
Decompositions in algebra
Gent, D.M.H. van

Citation
Gent, D. M. H. van. (2024, March 5). Decompositions in algebra.
Retrieved from https://hdl.handle.net/1887/3720065
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of
doctoral thesis in the Institutional Repository of
the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3720065
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3720065


1

CHAPTER 1
Nonabelian flows in graphs



2 1. Nonabelian flows in graphs

1.1 Introduction

This chapter is based on [20]. In this chapter, graph will mean a simple graph
with a finite number of vertices. We consider groups which are not required
to be abelian and therefore write our group operations multiplicatively.

With Γ a group and G = (V,E) a graph, we call a map f : V 2 → Γ a
Γ-flow in G if for all u, v ∈ V we have f(u, v) = f(v, u)−1, and f(u, v) = 1
if {u, v} 6∈ E. This definition agrees with the classical definition of a graph
flow when Γ = R.

Non-abelian graph flows, i.e. flows where Γ need not be abelian, were first
considered by M.J. DeVos in his PhD thesis [9] and later by A.J. Goodall
et al. [22] and B. Litjens [36]. They consider graphs embedded on surfaces
and ask whether flows exist which are nowhere trivial, i.e. f(u, v) 6= 1 if
and only if {u, v} ∈ E. Although likewise our main result involves planar
embeddings of graphs, we instead ask to which extent Kirchhoff’s law of
conservation holds.

Let G = (V,E) be a graph, Γ a group and f a Γ-flow in G. We call f
tractable if for each v ∈ V the subgroup 〈f(u, v) |u ∈ V 〉 of Γ is abelian.
For tractable f we define the excess ef : V → Γ to be the map given by
v 7→

∏
u∈V f(u, v) and we say f is conserving in v if ef (v) = 1. In the

classical case, we have the following lemma.

Lemma 1.1.1. Let Γ be an abelian group, let f be a Γ-flow in a graph
G = (V,E) and let w ∈ V . If f is conserving in all vertices of V \{w}, then
f is conserving in w.

Proof. We have

ef (w) =
∏
v∈V

ef (v) =
∏

(u,v)∈V 2

f(u, v) =
∏

{u,v}∈E

f(u, v)f(v, u) = 1,

so f is conserving in w.

We will show that Lemma 1.1.1 can fail for non-abelian Γ. We say a flow
f leaks if it is tractable and conserving in all but precisely one vertex and
we call a graph G leak-proof if there exist no flows in G that leak for any
group Γ. Our main result, proven in Section 1.4, is as follows.

Theorem 1.4.3. A graph is leak-proof if and only if it is planar.

We say a flow f of G has a binary leak at distinct vertices u, v ∈ V if it
is tractable and conserving in all vertices of V \ {u, v} while e(u)e(v) 6= 1.
Here u and v can be thought of as a source and sink of the flow. We call
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G binary leak-proof if no binary leaking flows exist for G. Analogously to
Lemma 1.1.1 one can show that a flow cannot have a binary leak when the
group is abelian. We also prove the following analogue to Theorem 1.4.3 in
Section 1.5.

Definition 1.1.2. We call a graph G = (V,E) extra-planar if for all pairs
of distinct u, v ∈ V the graph (V,E ∪ {u, v}) is planar.

Theorem 1.5.2. A graph is binary leak-proof if and only if it is extra-
planar.

Instead of studying leak-proof graphs, one could also study leak-proof
groups, where we call a group Γ leak-proof if for all graphs G = (V,E)
no tractable flows f : V 2 → Γ of G leak. Theorem 1.4.3 shows that the
decision problem ‘Is this graph leak-proof?’ can be decided in time O(|V |),
as Hopcroft and Tarjan gave an algorithm to test graph planarity in [24] of
this complexity. For leak-proof groups, we prove the following in Section 1.6.

Theorem 1.6.4. The decision problem ‘Is this finite group leak-proof?’ is
decidable.

The present work, in particular Theorem 1.5.2, was inspired by a prob-
lem the author encountered in his Master’s thesis [17] on graded rings. Here
a flow with a binary leak gives rise to an example (Example 2.17 of [17]) of
an efficient ring grading with a non-abelian group that cannot be replaced
by an abelian group.

1.2 Definitions and basic properties

We briefly go through some basic definitions. Let G = (V,E) be a graph.
With H = (W,F ) a graph we call a map f : V → W a morphism from
G to H if f [E] ⊆ F . We call this f an embedding if it is injective and
an isomorphism if f and its induced map E → F are bijections. A path
from u ∈ V to v ∈ V in G is a finite sequence of vertices (x0, . . . , xn)
for some n ∈ Z≥0 such that x0 = u, xn = v and {xi, xi+1} ∈ E for all
0 ≤ i < n. We call this path non-trivial if n > 0 and closed if x0 = xn. We
say u ∈ V is connected to v ∈ V in G if there exists a path from u to v in
G. The ‘is connected to’ relation is an equivalence relation on V and we call
its equivalence classes the connected components of G. For u ∈ V we call
v ∈ V a neighbor of u if {u, v} ∈ E and we write NG(u) ⊆ V for the set of
neighbors of u. An edge {u, v} ∈ E is called a bridge if all paths in G from
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u to v contain the edge {u, v}. A forest is a graph in which every edge is a
bridge.

We now give some facts about (non-)planar graphs.

Definition 1.2.1. For A,B ∈ R2 write `(A,B) for the line {tA + (1 −
t)B | t ∈ (0, 1)}. Let G = (V,E) be a graph. A planar embedding of G is
an injective map ε : V → R2 such that for all distinct {a, b}, {c, d} ∈ E
we have `(ε(a), ε(b)) ∩ `(ε(c), ε(d)) = ∅, and for all {a, b} ∈ E we have
`(ε(a), ε(b)) ∩ ε[V ] = ∅. We call G planar if it has a planar embedding.

The above definition of a planar embedding has been simplified for our
purposes, which is justified by Fáry’s Theorem [13].

Definition 1.2.2. Let G = (V,E) be a graph with a planar embedding
ε. The orientation of (G, ε) at v ∈ V is the clockwise permutation ρε(v) of
NG(v). A boundary walk of (G, ε) is a non-trivial closed path (x0, x2, . . . , xn)
in G such that for all i, j ∈ Z/nZ we have xi+2 = ρε(xi+1)(xi) and if
(xi, xi+1) = (xj , xj+1), then i = j.

Lemma 1.2.3. Let ε be a planar embedding of a graph G = (V,E) and let
p = (u1, u2, . . . , un) be a boundary walk. If (ui, ui+1) = (uj+1, uj) for some
i, j ∈ Z/nZ, then {ui, uj} is a bridge.

Proof. To show that e = {ui, uj} is a bridge, it suffices to show that ui and
uj are disconnected in the graph G′ = (V,E′) with E′ = E \ {e}. Note that
a, b ∈ V are connected in G′ if and only if ε(a) and ε(b) are connected in
the topological space X = ε[V ] ∪

⋃
{x,y}∈E′ `(ε(x), ε(y)). Hence it suffices

by the Jordan curve theorem to show that there exists a loop C in R2 \X
separating ui and uj , as any path from ui to uj must intersect this loop.

ui

uj

ui+2

ui+3

uj−1

uj−2

uj−3

Figure 1.1: Boundary walk

We informally construct this loop as follows (see Figure 1.1). Place your-
self at the midway point between ui and uj . Walk along the path p in G in
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the direction of uj and while doing so draw a continuous curve C on your
left hand side, being careful not to let C intersect itself or the graph. That
this is possible follows from the definition of a boundary walk. Stop once
you have reached your starting point for the first time again, and note that
this time you are facing ui by the assumption that (ui, ui+1) = (uj+1, uj).
Thus on your right hand side is the start of your curve C, and connect the
endpoints, crossing `(ε(ui), ε(uj)) once. Then C satisfies the requirements,
so e is a bridge.

Definition 1.2.4. Let G = (V,E) be a graph. We call a subgraph H =
(W,F ) of G a spanning forest if it is a forest and W = V . For a spanning
forest H = (W,F ) of G we define GH = (C,D) to be the contraction of H
in G, where C is the set of connected components of H and D = {{X,Y } ∈(
C
2

)
| (∃u ∈ X, v ∈ Y ) {u, v} ∈ E}. A graph M is a minor of G if it can be

embedded in some contraction of G.

Note that the ‘is a minor of’ relation is a partial order (up to graph
isomorphism). In particular, if I is a minor of H and H is a minor of G,
then I is a minor of G. Write K5 for the complete graph on 5 vertices and
K3,3 for the complete bipartite graph on 3 and 3 vertices.

Proposition 1.2.5 (Kuratowski, Theorem 4.4.6 in [10]). A graph G is
planar if and only if G does not have K5 or K3,3 as a minor.

1.3 Non-planar graphs

First we show that all non-planar graphs can leak.

Lemma 1.3.1. A graph is leak-proof if and only if all its subgraphs are
leak-proof.

Proof. Since each graph is its own subgraph, the implication (⇐) is trivial.
Let G = (V,E) be a graph with a subgraph H = (W,F ) and assume that
there exists some group Γ with a leaking Γ-flow g : W 2 → Γ of H. Then
we consider f : V 2 → Γ by taking f(u, v) = g(u, v) when {u, v} ∈ F and
f(u, v) = 1 otherwise. Then f is a leaking flow for G, proving (⇒).

Proposition 1.3.2. A graph is leak-proof if and only if all its minors are
leak-proof.

Proof. Let G = (V,E) be a graph. By Lemma 1.3.1 it suffices to show
that if a contraction of a spanning tree H in G admits a leaking flow, then
so does G. By induction we may even assume H has only a single edge
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e = {a, b}. Then (W,F ) ∼= GH with W = (V \ e) ∪ {e} under the natural
isomorphism e 7→ e and w 7→ {w} for w ∈ V \ e. Assume (W,F ) admits a
flow f : W 2 → Γ leaking at w ∈ W for some group Γ. Let X = NG(a) \ e
and Y = NG(b)\(e∪X). We define a flow g : V 2 → Γ such that for u, v ∈W
it is given by

g(u, v) = f(u, v) u, v 6∈ e,
g(a, u)−1 = g(u, a) = f(u, e) u ∈ X,
g(v, b)−1 = g(b, v) = f(e, v) v ∈ Y,

g(b, a)−1 = g(a, b) =
∏

u∈X\{b}

f(u, a),

and g(u, v) = 1 otherwise. Note that g agrees with f outside of e and that
the flows going to e have been divided among a and b. Thus g is tractable
and eg(u) = ef (u) for u 6∈ e. By definition of g(a, b) we have that eg(a) = 1
and eg(b) = ef (e). Hence g is a leaking flow for G.

To show that non-planar graphs are not leak-proof, it now suffices by
Proposition 1.2.5 to show that K5 and K3,3 admit a leaking flow.

Definition 1.3.3. Let C2 be the cyclic group with two elements. Let
n ∈ Z>0 and consider the groups N = Cn+1

2 = 〈z, x1, . . . , xn〉 and G =
Cn2 = 〈xn+1, . . . , x2n〉. Consider the action ϕ : G → Aut(N) defined on the
generators as

xn+i 7→
(
xj 7→ xjz

δij , z 7→ z
)

for all 1 ≤ i, j ≤ n,

where δij = 1 if i = j and δij = 0 otherwise. Then define the group ESn =
N oϕ G.

Although we will not use the fact, the ESn are all extraspecial 2-groups.

Example 1.3.4. Consider the utility graph K3,3 = (V,E) with V =
{1, 2, 3, 4, 5, 6} and E = {{u, v} |u ∈ {1, 2, 3}, v ∈ {4, 5, 6}}. We define
a flow f : V 2 → ES2 which we specify by an ES2-valued (symmetric) matrix
where the omitted entries are trivial:

f =



x1 x2 x1x2

x4 x3 x4x3

x1x4 x2x3 x1x4x2x3

x1 x4 x1x4

x2 x3 x2x3

x1x2 x4x3 x1x4x2x3

 .
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For the first 5 columns it is easy to see that multiplying the first two non-
trivial entries yields the third. Thus for the first five vertices v we have
〈f(u, v) |u ∈ V 〉 ∼= C2

2 , which is abelian, and ef (v) = 1. For v = 6 we
observe that (x1x2)(x4x3)(x1x4x2x3) = z and thus 〈f(u, 6) |u ∈ V 〉 =
〈x1x2, x4x3, z〉 ∼= C3

2 is abelian, and ef (6) = z 6= 1. Hence f is a tractable
flow that leaks at 6 and K3,3 is not leak-proof.

Example 1.3.5. Consider the complete graph K5 = (V,E) with V =
{1, 2, 3, 4, 5}. Now we consider f : V 2 → ES3 given by

f =


x1 x2 x3 x1x2x3

x1 x6 x5 x1x6x5

x2 x6 x4 x2x6x4

x3 x5 x4 x3x5x4

x1x2x3 x1x6x5 x2x6x4 x3x5x4

 .

For each of the first four columns one notes that its first three non-trivial
elements commute pairwise, while multiplying them yields the fourth. Thus
for the first four vertices v the group 〈f(u, v) |u ∈ V 〉 ∼= C3

2 is abelian and
ef (v) = 1. For the last column, note that each pair (a, b) of entries is of
the form a = xixjxk and b = xixj+3xk+3 with i, j, k, j + 3, k + 3 ∈ Z/6Z
distinct. Hence

ab = x2
i (xjxk)(xj+3xk+3) = x2

i (xj+3xk+3)(xjxk) = ba,

so each pair commutes. Finally, one computes

ef (5) = (x1x2x3)(x1x6x5)(x2x6x4)(x3x5x4) = z 6= 1.

Thus f is a tractable leaking flow and thus K5 is not leak-proof.

Both examples were found by starting with the free group F with sym-
bols V 2 and dividing out the relations N E F required to make the obvious
map f : V 2 → F/N a tractable flow that is conserving in #V − 1 vertices.
Adding the restriction that the generators have order 2 gives us the groups
ES2 and ES3.

It now follows that all non-planar graphs leak, so we are half-way done
proving Theorem 1.4.3.

1.4 Planar graphs

Now we will prove that all planar graphs are leak-proof by induction. For
this we require a definition of the excess for non-tractable flows.
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Definition 1.4.1. Let G = (V,E) be a graph with planar embedding ε and
let f : V 2 → Γ be a flow of G. Write C(Γ) for the set of conjugacy classes
of Γ and ≡ for equality up to conjugation. Then we define for (G, ε, f) the
round flow r : V → C(Γ) as r(v) ≡ 1 if NG(V ) = ∅, and otherwise

r(v) ≡ f(ρε(v)0(u), v) · f(ρε(v)1(u), v) · · · f(ρε(v)n−1(u), v),

where u ∈ NG(v), n = #NG(v) and ρε is as in Definition 1.2.2.

Note that choosing a different u ∈ NG(v) in the above definition results
in a cyclic permutation of the factors, hence the products are conjugate in Γ.
Thus the round flow is well-defined. Since 1 ∈ Γ is only conjugate to itself,
we have that r(v) ≡ 1 if and only if e(v) = 1 when the latter is defined.

Proposition 1.4.2. Let G = (V,E) be a graph with planar embedding ε
and let f : V 2 → Γ be a flow of G. Let u ∈ V and assume r(v) ≡ 1 for all
v ∈ V \ {u}. Then r(u) ≡ 1.

Proof. Firstly, if G is the singleton graph, then r(u) ≡ 1 is the empty
product, so we are done. We now apply induction and thus assume that the
statement holds for all strict subgraphs (W,F ) of G with planar embedding
ε|W . We may now assume #V > 1.

Secondly, we consider the case where G is not connected. Here we may
apply the induction hypothesis to the induced subgraph of G with as vertex
set the connected component of u to conclude that r(u) ≡ 1. We may now
assume G is connected.

Thirdly, we consider the case where G is a forest. Then G has at least
two vertices of degree 1, of which one, say v, is not u. Let e = {v, w} ∈ E
be the unique edge incident to v, and note that 1 ≡ rf (v) ≡ f(w, v) implies
f(w, v) = 1. Hence f is a flow of the subgraph H of G obtained by removing
e. Note that ε is a planar embedding of H with the same round flow in each
vertex, hence by the induction hypothesis we have rf (u) ≡ 1.

Lastly we consider the case where G not a forest. Then G has an edge
{v, w} ∈ E that is not a bridge. Then by Lemma 1.2.3 the boundary walk
p = (x0, . . . , xn) of (G, ε) with x0 = v and x1 = w satisfies (w, v) 6=
(xi, xi+1) for all i ∈ Z/nZ. Let b : V 2 → {0, 1} be the map such that for all
s, t ∈ V we have b(s, t) = 1 if and only if there exists some i ∈ Z/nZ such
that (s, t) = (xi, xi+1). Now consider γ = f(v, w) and g : V 2 → Γ given by

(s, t) 7→ γb(t,s) · f(s, t) · γ−b(s,t).

Firstly note that g is a flow of G: For all s, t ∈ V we have

g(s, t)−1 = γb(s,t) · f(s, t)−1 · γ−b(t,s) = g(t, s)
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since f is a flow, and if {s, t} 6∈ E we have g(s, t) = f(s, t) = 1 as b(s, t) =
b(t, s) = 0. Secondly, we have that g(v, w) = γ0 · γ · γ−1 = 1 by choice of
{v, w}, so g is even a flow of the subgraph H of G obtained by removing
{v, w}. We now show that the round flows rf and rg of f respectively g in
(G, ε) are conjugates in Γ at each vertex. Then by the induction hypothesis
applied to H it follows that r(u) ≡ 1. Note that for all s, t ∈ V we have by
definition of b that b(t, s) = b(s, ρε(s)(t)). Using this, we now simply verify
for {s, t} ∈ E, n = #NG(s) and ρ = ρε(s) that

rg(s) ≡
n−1∏
k=0

g(ρk(t), s) ≡
n−1∏
k=0

γb(s,ρ
k(t)) · f(ρk(t), s) · γ−b(ρk(t),s)

≡ γb(s,t)
(
n−1∏
k=0

f(ρk(t), s)γ−b(ρ
k(t),s)γb(s,ρ

k+1(t))

)
γ−b(s,ρ

n(t))

≡ γb(s,t)
(
n−1∏
k=0

f(ρk(t), s)

)
γ−b(s,t) ≡

n−1∏
k=0

f(ρk(t), s) ≡ rf (s),

as was to be shown. We conclude that the statement holds for all planar
graphs by induction.

An earlier proof of Proposition 1.4.2 was due to H.W. Lenstra. In his
version he does not remove edges in the inductive step but contracts them
in the sense of Definition 1.2.4. This proof turned out to be more difficult
to formalize.

Theorem 1.4.3. A graph is leak-proof if and only if it is planar.

Proof. A non-planar graph has either K5 or K3,3 as minor by Proposi-
tion 1.2.5. Both K5 and K3,3 are not leak-proof by Example 1.3.5 respec-
tively Example 1.3.4, so by Proposition 1.3.2 neither are the non-planar
graphs. Let G = (V,E) be a planar graph with u ∈ V and let f be a
tractable flow of G such that e(v) = 1 for all v ∈ V \ {u}. After choosing
a planar embedding for G we have r(u) ≡ 1 by Proposition 1.4.2 and thus
e(u) = 1. Hence f does not leak and G is leak-proof.

1.5 Extra-planar graphs

In this section we will prove Theorem 1.5.2, classifying the binary leak-proof
graphs. To do this we first prove a ‘Kuratowski’s Theorem’ for extra-planar
graphs. Write K−5 and K−3,3 for the graphs obtained from K5 respectively
K3,3 by removing a single edge, which by symmetry we do not have to
specify.
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Proposition 1.5.1. A graph G is extra-planar if and only if G does not
have K−5 or K−3,3 as a minor.

Proof. (⇒) This follows directly from Kuratowski’s Theorem: If K−5 or K−3,3
is a minor ofG, then we may add a single edge toG such thatK5 respectively
K3,3 becomes a minor of this new graph, which is then non-planar.

(⇐) We proceed by contraposition, so assume that G is not extra-planar.
Let u, v ∈ V be such that G+ = (V,E ∪ {{u, v}}) is non-planar and let
H+ = (V, F ) be a spanning forest of G+ such that K5 or K3,3 embeds into
G+
H . Consider the spanning forest H = (V, F \ {{u, v}}) of G. Then H has

the same connected components as H+ with the exception that if H+ has
a connected component containing both u and v, it might have been split
into two. Let Tu and Tv be the connected components of u respectively v in
H.

Tu

Tv R1

R2

R3

L2

L3

Figure 1.2: Case K3,3

TvTu

P1

P2 P3

P4

Figure 1.3: Case K5

Case K3,3: First consider the case whereK3,3 embeds intoG+
H+ , meaning

there is a subset C = {L1, L2, L3, R1, R2, R3} of size 6 of the set of connected
components of H+ such that S+ = (C, {{Li, Rj} | i, j ∈ {1, 2, 3}}) is a
subgraph of G+

H+ . If all elements of C are also connected components of H,
then GH has the graph S+ minus possibly a single edge induced by {u, v}
as subgraph, hence G has K−3,3 as a minor. Otherwise, for some X ∈ C we
have X = TutTv and without loss of generality X = L1. Then the subgraph
S of GH induced by {Tu, Tv, L2, L3, R1, R2, R3} is as in Figure 2, where the
dashed lines indicate edges which are possibly present. Merging Tu and Tv
in S yields S+ ∼= K3,3, hence for each i ∈ {1, 2, 3} the edge {Tu, Ri} or
{Tv, Ri} is present. Thus Tu or Tv has degree at least 2, which without loss
of generality is Tv. It follows that K−3,3 embeds into the subgraph of GH
induced by {Tv, L2, L3, R1, R2, R3}, so K−3,3 is a minor of G.
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Case K5: Now consider the caseK5 embeds intoG+
H+ , meaning there is a

subset C = {P1, . . . , P5} of the set of connected components ofH+ such that
the subgraph of G+

H+ induced by C is isomorphic to K5. As before, the only
interesting case is where P5 = TutTv. Then the subgraph S of GH induced
by {Tu, Tv, P1, P2, P3, P4} is as in Figure 3. Since merging Tu and Tv in S
yields K5, for each i ∈ {1, . . . , 4} the edge {Tu, Pi} or {Tv, Pi} is present. If
both Tu and Tv have degree 2, then without loss of generality S contains the
edges {Tu, P3}, {Tu, P4}, {Tv, P1} and {Tv, P2}. Now note that S contains
a K−3,3 which partitions its vertices as {{Tu, P1, P2}, {Tv, P3, P4}}. Hence
G contains K−3,3 as a minor. Otherwise, without loss of generality Tu has
degree at least 3 in S and the subgraph of GH induced by {Tu, P1, . . . , P4}
is either K5 or K−5 . Hence G has K−5 as a minor.

As G has K−3,3 or K−5 as a minor, the claim follows.

We are now able to prove Theorem 1.5.2.

Theorem 1.5.2. A graph is binary leak-proof if and only if it is extra-
planar.

Proof. (⇐) Let G = (V,E) be an extra-planar graph and let f : V 2 → Γ be
a tractable flow of G such that there are distinct u, v ∈ V with ef (w) = 1
for all w ∈ V \ {u, v}. Consider the graph H = (V,E ∪ {{u, v}}) and let
ε be a planar embedding of H. Now let g : V 2 → Γ be the map such that
g(s, t) = f(s, t) if {s, t} 6= {u, v} and g(u, v) = g(v, u)−1 = f(u, v)rf (v)−1,
where rf (v) is computed by starting from the vertex right after u in the
ordering ofNH(v). Then g is a (not necessarily tractable) flow inH such that
rg(w) = 1 for w ∈ V \{u}. From g(v, u) = rf (v)f(v, u) it follows that rg(u)
differs from rf (u) by a factor rf (v) when starting the multiplication at v. By
Proposition 1.4.2 we have 1 ≡ rg(u) ≡ rf (u)rf (v) and thus ef (u)ef (v) = 1.
Hence G is binary leak-proof.

(⇒) If G = (V,E) is not extra-planar, then it has K−5 or K−3,3 as minor
by Proposition 1.5.1. It is straightforward to generalize Proposition 1.3.2 to
show that a graph is binary leak-proof if and only if all its minors are too.
It therefore suffices to show that K−5 and K−3,3 have a binary leaking flow.
Simply take the flow f as defined in Example 1.3.4 which leaks at vertex 6
of K3,3 and consider K−3,3 as the K3,3 with the edge {3, 6} removed. Then
the flow f− of K−3,3 which equals f except for f−(3, 6) = f−(6, 3) = 1

has a binary leak at 3 and 6. Using Example 1.3.5 for K−5 can be done
analogously.
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1.6 Leak-proof groups

In this section we prove Theorem 1.6.4 and give some computational results.

Definition 1.6.1. Let Γ be a (not necessarily finite) group. Write V (Γ) for
the set of maximal abelian subgroups of Γ. We define the group

F (Γ) =
{

(fu,v)(u,v) ∈
⊕

(u,v)∈V (Γ)2

(u ∩ v)
∣∣∣ (∀u, v) fu,v = f−1

v,u, (∀ v) fv,v = 1
}

and the homomorphism

eΓ : F (Γ)→
⊕

v∈V (Γ)

v, (fu,v)(u,v) 7→
( ∏
u∈V (Γ)

fu,v

)
v∈V (Γ)

.

One can think of V (Γ) as the vertex set of a complete graph, F (Γ) the
set of tractable flows in this graph, and eΓ(f) to be the excess for such flow
f ∈ F (Γ). However, V (Γ) need not be finite. For example Γ = GL2(R) has
a maximal abelian subgroup {( a b0 a ) | a, b ∈ R, a 6= 0} with infinitely many
conjugates.

Lemma 1.6.2. Let Γ be a group. For u ∈ V (Γ) and γ ∈ u let [γ]u ∈⊕
v∈V (Γ) v be the vector consisting of all-ones except for a γ at coordinate

u. We write Γ• = (
⊕

v∈V (Γ) v)/ im(e). Then the map d : Γ → Γ• given by
γ 7→ [γ]v for any choice of v containing γ, does not depend on the choice of
v.

Proof. Let γ ∈ Γ and suppose u, v ∈ V (Γ) are such that γ ∈ u and γ ∈ v.
Then γ ∈ u ∩ v, and f = (fs,t)(s,t)∈V (Γ)2 , with fu,v = f−1

v,u = γ and fs,t = 1
for {s, t} 6= {u, v}, is an element of F (Γ). We have e(f) = [γ]v · [γ]−1

u , so
[γ]u is equivalent to [γ]v in the quotient Γ•.

An example one can consider is where Γ is abelian. Then V (Γ) = {Γ}
and Γ• = Γ and d is the identity. Note that d is (in general) not a group
homomorphism.

Proposition 1.6.3. A group Γ is leak-proof if and only if d(γ) = 1 implies
γ = 1.

Proof. Suppose Γ is leak-proof and d(γ) = 1 for some γ ∈ Γ. Then there
is some u ∈ V (Γ) and f ∈ F (Γ) such that [γ]u = e(f). Note that E =
{{u, v} ∈ V (Γ) | fu,v 6= 1} and V = {u | {u, v} ∈ E} are finite. Now f is a
Γ-flow in (V,E) which is preserving in all vertices except possibly u. Since
Γ is leak-proof, f is also preserving in u and 1 = e(f) = [γ]u, so γ = 1.
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Conversely, suppose f is a tractable Γ-flow in some graph (V,E). Pick
some map c : V → V (Γ) such that for all v ∈ V we have 〈f(u, v) | u ∈
V 〉 ⊆ c(v). Then f induces a tractable Γ-flow f ′ in the complete graph with
vertex set {c(v) | v ∈ V } where

f ′(s, t) =
∏

u : c(u)=s

∏
v : c(v)=t

f(u, v) ∈ s ∩ t.

Hence f ′ ∈ F (Γ). Moreover, if f leaks, then so does f ′. Assume f ′ is pre-
serving in all vertices except potentially v ∈ V . Then e(f ′) = [γ]v for some
γ ∈ v and d(γ) = 1. If d(γ) = 1 implies γ = 1, we obtain that f ′ and hence
f does not leak, so Γ is leak-proof.

Similarly, one can consider binary leak-proof groups. With a proof anal-
ogous to that of Proposition 1.6.3 one obtains that Γ is binary leak proof if
and only if d is injective.

Theorem 1.6.4. The decision problem ‘Is this finite group leak-proof?’ is
decidable.

Proof. Simply note that for finite Γ the corresponding group Γ• is finite
abelian and can thus be computed explicitly. In particular, we can decide
for each γ ∈ Γ whether d(γ) = 1. The theorem thus follows from Proposi-
tion 1.6.3.

From Lemma 1.1.1 it follows that abelian groups are leak-proof, but they
are hardly the only ones. By computer search we found the two extraspecial
groups of order 32 to be the only smallest leaking groups, one of which we
encountered in Example 1.3.4. The smallest leaking groups of order greater
than 32 occur at order 64. That there are groups of order 64 that leak
was to be expected, because a group leaks when it has a leaking subgroup.
The smallest leaking symmetric group is the S6 and the smallest leaking
alternating group is the A7. That for sufficiently large n the group Sn leaks
is to be expected by Cayley’s theorem, but interestingly no strict subgroup
of S6 leaks. It would be interesting to have a classification of leak-proof
groups or to know whether there is some equivalent, better understood
property of groups which is equivalent to being leak-proof like planarity is
for graphs.

Our code is available online [21] and is written in GAP [15].




