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Preliminaries

Definitions

In this section we will list some definitions and notations that we assume a
reader of the coming chapters be familiar with.

Rings We write Z, Q, R and C for the rings of integers, rationals, reals and
complex numbers respectively. We will avoid the use of the term ‘natural
numbers’ and instead write Z≥0 = {n ∈ Z | n ≥ 0} for the set of non-
negative integers and Z>0 = {n ∈ Z | n > 0} for the set of positive integers.
Like in any modern mathematical text, our rings include a multiplicative
identity element.

Let R be a ring and let x ∈ R. We say x is regular if the maps R → R
given by y 7→ xy and y 7→ yx are injective, while x is a zero-divisor if it
is not regular. We say x is a unit if both maps are bijective, and we write
R∗ for the group of units of R. For a positive integer n, we say x is an
n-th root of unity if xn = 1, and write µn(R) for the subgroup of R∗ of
n-th roots of unity when R is commutative. We say x is a root of unity if
it is an n-th root of unity for some n, and analogously write µ(R) for the
group of roots of unity when R is commutative. We say x is idempotent
if x2 = x and write Id(R) for the set of idempotents of R. We say x is
nilpotent if xn = 0 for some positive integer n. We write nil(R) for the set
of nilpotents of R, which we call the nilradical when R is commutative. We
write Jac(R) = {x ∈ R | 1 +RxR ⊆ R∗} for the Jacobson radical of R.

Suppose now that R is a commutative ring. We say R is connected if
it has exactly two idempotents, i.e. the only idempotents are 0 and 1 and
R 6= 0. We say R is reduced if 0 is the only nilpotent of R.

A number field is a field of characteristic 0 which has finite dimension
as a Q-module. An order is a commutative ring whose additive group is
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isomorphic to Zn for some n ∈ Z≥0. Note that we do not require, as some
authors do, that an order be contained in a number field, i.e. that it is an
integral domain. Instead, we say R is an order of a number field K if R ⊆ K
is an order such that R generates K as Q-module.

Modules Let R be a ring andM andN be (left) R-modules. For a morph-
ism f : M → N of R-modules we write ker(f) = {m ∈ M | f(m) = 0} for
the kernel of f , write im(f) = {f(m) | m ∈ M} for the image of f and
write coker(f) = N/ im(f) for the cokernel of f . For a set I, an I-indexed
decomposition ofM is a family {Mi}i∈I of R-submodules ofM such that the
natural map

⊕
i∈IMi → M is an isomorphism, a condition we abbreviate

by
⊕

i∈IMi = M . A decomposition of M is an I-indexed decomposition for
any set I. We say M is indecomposable if M 6= 0 and for all M1,M2 ⊆ M
such that M1 ⊕ M2 = M we have M1 = 0 or M2 = 0. We make the
class of decompositions of M into a (locally small) category, where the
morphisms from {Mi}i∈I to {Nj}j∈J are the maps f : I → J such that
Nj =

⊕
i∈f−1{j}Mi for all j ∈ J . For commutative R and r ∈ R we write

M [r] = {m ∈ M : rm = 0} for the r-torsion submodule and M [r∞] =⋃
n≥0M [rn]. For a set S we write MS =

∏
s∈SM and M (S) =

⊕
s∈SM .

Graphs A simple graph is a pair (V,E) where V is a (potentially infinite)
set and E is a set of size-2 subsets of V . Let G = (V,E) be a graph. We call
the elements of V the vertices of G and those of E its edges. A subgraph of
G is a simple graph (W,F ) with W ⊆ V and F ⊆ E. For W ⊆ V we call
(W, {{u, v} ∈ E |u, v ∈ W}) the subgraph of G induced by W . For u ∈ V
we call v ∈ V a neighbor of u if {u, v} ∈ E. A connected component of G is
a non-empty set S ⊆ V such that for all e ∈ E we have e ⊆ S or e ⊆ V \ S
and which is minimal with respect to inclusion given these properties. We
say a simple graph is connected if it has precisely one connected component;
in particular V is non-empty.

Algorithms

In this thesis we will encounter several algorithms, ranging from theoretical
to computational in nature. The computational algorithms [19, 21] are pro-
grammed in either Sage [41] or GAP [15]. For our theoretical algorithms it
would be important to specify our model of computation and the encoding
of our mathematical objects, were it not that in our complexity analyses
we will at best prove that the algorithm in question terminates in polyno-
mial time. Assuming we remain sensible, polynomial runtime is invariant
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under choice of model and encodings. Thus we allow ourselves in the com-
ing chapters the luxury to reason about these algorithms in an informal
and conceptual manner, rather than worry about implementation details.
Nonetheless, in this section we will state some basic encodings and results
that we will later implicitly use.

We let k be either Z or Q and assume there to be some sensible encoding
of its elements.

Modules We encode a linear map α : km → kn as a matrix, i.e. a k-
valued (n × m)-tuple, in the obvious way. We encode a finitely generated
k-module by a linear map α : km → kn, where the corresponding module is
coker(α). The elements of coker(α) are encoded by representatives in kn. For
α : km → kn and β : kr → ks, a morphism of finitely generated k-modules
f : coker(α) → coker(β) is encoded as a linear map ϕ : kn → ks on the
underlying representations of the elements of coker(α) and coker(β). Note
that every linear map α : km → kn encodes a valid k-module. However,
with α and β as above, not every ϕ : kn → ks encodes a valid morphism
coker(α) → coker(β), as it does so if and only if im(ϕα) ⊆ im(β). This is
generally not a problem however, since our algorithms are only required to
work for legal input. Regardless, we can test whether ϕ encodes a morphism.
A submodule of A is encoded as a module A′ together with an injective
morphism A′ → A.

If k = Q, then using linear algebra one can answer most questions about
finitely generated k-modules in polynomial time. This also includes comput-
ing kernels and images of linear maps, computing hom-sets and splitting
exact sequences. For k = Z one can find an exposition on algorithms for
basic questions and constructions involving finitely generated k-modules in
Chapter 2 of [5].

Rings A k-algebra structure on a finitely generated k-module represented
by some map km → kn is encoded as a k-valued (n×n×n)-tuple (ehij)h,i,j ,
where the multiplication is given by

(ah)h · (bi)i =
(∑

h,i

ahbiehij

)
j
.

In particular, we can encode finite rings, orders and number fields. We may
also compute quotient rings. For some commutative ring R with a given
encoding we encode the elements of the polynomial ring R[X] as a sequence
(n, f0, . . . , fn) with n ∈ Z≥0 and f0, . . . , fn ∈ R, where the corresponding
polynomial is given by

∑n
i=0 fiX

i.
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Number fields Suppose for some set S we have an encoding of its ele-
ments. We say a map ϕ : S → C is computable if there exists an algorithm
A that takes as input an s ∈ S and n ∈ Z≥0 and computes some a ∈ Q(i)
such that |ϕ(s) − a| ≤ 2−n. We represent computable maps by such an
algorithm. We say a complex number is computable if the map {0} → C
given by 0 7→ z is computable. It is undecidable whether two computable
complex numbers are equal.

For any k-algebra A which is finitely generated and free as a module
one can find for each element of A its minimal polynomial using linear
algebra. For a number field K it is possible to factor polynomials over K
into irreducibles in polynomial time [31]. Repeated application allows us
to compute the splitting field of such a polynomial, although not generally
in polynomial time. The roots (with multiplicity) of f ∈ Q[X] in C are
computable [25]. Using this, each ring homomorphismK → C is computable
and we may compute the set of ring homomorphisms K → C.




