‖p = ‖y‖q ≤ 1, as was to be shown. For the second inequality,
note that x 7→ xq/p is a convex function on R≥0. We have by Jensen’s
inequality (Theorem 7.3 in [7]) that

‖x‖qq =
n∑
i=1

|xi|q =
n∑
i=1

|xpi |
q/p ≥ n

(
1

n

n∑
i=1

|xi|p
)q/p

= n1−q/p‖x‖qp,
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so n−1/p · ‖x‖p ≤ n−1/q · ‖x‖q.

Definition 2.2.15. Let H be a Hilbert space. A subset S ⊆ H is called
orthogonal if 0 6∈ S and 〈x, y〉 = 0 for all distinct x, y ∈ S. The orthog-
onal dimension of H, written orth dimH, is the cardinality of a maximal
orthogonal subset of H.

That the orthogonal dimension is well-defined, i.e. that maximal orthog-
onal subsets of a given Hilbert space have the same cardinality follows from
Proposition 4.14 in [6].

Theorem 2.2.16 (Theorem 5.4 in [6]). Let H be a Hilbert space and B a
set. Then the Hilbert spaces H and `2(B) are isomorphic if and only if the
cardinality of B equals orth dimH.

In particular, up to isomorphism every Hilbert space is of the form `2(B)
for some set B.

2.3 Hilbert lattices

Definition 2.3.1. A Hilbert lattice is an abelian group Λ together with a
map q : Λ→ R, which we then call the square-norm of Λ, that satisfies:

(Parallelogram law) For all x, y ∈ Λ we have

q(x+ y) + q(x− y) = 2q(x) + 2q(y);

(Positive packing radius) There exists an r ∈ R>0 such that q(x) ≥ r for
all non-zero x ∈ Λ.

We write P(Λ) = inf{q(x) |x ∈ Λ \ {0}}.

The following lemma gives an equivalent definition of a Hilbert lattice.

Lemma 2.3.2. A Hilbert lattice Λ with square-norm q is a discrete Z-inner
product space with inner product given by

(x, y) 7→ 1

2
(q(x+ y)− q(x)− q(y)).

Conversely, every discrete Z-inner product space M is a Hilbert lattice with
square norm given by x 7→ 〈x, x〉.

Proof. The first statement is Theorem 2.2.5 with the observation that the
positive packing radius implies non-degeneracy and discreteness. The second
statement is Lemma 2.2.4 with the observation that discreteness implies a
positive packing radius.
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Example 2.3.3. Consider for some n ∈ Z≥0 the vector space Rn with the
standard inner product. If Λ ⊆ Rn is a discrete subgroup, then Λ is a Hilbert
lattice when q is given by x 7→ ‖x‖2.

Example 2.3.4. Let B be a set. Then

Z(B) = {(xb)b ∈ ZB |xb = 0 for all but finitely many b}

is a Hilbert lattice in `2(B) when q is given by x 7→ ‖x‖2. In fact, any
discrete subgroup of `2(B) is a Hilbert lattice.

Example 2.3.5. The infimum defining P(Λ) of a Hilbert lattice Λ need not
be attained. Certainly if Λ = 0 we have that P(Λ) =∞ is not attained. For
an example of a non-degenerate Λ consider the following. For a set I and
a map f : I → R≥0 we write Λf for the group Z(I) together with the map
q((xi)i) =

∑
i∈I f(i)2x2

i . Note that inf{q(x) |x ∈ Λf \ {0}} = inf{f(i)2 | i ∈
I}, so Λf is a Hilbert lattice if and only if inf{f(i) | i ∈ I} > 0. We now
simply take f : Z>0 → R≥0 given by n 7→ 1 + 1/n.

Lemma 2.3.6. Let Λ be a Hilbert lattice with square-norm q. Then any
subgroup Λ′ ⊆ Λ is a Hilbert lattice when equipped with the square-norm
q|Λ′ .

Theorem 2.3.7. Let F be the forgetful functor from the category of Hilbert
spaces to the category of Z-inner product spaces. Then every Z-inner product
space L has an injective universal morphism η to F . For every Z-inner
product space L, Hilbert space H and injective morphism f : L → H we
have that f is universal if and only if Q · f(L) is dense in H, and L is a
Hilbert lattice if and only if f(L) is discrete in H.

It follows from this theorem that the Hilbert lattices are, up to iso-
morphism, precisely the discrete subgroups of Hilbert spaces. Hence The-
orem 2.3.7 allows us to assume without loss of generality that a Hilbert
lattice is a discrete subgroup of a Hilbert space.

Proof. The first and second statement are just a combination of Exam-
ple 2.2.8.2 and Theorem 2.2.10, while the third is trivial when taking the
equivalent definition of Lemma 2.3.2.

Remark 2.3.8. Let Λ be a Hilbert lattice in a Hilbert space H and suppose
that Λ is finitely generated. Then RΛ is a finite dimensional R-inner product
space and thus complete. It follows that Λ → RΛ is a universal morphism
because QΛ is dense in RΛ. Since RΛ is finite dimensional, Λ is a lattice in
the classical sense: a discrete subgroup of a Euclidean vector space.
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Lemma 2.3.9. Let Λ be a Hilbert lattice in a Hilbert space H. Then the
natural map R⊗Z Λ→ H is injective.

Proof. To show R ⊗Z Λ → H is injective we may assume by Lemma 2.3.6
without loss of generality that Λ is finitely generated, as any element in the
kernel is also in R⊗Z Λ′ for some finitely generated sublattice Λ′ ⊆ Λ. Write
V = RΛ ⊆ H. We may choose an R-basis for V in Λ, and let Λ′ be the
group generated by this basis. Then R ⊗Z Λ′ → V is an isomorphism. As
Λ is discrete in V , also Λ/Λ′ is discrete in V/Λ′. Now V/Λ′ is compact, so
the quotient Λ/Λ′ is finite. Then Λ ⊆ 1

nΛ′, where n = #(Λ/Λ′). Now the
natural map R ⊗Z Λ → H is injective because it is the composition of the
map R⊗Z Λ→ R⊗Z ( 1

nΛ′) = R⊗Z Λ′, which is injective since R is flat over
Z, and the map R⊗Z Λ′ → V , which is injective by construction.

Proposition 2.3.10. Let Λ be a Hilbert lattice in a Hilbert space H and
suppose Λ is finitely generated as Z-module. Then Λ has a Z-basis and any
Z-basis is R-linearly independent.

Proof. Since Λ is finitely generated and torsion free, it is clear that Λ is
free. By Lemma 2.3.9, any Z-linearly independent subset of Λ is R-linearly
independent.

Proposition 2.3.11. Suppose Λ is a Hilbert lattice in a Hilbert space H
and let Λ′ ⊆ Λ be a finitely generated subgroup. Let π : H → H be the
orthogonal projection onto the orthogonal complement of Λ′. Then for each
0 ≤ t < 1

4P(Λ) there are only finitely many z ∈ πΛ such that q(z) ≤ t, and
πΛ is a Hilbert lattice.

Proof. Suppose that πΛ contains infinitely many points z with q(z) ≤ t, or
equivalently there exists some infinite set S ⊆ Λ such that π|S is injective
and q(π(x)) ≤ t for all x ∈ S. Consider the map τ : H → RΛ′, the comple-
mentary projection to π. As (RΛ′)/Λ′ is compact, there must exist distinct
x, y ∈ S such that q(τ(x)− τ(y) + w) < P(Λ)− 4t for some w ∈ Λ′. Then

0 < q(x− y + w) = q(π(x− y)) + q(τ(x− y) + w)

< 2
(
q(π(x)) + q(π(y))

)
+ P(Λ)− 4t ≤ P(Λ),

a contradiction. Hence there are only finitely many z ∈ πΛ such that q(z) ≤
t. To verify that πΛ is a Hilbert lattice it suffices to show that it is discrete
inH, which follows from the previous by taking any non-zero value for t.

Lemma 2.3.12. Let Λ be a Hilbert lattice which is finitely generated as
Z-module and let S ⊆ Λ be a set of vectors that forms a basis for Λ∩ (RS).
Then there exists a basis B ⊇ S of Λ.
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Proof. Let π be the projection onto the orthogonal complement of S. Then
πΛ is a Hilbert lattice by Proposition 2.3.11 with a basis Bπ by Proposi-
tion 2.3.10. Now choose for every bπ ∈ Bπ a lift b ∈ Λ and let T be the set
of those elements. It is easy to show that B = S ∪ T is a basis of Λ.

Theorem 2.3.13. Every countable subgroup of a Hilbert lattice is free.

We call an abelian group for which all its countable subgroups are free
an almost free abelian group.

Proof. Let Λ be a Hilbert lattice. By Lemma 2.3.6 suffices to show that
if Λ is countable then Λ is free. We may write Λ = {x1, x2, . . . } and let
Vi =

∑i
j=1 Rxj and Λi = Vi ∩ Λ. We claim that there exist bases Bi for Λi

such that Bi ⊆ Bj for all i ≤ j. Indeed, take B0 = ∅ and inductively for
Λi+1 note that Bi is a basis for Λi = Λi+1 ∩ Vi, so that by Lemma 2.3.12
there exists some basis Bi+1 for Λi+1 containing Bi. Then B =

⋃∞
i=0Bi is

a basis for Λ, so Λ is free.

Question 2.3.14. We have by Example 2.3.4 and Theorem 2.3.13 two
inclusions

{free abelian groups} ⊆ {underlying groups of Hilbert lattices}
⊆ {almost free abelian groups}.

Is one of these inclusions an equality, and if so, which?

Example 2.3.15. There are abelian groups which are almost free but not
free. Let X be a countably infinite set and consider the Baer–Specker group
B = ZX . Then by Theorem 21 in [27], we have that B is not free. Since B
is a torsion-free Z-module, so is any countable subgroup, which is then free
by Theorem 16 in [27], i.e. B is almost free.

Definition 2.3.16. For a Hilbert lattice Λ we define its rank as rk Λ =
dimQ(Λ⊗Z Q). We will say a Hilbert lattice Λ is of full rank in an ambient
Hilbert space H if QΛ is dense in H.

For free Hilbert lattices Λ we have Λ ∼= Z(rk Λ) as abelian group. By
Theorem 2.3.7 every Hilbert lattice has a uniquely unique Hilbert space in
which it is contained and of full rank.

Lemma 2.3.17. Let H be a Hilbert space and let S, T ⊆ H be subsets such
that S is infinite, the Q-vector space generated by S is dense in H and
inf{‖x− y‖ |x, y ∈ T, x 6= y} > 0. Then #S ≥ #T .
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Proof. Because S is infinite, the set S and the Q-vector space V generated
by S have the same cardinality. Let ρ = inf{‖x − y‖ |x, y ∈ T, x 6= y}.
Since V is dense in H we may for each x ∈ T choose f(x) ∈ V such that
‖x−f(x)‖ < ρ/2. If f(x) = f(y), then ‖x−y‖ = ‖(x−f(x))−(y−f(y))‖ ≤
‖x − f(x)‖ + ‖y − f(y)‖ < ρ, so x = y. Hence f is injective and we have
#S = #V ≥ #T .

The following proposition is generalized from proofs by O. Berrevoets
and B. Kadets.

Proposition 2.3.18. If Λ is a Hilbert lattice in a Hilbert space H, then
rk Λ ≤ orth dimH with equality if Λ is of full rank in H.

Proof. First suppose rk Λ is finite. It follows from Lemma 2.3.9 that rk Λ =
dimR(R⊗Z Λ) = dimR(RΛ) ≤ dimRH. If Λ is of full rank, then RΛ is dense
in H, but RΛ is complete as it is finite-dimensional, so RΛ = H and rk Λ =
dimRH. Lastly, it follows from Theorem 2.2.16 that dimRH = orth dimH
when dimRH is finite.

Now suppose rk Λ is infinite and thus #Λ = rk Λ. By Theorem 2.2.16
we may assume without loss of generality that H = `2(B) for some set
B of cardinality orth dimH, which must be infinite. Observe that the Q-
vector space generated by B is dense in H. We may apply Lemma 2.3.17
by discreteness of Λ to obtain orth dimH = #B ≥ #Λ = rk Λ, as was to
be shown. If QΛ is dense in H, then we may apply Lemma 2.3.17 since
‖b − c‖2 = ‖b‖2 + ‖c‖2 = 2 for all distinct b, c ∈ B to conclude that
rk Λ = #Λ ≥ #B = orth dimH, and thus we have equality.

2.4 Decompositions

Definition 2.4.1. Let Λ be a Hilbert lattice. A decomposition of an ele-
ment z ∈ Λ is a pair (x, y) ∈ Λ2 such that z = x + y and 〈x, y〉 ≥ 0. A
decomposition (x, y) of z ∈ Λ is trivial if x = 0 or y = 0. We say z ∈ Λ is
indecomposable if it has exactly two decompositions, i.e. z 6= 0 and the only
decompositions of z are trivial. Write dec(z) for the set of decompositions
of z ∈ Λ and indec(Λ) for the set of indecomposable elements of Λ.

Indecomposable elements are in the computer science literature often
called Voronoi-relevant vectors, for example in [23]. This name is clearly
inspired by Theorem 2.6.11.

Example 2.4.2. Let f : I → R≥0 be such that Λf as in Example 2.3.5
is a Hilbert lattice. We will compute the indecomposables of Λf . Let x =
(xi)i ∈ indec(Λf ) and write ei for the i-th standard basis vector. Note that
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x must be primitive, i.e. not be of the form ny for any y ∈ Λf and n ∈ Z>1,
because otherwise 〈y, (n − 1)y〉 = (n − 1)〈y, y〉 > 0 shows (y, (n − 1)y) is
a non-trivial decomposition. If xi and xj are non-zero for distinct i, j ∈ I,
then q(x−eixi)+q(eixi) = q(x) and we have a non-trivial decomposition of
x. Hence x = ±ei for some i ∈ I. Note that ei is indeed indecomposable for
all i ∈ I: Any decomposition (x, y) ∈ dec(ei) must have |xi| + |yi| = 1 and
xj = yj = 0 for i 6= j, so x = 0 or y = 0. As z 7→ −z is an isometry of Λf , we
have that −ei is indecomposable as well. Hence indec(Λf ) = {±ei | i ∈ I}.

Lemma 2.4.3. Let Λ be a Hilbert lattice and let x, y, z ∈ Λ. Then the
following are equivalent:
(i) The pair (x, y) is a decomposition of z.
(ii) We have x+ y = z and q(x) + q(y) ≤ q(z).
(iii) We have x+ y = z and q(x− z/2) ≤ q(z/2).
(iv) We have x+ y = z and q(z − 2y) ≤ q(z).

For a visual aid to this lemma see Figure 2.1.

Proof. (i ⇔ ii) By bilinearity we have

q(z) = 〈x+ y, x+ y〉 = q(x) + q(y) + 2〈x, y〉.

(ii ⇔ iii) By the parallelogram law we have

q(x) + q(y) = 2q
(x+ y

2

)
+ 2q

(x− y
2

)
= 2q

(z
2

)
+ 2q

(
x− z

2

)
,

so q(x) + q(y) − q(z) = 2 · [q(x − z/2) − q(z/2)]. The claim then follows
trivially.

(iii ⇔ iv) Note that z − 2y = x − y = 2(x/2 − y/2) = 2(x − z/2). By
the parallelogram law we have q(2w) = 4q(w) for all w ∈ QΛ, from which
this equivalence trivially follows.

By Lemma 2.4.3, finding decompositions of z ∈ Λ amounts to finding
x ∈ Λ sufficiently close to z/2.

Lemma 2.4.4. Let z ∈ Λ such that 0 < q(z) ≤ 2P(Λ). Suppose that the
latter inequality is strict or P(Λ) is not attained by any vector in Λ. Then
z ∈ indec(Λ).

Proof. If (x, y) ∈ dec(z) is non-trivial, then by Lemma 2.4.3 we have 2P(Λ) ≥
q(z) ≥ q(x) + q(y) ≥ P(Λ) + P(Λ) with either the first or last inequality
strict, which is a contradiction. Since z 6= 0 it follows that z is indecompos-
able.
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0

x z

y

z/2

z − 2y

Figure 2.1: A decomposition z = x+ y

Proposition 2.4.5. If Λ is a non-zero Hilbert lattice, then every z ∈ Λ can
be written as a sum of at most q(z)/P(Λ) indecomposables z1, . . . , zn ∈ Λ
such that

∑
i q(zi) ≤ q(z).

Proof. By scaling q we may assume without loss of generality that P(Λ) = 1.
We apply induction to bq(z)c. When this equals 0 we have q(z) < P(Λ),
so z = 0, which we can write as a sum of zero indecomposables. Now
suppose bq(z)c ≥ 1 and thus z 6= 0. If z is indecomposable then indeed it
is the sum of 1 ≤ bq(z)c indecomposable, so suppose there is a non-trivial
(x, y) ∈ dec(z). Then q(x) + q(y) ≤ q(z) by Lemma 2.4.3 and since y 6= 0
also q(y) ≥ P(Λ) = 1. Hence bq(x)c ≤ bq(z) − q(y)c < bq(z)c, so by the
induction hypothesis we may write x =

∑
i xi with x1, . . . , xa ∈ indec(Λ)

and a ≤ q(x) such that
∑

i q(xi) ≤ q(x). By symmetry we may similarly
write y as a sum of at most q(y) indecomposables y1, . . . , yb. Hence we
can write z =

∑
i xi +

∑
i yi as a sum of a + b ≤ q(x) + q(y) ≤ q(z)

indecomposables such that
∑

i q(xi) +
∑

i q(yi) ≤ q(x) + q(y) ≤ q(z). The
proposition follows by induction.

Lemma 2.4.6. Suppose Λ is a Hilbert lattice and z ∈ Λ is the sum of some
non-zero z1, . . . , zn ∈ Λ and n ∈ Z≥2. If

∑
i q(zi) ≤ q(z), then z has a

non-trivial decomposition.

Proof. We have

n∑
i=1

〈zi, z − zi〉 =

n∑
i=1

〈zi, z〉 −
n∑
i=1

〈zi, zi〉 = q(z)−
n∑
i=1

q(zi) ≥ 0,

so 〈zi, z − zi〉 ≥ 0 for some i. As neither zi nor z − zi are 0, we conclude
that (zi, z − zi) is a non-trivial decomposition of z.

Proposition 2.4.7. Let Λ be a Hilbert lattice. The group {±1} acts on
indec(Λ) by multiplication, and the natural map indec(Λ)/{±1} → Λ/2Λ is
injective.
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Proof. Note that {±1} acts on Λ and thus also on indec(Λ). By (i ⇔ iv) of
Lemma 2.4.3 we have

dec(z) =

{(z − a
2

,
z + a

2

) ∣∣∣∣ a ∈ z + 2Λ, q(a) ≤ q(z)
}
.

Let z ∈ indec(Λ). Then {(0, z), (z, 0)} = dec(z), so the only a ∈ z+2Λ such
that q(a) ≤ q(z) are a = z and a = −z. Thus z is a q-minimal element of its
coset in Λ/2Λ and this minimal element is unique up to sign. Consequently,
the map indec(Λ)/{±1} → Λ/2Λ is injective.

Corollary 2.4.8. Let Λ be a Hilbert lattice. Then indec(Λ) is finite if and
only if rk Λ <∞.

Proof. Recall that indec(Λ) generates Λ by Proposition 2.4.5. Hence if
indec(Λ) is finite, then rk Λ < ∞. If rk Λ < ∞, then Proposition 2.4.7
implies #indec(Λ) ≤ 2 ·#(Λ/2Λ) = 21+rk Λ <∞.

The zero coset of Λ/2Λ is never in the image of the map of Propo-
sition 2.4.7, as any non-zero element of the form 2x with x ∈ Λ has a
non-trivial decomposition (x, x). A non-zero coset C of Λ/2Λ can fail to be
in the image for two reasons: Either C has no minimal element or a minimal
element exists but is not unique up to sign. In the latter case, with z ∈ C
minimal, there exists a (x, y) ∈ dec(z) with x, y 6= 0 and q(x) + q(y) = q(z)
and thus 〈x, y〉 = 0, i.e. z has an orthogonal decomposition. This is exhib-
ited, for example, by the lattice Z2 ⊆ R2 with the standard inner product
and z = (1, 1), where (−1, 1) ∈ z + 2Z2 gives rise to the orthogonal decom-
position (1, 0) + (0, 1) = z. In the former case, rk Λ has to be infinite: If
rk Λ is finite, then for any x ∈ Λ there are only finitely many y ∈ Λ with
q(y) ≤ q(x), so q assumes a minimum on any non-empty subset of Λ, in
particular C. An example is the following.

Example 2.4.9. We will exhibit a Hilbert lattice Λ and a coset of 2Λ on
which q does not attain a minimum. Let f : I → R≥0 be such that Λf as in
Example 2.3.5 is a Hilbert lattice. We define the Λf2 to be the sublattice

Λf2 = ker(Λf
Σ−→ (Z/2Z)) =

{
(xi)i ∈ Z(I)

∣∣∣ ∑
i∈I

xi ≡ 0 mod 2
}
.

Consider f : Z≥0 → R≥0 strictly decreasing, write f(∞) for its limit,
assume f(∞) > 0, and let Λ = Λf2 . Let z = 2ek ∈ Λ for any k ∈ Z≥0. Then
for all y = (yi)i ∈ Λ we have

q(z − 2y) = 4
(

(1− yk)2f(k)2 +
∑
i 6=k

y2
i f(i)2

)
> 4f(∞)2,
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since either y2
i ≥ 1 for some i 6= k or yk is even. However, we also have for

y = ek + ei that q(z − 2y) = q(2ei) = 4f(i)2 → 4f(∞)2 as i → ∞. Hence
{q(z − 2y) | y ∈ Λ} does not contain a minimum.

If we eliminate the zero coset in the proof of Corollary 2.4.8 the upper
bound on the number of indecomposables becomes 2(2rk(Λ) − 1) and this
bound is tight. If one took the effort to define a sensible probability measure
on the space of all Hilbert lattices of given finite rank, then this upper bound
will in fact be an equality with probability 1.

2.5 Orthogonal decompositions

The main motivation for considering indecomposable elements is found in
the study of decompositions of lattices. In this section we generalize a result
of Eichler [11] on the existence of a universal decomposition in lattices to
Hilbert lattices.

Recall the definition of a graph and of a decomposition of a module from
the Preliminaries. We say a decompositionM of a module M is universal
if it is an initial object in this category, i.e. for all decompositions N of M
there exists a unique morphismM→N .

Definition 2.5.1. Let Λ be a Hilbert lattice. For a set I, an I-indexed
orthogonal decomposition of Λ is an I-indexed decomposition {Λi}i∈I of
Λ as Z-module such that 〈Λi,Λj〉 = 0 for all i 6= j, which we write as
i∈I Λi = Λ. An orthogonal decomposition of Λ is an I-indexed orthogonal

decomposition for any set I. We say Λ is orthogonally indecomposable if
Λ 6= 0 and for all Λ1,Λ2 ⊆ Λ such that Λ1 Λ2 = Λ we have Λ1 = 0 or
Λ2 = 0. We interpret the class of orthogonal decompositions of Λ as a full
subcategory of the category of decompositions of Λ.

Lemma 2.5.2. Let G = (V,E) be a graph. Then the connected components
of G are pairwise disjoint, and if for S ⊆ V there exist no {u, v} ∈ E such
that u ∈ S and v 6∈ S, then S is a union of connected components.

Proof. Let C be the set of S ⊆ V such that there are no {u, v} ∈ E such
that u ∈ S and v 6∈ S, so that the connected components of G become the
minimal non-empty elements of C with respect to inclusion. Note that C
is closed under taking complements, arbitrary unions and arbitrary inter-
sections, i.e. C is a clopen topology on V . Suppose S, T ∈ C are connected
components that intersection non-trivially, then S ∩ T ∈ C is non-empty,
so by minimality S = T . Hence the connected components are pairwise
disjoint.
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Now let S ∈ C and for all s ∈ S let As = {T ∈ C | s ∈ T} and Cs =⋂
T∈As T , which is an element of As. For all T ∈ C we either have T ∈ As or

V \ T ∈ As, and thus either Cs ⊆ T or Cs ∩ T = ∅. It follows that no non-
empty T ∈ C is strictly contained in Cs, i.e. Cs is a connected component
of G. As S ∈ As we have s ∈ Cs ⊆ S and thus S =

⋃
s∈S Cs is a union of

connected components.

The following is a generalization of a theorem due to Eichler [11], al-
though the proof more closely resembles that of Theorem 6.4 in [39].

Theorem 2.5.3. Let Λ be a Hilbert lattice and V ⊆ indec(Λ) such that V
generates Λ as a group. Let G be the graph with vertex set V and with an
edge between x and y if and only if 〈x, y〉 6= 0. Let U be the set of connected
components of G and for u ∈ U let Yu ⊆ Λ be the subgroup generated by
the elements in u. Then {Yu}u∈U is a universal orthogonal decomposition
of Λ.

As corollary to this theorem we have that Λ is orthogonally indecom-
posable if and only if G is connected.

Proof. We have V ⊆
⋃
u∈U Yu by Lemma 2.5.2, so

∑
u∈U Yu = Λ by as-

sumption on V . For u, v ∈ U distinct we have 〈u, v〉 = {0} by definition
of G, so 〈Yu,Yv〉 = {0}. We conclude that Λ = u∈U Yu is an orthogonal
decomposition.

To show it is universal, let {Λi}i∈I be a family of sublattices of Λ such
that i∈I Λi = Λ. Let x ∈ indec(Λ) and write x =

∑
i∈I λi with λi ∈ Λi

for all i ∈ I. If j ∈ I is such that λj 6= 0, then 〈λj ,
∑

i 6=j λi〉 = 0 and
thus λj = x, because otherwise we obtain a non-trivial decomposition of
x. Therefore every indecomposable of Λ is in precisely one of the Λi. We
conclude that the Si = Λi ∩ V for i ∈ I are pairwise disjoint and have V
as their union. Then by Lemma 2.5.2 every connected component u ∈ U is
contained in precisely one of the Si, say in Sf(u). By definition of the map
f : U → I and the Yu we have u∈f−1{i}Yu ⊆ Λi for all i, and since both
the Yu and the Λi sum to Λ we must have equality for all i. It follows trivially
from the construction that f is the unique map {Yu}u∈U → {Λi}i∈I , and we
conclude that {Yu}u∈U is a universal orthogonal decomposition of Λ.

We will use this theorem in Section 4.3 to generalize some theorems
from [34].

Theorem 2.5.4. Every Hilbert lattice has a universal orthogonal decompo-
sition.
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Proof. Take V = indec(Λ) in Theorem 2.5.3 and note that it satisfies the
conditions to this theorem by Proposition 2.4.5.

2.6 Voronoi cells

We will generalize the Voronoi cell as defined for classical lattices to Hilbert
lattices and extend some known definitions and properties. Some of these
definitions relate to the ambient Hilbert space of the Hilbert lattice, which
exists and is uniquely unique by Theorem 2.3.7 when we require the Q-
vector space generated by the lattice to lie dense in the Hilbert space. In
this section we will write HΛ for this ambient Hilbert space of a Hilbert
lattice Λ.

Definition 2.6.1. Let Λ be a Hilbert lattice. The packing radius of Λ is

ρ(Λ) = inf{1
2‖x− y‖ |x, y ∈ Λ, x 6= y} = 1

2

√
P(Λ),

the covering radius of Λ is

r(Λ) = inf{b ∈ R>0 | (∀z ∈ HΛ) (∃x ∈ Λ) ‖z − x‖ ≤ b}

and the Voronoi cell of Λ in H is the set

Vor(Λ) = {z ∈ HΛ | (∀x ∈ Λ \ {0}) ‖z‖ < ‖z − x‖}.

We call ρ(Λ) the packing radius because it is the radius of the largest
open sphere B ⊆ HΛ such that the spheres x + B for x ∈ Λ are pairwise
disjoint. Similarly r(Λ) is the radius of the smallest closed sphere B ⊆ HΛ

for which
⋃
x∈Λ(x + B) = HΛ. Note that r(Λ) = 0 only for Λ = 0 by

discreteness.

Example 2.6.2. The covering radius of a Hilbert lattice need not be finite.
Take Λf as in Example 2.3.5 but with f : Z≥0 → R≥0 diverging to infinity.
The lattice point closest to 1

3ei is 0 for all i ∈ Z≥0, so it has distance 1
3f(i)

to the lattice. Hence r(Λf ) ≥ sup{1
3f(i) | i ∈ Z≥0} =∞.

Example 2.6.3. The Voronoi cell does not need to be an open set. Con-
sider the lattice Λ = Λf2 as in Example 2.4.9 with f : Z≥0 → R>0 strictly
decreasing. Let i ∈ Z≥0 and A = (1 + f(∞)2f(i)−2)/2 and write ei for the
i-th standard basis vector. We claim that αei ∈ Vor(Λ) for α ∈ R precisely
when |α| ≤ A, which proves the Voronoi cell is not open.

Let x =
∑

j xjej ∈ Λ such that xi 6= 0. Then |xi| = 1 or q(x)/|xi| ≥
|xi|f(i)2 > f(i)2 + f(i+ 1)2. It follows that

inf
{ q(x)

2|xi|f(i)2

∣∣∣x ∈ Λ, xi 6= 0
}

=
f(i)2 + f(∞)2

2f(i)2
= A
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and that the infimum is not attained. By definition αei ∈ Vor(Λ) if and
only if g(x) := q(αei − x) − q(αei) > 0 for all x ∈ Λ \ {0}. Note that
g(x) = q(x)− 2αxif(i)2.

Suppose |α| ≤ A and let x ∈ Λ \ {0}. If αxi ≤ 0, then g(x) ≥ q(x) > 0,
so suppose αxi > 0. Then

g(x)

2|xi|f(i)2
=

q(x)

2|xi|f(i)2
− |α| > A− |α| ≥ 0,

so g(x) > 0. We conclude that αei ∈ Vor(Λ). Conversely, if |α| > A, then

inf
{ g(x)

2|xi|f(i)2

∣∣∣x ∈ Λ, xi 6= 0
}

= A− |α| < 0,

hence there exists some x ∈ Λ such that g(x) < 0 and thus αei 6∈ Vor(Λ).

Definition 2.6.4. Let H be a Hilbert space and let S ⊆ H be a subset.
We say S is symmetric if for all x ∈ S also −x ∈ S. We say S is convex if
for all x, y ∈ S and t ∈ [0, 1] also (1− t)x+ ty ∈ S.

Lemma 2.6.5. Let H be a Hilbert space. For X ⊆ H write X for the
topological closure of X. Then

1. The intersection
⋂
i Si of convex sets (Si)i∈I in H is convex;

2. The topological closure S of a convex set S in H is convex;
3. For all S in H open convex, x ∈ S, y ∈ S and t ∈ [0, 1) we have

(1− t)x+ ty ∈ S;
4. For convex open sets (Si)i∈I in H with non-empty intersection we have⋂

i Si =
⋂
i Si.

Proof. 1. Trivial.
2. Let x, y ∈ S and let (xn)n and (yn)n be sequences in S with limit

x respectively y. For all t ∈ [0, 1] we have (1 − t)xn + tyn ∈ S, and since
addition and scalar multiplication are continuous also have (1− t)x+ ty =
limn→∞[(1− t)xn + tyn] ∈ S.

3. By translating S we may assume without loss of generality that (1−
t)x + ty = 0. Since x ∈ S and S is open there exists some rx > 0 such
that the open ball Bx of radius rx around x is contained in S. For ry > 0
sufficiently small (in fact ry = rx · (1− t)/t suffices, see Figure 2.2) it holds
that for any z in the open ball By of radius ry around y the line through
0 and z intersects Bx. Taking z ∈ By ∩ S, which exists because y is in the
closure of S, there exists some w ∈ Bx ⊆ S such that 0 lies on the line
segment between w and z. By convexity 0 ∈ S follows, as was to be shown.

4. Since
⋂
i Si is closed and contains

⋂
i Si, clearly

⋂
i Si ⊆

⋂
i Si. By 1

the set
⋂
i Si is convex and by assumption it contains some x. For t ∈ [0, 1)
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0
x

y(1− t)‖x− y‖

t‖x− y‖

Figure 2.2: Computation of ry from rx via similar triangles.

and y ∈
⋂
i Si we have zt = (1− t)x+ ty ∈ Si by 3. Thus zt ∈

⋂
i Si for all

t ∈ [0, 1), so y = limt→1 zt ∈
⋂
i Si, proving the reverse inclusion.

Lemma 2.6.6. Let H be a Hilbert space. Then for x, y ∈ H we have ‖y‖ ≤
‖y − x‖ if and only if 2〈x, y〉 ≤ 〈x, x〉, and similarly with ≤ replaced by <.

Proof. We have ‖y − x‖2 − ‖y‖2 = 〈x, x〉 − 2〈x, y〉, from which the lemma
trivially follows.

Proposition 2.6.7. For all Hilbert lattices Λ the set Vor(Λ) is symmetric,
convex and has topological closure

Vor(Λ) := {z ∈ HΛ | (∀x ∈ Λ) ‖z‖ ≤ ‖z − x‖}.

Proof. It follows readily from the definition that Vor(Λ) is symmetric. Now
for x ∈ Λ consider Hx = {z ∈ HΛ | 2〈x, z〉 < 〈x, x〉}. It is easy to show for
all x ∈ Λ that Hx is convex: For a, b ∈ Hx and t ∈ [0, 1] we have

2〈(1− t)a+ tb, x〉 = (1− t)2〈a, x〉+ t2〈b, x〉 < (1− t)〈x, x〉+ t〈x, x〉 = 〈x, x〉,

so (1 − t)a + tb ∈ Hx. As Vor(Λ) is the intersection of all Hx with x ∈ Λ
non-zero by Lemma 2.6.6, it follows from Lemma 2.6.5.1 that Vor(Λ) is
convex. The Hx are all open, and for x non-zero we have 0 ∈ Hx. Hence the
topological closure of Vor(Λ) equals {z ∈ HΛ | (∀x ∈ Λ\{0}) ‖z‖ ≤ ‖z−x‖}
by Lemma 2.6.5.4, from which the proposition follows.

Example 2.6.8. We do not have in general that HΛ = Λ + Vor(Λ) for all
Hilbert lattices Λ, as in the finite-dimensional case. Note that z ∈ HΛ is in
Λ+Vor(Λ) if and only if the infimum inf{‖z−x‖ |x ∈ Λ} is attained for some
x ∈ Λ. Consider Example 2.4.9, where we exhibit a lattice Λ and a coset
z + 2Λ of Λ/2Λ where inf{q(z + 2x) |x ∈ Λ} is not attained. Equivalently,
inf{‖1

2z − x‖ |x ∈ Λ} is not attained, so 1
2z 6∈ Λ + Vor(Λ).

Theorem 2.6.9. Let Λ be a Hilbert lattice and consider the natural map
HΛ → HΛ/Λ. Its restriction to Vor(Λ) is injective and for all ε > 0 its
restriction to (1 + ε) Vor(Λ) is surjective.
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Proof. Suppose x, y ∈ Vor(Λ) are distinct such that x− y ∈ Λ. Then

‖x‖ < ‖x− (x− y)‖ = ‖y‖ < ‖y − (y − x)‖ = ‖x‖,

which is a contradiction. Hence the map Vor(Λ)→ HΛ/Λ is injective.
Assume without loss of generality that P(Λ) = 2. Let ε > 0 and z ∈ HΛ.

Choose y ∈ Λ such that q(z − y) ≤ ε + inf{q(z − w) |w ∈ Λ}. Suppose
x ∈ Λ \ {0}. Then

(1 + ε)〈x, x〉 − 2〈x, z − y〉 = εq(x) + (q(z − y − x)− q(z − y))

≥ εq(x)− ε ≥ ε(P(Λ)− 1) = ε > 0.

It follows that 2〈x, (z − y)/(1 + ε)〉 < 〈x, x〉 for all x ∈ Λ \ {0}, so (z −
y)/(1 + ε) ∈ Vor(Λ) by Lemma 2.6.6. Thus z ∈ Λ + (1 + ε) Vor(Λ), and the
map (1 + ε) Vor(Λ)→ HΛ/Λ is surjective.

Proposition 2.6.10. For all Hilbert lattices Λ the set Vor(Λ) contains the
open sphere of radius ρ(Λ) around 0 ∈ Λ and Vor(Λ) is contained in the
closed sphere of radius r(Λ) around 0.

Proof. Let z ∈ HΛ be such that ‖z‖ < ρ(Λ) and let x ∈ Λ\{0}. By Cauchy–
Schwarz we have 〈x, z〉 ≤ ‖x‖ · ‖z‖ < ‖x‖ · 1

2‖x‖ = 1
2〈x, x〉, so z ∈ Vor(Λ)

by Lemma 2.6.6.
Let z ∈ Vor(Λ). For each r > r(Λ) there exists x ∈ Λ such that ‖z−x‖ ≤

r by definition of r(Λ). Then by Proposition 2.6.7 we have ‖z‖ ≤ ‖z−x‖ ≤ r.
Taking the limit of r down to r(Λ) proves the second inclusion.

Theorem 2.6.11. Let Λ be a Hilbert lattice. Then there is a unique subset
S ⊆ Λ \ {0} that is minimal with respect to inclusion such that Vor(Λ) =
{z ∈ HΛ | (∀x ∈ S) ‖z‖ < ‖z − x‖}. This subset is equal to indec(Λ).

Proof. For S ⊆ Λ write V (S) = {z ∈ HΛ | (∀x ∈ S) ‖z‖ < ‖z − x‖}.
First suppose V (S) = Vor(Λ) for some S ⊆ Λ \ {0}. Let z ∈ indec(Λ)

and note that 1
2z 6∈ Vor(Λ) since ‖1

2z‖ ≥ ‖
1
2z − z‖. As V (S) = Vor(Λ)

there must be some x ∈ S such that ‖1
2z‖ ≥ ‖

1
2z − x‖. Hence (x, z − x) is

a decomposition of z by Lemma 2.4.3, so z = x since z is indecomposable
and x 6= 0. We conclude that z ∈ S and indec(Λ) ⊆ S.

It remains to show that V (indec(Λ)) = Vor(Λ). We clearly have that
Vor(Λ) ⊆ V (indec(Λ)). Suppose z ∈ V (indec(Λ)) and let x ∈ Λ \ {0}.
By Proposition 2.4.5 we may write x =

∑n
i=1 xi for some n ∈ Z≥1 and

xi ∈ indec(Λ) such that
∑n

i=1〈xi, xi〉 ≤ 〈x, x〉. Then by Lemma 2.6.6 we
have

2〈x, z〉 =
n∑
i=1

2〈xi, z〉 <
n∑
i=1

〈xi, xi〉 ≤ 〈x, x〉
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and thus z ∈ Vor(Λ). We conclude that Vor(Λ) = V (indec(Λ)).

Corollary 2.6.12. Let Λ be a Hilbert lattice. Then

Vor(Λ) = {z ∈ HΛ | (∀x ∈ indec(Λ)) ‖z‖ ≤ ‖z − x‖}.

Proof. By Lemma 2.6.5.4 we have for S ⊆ Λ not containing 0 that V (S) =
{z ∈ HΛ | (∀x ∈ S) ‖z‖ ≤ ‖z − x‖} is the topological closure of V (S) as
defined in the proof of Theorem 2.6.11. The corollary then follows from
Proposition 2.6.7 and Theorem 2.6.11.

Example 2.6.13. For a Hilbert lattice Λ the set indec(Λ) can fail to be the
minimum among all sets S ⊆ Λ such that V (S) = {z ∈ HΛ | (∀x ∈ S) ‖z‖ ≤
‖z − x‖} equals Vor(Λ). We will give a counterexample.

Let I = Z≥0 ∪ {∞} and let f : I → R≥0 such that f |Z≥0
is strictly

decreasing with limit f(∞) > 0. Consider the lattice Λ = Λf2 as in Ex-
ample 2.4.9. Note that P(Λ) = 2f(∞)2 and that P(Λ) is not attained by
any vector. Hence 2e∞ ∈ Λ is indecomposable by Lemma 2.4.4. Now let
S = indec(Λ) \ {±2e∞}. We claim that V (S) = V (indec(Λ)), the lat-
ter being equal to Vor(Λ) by Corollary 2.6.12. It remains to show for all
z = (zi)i ∈ V (S) that ‖z‖ ≤ ‖z − 2e∞‖ by symmetry.

For all i let si ∈ {±1} such that sizi = |zi|. Since f is strictly decreasing
there exists some N ∈ Z≥0 such that f(n) <

√
3f(∞) for all integers

n ≥ N . For all integers n ≥ N we have snen + e∞ ∈ S by Lemma 2.4.4 as
q(snen + e∞) = f(n)2 + f(∞)2 < 4f(∞)2 = 2P(Λ). Then

0 ≤ ‖z − (snen + e∞)‖2 − ‖z‖2 = (1− 2|zn|)f(n)2 + (1− 2z∞)f(∞)2.

As z ∈ HΛ we must have limn→∞ |zn| = 0, so taking the limit over the
above inequality we get 0 ≤ 2(1 − z∞)f(∞)2 and thus z∞ ≤ 1. But then
‖z − 2e∞‖2 − ‖z‖2 = 4f(∞)2(1− z∞) ≥ 0 and we are done.




