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Summary

In this thesis entitled “Decompositions in algebra” we study decompositions
of abelian groups equipped with several algebraic structures, and relevant
algorithms.

In Chapter 1 we consider flows in undirected graphs of which the values,
in contrast to the classical theory, live in not necessarily abelian groups. For
abelian flows it is the case, that if for all vertices of the graph with at most
one exception Kirchhoff’s law of conservation holds, which states that the
incoming flow equals the outgoing flow, then the exceptional vertex also
satisfies this law. We prove the surprising result that graphs for which this
implication also holds for each non-abelian flow are precisely the planar
graphs. We also construct from a given group a decomposition into its max-
imal abelian subgroups, in terms of which we can decide algorithmically
whether this group satisfies the conservation law for all graphs.

In Chapter 2 we generalize the theory of lattices to infinite dimension,
on which the next chapter relies. Where classically a lattice forms a discrete
subgroup of a Euclidean vector space, we consider discrete subgroups of
Hilbert spaces, which we call Hilbert lattices. We prove that every Hilbert
lattice has a maximal orthogonal decomposition into sublattices, and to that
end study the indecomposable vectors. The indecomposables derive their
existence from the Voronoi polyhedron, for which we show that it is a fun-
damental domain. Countable Hilbert lattices turn out to be free abelian
groups. It is an open problem whether this holds generally.

In Chapter 3 we consider the integral closure of the integers in an al-
gebraic closure of the field of rational numbers, called the ring of algebraic
integers, equipped with the natural Hilbert lattice structure known from the
theory of the geometry of numbers. We attempt to compute invariants of
this lattice. In particular, we give lower and upper bounds on the covering
radius. From this we derive a partial solution to the algorithmic counter-
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part of this problem, namely the closest vector problem. As a test for such
algorithms we propose the computation of indecomposable vectors of given
degree. It turns out to be hard to compute all indecomposables of degree
three, even though the number of candidates is limited, because the terms
of a decomposition can have an arbitrarily large degree. For the same rea-
son it is not even clear whether indecomposability is decidable. It is also
unknown whether the lattice has isometries other than the isometries that
come from the ring structure.

In Chapter 4 we decompose rings into gradings, a construction that
generalizes the degree of a monomial in a polynomial ring. We prove that
the lattice structure of the ring of algebraic integers and its subrings gives
rise to the existence of a universal grading of such rings, and we determine
their structure in several special cases. In particular, the maximal ortho-
gonal decomposition, and hence also the universal grading, of the lattice of
algebraic integers is trivial. Separate from a lattice structure, a universal
grading exists under certain p-adic assumptions, and in extension to this
we show that roots of unity and idempotents are ‘monomials’. Furthermore,
we give an algorithm to quickly compute the universal grading of rings that
are additively generated by their roots of unity and idempotents.

In Chapter 5 we apply the theory of the previous chapter to the special
case of group rings. It turns out that also for group rings over reduced
orders a certain universality is satisfied: up to isomorphism there is a unique
maximal way to decompose such a ring as a group ring. In terms of this
we describe its automorphism group. Very surprisingly it turns out that in
the connected case the subrings and subgroups that can be used to form
a maximal decomposition can be chosen entirely independently. We prove
this by applying the theory of modules, in particular decompositions of finite
length modules, to a morphism of finite abelian groups, namely the degree
map restricted to the group of roots of unity.

In Chapter 6 we give an efficient algorithm to take roots of fractional ide-
als in orders in number fields. We are careful in formulating this algorithm
so that the output is sufficiently functorial. Here it is an obstruction that
roots need not exist or be unique. We find an application of taking roots in
a generalization of the coprime basis algorithm. This algorithm finds for a
set of positive integers a set of pairwise coprime integers, called a coprime
basis, where every number from the first set is a (unique) power product
of numbers from the second. This power product can be seen as the best
polynomial-time approximation of the prime factorization. However, it is
possible to improve the coprime basis by taking roots of its elements. When
we generalize the coprime basis algorithm to ideals in orders, we are able
to also there make this final improvement.




