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Samenvatting

In dit proefschrift getiteld “Decompositions in algebra” bestuderen we ont-
bindingen van Abelse groepen uitgerust met verscheidene algebraïsche struc-
turen, en relevante algoritmen.

In Hoofdstuk 1 beschouwen we stromen in ongerichte grafen waarvan
de waarden, in contrast met de klassieke theorie, leven in niet noodzakelijk
Abelse groepen. Voor Abelse stromen is het zo, dat als in alle knopen van
de graaf met ten hoogste één uitzondering voldaan is aan de behoudswet
van Kirchhoff, die stelt dat de inkomende stroom gelijk is aan de uitgaande
stroom, dan ook deze uitgezonderde knoop aan de behoudswet voldoet. We
bewijzen het verbazende resultaat dat de grafen waarvoor deze implicatie
ook geldt voor iedere niet-Abelse stroom, precies de vlakke grafen zijn. Ook
construeren we van een gegeven groep een ontbinding in zijn maximale
Abelse ondergroepen, aan de hand waarvan algoritmisch te beslissen is of
deze groep voor alle grafen aan de behoudswet voldoet.

In Hoofdstuk 2 generaliseren we de theorie van roosters naar oneindige
dimensie, waar het volgende hoofdstuk op rust. Waar klassiek een rooster
een discrete ondergroep vormt van een Euclidische vectorruimte, beschou-
wen wij discrete ondergroepen van Hilbertruimten, die wij Hilbertroosters
noemen. We bewijzen dat ieder Hilbertrooster een unieke maximale ortho-
gonale ontbinding in deelroosters heeft, en bestuderen daartoe de onont-
bindbare vectoren. De onontbindbare vectoren ontlenen hun bestaan aan
het Voronoi-polyeder, waarvan we laten zien dat het een fundamenteel do-
mein is. Aftelbare Hilbertroosters blijken vrije Abelse groepen te zijn. Het
is een open probleem of dit algemeen geldt.

In Hoofdstuk 3 beschouwen we de gehele afsluiting van de gehele getallen
in een algebraïsche afsluiting van het lichaam van rationale getallen, de ring
van algebraïsch gehelen genaamd, uitgerust met de natuurlijke Hilbertroos-
terstructuur zoals bekend uit de theorie van de meetkunde van getallen. We
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pogen voor dit rooster invarianten uit te rekenen. In het bijzonder geven
we onder- en bovengrenzen op de overdekkingsstraal. Hieruit leiden we een
partiële oplossing af van de algoritmische tegenhanger van dit probleem,
namelijk het dichtstbijzijnde-vectorprobleem. Als proeve voor zulke algorit-
men dragen wij het berekenen van de onontbindbare vectoren van gegeven
graad aan. Het blijkt lastig om alle onontbindbare vectoren van graad drie
te bepalen, hoewel het aantal kandidaten beperkt is, omdat de termen van
een ontbinding een arbitrair hoge graad kunnen hebben. Om dezelfde reden
is het niet eens duidelijk of onontbindbaarheid beslisbaar is. Het is ook on-
bekend of het rooster isometrieën heeft naast de isometrieën die komen van
de ringstructuur.

In Hoofdstuk 4 ontbinden we ringen in graderingen, een constructie die
de graad van een monoom in een polynoomring generaliseert. We bewijzen
dat de roosterstructuur op de ring van algebraïsch gehelen en diens deel-
ringen aanleiding geeft tot het bestaan van een universele gradering voor
deze ringen, en we bepalen de structuur hiervan in enkele speciale gevallen.
In het bijzonder is de maximale orthogonale ontbinding, en dus ook de uni-
versele gradering, van het rooster van algebraïsch gehelen triviaal. Los van
een roosterstructuur bestaat een universele gradering onder zekere p-adische
voorwaarden, en in het verlengde hiervan bewijzen we dat eenheidswortels
en idempotenten ‘monomen’ zijn. Verder geven we een algoritme om snel
de universele gradering van ringen te bepalen die additief worden voortge-
bracht door hun eenheidswortels en idempotenten.

In Hoofdstuk 5 passen we de theorie van het voorgaande hoofdstuk toe
op het speciale geval van groepenringen. Voor groepenringen over geredu-
ceerde ordes blijkt ook aan een zekere universaliteit voldaan: op isomorfie
na is er een unieke maximale manier om een dergelijke ring als groepenring
te ontbinden. In termen hiervan beschrijven we diens automorfismengroep.
Zeer verrassend blijkt dat in het samenhangende geval, de deelringen en
ondergroepen die gebruikt kunnen worden om een maximale ontbinding te
vormen compleet onafhankelijk gekozen kunnen worden. Dit bewijzen we
door de theorie van modulen, in het bijzonder ontbindingen van modulen
van eindige lengte, toe te passen op een morfisme van eindige abelse groe-
pen, namelijk de graadafbeelding beperkt tot de groep van eenheidswortels.

In Hoofdstuk 6 geven we een efficiënte algoritme om wortels van gebro-
ken idealen van ordes in getallenlichamen te trekken. We zijn zorgvuldig om
deze algoritme zo te formuleren dat de uitvoer voldoende functorieel is. Het
is hierbij een obstructie dat een wortel niet hoeft te bestaan of uniek hoeft
te zijn. We vinden een toepassing van het worteltrekken in een generalisatie
van de coprieme-basisalgoritme. Deze algoritme vindt voor een verzameling
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positieve gehele getallen een verzameling paarsgewijs coprieme gehelen, een
coprieme basis, waarbij ieder getal uit de eerste verzameling een (uniek)
machtsproduct is van getallen uit de tweede. Dit machtsproduct kan gezien
worden als de beste polynomiale-tijd benadering van de priemontbinding.
Echter, het is nog mogelijk de coprieme basis te verbeteren door wortels te
trekken uit diens elementen. Wanneer we de copriemebasisalgoritme gene-
raliseren naar idealen in ordes, zijn we ook daar in staat om deze laatste
verbetering te maken.
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Summary

In this thesis entitled “Decompositions in algebra” we study decompositions
of abelian groups equipped with several algebraic structures, and relevant
algorithms.

In Chapter 1 we consider flows in undirected graphs of which the values,
in contrast to the classical theory, live in not necessarily abelian groups. For
abelian flows it is the case, that if for all vertices of the graph with at most
one exception Kirchhoff’s law of conservation holds, which states that the
incoming flow equals the outgoing flow, then the exceptional vertex also
satisfies this law. We prove the surprising result that graphs for which this
implication also holds for each non-abelian flow are precisely the planar
graphs. We also construct from a given group a decomposition into its max-
imal abelian subgroups, in terms of which we can decide algorithmically
whether this group satisfies the conservation law for all graphs.

In Chapter 2 we generalize the theory of lattices to infinite dimension,
on which the next chapter relies. Where classically a lattice forms a discrete
subgroup of a Euclidean vector space, we consider discrete subgroups of
Hilbert spaces, which we call Hilbert lattices. We prove that every Hilbert
lattice has a maximal orthogonal decomposition into sublattices, and to that
end study the indecomposable vectors. The indecomposables derive their
existence from the Voronoi polyhedron, for which we show that it is a fun-
damental domain. Countable Hilbert lattices turn out to be free abelian
groups. It is an open problem whether this holds generally.

In Chapter 3 we consider the integral closure of the integers in an al-
gebraic closure of the field of rational numbers, called the ring of algebraic
integers, equipped with the natural Hilbert lattice structure known from the
theory of the geometry of numbers. We attempt to compute invariants of
this lattice. In particular, we give lower and upper bounds on the covering
radius. From this we derive a partial solution to the algorithmic counter-
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part of this problem, namely the closest vector problem. As a test for such
algorithms we propose the computation of indecomposable vectors of given
degree. It turns out to be hard to compute all indecomposables of degree
three, even though the number of candidates is limited, because the terms
of a decomposition can have an arbitrarily large degree. For the same rea-
son it is not even clear whether indecomposability is decidable. It is also
unknown whether the lattice has isometries other than the isometries that
come from the ring structure.

In Chapter 4 we decompose rings into gradings, a construction that
generalizes the degree of a monomial in a polynomial ring. We prove that
the lattice structure of the ring of algebraic integers and its subrings gives
rise to the existence of a universal grading of such rings, and we determine
their structure in several special cases. In particular, the maximal ortho-
gonal decomposition, and hence also the universal grading, of the lattice of
algebraic integers is trivial. Separate from a lattice structure, a universal
grading exists under certain p-adic assumptions, and in extension to this
we show that roots of unity and idempotents are ‘monomials’. Furthermore,
we give an algorithm to quickly compute the universal grading of rings that
are additively generated by their roots of unity and idempotents.

In Chapter 5 we apply the theory of the previous chapter to the special
case of group rings. It turns out that also for group rings over reduced
orders a certain universality is satisfied: up to isomorphism there is a unique
maximal way to decompose such a ring as a group ring. In terms of this
we describe its automorphism group. Very surprisingly it turns out that in
the connected case the subrings and subgroups that can be used to form
a maximal decomposition can be chosen entirely independently. We prove
this by applying the theory of modules, in particular decompositions of finite
length modules, to a morphism of finite abelian groups, namely the degree
map restricted to the group of roots of unity.

In Chapter 6 we give an efficient algorithm to take roots of fractional ide-
als in orders in number fields. We are careful in formulating this algorithm
so that the output is sufficiently functorial. Here it is an obstruction that
roots need not exist or be unique. We find an application of taking roots in
a generalization of the coprime basis algorithm. This algorithm finds for a
set of positive integers a set of pairwise coprime integers, called a coprime
basis, where every number from the first set is a (unique) power product
of numbers from the second. This power product can be seen as the best
polynomial-time approximation of the prime factorization. However, it is
possible to improve the coprime basis by taking roots of its elements. When
we generalize the coprime basis algorithm to ideals in orders, we are able
to also there make this final improvement.
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Preliminaries

Definitions

In this section we will list some definitions and notations that we assume a
reader of the coming chapters be familiar with.

Rings We write Z, Q, R and C for the rings of integers, rationals, reals and
complex numbers respectively. We will avoid the use of the term ‘natural
numbers’ and instead write Z≥0 = {n ∈ Z | n ≥ 0} for the set of non-
negative integers and Z>0 = {n ∈ Z | n > 0} for the set of positive integers.
Like in any modern mathematical text, our rings include a multiplicative
identity element.

Let R be a ring and let x ∈ R. We say x is regular if the maps R → R
given by y 7→ xy and y 7→ yx are injective, while x is a zero-divisor if it
is not regular. We say x is a unit if both maps are bijective, and we write
R∗ for the group of units of R. For a positive integer n, we say x is an
n-th root of unity if xn = 1, and write µn(R) for the subgroup of R∗ of
n-th roots of unity when R is commutative. We say x is a root of unity if
it is an n-th root of unity for some n, and analogously write µ(R) for the
group of roots of unity when R is commutative. We say x is idempotent
if x2 = x and write Id(R) for the set of idempotents of R. We say x is
nilpotent if xn = 0 for some positive integer n. We write nil(R) for the set
of nilpotents of R, which we call the nilradical when R is commutative. We
write Jac(R) = {x ∈ R | 1 +RxR ⊆ R∗} for the Jacobson radical of R.

Suppose now that R is a commutative ring. We say R is connected if
it has exactly two idempotents, i.e. the only idempotents are 0 and 1 and
R 6= 0. We say R is reduced if 0 is the only nilpotent of R.

A number field is a field of characteristic 0 which has finite dimension
as a Q-module. An order is a commutative ring whose additive group is
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isomorphic to Zn for some n ∈ Z≥0. Note that we do not require, as some
authors do, that an order be contained in a number field, i.e. that it is an
integral domain. Instead, we say R is an order of a number field K if R ⊆ K
is an order such that R generates K as Q-module.

Modules Let R be a ring andM andN be (left) R-modules. For a morph-
ism f : M → N of R-modules we write ker(f) = {m ∈ M | f(m) = 0} for
the kernel of f , write im(f) = {f(m) | m ∈ M} for the image of f and
write coker(f) = N/ im(f) for the cokernel of f . For a set I, an I-indexed
decomposition ofM is a family {Mi}i∈I of R-submodules ofM such that the
natural map

⊕
i∈IMi → M is an isomorphism, a condition we abbreviate

by
⊕

i∈IMi = M . A decomposition of M is an I-indexed decomposition for
any set I. We say M is indecomposable if M 6= 0 and for all M1,M2 ⊆ M
such that M1 ⊕ M2 = M we have M1 = 0 or M2 = 0. We make the
class of decompositions of M into a (locally small) category, where the
morphisms from {Mi}i∈I to {Nj}j∈J are the maps f : I → J such that
Nj =

⊕
i∈f−1{j}Mi for all j ∈ J . For commutative R and r ∈ R we write

M [r] = {m ∈ M : rm = 0} for the r-torsion submodule and M [r∞] =⋃
n≥0M [rn]. For a set S we write MS =

∏
s∈SM and M (S) =

⊕
s∈SM .

Graphs A simple graph is a pair (V,E) where V is a (potentially infinite)
set and E is a set of size-2 subsets of V . Let G = (V,E) be a graph. We call
the elements of V the vertices of G and those of E its edges. A subgraph of
G is a simple graph (W,F ) with W ⊆ V and F ⊆ E. For W ⊆ V we call
(W, {{u, v} ∈ E |u, v ∈ W}) the subgraph of G induced by W . For u ∈ V
we call v ∈ V a neighbor of u if {u, v} ∈ E. A connected component of G is
a non-empty set S ⊆ V such that for all e ∈ E we have e ⊆ S or e ⊆ V \ S
and which is minimal with respect to inclusion given these properties. We
say a simple graph is connected if it has precisely one connected component;
in particular V is non-empty.

Algorithms

In this thesis we will encounter several algorithms, ranging from theoretical
to computational in nature. The computational algorithms [19, 21] are pro-
grammed in either Sage [41] or GAP [15]. For our theoretical algorithms it
would be important to specify our model of computation and the encoding
of our mathematical objects, were it not that in our complexity analyses
we will at best prove that the algorithm in question terminates in polyno-
mial time. Assuming we remain sensible, polynomial runtime is invariant
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under choice of model and encodings. Thus we allow ourselves in the com-
ing chapters the luxury to reason about these algorithms in an informal
and conceptual manner, rather than worry about implementation details.
Nonetheless, in this section we will state some basic encodings and results
that we will later implicitly use.

We let k be either Z or Q and assume there to be some sensible encoding
of its elements.

Modules We encode a linear map α : km → kn as a matrix, i.e. a k-
valued (n × m)-tuple, in the obvious way. We encode a finitely generated
k-module by a linear map α : km → kn, where the corresponding module is
coker(α). The elements of coker(α) are encoded by representatives in kn. For
α : km → kn and β : kr → ks, a morphism of finitely generated k-modules
f : coker(α) → coker(β) is encoded as a linear map ϕ : kn → ks on the
underlying representations of the elements of coker(α) and coker(β). Note
that every linear map α : km → kn encodes a valid k-module. However,
with α and β as above, not every ϕ : kn → ks encodes a valid morphism
coker(α) → coker(β), as it does so if and only if im(ϕα) ⊆ im(β). This is
generally not a problem however, since our algorithms are only required to
work for legal input. Regardless, we can test whether ϕ encodes a morphism.
A submodule of A is encoded as a module A′ together with an injective
morphism A′ → A.

If k = Q, then using linear algebra one can answer most questions about
finitely generated k-modules in polynomial time. This also includes comput-
ing kernels and images of linear maps, computing hom-sets and splitting
exact sequences. For k = Z one can find an exposition on algorithms for
basic questions and constructions involving finitely generated k-modules in
Chapter 2 of [5].

Rings A k-algebra structure on a finitely generated k-module represented
by some map km → kn is encoded as a k-valued (n×n×n)-tuple (ehij)h,i,j ,
where the multiplication is given by

(ah)h · (bi)i =
(∑

h,i

ahbiehij

)
j
.

In particular, we can encode finite rings, orders and number fields. We may
also compute quotient rings. For some commutative ring R with a given
encoding we encode the elements of the polynomial ring R[X] as a sequence
(n, f0, . . . , fn) with n ∈ Z≥0 and f0, . . . , fn ∈ R, where the corresponding
polynomial is given by

∑n
i=0 fiX

i.



xviii Preliminaries

Number fields Suppose for some set S we have an encoding of its ele-
ments. We say a map ϕ : S → C is computable if there exists an algorithm
A that takes as input an s ∈ S and n ∈ Z≥0 and computes some a ∈ Q(i)
such that |ϕ(s) − a| ≤ 2−n. We represent computable maps by such an
algorithm. We say a complex number is computable if the map {0} → C
given by 0 7→ z is computable. It is undecidable whether two computable
complex numbers are equal.

For any k-algebra A which is finitely generated and free as a module
one can find for each element of A its minimal polynomial using linear
algebra. For a number field K it is possible to factor polynomials over K
into irreducibles in polynomial time [31]. Repeated application allows us
to compute the splitting field of such a polynomial, although not generally
in polynomial time. The roots (with multiplicity) of f ∈ Q[X] in C are
computable [25]. Using this, each ring homomorphismK → C is computable
and we may compute the set of ring homomorphisms K → C.
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CHAPTER 1
Nonabelian flows in graphs



2 1. Nonabelian flows in graphs

1.1 Introduction

This chapter is based on [20]. In this chapter, graph will mean a simple graph
with a finite number of vertices. We consider groups which are not required
to be abelian and therefore write our group operations multiplicatively.

With Γ a group and G = (V,E) a graph, we call a map f : V 2 → Γ a
Γ-flow in G if for all u, v ∈ V we have f(u, v) = f(v, u)−1, and f(u, v) = 1
if {u, v} 6∈ E. This definition agrees with the classical definition of a graph
flow when Γ = R.

Non-abelian graph flows, i.e. flows where Γ need not be abelian, were first
considered by M.J. DeVos in his PhD thesis [9] and later by A.J. Goodall
et al. [22] and B. Litjens [36]. They consider graphs embedded on surfaces
and ask whether flows exist which are nowhere trivial, i.e. f(u, v) 6= 1 if
and only if {u, v} ∈ E. Although likewise our main result involves planar
embeddings of graphs, we instead ask to which extent Kirchhoff’s law of
conservation holds.

Let G = (V,E) be a graph, Γ a group and f a Γ-flow in G. We call f
tractable if for each v ∈ V the subgroup 〈f(u, v) |u ∈ V 〉 of Γ is abelian.
For tractable f we define the excess ef : V → Γ to be the map given by
v 7→

∏
u∈V f(u, v) and we say f is conserving in v if ef (v) = 1. In the

classical case, we have the following lemma.

Lemma 1.1.1. Let Γ be an abelian group, let f be a Γ-flow in a graph
G = (V,E) and let w ∈ V . If f is conserving in all vertices of V \{w}, then
f is conserving in w.

Proof. We have

ef (w) =
∏
v∈V

ef (v) =
∏

(u,v)∈V 2

f(u, v) =
∏

{u,v}∈E

f(u, v)f(v, u) = 1,

so f is conserving in w.

We will show that Lemma 1.1.1 can fail for non-abelian Γ. We say a flow
f leaks if it is tractable and conserving in all but precisely one vertex and
we call a graph G leak-proof if there exist no flows in G that leak for any
group Γ. Our main result, proven in Section 1.4, is as follows.

Theorem 1.4.3. A graph is leak-proof if and only if it is planar.

We say a flow f of G has a binary leak at distinct vertices u, v ∈ V if it
is tractable and conserving in all vertices of V \ {u, v} while e(u)e(v) 6= 1.
Here u and v can be thought of as a source and sink of the flow. We call
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G binary leak-proof if no binary leaking flows exist for G. Analogously to
Lemma 1.1.1 one can show that a flow cannot have a binary leak when the
group is abelian. We also prove the following analogue to Theorem 1.4.3 in
Section 1.5.

Definition 1.1.2. We call a graph G = (V,E) extra-planar if for all pairs
of distinct u, v ∈ V the graph (V,E ∪ {u, v}) is planar.

Theorem 1.5.2. A graph is binary leak-proof if and only if it is extra-
planar.

Instead of studying leak-proof graphs, one could also study leak-proof
groups, where we call a group Γ leak-proof if for all graphs G = (V,E)
no tractable flows f : V 2 → Γ of G leak. Theorem 1.4.3 shows that the
decision problem ‘Is this graph leak-proof?’ can be decided in time O(|V |),
as Hopcroft and Tarjan gave an algorithm to test graph planarity in [24] of
this complexity. For leak-proof groups, we prove the following in Section 1.6.

Theorem 1.6.4. The decision problem ‘Is this finite group leak-proof?’ is
decidable.

The present work, in particular Theorem 1.5.2, was inspired by a prob-
lem the author encountered in his Master’s thesis [17] on graded rings. Here
a flow with a binary leak gives rise to an example (Example 2.17 of [17]) of
an efficient ring grading with a non-abelian group that cannot be replaced
by an abelian group.

1.2 Definitions and basic properties

We briefly go through some basic definitions. Let G = (V,E) be a graph.
With H = (W,F ) a graph we call a map f : V → W a morphism from
G to H if f [E] ⊆ F . We call this f an embedding if it is injective and
an isomorphism if f and its induced map E → F are bijections. A path
from u ∈ V to v ∈ V in G is a finite sequence of vertices (x0, . . . , xn)
for some n ∈ Z≥0 such that x0 = u, xn = v and {xi, xi+1} ∈ E for all
0 ≤ i < n. We call this path non-trivial if n > 0 and closed if x0 = xn. We
say u ∈ V is connected to v ∈ V in G if there exists a path from u to v in
G. The ‘is connected to’ relation is an equivalence relation on V and we call
its equivalence classes the connected components of G. For u ∈ V we call
v ∈ V a neighbor of u if {u, v} ∈ E and we write NG(u) ⊆ V for the set of
neighbors of u. An edge {u, v} ∈ E is called a bridge if all paths in G from
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u to v contain the edge {u, v}. A forest is a graph in which every edge is a
bridge.

We now give some facts about (non-)planar graphs.

Definition 1.2.1. For A,B ∈ R2 write `(A,B) for the line {tA + (1 −
t)B | t ∈ (0, 1)}. Let G = (V,E) be a graph. A planar embedding of G is
an injective map ε : V → R2 such that for all distinct {a, b}, {c, d} ∈ E
we have `(ε(a), ε(b)) ∩ `(ε(c), ε(d)) = ∅, and for all {a, b} ∈ E we have
`(ε(a), ε(b)) ∩ ε[V ] = ∅. We call G planar if it has a planar embedding.

The above definition of a planar embedding has been simplified for our
purposes, which is justified by Fáry’s Theorem [13].

Definition 1.2.2. Let G = (V,E) be a graph with a planar embedding
ε. The orientation of (G, ε) at v ∈ V is the clockwise permutation ρε(v) of
NG(v). A boundary walk of (G, ε) is a non-trivial closed path (x0, x2, . . . , xn)
in G such that for all i, j ∈ Z/nZ we have xi+2 = ρε(xi+1)(xi) and if
(xi, xi+1) = (xj , xj+1), then i = j.

Lemma 1.2.3. Let ε be a planar embedding of a graph G = (V,E) and let
p = (u1, u2, . . . , un) be a boundary walk. If (ui, ui+1) = (uj+1, uj) for some
i, j ∈ Z/nZ, then {ui, uj} is a bridge.

Proof. To show that e = {ui, uj} is a bridge, it suffices to show that ui and
uj are disconnected in the graph G′ = (V,E′) with E′ = E \ {e}. Note that
a, b ∈ V are connected in G′ if and only if ε(a) and ε(b) are connected in
the topological space X = ε[V ] ∪

⋃
{x,y}∈E′ `(ε(x), ε(y)). Hence it suffices

by the Jordan curve theorem to show that there exists a loop C in R2 \X
separating ui and uj , as any path from ui to uj must intersect this loop.

ui

uj

ui+2

ui+3

uj−1

uj−2

uj−3

Figure 1.1: Boundary walk

We informally construct this loop as follows (see Figure 1.1). Place your-
self at the midway point between ui and uj . Walk along the path p in G in
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the direction of uj and while doing so draw a continuous curve C on your
left hand side, being careful not to let C intersect itself or the graph. That
this is possible follows from the definition of a boundary walk. Stop once
you have reached your starting point for the first time again, and note that
this time you are facing ui by the assumption that (ui, ui+1) = (uj+1, uj).
Thus on your right hand side is the start of your curve C, and connect the
endpoints, crossing `(ε(ui), ε(uj)) once. Then C satisfies the requirements,
so e is a bridge.

Definition 1.2.4. Let G = (V,E) be a graph. We call a subgraph H =
(W,F ) of G a spanning forest if it is a forest and W = V . For a spanning
forest H = (W,F ) of G we define GH = (C,D) to be the contraction of H
in G, where C is the set of connected components of H and D = {{X,Y } ∈(
C
2

)
| (∃u ∈ X, v ∈ Y ) {u, v} ∈ E}. A graph M is a minor of G if it can be

embedded in some contraction of G.

Note that the ‘is a minor of’ relation is a partial order (up to graph
isomorphism). In particular, if I is a minor of H and H is a minor of G,
then I is a minor of G. Write K5 for the complete graph on 5 vertices and
K3,3 for the complete bipartite graph on 3 and 3 vertices.

Proposition 1.2.5 (Kuratowski, Theorem 4.4.6 in [10]). A graph G is
planar if and only if G does not have K5 or K3,3 as a minor.

1.3 Non-planar graphs

First we show that all non-planar graphs can leak.

Lemma 1.3.1. A graph is leak-proof if and only if all its subgraphs are
leak-proof.

Proof. Since each graph is its own subgraph, the implication (⇐) is trivial.
Let G = (V,E) be a graph with a subgraph H = (W,F ) and assume that
there exists some group Γ with a leaking Γ-flow g : W 2 → Γ of H. Then
we consider f : V 2 → Γ by taking f(u, v) = g(u, v) when {u, v} ∈ F and
f(u, v) = 1 otherwise. Then f is a leaking flow for G, proving (⇒).

Proposition 1.3.2. A graph is leak-proof if and only if all its minors are
leak-proof.

Proof. Let G = (V,E) be a graph. By Lemma 1.3.1 it suffices to show
that if a contraction of a spanning tree H in G admits a leaking flow, then
so does G. By induction we may even assume H has only a single edge
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e = {a, b}. Then (W,F ) ∼= GH with W = (V \ e) ∪ {e} under the natural
isomorphism e 7→ e and w 7→ {w} for w ∈ V \ e. Assume (W,F ) admits a
flow f : W 2 → Γ leaking at w ∈ W for some group Γ. Let X = NG(a) \ e
and Y = NG(b)\(e∪X). We define a flow g : V 2 → Γ such that for u, v ∈W
it is given by

g(u, v) = f(u, v) u, v 6∈ e,
g(a, u)−1 = g(u, a) = f(u, e) u ∈ X,
g(v, b)−1 = g(b, v) = f(e, v) v ∈ Y,

g(b, a)−1 = g(a, b) =
∏

u∈X\{b}

f(u, a),

and g(u, v) = 1 otherwise. Note that g agrees with f outside of e and that
the flows going to e have been divided among a and b. Thus g is tractable
and eg(u) = ef (u) for u 6∈ e. By definition of g(a, b) we have that eg(a) = 1
and eg(b) = ef (e). Hence g is a leaking flow for G.

To show that non-planar graphs are not leak-proof, it now suffices by
Proposition 1.2.5 to show that K5 and K3,3 admit a leaking flow.

Definition 1.3.3. Let C2 be the cyclic group with two elements. Let
n ∈ Z>0 and consider the groups N = Cn+1

2 = 〈z, x1, . . . , xn〉 and G =
Cn2 = 〈xn+1, . . . , x2n〉. Consider the action ϕ : G → Aut(N) defined on the
generators as

xn+i 7→
(
xj 7→ xjz

δij , z 7→ z
)

for all 1 ≤ i, j ≤ n,

where δij = 1 if i = j and δij = 0 otherwise. Then define the group ESn =
N oϕ G.

Although we will not use the fact, the ESn are all extraspecial 2-groups.

Example 1.3.4. Consider the utility graph K3,3 = (V,E) with V =
{1, 2, 3, 4, 5, 6} and E = {{u, v} |u ∈ {1, 2, 3}, v ∈ {4, 5, 6}}. We define
a flow f : V 2 → ES2 which we specify by an ES2-valued (symmetric) matrix
where the omitted entries are trivial:

f =



x1 x2 x1x2

x4 x3 x4x3

x1x4 x2x3 x1x4x2x3

x1 x4 x1x4

x2 x3 x2x3

x1x2 x4x3 x1x4x2x3

 .
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For the first 5 columns it is easy to see that multiplying the first two non-
trivial entries yields the third. Thus for the first five vertices v we have
〈f(u, v) |u ∈ V 〉 ∼= C2

2 , which is abelian, and ef (v) = 1. For v = 6 we
observe that (x1x2)(x4x3)(x1x4x2x3) = z and thus 〈f(u, 6) |u ∈ V 〉 =
〈x1x2, x4x3, z〉 ∼= C3

2 is abelian, and ef (6) = z 6= 1. Hence f is a tractable
flow that leaks at 6 and K3,3 is not leak-proof.

Example 1.3.5. Consider the complete graph K5 = (V,E) with V =
{1, 2, 3, 4, 5}. Now we consider f : V 2 → ES3 given by

f =


x1 x2 x3 x1x2x3

x1 x6 x5 x1x6x5

x2 x6 x4 x2x6x4

x3 x5 x4 x3x5x4

x1x2x3 x1x6x5 x2x6x4 x3x5x4

 .

For each of the first four columns one notes that its first three non-trivial
elements commute pairwise, while multiplying them yields the fourth. Thus
for the first four vertices v the group 〈f(u, v) |u ∈ V 〉 ∼= C3

2 is abelian and
ef (v) = 1. For the last column, note that each pair (a, b) of entries is of
the form a = xixjxk and b = xixj+3xk+3 with i, j, k, j + 3, k + 3 ∈ Z/6Z
distinct. Hence

ab = x2
i (xjxk)(xj+3xk+3) = x2

i (xj+3xk+3)(xjxk) = ba,

so each pair commutes. Finally, one computes

ef (5) = (x1x2x3)(x1x6x5)(x2x6x4)(x3x5x4) = z 6= 1.

Thus f is a tractable leaking flow and thus K5 is not leak-proof.

Both examples were found by starting with the free group F with sym-
bols V 2 and dividing out the relations N E F required to make the obvious
map f : V 2 → F/N a tractable flow that is conserving in #V − 1 vertices.
Adding the restriction that the generators have order 2 gives us the groups
ES2 and ES3.

It now follows that all non-planar graphs leak, so we are half-way done
proving Theorem 1.4.3.

1.4 Planar graphs

Now we will prove that all planar graphs are leak-proof by induction. For
this we require a definition of the excess for non-tractable flows.
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Definition 1.4.1. Let G = (V,E) be a graph with planar embedding ε and
let f : V 2 → Γ be a flow of G. Write C(Γ) for the set of conjugacy classes
of Γ and ≡ for equality up to conjugation. Then we define for (G, ε, f) the
round flow r : V → C(Γ) as r(v) ≡ 1 if NG(V ) = ∅, and otherwise

r(v) ≡ f(ρε(v)0(u), v) · f(ρε(v)1(u), v) · · · f(ρε(v)n−1(u), v),

where u ∈ NG(v), n = #NG(v) and ρε is as in Definition 1.2.2.

Note that choosing a different u ∈ NG(v) in the above definition results
in a cyclic permutation of the factors, hence the products are conjugate in Γ.
Thus the round flow is well-defined. Since 1 ∈ Γ is only conjugate to itself,
we have that r(v) ≡ 1 if and only if e(v) = 1 when the latter is defined.

Proposition 1.4.2. Let G = (V,E) be a graph with planar embedding ε
and let f : V 2 → Γ be a flow of G. Let u ∈ V and assume r(v) ≡ 1 for all
v ∈ V \ {u}. Then r(u) ≡ 1.

Proof. Firstly, if G is the singleton graph, then r(u) ≡ 1 is the empty
product, so we are done. We now apply induction and thus assume that the
statement holds for all strict subgraphs (W,F ) of G with planar embedding
ε|W . We may now assume #V > 1.

Secondly, we consider the case where G is not connected. Here we may
apply the induction hypothesis to the induced subgraph of G with as vertex
set the connected component of u to conclude that r(u) ≡ 1. We may now
assume G is connected.

Thirdly, we consider the case where G is a forest. Then G has at least
two vertices of degree 1, of which one, say v, is not u. Let e = {v, w} ∈ E
be the unique edge incident to v, and note that 1 ≡ rf (v) ≡ f(w, v) implies
f(w, v) = 1. Hence f is a flow of the subgraph H of G obtained by removing
e. Note that ε is a planar embedding of H with the same round flow in each
vertex, hence by the induction hypothesis we have rf (u) ≡ 1.

Lastly we consider the case where G not a forest. Then G has an edge
{v, w} ∈ E that is not a bridge. Then by Lemma 1.2.3 the boundary walk
p = (x0, . . . , xn) of (G, ε) with x0 = v and x1 = w satisfies (w, v) 6=
(xi, xi+1) for all i ∈ Z/nZ. Let b : V 2 → {0, 1} be the map such that for all
s, t ∈ V we have b(s, t) = 1 if and only if there exists some i ∈ Z/nZ such
that (s, t) = (xi, xi+1). Now consider γ = f(v, w) and g : V 2 → Γ given by

(s, t) 7→ γb(t,s) · f(s, t) · γ−b(s,t).

Firstly note that g is a flow of G: For all s, t ∈ V we have

g(s, t)−1 = γb(s,t) · f(s, t)−1 · γ−b(t,s) = g(t, s)
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since f is a flow, and if {s, t} 6∈ E we have g(s, t) = f(s, t) = 1 as b(s, t) =
b(t, s) = 0. Secondly, we have that g(v, w) = γ0 · γ · γ−1 = 1 by choice of
{v, w}, so g is even a flow of the subgraph H of G obtained by removing
{v, w}. We now show that the round flows rf and rg of f respectively g in
(G, ε) are conjugates in Γ at each vertex. Then by the induction hypothesis
applied to H it follows that r(u) ≡ 1. Note that for all s, t ∈ V we have by
definition of b that b(t, s) = b(s, ρε(s)(t)). Using this, we now simply verify
for {s, t} ∈ E, n = #NG(s) and ρ = ρε(s) that

rg(s) ≡
n−1∏
k=0

g(ρk(t), s) ≡
n−1∏
k=0

γb(s,ρ
k(t)) · f(ρk(t), s) · γ−b(ρk(t),s)

≡ γb(s,t)
(
n−1∏
k=0

f(ρk(t), s)γ−b(ρ
k(t),s)γb(s,ρ

k+1(t))

)
γ−b(s,ρ

n(t))

≡ γb(s,t)
(
n−1∏
k=0

f(ρk(t), s)

)
γ−b(s,t) ≡

n−1∏
k=0

f(ρk(t), s) ≡ rf (s),

as was to be shown. We conclude that the statement holds for all planar
graphs by induction.

An earlier proof of Proposition 1.4.2 was due to H.W. Lenstra. In his
version he does not remove edges in the inductive step but contracts them
in the sense of Definition 1.2.4. This proof turned out to be more difficult
to formalize.

Theorem 1.4.3. A graph is leak-proof if and only if it is planar.

Proof. A non-planar graph has either K5 or K3,3 as minor by Proposi-
tion 1.2.5. Both K5 and K3,3 are not leak-proof by Example 1.3.5 respec-
tively Example 1.3.4, so by Proposition 1.3.2 neither are the non-planar
graphs. Let G = (V,E) be a planar graph with u ∈ V and let f be a
tractable flow of G such that e(v) = 1 for all v ∈ V \ {u}. After choosing
a planar embedding for G we have r(u) ≡ 1 by Proposition 1.4.2 and thus
e(u) = 1. Hence f does not leak and G is leak-proof.

1.5 Extra-planar graphs

In this section we will prove Theorem 1.5.2, classifying the binary leak-proof
graphs. To do this we first prove a ‘Kuratowski’s Theorem’ for extra-planar
graphs. Write K−5 and K−3,3 for the graphs obtained from K5 respectively
K3,3 by removing a single edge, which by symmetry we do not have to
specify.
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Proposition 1.5.1. A graph G is extra-planar if and only if G does not
have K−5 or K−3,3 as a minor.

Proof. (⇒) This follows directly from Kuratowski’s Theorem: If K−5 or K−3,3
is a minor ofG, then we may add a single edge toG such thatK5 respectively
K3,3 becomes a minor of this new graph, which is then non-planar.

(⇐) We proceed by contraposition, so assume that G is not extra-planar.
Let u, v ∈ V be such that G+ = (V,E ∪ {{u, v}}) is non-planar and let
H+ = (V, F ) be a spanning forest of G+ such that K5 or K3,3 embeds into
G+
H . Consider the spanning forest H = (V, F \ {{u, v}}) of G. Then H has

the same connected components as H+ with the exception that if H+ has
a connected component containing both u and v, it might have been split
into two. Let Tu and Tv be the connected components of u respectively v in
H.

Tu

Tv R1

R2

R3

L2

L3

Figure 1.2: Case K3,3

TvTu

P1

P2 P3

P4

Figure 1.3: Case K5

Case K3,3: First consider the case whereK3,3 embeds intoG+
H+ , meaning

there is a subset C = {L1, L2, L3, R1, R2, R3} of size 6 of the set of connected
components of H+ such that S+ = (C, {{Li, Rj} | i, j ∈ {1, 2, 3}}) is a
subgraph of G+

H+ . If all elements of C are also connected components of H,
then GH has the graph S+ minus possibly a single edge induced by {u, v}
as subgraph, hence G has K−3,3 as a minor. Otherwise, for some X ∈ C we
have X = TutTv and without loss of generality X = L1. Then the subgraph
S of GH induced by {Tu, Tv, L2, L3, R1, R2, R3} is as in Figure 2, where the
dashed lines indicate edges which are possibly present. Merging Tu and Tv
in S yields S+ ∼= K3,3, hence for each i ∈ {1, 2, 3} the edge {Tu, Ri} or
{Tv, Ri} is present. Thus Tu or Tv has degree at least 2, which without loss
of generality is Tv. It follows that K−3,3 embeds into the subgraph of GH
induced by {Tv, L2, L3, R1, R2, R3}, so K−3,3 is a minor of G.
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Case K5: Now consider the caseK5 embeds intoG+
H+ , meaning there is a

subset C = {P1, . . . , P5} of the set of connected components ofH+ such that
the subgraph of G+

H+ induced by C is isomorphic to K5. As before, the only
interesting case is where P5 = TutTv. Then the subgraph S of GH induced
by {Tu, Tv, P1, P2, P3, P4} is as in Figure 3. Since merging Tu and Tv in S
yields K5, for each i ∈ {1, . . . , 4} the edge {Tu, Pi} or {Tv, Pi} is present. If
both Tu and Tv have degree 2, then without loss of generality S contains the
edges {Tu, P3}, {Tu, P4}, {Tv, P1} and {Tv, P2}. Now note that S contains
a K−3,3 which partitions its vertices as {{Tu, P1, P2}, {Tv, P3, P4}}. Hence
G contains K−3,3 as a minor. Otherwise, without loss of generality Tu has
degree at least 3 in S and the subgraph of GH induced by {Tu, P1, . . . , P4}
is either K5 or K−5 . Hence G has K−5 as a minor.

As G has K−3,3 or K−5 as a minor, the claim follows.

We are now able to prove Theorem 1.5.2.

Theorem 1.5.2. A graph is binary leak-proof if and only if it is extra-
planar.

Proof. (⇐) Let G = (V,E) be an extra-planar graph and let f : V 2 → Γ be
a tractable flow of G such that there are distinct u, v ∈ V with ef (w) = 1
for all w ∈ V \ {u, v}. Consider the graph H = (V,E ∪ {{u, v}}) and let
ε be a planar embedding of H. Now let g : V 2 → Γ be the map such that
g(s, t) = f(s, t) if {s, t} 6= {u, v} and g(u, v) = g(v, u)−1 = f(u, v)rf (v)−1,
where rf (v) is computed by starting from the vertex right after u in the
ordering ofNH(v). Then g is a (not necessarily tractable) flow inH such that
rg(w) = 1 for w ∈ V \{u}. From g(v, u) = rf (v)f(v, u) it follows that rg(u)
differs from rf (u) by a factor rf (v) when starting the multiplication at v. By
Proposition 1.4.2 we have 1 ≡ rg(u) ≡ rf (u)rf (v) and thus ef (u)ef (v) = 1.
Hence G is binary leak-proof.

(⇒) If G = (V,E) is not extra-planar, then it has K−5 or K−3,3 as minor
by Proposition 1.5.1. It is straightforward to generalize Proposition 1.3.2 to
show that a graph is binary leak-proof if and only if all its minors are too.
It therefore suffices to show that K−5 and K−3,3 have a binary leaking flow.
Simply take the flow f as defined in Example 1.3.4 which leaks at vertex 6
of K3,3 and consider K−3,3 as the K3,3 with the edge {3, 6} removed. Then
the flow f− of K−3,3 which equals f except for f−(3, 6) = f−(6, 3) = 1

has a binary leak at 3 and 6. Using Example 1.3.5 for K−5 can be done
analogously.
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1.6 Leak-proof groups

In this section we prove Theorem 1.6.4 and give some computational results.

Definition 1.6.1. Let Γ be a (not necessarily finite) group. Write V (Γ) for
the set of maximal abelian subgroups of Γ. We define the group

F (Γ) =
{

(fu,v)(u,v) ∈
⊕

(u,v)∈V (Γ)2

(u ∩ v)
∣∣∣ (∀u, v) fu,v = f−1

v,u, (∀ v) fv,v = 1
}

and the homomorphism

eΓ : F (Γ)→
⊕

v∈V (Γ)

v, (fu,v)(u,v) 7→
( ∏
u∈V (Γ)

fu,v

)
v∈V (Γ)

.

One can think of V (Γ) as the vertex set of a complete graph, F (Γ) the
set of tractable flows in this graph, and eΓ(f) to be the excess for such flow
f ∈ F (Γ). However, V (Γ) need not be finite. For example Γ = GL2(R) has
a maximal abelian subgroup {( a b0 a ) | a, b ∈ R, a 6= 0} with infinitely many
conjugates.

Lemma 1.6.2. Let Γ be a group. For u ∈ V (Γ) and γ ∈ u let [γ]u ∈⊕
v∈V (Γ) v be the vector consisting of all-ones except for a γ at coordinate

u. We write Γ• = (
⊕

v∈V (Γ) v)/ im(e). Then the map d : Γ → Γ• given by
γ 7→ [γ]v for any choice of v containing γ, does not depend on the choice of
v.

Proof. Let γ ∈ Γ and suppose u, v ∈ V (Γ) are such that γ ∈ u and γ ∈ v.
Then γ ∈ u ∩ v, and f = (fs,t)(s,t)∈V (Γ)2 , with fu,v = f−1

v,u = γ and fs,t = 1
for {s, t} 6= {u, v}, is an element of F (Γ). We have e(f) = [γ]v · [γ]−1

u , so
[γ]u is equivalent to [γ]v in the quotient Γ•.

An example one can consider is where Γ is abelian. Then V (Γ) = {Γ}
and Γ• = Γ and d is the identity. Note that d is (in general) not a group
homomorphism.

Proposition 1.6.3. A group Γ is leak-proof if and only if d(γ) = 1 implies
γ = 1.

Proof. Suppose Γ is leak-proof and d(γ) = 1 for some γ ∈ Γ. Then there
is some u ∈ V (Γ) and f ∈ F (Γ) such that [γ]u = e(f). Note that E =
{{u, v} ∈ V (Γ) | fu,v 6= 1} and V = {u | {u, v} ∈ E} are finite. Now f is a
Γ-flow in (V,E) which is preserving in all vertices except possibly u. Since
Γ is leak-proof, f is also preserving in u and 1 = e(f) = [γ]u, so γ = 1.
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Conversely, suppose f is a tractable Γ-flow in some graph (V,E). Pick
some map c : V → V (Γ) such that for all v ∈ V we have 〈f(u, v) | u ∈
V 〉 ⊆ c(v). Then f induces a tractable Γ-flow f ′ in the complete graph with
vertex set {c(v) | v ∈ V } where

f ′(s, t) =
∏

u : c(u)=s

∏
v : c(v)=t

f(u, v) ∈ s ∩ t.

Hence f ′ ∈ F (Γ). Moreover, if f leaks, then so does f ′. Assume f ′ is pre-
serving in all vertices except potentially v ∈ V . Then e(f ′) = [γ]v for some
γ ∈ v and d(γ) = 1. If d(γ) = 1 implies γ = 1, we obtain that f ′ and hence
f does not leak, so Γ is leak-proof.

Similarly, one can consider binary leak-proof groups. With a proof anal-
ogous to that of Proposition 1.6.3 one obtains that Γ is binary leak proof if
and only if d is injective.

Theorem 1.6.4. The decision problem ‘Is this finite group leak-proof?’ is
decidable.

Proof. Simply note that for finite Γ the corresponding group Γ• is finite
abelian and can thus be computed explicitly. In particular, we can decide
for each γ ∈ Γ whether d(γ) = 1. The theorem thus follows from Proposi-
tion 1.6.3.

From Lemma 1.1.1 it follows that abelian groups are leak-proof, but they
are hardly the only ones. By computer search we found the two extraspecial
groups of order 32 to be the only smallest leaking groups, one of which we
encountered in Example 1.3.4. The smallest leaking groups of order greater
than 32 occur at order 64. That there are groups of order 64 that leak
was to be expected, because a group leaks when it has a leaking subgroup.
The smallest leaking symmetric group is the S6 and the smallest leaking
alternating group is the A7. That for sufficiently large n the group Sn leaks
is to be expected by Cayley’s theorem, but interestingly no strict subgroup
of S6 leaks. It would be interesting to have a classification of leak-proof
groups or to know whether there is some equivalent, better understood
property of groups which is equivalent to being leak-proof like planarity is
for graphs.

Our code is available online [21] and is written in GAP [15].
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CHAPTER 2
Hilbert lattices
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2.1 Introduction

This chapter is based on [18]. A set of R-linearly independent vectors
{b1, . . . , bk} of some Euclidean vector space such as Rn gives rise to a dis-
crete subgroup { k∑

i=1

xibi

∣∣∣x1, . . . , xk ∈ Z
}
,

which we call a lattice. In particular, a lattice is a free abelian group of
finite rank. In preparation of Chapter 3 we study a generalization of lattices
that includes ‘infinite rank lattices’. These will be the discrete subgroups of
Hilbert spaces, which we call Hilbert lattices, and they include the ‘Euclidean
lattices’ as a special case. We will primarily generalize existing theory from
the finite dimensional case, and highlight the things that fail to generalize.

Theorem 2.3.13. Every countable subgroup of a Hilbert lattice is free.

Whether or not all Hilbert lattices are free themselves is still an open
problem. Let Λ be a Hilbert lattice. An orthogonal decomposition of Λ is
a decomposition {Λi}i∈I of Λ as abelian group, as defined in the Prelimi-
naries, such that 〈Λi,Λj〉 = {0} for all distinct i, j ∈ I. The collection of
orthogonal decompositions of Λ inherit the structure of a category. We say
an orthogonal decomposition is universal if it is an initial object in this
category.

Theorem 2.5.4. Every Hilbert lattice has a universal orthogonal decompo-
sition.

Let Λ be a Hilbert lattice in a Hilbert space H. The Voronoi cell of Λ
is the set

Vor(Λ) = {z ∈ H | (∀x ∈ Λ \ {0}) ‖z‖ < ‖z − x‖},

i.e. the set of all points which have the origin as their unique closest lattice
point. It is almost a ‘fundamental domain’ for Λ.

Theorem 2.6.9. Let Λ be a Hilbert lattice in a Hilbert space H and consider
the natural map H → H/Λ. Its restriction to Vor(Λ) is injective and for all
ε > 0 its restriction to (1 + ε) Vor(Λ) is surjective.

A decomposition of z ∈ Λ is a pair (x, y) ∈ Λ2 such that x + y = z
and 〈x, y〉 ≥ 0. We say x ∈ Λ is indecomposable or Voronoi relevant if it has
precisely 2 decompositions, i.e. (0, x) and (x, 0) are the only decompositions
and x 6= 0. One can interpret the Voronoi cell as the intersection of half
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spaces Hx = {z ∈ H | ‖z‖ < ‖z−x‖}, but we do not need all x ∈ Λ \ {0} to
carve out Vor(Λ). For example, Hx ∩H2x = Hx.

Theorem 2.6.11. Let Λ be a Hilbert lattice in a Hilbert space H. Then there
exists a unique set S ⊆ Λ \ {0} which is minimal with respect to inclusion
such that Vor(Λ) = {z ∈ H | (∀x ∈ S) ‖z‖ < ‖z− x‖}, and S equals the set
of indecomposable vectors.

2.2 Inner products and Hilbert spaces

Definition 2.2.1. Let R ⊆ C be a subring. An R-norm on an R-module
M is a map ‖ · ‖ : M → R≥0 that satisfies:

(Absolute homogeneity) For all x ∈M and a ∈ R we have ‖ax‖ = |a| · ‖x‖;
(Triangle inequality) For all x, y ∈M we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

(Positive-definiteness) For all non-zero x ∈M we have ‖x‖ ∈ R>0.
A normed R-module is an R-moduleM together with an R-norm onM . For
normed R-modules M and N an R-module homomorphism f : M → N is
called an isometric map if ‖x‖ = ‖f(x)‖ for all x ∈M . The isometric maps
are the morphisms in the category of normed R-modules.

Note that an isometric map is injective, but not necessarily surjective.

Definition 2.2.2. Let R ⊆ C be a subring and M be an R-module. An
R-inner product on M is a map 〈 · , · 〉 : M2 → C that satisfies:
(Conjugate symmetry) For all x, y ∈M we have 〈x, y〉 = 〈y, x〉;

(Left linearity) For all x, y, z ∈M and a ∈ R we have

〈x+ ay, z〉 = 〈x, z〉+ a〈y, z〉;

(Positive-definiteness) For all non-zero x ∈M we have 〈x, x〉 ∈ R>0.
We say it is a real inner product if 〈M,M〉 ⊆ R, which implies R ⊆ R
when M 6= 0. An R-inner product space is an R-module together with an
R-inner product. For R-inner product spaces M and N a morphism is an
R-module homomorphism f : M → N for which there exists an R-module
homomorphism f∗ : N → M such that 〈f(x), y〉 = 〈x, f∗(y)〉 for all x ∈ M
and y ∈ N . This f∗ is unique if it exists, and we call it the adjoint of f .

Remark 2.2.3. An R-inner product spaceM comes with an R-norm given
by ‖x‖ =

√
〈x, x〉, which in turn induces a metric d(x, y) = ‖x− y‖ and a

topology. One can then speak about the completeness of M with respect to
this metric.
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Lemma 2.2.4. Suppose R ⊆ C is a subring and M is a real R-inner
product space. Then the induced norm satisfies the parallelogram law: For
all x, y ∈M we have

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

The following is an exercise in many standard texts.

Theorem 2.2.5 (Jordan–von Neumann [26]). Let R ⊆ Q be a subring,
M an R-module and suppose a map ‖ · ‖ : M → R≥0 satisfies positive-
definiteness and the parallelogram law. Then ‖·‖ is an R-norm onM induced
by a real R-inner product 〈 · , · 〉 : M2 → R given by

〈x, y〉 = 1
2(‖x+ y‖2 − ‖x‖2 − ‖y‖2).

Proof. Note that taking x = y = 0 in the parallelogram law shows 2‖0‖2 =
4‖0‖2, hence ‖0‖ = 0. For all x ∈ M we have ‖x+ x‖2 = 2‖x‖2 + 2‖x‖2 −
‖x− x‖2 = 4‖x‖2, hence 〈x, x〉 = 1

2(‖2x‖2 − 2‖x‖2) = ‖x‖2. It now suffices
to show that 〈 · , · 〉 is an inner product, as ‖ · ‖ is then the associated norm
as in Remark 2.2.3. Clearly 〈 · , · 〉 satisfies conjugate symmetry and positive
definiteness, so it remains to prove left linearity. It suffices to show for all
x ∈ M that x 7→ 〈x, z〉 is Z-linear: Since R is in the field of fractions of
Z, any Z-linear map to R is also R-linear. Let x, y, z ∈ M and note that
〈x, y〉 = 1

4(‖x+ y‖2 − ‖x− y‖2). By the parallelogram law we have

2‖y + z‖2 + 2‖x‖2 − ‖ − x+ y + z‖2 = ‖x+ y + z‖2

= 2‖x+ z‖2 + 2‖y‖2 − ‖x− y + z‖2.

so

2‖x+ y + z‖2 + ‖ − x+ y + z‖2 + ‖x− y + z‖2

= 2‖x+ z‖2 + 2‖y + z‖2 + 2‖x‖2 + 2‖y‖2.

Applying this equation also with z replaced by −z, we obtain

8〈x+ y, z〉 = 2‖x+ y + z‖2 − 2‖x+ y − z‖2

= 2‖x+ z‖2 + 2‖y + z‖2 − 2‖x− z‖2 − 2‖y − z‖2

= 8〈x, z〉+ 8〈y, z〉,

as was to be shown. We conclude that 〈 · , · 〉 is an R-inner product.

Inner product spaces over Z or Q can be extended to R in a ‘canonical’
way. This can best be expressed in a categorical sense in terms of universal
morphisms. We proceed as in Chapter III of [37].
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Definition 2.2.6. Let C be a category. An object U of C is called universal
if for each object X of C there exists a unique morphism U → X in C.

Definition 2.2.7. Let C and D be categories. Let F : C → D be a functor
and Z an object of D. A universal morphism from Z to F is a pair (X, η)
with X an object of C and η ∈ HomD(Z,F (X)) such that for all objects Y
of C and every g ∈ HomD(Z,F (Y )) there exists a unique f ∈ HomC(X,Y )
for which F (f) ◦ η = g. Equivalently, for all objects Y of C and morphisms
g : Z → F (Y ) we have the following diagram:

Z F (X) X

F (Y ) Y

η

g F (f) !f

For a reader familiar with category theory we remark that, if for a
functor F : C → D every object Z of D has a universal morphism to F ,
then F is a right adjoint functor.

Example 2.2.8. We will give a concrete example of a universal morphism.
1. Let k be a field. Consider the forgetful functor F from the category of

k-vector spaces to the category of abelian groups, i.e. the functor that sends
a k-vector space to its underlying abelian group. Now let Z be an abelian
group. We take X = k ⊗Z Z, which is a k-vector space, and η : Z → F (X)
the map z 7→ 1⊗ z. Because F is a forgetful functor, as will always be the
case in our applications, we may omit it in the notation for simplicity and
state that η is a morphism Z → X of abelian groups.

Now let g : Z → Y be a morphism of abelian groups, and take f : X → Y
to be the morphism a⊗ z 7→ a · g(z) of k-vector spaces. Then (f ◦ η)(z) =
f(1⊗z) = g(z) for all z ∈ Z, so f ◦η = g. Suppose f ′ also satisfies f ′◦η = g.
Then (f −f ′)◦η = 0. Since η(Z) generates X as a k-vector space we obtain
f − f ′ = 0, so f is unique and (X, η) is a universal morphism.

Since (X, η) is universal the vector space X corresponding to Z is
‘uniquely unique’, meaning that any other universal morphism (X ′, η′) in-
duces a unique isomorphism ϕ : X → X ′ such that ϕ ◦ η = η′.

Note that η need not be injective. For k = Q it is only injective when
A is torsion-free. Then η can be thought of as a canonical embedding.

2. Similarly, we can consider a forgetful functor F from the category
of Q-inner product spaces to the category of Z-inner product spaces. The
underlying universal morphism (X, η) is the same as before, and we equip
X with the inner product we extend Q-bilinearly from Z. To show that
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this inner product is positive definite we use that A is torsion-free, being a
Z-inner product space.

Definition 2.2.9. A Hilbert space is an R-module H equipped with a real
R-inner product such thatH is complete with respect to the induced metric.
The morphisms of Hilbert spaces are the isometric maps.

Theorem 2.2.10 (Theorem 3.2-3 in [29]). Let F be the forgetful functor
from the category of Hilbert spaces to the category of Q-inner product spaces.
Then every Q-inner product space V has an injective universal morphism
to F , and a morphism f : V → H for some Hilbert space H is universal
precisely when f is injective and the image of f is dense in H.

The Hilbert space constructed for V in Theorem 2.2.10 can be obtained
as the topological completion of V with respect to the metric induced by
the inner product, and the inner product is extended continuously.

Definition 2.2.11. For a set B and p ∈ R>0 we define the R-vector space

`p(B) =

{
(xb)b ∈ RB

∣∣∣∣ xb = 0 for all but countably many b ∈ B
and

∑
b∈B |xb|p <∞

}
and ‖x‖p = (

∑
b∈B |xb|p)1/p for all x = (xb)b ∈ `p(B).

Theorem 2.2.12 (Minkowski’s inequality, Theorem 1.2-3 in [29]). For any
set B and p ∈ R≥1 the map ‖ · ‖p is an R-norm on `p(B).

Lemma 2.2.13 (Example 3.1-6 in [29]). For any set B the space `2(B)
is a Hilbert space with inner product given by 〈x, y〉 =

∑
b∈B xb · yb for

x = (xb)b, y = (yb)b ∈ `2(B), such that 〈x, x〉 = ‖x‖22.

Lemma 2.2.14. Let n ∈ Z≥1, x ∈ Rn and let 0 < p ≤ q be real. Then we
have

‖x‖q ≤ ‖x‖p and n−1/p · ‖x‖p ≤ n−1/q · ‖x‖q.

Proof. Clearly we may assume x 6= 0. For the first inequality, consider
y = x/‖x‖p. Then |yi| ≤ 1 for all i, from which |yi|q ≤ |yi|p follows. Now

‖y‖qq =

n∑
i=1

|yi|q ≤
n∑
i=1

|yi|p = ‖y‖pp = 1.

Hence ‖x‖q/‖x‖p = ‖y‖q ≤ 1, as was to be shown. For the second inequality,
note that x 7→ xq/p is a convex function on R≥0. We have by Jensen’s
inequality (Theorem 7.3 in [7]) that

‖x‖qq =
n∑
i=1

|xi|q =
n∑
i=1

|xpi |
q/p ≥ n

(
1

n

n∑
i=1

|xi|p
)q/p

= n1−q/p‖x‖qp,
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so n−1/p · ‖x‖p ≤ n−1/q · ‖x‖q.

Definition 2.2.15. Let H be a Hilbert space. A subset S ⊆ H is called
orthogonal if 0 6∈ S and 〈x, y〉 = 0 for all distinct x, y ∈ S. The orthog-
onal dimension of H, written orth dimH, is the cardinality of a maximal
orthogonal subset of H.

That the orthogonal dimension is well-defined, i.e. that maximal orthog-
onal subsets of a given Hilbert space have the same cardinality follows from
Proposition 4.14 in [6].

Theorem 2.2.16 (Theorem 5.4 in [6]). Let H be a Hilbert space and B a
set. Then the Hilbert spaces H and `2(B) are isomorphic if and only if the
cardinality of B equals orth dimH.

In particular, up to isomorphism every Hilbert space is of the form `2(B)
for some set B.

2.3 Hilbert lattices

Definition 2.3.1. A Hilbert lattice is an abelian group Λ together with a
map q : Λ→ R, which we then call the square-norm of Λ, that satisfies:

(Parallelogram law) For all x, y ∈ Λ we have

q(x+ y) + q(x− y) = 2q(x) + 2q(y);

(Positive packing radius) There exists an r ∈ R>0 such that q(x) ≥ r for
all non-zero x ∈ Λ.

We write P(Λ) = inf{q(x) |x ∈ Λ \ {0}}.

The following lemma gives an equivalent definition of a Hilbert lattice.

Lemma 2.3.2. A Hilbert lattice Λ with square-norm q is a discrete Z-inner
product space with inner product given by

(x, y) 7→ 1

2
(q(x+ y)− q(x)− q(y)).

Conversely, every discrete Z-inner product space M is a Hilbert lattice with
square norm given by x 7→ 〈x, x〉.

Proof. The first statement is Theorem 2.2.5 with the observation that the
positive packing radius implies non-degeneracy and discreteness. The second
statement is Lemma 2.2.4 with the observation that discreteness implies a
positive packing radius.
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Example 2.3.3. Consider for some n ∈ Z≥0 the vector space Rn with the
standard inner product. If Λ ⊆ Rn is a discrete subgroup, then Λ is a Hilbert
lattice when q is given by x 7→ ‖x‖2.

Example 2.3.4. Let B be a set. Then

Z(B) = {(xb)b ∈ ZB |xb = 0 for all but finitely many b}

is a Hilbert lattice in `2(B) when q is given by x 7→ ‖x‖2. In fact, any
discrete subgroup of `2(B) is a Hilbert lattice.

Example 2.3.5. The infimum defining P(Λ) of a Hilbert lattice Λ need not
be attained. Certainly if Λ = 0 we have that P(Λ) =∞ is not attained. For
an example of a non-degenerate Λ consider the following. For a set I and
a map f : I → R≥0 we write Λf for the group Z(I) together with the map
q((xi)i) =

∑
i∈I f(i)2x2

i . Note that inf{q(x) |x ∈ Λf \ {0}} = inf{f(i)2 | i ∈
I}, so Λf is a Hilbert lattice if and only if inf{f(i) | i ∈ I} > 0. We now
simply take f : Z>0 → R≥0 given by n 7→ 1 + 1/n.

Lemma 2.3.6. Let Λ be a Hilbert lattice with square-norm q. Then any
subgroup Λ′ ⊆ Λ is a Hilbert lattice when equipped with the square-norm
q|Λ′ .

Theorem 2.3.7. Let F be the forgetful functor from the category of Hilbert
spaces to the category of Z-inner product spaces. Then every Z-inner product
space L has an injective universal morphism η to F . For every Z-inner
product space L, Hilbert space H and injective morphism f : L → H we
have that f is universal if and only if Q · f(L) is dense in H, and L is a
Hilbert lattice if and only if f(L) is discrete in H.

It follows from this theorem that the Hilbert lattices are, up to iso-
morphism, precisely the discrete subgroups of Hilbert spaces. Hence The-
orem 2.3.7 allows us to assume without loss of generality that a Hilbert
lattice is a discrete subgroup of a Hilbert space.

Proof. The first and second statement are just a combination of Exam-
ple 2.2.8.2 and Theorem 2.2.10, while the third is trivial when taking the
equivalent definition of Lemma 2.3.2.

Remark 2.3.8. Let Λ be a Hilbert lattice in a Hilbert space H and suppose
that Λ is finitely generated. Then RΛ is a finite dimensional R-inner product
space and thus complete. It follows that Λ → RΛ is a universal morphism
because QΛ is dense in RΛ. Since RΛ is finite dimensional, Λ is a lattice in
the classical sense: a discrete subgroup of a Euclidean vector space.
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Lemma 2.3.9. Let Λ be a Hilbert lattice in a Hilbert space H. Then the
natural map R⊗Z Λ→ H is injective.

Proof. To show R ⊗Z Λ → H is injective we may assume by Lemma 2.3.6
without loss of generality that Λ is finitely generated, as any element in the
kernel is also in R⊗Z Λ′ for some finitely generated sublattice Λ′ ⊆ Λ. Write
V = RΛ ⊆ H. We may choose an R-basis for V in Λ, and let Λ′ be the
group generated by this basis. Then R ⊗Z Λ′ → V is an isomorphism. As
Λ is discrete in V , also Λ/Λ′ is discrete in V/Λ′. Now V/Λ′ is compact, so
the quotient Λ/Λ′ is finite. Then Λ ⊆ 1

nΛ′, where n = #(Λ/Λ′). Now the
natural map R ⊗Z Λ → H is injective because it is the composition of the
map R⊗Z Λ→ R⊗Z ( 1

nΛ′) = R⊗Z Λ′, which is injective since R is flat over
Z, and the map R⊗Z Λ′ → V , which is injective by construction.

Proposition 2.3.10. Let Λ be a Hilbert lattice in a Hilbert space H and
suppose Λ is finitely generated as Z-module. Then Λ has a Z-basis and any
Z-basis is R-linearly independent.

Proof. Since Λ is finitely generated and torsion free, it is clear that Λ is
free. By Lemma 2.3.9, any Z-linearly independent subset of Λ is R-linearly
independent.

Proposition 2.3.11. Suppose Λ is a Hilbert lattice in a Hilbert space H
and let Λ′ ⊆ Λ be a finitely generated subgroup. Let π : H → H be the
orthogonal projection onto the orthogonal complement of Λ′. Then for each
0 ≤ t < 1

4P(Λ) there are only finitely many z ∈ πΛ such that q(z) ≤ t, and
πΛ is a Hilbert lattice.

Proof. Suppose that πΛ contains infinitely many points z with q(z) ≤ t, or
equivalently there exists some infinite set S ⊆ Λ such that π|S is injective
and q(π(x)) ≤ t for all x ∈ S. Consider the map τ : H → RΛ′, the comple-
mentary projection to π. As (RΛ′)/Λ′ is compact, there must exist distinct
x, y ∈ S such that q(τ(x)− τ(y) + w) < P(Λ)− 4t for some w ∈ Λ′. Then

0 < q(x− y + w) = q(π(x− y)) + q(τ(x− y) + w)

< 2
(
q(π(x)) + q(π(y))

)
+ P(Λ)− 4t ≤ P(Λ),

a contradiction. Hence there are only finitely many z ∈ πΛ such that q(z) ≤
t. To verify that πΛ is a Hilbert lattice it suffices to show that it is discrete
inH, which follows from the previous by taking any non-zero value for t.

Lemma 2.3.12. Let Λ be a Hilbert lattice which is finitely generated as
Z-module and let S ⊆ Λ be a set of vectors that forms a basis for Λ∩ (RS).
Then there exists a basis B ⊇ S of Λ.
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Proof. Let π be the projection onto the orthogonal complement of S. Then
πΛ is a Hilbert lattice by Proposition 2.3.11 with a basis Bπ by Proposi-
tion 2.3.10. Now choose for every bπ ∈ Bπ a lift b ∈ Λ and let T be the set
of those elements. It is easy to show that B = S ∪ T is a basis of Λ.

Theorem 2.3.13. Every countable subgroup of a Hilbert lattice is free.

We call an abelian group for which all its countable subgroups are free
an almost free abelian group.

Proof. Let Λ be a Hilbert lattice. By Lemma 2.3.6 suffices to show that
if Λ is countable then Λ is free. We may write Λ = {x1, x2, . . . } and let
Vi =

∑i
j=1 Rxj and Λi = Vi ∩ Λ. We claim that there exist bases Bi for Λi

such that Bi ⊆ Bj for all i ≤ j. Indeed, take B0 = ∅ and inductively for
Λi+1 note that Bi is a basis for Λi = Λi+1 ∩ Vi, so that by Lemma 2.3.12
there exists some basis Bi+1 for Λi+1 containing Bi. Then B =

⋃∞
i=0Bi is

a basis for Λ, so Λ is free.

Question 2.3.14. We have by Example 2.3.4 and Theorem 2.3.13 two
inclusions

{free abelian groups} ⊆ {underlying groups of Hilbert lattices}
⊆ {almost free abelian groups}.

Is one of these inclusions an equality, and if so, which?

Example 2.3.15. There are abelian groups which are almost free but not
free. Let X be a countably infinite set and consider the Baer–Specker group
B = ZX . Then by Theorem 21 in [27], we have that B is not free. Since B
is a torsion-free Z-module, so is any countable subgroup, which is then free
by Theorem 16 in [27], i.e. B is almost free.

Definition 2.3.16. For a Hilbert lattice Λ we define its rank as rk Λ =
dimQ(Λ⊗Z Q). We will say a Hilbert lattice Λ is of full rank in an ambient
Hilbert space H if QΛ is dense in H.

For free Hilbert lattices Λ we have Λ ∼= Z(rk Λ) as abelian group. By
Theorem 2.3.7 every Hilbert lattice has a uniquely unique Hilbert space in
which it is contained and of full rank.

Lemma 2.3.17. Let H be a Hilbert space and let S, T ⊆ H be subsets such
that S is infinite, the Q-vector space generated by S is dense in H and
inf{‖x− y‖ |x, y ∈ T, x 6= y} > 0. Then #S ≥ #T .
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Proof. Because S is infinite, the set S and the Q-vector space V generated
by S have the same cardinality. Let ρ = inf{‖x − y‖ |x, y ∈ T, x 6= y}.
Since V is dense in H we may for each x ∈ T choose f(x) ∈ V such that
‖x−f(x)‖ < ρ/2. If f(x) = f(y), then ‖x−y‖ = ‖(x−f(x))−(y−f(y))‖ ≤
‖x − f(x)‖ + ‖y − f(y)‖ < ρ, so x = y. Hence f is injective and we have
#S = #V ≥ #T .

The following proposition is generalized from proofs by O. Berrevoets
and B. Kadets.

Proposition 2.3.18. If Λ is a Hilbert lattice in a Hilbert space H, then
rk Λ ≤ orth dimH with equality if Λ is of full rank in H.

Proof. First suppose rk Λ is finite. It follows from Lemma 2.3.9 that rk Λ =
dimR(R⊗Z Λ) = dimR(RΛ) ≤ dimRH. If Λ is of full rank, then RΛ is dense
in H, but RΛ is complete as it is finite-dimensional, so RΛ = H and rk Λ =
dimRH. Lastly, it follows from Theorem 2.2.16 that dimRH = orth dimH
when dimRH is finite.

Now suppose rk Λ is infinite and thus #Λ = rk Λ. By Theorem 2.2.16
we may assume without loss of generality that H = `2(B) for some set
B of cardinality orth dimH, which must be infinite. Observe that the Q-
vector space generated by B is dense in H. We may apply Lemma 2.3.17
by discreteness of Λ to obtain orth dimH = #B ≥ #Λ = rk Λ, as was to
be shown. If QΛ is dense in H, then we may apply Lemma 2.3.17 since
‖b − c‖2 = ‖b‖2 + ‖c‖2 = 2 for all distinct b, c ∈ B to conclude that
rk Λ = #Λ ≥ #B = orth dimH, and thus we have equality.

2.4 Decompositions

Definition 2.4.1. Let Λ be a Hilbert lattice. A decomposition of an ele-
ment z ∈ Λ is a pair (x, y) ∈ Λ2 such that z = x + y and 〈x, y〉 ≥ 0. A
decomposition (x, y) of z ∈ Λ is trivial if x = 0 or y = 0. We say z ∈ Λ is
indecomposable if it has exactly two decompositions, i.e. z 6= 0 and the only
decompositions of z are trivial. Write dec(z) for the set of decompositions
of z ∈ Λ and indec(Λ) for the set of indecomposable elements of Λ.

Indecomposable elements are in the computer science literature often
called Voronoi-relevant vectors, for example in [23]. This name is clearly
inspired by Theorem 2.6.11.

Example 2.4.2. Let f : I → R≥0 be such that Λf as in Example 2.3.5
is a Hilbert lattice. We will compute the indecomposables of Λf . Let x =
(xi)i ∈ indec(Λf ) and write ei for the i-th standard basis vector. Note that
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x must be primitive, i.e. not be of the form ny for any y ∈ Λf and n ∈ Z>1,
because otherwise 〈y, (n − 1)y〉 = (n − 1)〈y, y〉 > 0 shows (y, (n − 1)y) is
a non-trivial decomposition. If xi and xj are non-zero for distinct i, j ∈ I,
then q(x−eixi)+q(eixi) = q(x) and we have a non-trivial decomposition of
x. Hence x = ±ei for some i ∈ I. Note that ei is indeed indecomposable for
all i ∈ I: Any decomposition (x, y) ∈ dec(ei) must have |xi| + |yi| = 1 and
xj = yj = 0 for i 6= j, so x = 0 or y = 0. As z 7→ −z is an isometry of Λf , we
have that −ei is indecomposable as well. Hence indec(Λf ) = {±ei | i ∈ I}.

Lemma 2.4.3. Let Λ be a Hilbert lattice and let x, y, z ∈ Λ. Then the
following are equivalent:
(i) The pair (x, y) is a decomposition of z.
(ii) We have x+ y = z and q(x) + q(y) ≤ q(z).
(iii) We have x+ y = z and q(x− z/2) ≤ q(z/2).
(iv) We have x+ y = z and q(z − 2y) ≤ q(z).

For a visual aid to this lemma see Figure 2.1.

Proof. (i ⇔ ii) By bilinearity we have

q(z) = 〈x+ y, x+ y〉 = q(x) + q(y) + 2〈x, y〉.

(ii ⇔ iii) By the parallelogram law we have

q(x) + q(y) = 2q
(x+ y

2

)
+ 2q

(x− y
2

)
= 2q

(z
2

)
+ 2q

(
x− z

2

)
,

so q(x) + q(y) − q(z) = 2 · [q(x − z/2) − q(z/2)]. The claim then follows
trivially.

(iii ⇔ iv) Note that z − 2y = x − y = 2(x/2 − y/2) = 2(x − z/2). By
the parallelogram law we have q(2w) = 4q(w) for all w ∈ QΛ, from which
this equivalence trivially follows.

By Lemma 2.4.3, finding decompositions of z ∈ Λ amounts to finding
x ∈ Λ sufficiently close to z/2.

Lemma 2.4.4. Let z ∈ Λ such that 0 < q(z) ≤ 2P(Λ). Suppose that the
latter inequality is strict or P(Λ) is not attained by any vector in Λ. Then
z ∈ indec(Λ).

Proof. If (x, y) ∈ dec(z) is non-trivial, then by Lemma 2.4.3 we have 2P(Λ) ≥
q(z) ≥ q(x) + q(y) ≥ P(Λ) + P(Λ) with either the first or last inequality
strict, which is a contradiction. Since z 6= 0 it follows that z is indecompos-
able.
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0

x z

y

z/2

z − 2y

Figure 2.1: A decomposition z = x+ y

Proposition 2.4.5. If Λ is a non-zero Hilbert lattice, then every z ∈ Λ can
be written as a sum of at most q(z)/P(Λ) indecomposables z1, . . . , zn ∈ Λ
such that

∑
i q(zi) ≤ q(z).

Proof. By scaling q we may assume without loss of generality that P(Λ) = 1.
We apply induction to bq(z)c. When this equals 0 we have q(z) < P(Λ),
so z = 0, which we can write as a sum of zero indecomposables. Now
suppose bq(z)c ≥ 1 and thus z 6= 0. If z is indecomposable then indeed it
is the sum of 1 ≤ bq(z)c indecomposable, so suppose there is a non-trivial
(x, y) ∈ dec(z). Then q(x) + q(y) ≤ q(z) by Lemma 2.4.3 and since y 6= 0
also q(y) ≥ P(Λ) = 1. Hence bq(x)c ≤ bq(z) − q(y)c < bq(z)c, so by the
induction hypothesis we may write x =

∑
i xi with x1, . . . , xa ∈ indec(Λ)

and a ≤ q(x) such that
∑

i q(xi) ≤ q(x). By symmetry we may similarly
write y as a sum of at most q(y) indecomposables y1, . . . , yb. Hence we
can write z =

∑
i xi +

∑
i yi as a sum of a + b ≤ q(x) + q(y) ≤ q(z)

indecomposables such that
∑

i q(xi) +
∑

i q(yi) ≤ q(x) + q(y) ≤ q(z). The
proposition follows by induction.

Lemma 2.4.6. Suppose Λ is a Hilbert lattice and z ∈ Λ is the sum of some
non-zero z1, . . . , zn ∈ Λ and n ∈ Z≥2. If

∑
i q(zi) ≤ q(z), then z has a

non-trivial decomposition.

Proof. We have

n∑
i=1

〈zi, z − zi〉 =

n∑
i=1

〈zi, z〉 −
n∑
i=1

〈zi, zi〉 = q(z)−
n∑
i=1

q(zi) ≥ 0,

so 〈zi, z − zi〉 ≥ 0 for some i. As neither zi nor z − zi are 0, we conclude
that (zi, z − zi) is a non-trivial decomposition of z.

Proposition 2.4.7. Let Λ be a Hilbert lattice. The group {±1} acts on
indec(Λ) by multiplication, and the natural map indec(Λ)/{±1} → Λ/2Λ is
injective.
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Proof. Note that {±1} acts on Λ and thus also on indec(Λ). By (i ⇔ iv) of
Lemma 2.4.3 we have

dec(z) =

{(z − a
2

,
z + a

2

) ∣∣∣∣ a ∈ z + 2Λ, q(a) ≤ q(z)
}
.

Let z ∈ indec(Λ). Then {(0, z), (z, 0)} = dec(z), so the only a ∈ z+2Λ such
that q(a) ≤ q(z) are a = z and a = −z. Thus z is a q-minimal element of its
coset in Λ/2Λ and this minimal element is unique up to sign. Consequently,
the map indec(Λ)/{±1} → Λ/2Λ is injective.

Corollary 2.4.8. Let Λ be a Hilbert lattice. Then indec(Λ) is finite if and
only if rk Λ <∞.

Proof. Recall that indec(Λ) generates Λ by Proposition 2.4.5. Hence if
indec(Λ) is finite, then rk Λ < ∞. If rk Λ < ∞, then Proposition 2.4.7
implies #indec(Λ) ≤ 2 ·#(Λ/2Λ) = 21+rk Λ <∞.

The zero coset of Λ/2Λ is never in the image of the map of Propo-
sition 2.4.7, as any non-zero element of the form 2x with x ∈ Λ has a
non-trivial decomposition (x, x). A non-zero coset C of Λ/2Λ can fail to be
in the image for two reasons: Either C has no minimal element or a minimal
element exists but is not unique up to sign. In the latter case, with z ∈ C
minimal, there exists a (x, y) ∈ dec(z) with x, y 6= 0 and q(x) + q(y) = q(z)
and thus 〈x, y〉 = 0, i.e. z has an orthogonal decomposition. This is exhib-
ited, for example, by the lattice Z2 ⊆ R2 with the standard inner product
and z = (1, 1), where (−1, 1) ∈ z + 2Z2 gives rise to the orthogonal decom-
position (1, 0) + (0, 1) = z. In the former case, rk Λ has to be infinite: If
rk Λ is finite, then for any x ∈ Λ there are only finitely many y ∈ Λ with
q(y) ≤ q(x), so q assumes a minimum on any non-empty subset of Λ, in
particular C. An example is the following.

Example 2.4.9. We will exhibit a Hilbert lattice Λ and a coset of 2Λ on
which q does not attain a minimum. Let f : I → R≥0 be such that Λf as in
Example 2.3.5 is a Hilbert lattice. We define the Λf2 to be the sublattice

Λf2 = ker(Λf
Σ−→ (Z/2Z)) =

{
(xi)i ∈ Z(I)

∣∣∣ ∑
i∈I

xi ≡ 0 mod 2
}
.

Consider f : Z≥0 → R≥0 strictly decreasing, write f(∞) for its limit,
assume f(∞) > 0, and let Λ = Λf2 . Let z = 2ek ∈ Λ for any k ∈ Z≥0. Then
for all y = (yi)i ∈ Λ we have

q(z − 2y) = 4
(

(1− yk)2f(k)2 +
∑
i 6=k

y2
i f(i)2

)
> 4f(∞)2,
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since either y2
i ≥ 1 for some i 6= k or yk is even. However, we also have for

y = ek + ei that q(z − 2y) = q(2ei) = 4f(i)2 → 4f(∞)2 as i → ∞. Hence
{q(z − 2y) | y ∈ Λ} does not contain a minimum.

If we eliminate the zero coset in the proof of Corollary 2.4.8 the upper
bound on the number of indecomposables becomes 2(2rk(Λ) − 1) and this
bound is tight. If one took the effort to define a sensible probability measure
on the space of all Hilbert lattices of given finite rank, then this upper bound
will in fact be an equality with probability 1.

2.5 Orthogonal decompositions

The main motivation for considering indecomposable elements is found in
the study of decompositions of lattices. In this section we generalize a result
of Eichler [11] on the existence of a universal decomposition in lattices to
Hilbert lattices.

Recall the definition of a graph and of a decomposition of a module from
the Preliminaries. We say a decompositionM of a module M is universal
if it is an initial object in this category, i.e. for all decompositions N of M
there exists a unique morphismM→N .

Definition 2.5.1. Let Λ be a Hilbert lattice. For a set I, an I-indexed
orthogonal decomposition of Λ is an I-indexed decomposition {Λi}i∈I of
Λ as Z-module such that 〈Λi,Λj〉 = 0 for all i 6= j, which we write as
i∈I Λi = Λ. An orthogonal decomposition of Λ is an I-indexed orthogonal

decomposition for any set I. We say Λ is orthogonally indecomposable if
Λ 6= 0 and for all Λ1,Λ2 ⊆ Λ such that Λ1 Λ2 = Λ we have Λ1 = 0 or
Λ2 = 0. We interpret the class of orthogonal decompositions of Λ as a full
subcategory of the category of decompositions of Λ.

Lemma 2.5.2. Let G = (V,E) be a graph. Then the connected components
of G are pairwise disjoint, and if for S ⊆ V there exist no {u, v} ∈ E such
that u ∈ S and v 6∈ S, then S is a union of connected components.

Proof. Let C be the set of S ⊆ V such that there are no {u, v} ∈ E such
that u ∈ S and v 6∈ S, so that the connected components of G become the
minimal non-empty elements of C with respect to inclusion. Note that C
is closed under taking complements, arbitrary unions and arbitrary inter-
sections, i.e. C is a clopen topology on V . Suppose S, T ∈ C are connected
components that intersection non-trivially, then S ∩ T ∈ C is non-empty,
so by minimality S = T . Hence the connected components are pairwise
disjoint.
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Now let S ∈ C and for all s ∈ S let As = {T ∈ C | s ∈ T} and Cs =⋂
T∈As T , which is an element of As. For all T ∈ C we either have T ∈ As or

V \ T ∈ As, and thus either Cs ⊆ T or Cs ∩ T = ∅. It follows that no non-
empty T ∈ C is strictly contained in Cs, i.e. Cs is a connected component
of G. As S ∈ As we have s ∈ Cs ⊆ S and thus S =

⋃
s∈S Cs is a union of

connected components.

The following is a generalization of a theorem due to Eichler [11], al-
though the proof more closely resembles that of Theorem 6.4 in [39].

Theorem 2.5.3. Let Λ be a Hilbert lattice and V ⊆ indec(Λ) such that V
generates Λ as a group. Let G be the graph with vertex set V and with an
edge between x and y if and only if 〈x, y〉 6= 0. Let U be the set of connected
components of G and for u ∈ U let Yu ⊆ Λ be the subgroup generated by
the elements in u. Then {Yu}u∈U is a universal orthogonal decomposition
of Λ.

As corollary to this theorem we have that Λ is orthogonally indecom-
posable if and only if G is connected.

Proof. We have V ⊆
⋃
u∈U Yu by Lemma 2.5.2, so

∑
u∈U Yu = Λ by as-

sumption on V . For u, v ∈ U distinct we have 〈u, v〉 = {0} by definition
of G, so 〈Yu,Yv〉 = {0}. We conclude that Λ = u∈U Yu is an orthogonal
decomposition.

To show it is universal, let {Λi}i∈I be a family of sublattices of Λ such
that i∈I Λi = Λ. Let x ∈ indec(Λ) and write x =

∑
i∈I λi with λi ∈ Λi

for all i ∈ I. If j ∈ I is such that λj 6= 0, then 〈λj ,
∑

i 6=j λi〉 = 0 and
thus λj = x, because otherwise we obtain a non-trivial decomposition of
x. Therefore every indecomposable of Λ is in precisely one of the Λi. We
conclude that the Si = Λi ∩ V for i ∈ I are pairwise disjoint and have V
as their union. Then by Lemma 2.5.2 every connected component u ∈ U is
contained in precisely one of the Si, say in Sf(u). By definition of the map
f : U → I and the Yu we have u∈f−1{i}Yu ⊆ Λi for all i, and since both
the Yu and the Λi sum to Λ we must have equality for all i. It follows trivially
from the construction that f is the unique map {Yu}u∈U → {Λi}i∈I , and we
conclude that {Yu}u∈U is a universal orthogonal decomposition of Λ.

We will use this theorem in Section 4.3 to generalize some theorems
from [34].

Theorem 2.5.4. Every Hilbert lattice has a universal orthogonal decompo-
sition.
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Proof. Take V = indec(Λ) in Theorem 2.5.3 and note that it satisfies the
conditions to this theorem by Proposition 2.4.5.

2.6 Voronoi cells

We will generalize the Voronoi cell as defined for classical lattices to Hilbert
lattices and extend some known definitions and properties. Some of these
definitions relate to the ambient Hilbert space of the Hilbert lattice, which
exists and is uniquely unique by Theorem 2.3.7 when we require the Q-
vector space generated by the lattice to lie dense in the Hilbert space. In
this section we will write HΛ for this ambient Hilbert space of a Hilbert
lattice Λ.

Definition 2.6.1. Let Λ be a Hilbert lattice. The packing radius of Λ is

ρ(Λ) = inf{1
2‖x− y‖ |x, y ∈ Λ, x 6= y} = 1

2

√
P(Λ),

the covering radius of Λ is

r(Λ) = inf{b ∈ R>0 | (∀z ∈ HΛ) (∃x ∈ Λ) ‖z − x‖ ≤ b}

and the Voronoi cell of Λ in H is the set

Vor(Λ) = {z ∈ HΛ | (∀x ∈ Λ \ {0}) ‖z‖ < ‖z − x‖}.

We call ρ(Λ) the packing radius because it is the radius of the largest
open sphere B ⊆ HΛ such that the spheres x + B for x ∈ Λ are pairwise
disjoint. Similarly r(Λ) is the radius of the smallest closed sphere B ⊆ HΛ

for which
⋃
x∈Λ(x + B) = HΛ. Note that r(Λ) = 0 only for Λ = 0 by

discreteness.

Example 2.6.2. The covering radius of a Hilbert lattice need not be finite.
Take Λf as in Example 2.3.5 but with f : Z≥0 → R≥0 diverging to infinity.
The lattice point closest to 1

3ei is 0 for all i ∈ Z≥0, so it has distance 1
3f(i)

to the lattice. Hence r(Λf ) ≥ sup{1
3f(i) | i ∈ Z≥0} =∞.

Example 2.6.3. The Voronoi cell does not need to be an open set. Con-
sider the lattice Λ = Λf2 as in Example 2.4.9 with f : Z≥0 → R>0 strictly
decreasing. Let i ∈ Z≥0 and A = (1 + f(∞)2f(i)−2)/2 and write ei for the
i-th standard basis vector. We claim that αei ∈ Vor(Λ) for α ∈ R precisely
when |α| ≤ A, which proves the Voronoi cell is not open.

Let x =
∑

j xjej ∈ Λ such that xi 6= 0. Then |xi| = 1 or q(x)/|xi| ≥
|xi|f(i)2 > f(i)2 + f(i+ 1)2. It follows that

inf
{ q(x)

2|xi|f(i)2

∣∣∣x ∈ Λ, xi 6= 0
}

=
f(i)2 + f(∞)2

2f(i)2
= A
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and that the infimum is not attained. By definition αei ∈ Vor(Λ) if and
only if g(x) := q(αei − x) − q(αei) > 0 for all x ∈ Λ \ {0}. Note that
g(x) = q(x)− 2αxif(i)2.

Suppose |α| ≤ A and let x ∈ Λ \ {0}. If αxi ≤ 0, then g(x) ≥ q(x) > 0,
so suppose αxi > 0. Then

g(x)

2|xi|f(i)2
=

q(x)

2|xi|f(i)2
− |α| > A− |α| ≥ 0,

so g(x) > 0. We conclude that αei ∈ Vor(Λ). Conversely, if |α| > A, then

inf
{ g(x)

2|xi|f(i)2

∣∣∣x ∈ Λ, xi 6= 0
}

= A− |α| < 0,

hence there exists some x ∈ Λ such that g(x) < 0 and thus αei 6∈ Vor(Λ).

Definition 2.6.4. Let H be a Hilbert space and let S ⊆ H be a subset.
We say S is symmetric if for all x ∈ S also −x ∈ S. We say S is convex if
for all x, y ∈ S and t ∈ [0, 1] also (1− t)x+ ty ∈ S.

Lemma 2.6.5. Let H be a Hilbert space. For X ⊆ H write X for the
topological closure of X. Then

1. The intersection
⋂
i Si of convex sets (Si)i∈I in H is convex;

2. The topological closure S of a convex set S in H is convex;
3. For all S in H open convex, x ∈ S, y ∈ S and t ∈ [0, 1) we have

(1− t)x+ ty ∈ S;
4. For convex open sets (Si)i∈I in H with non-empty intersection we have⋂

i Si =
⋂
i Si.

Proof. 1. Trivial.
2. Let x, y ∈ S and let (xn)n and (yn)n be sequences in S with limit

x respectively y. For all t ∈ [0, 1] we have (1 − t)xn + tyn ∈ S, and since
addition and scalar multiplication are continuous also have (1− t)x+ ty =
limn→∞[(1− t)xn + tyn] ∈ S.

3. By translating S we may assume without loss of generality that (1−
t)x + ty = 0. Since x ∈ S and S is open there exists some rx > 0 such
that the open ball Bx of radius rx around x is contained in S. For ry > 0
sufficiently small (in fact ry = rx · (1− t)/t suffices, see Figure 2.2) it holds
that for any z in the open ball By of radius ry around y the line through
0 and z intersects Bx. Taking z ∈ By ∩ S, which exists because y is in the
closure of S, there exists some w ∈ Bx ⊆ S such that 0 lies on the line
segment between w and z. By convexity 0 ∈ S follows, as was to be shown.

4. Since
⋂
i Si is closed and contains

⋂
i Si, clearly

⋂
i Si ⊆

⋂
i Si. By 1

the set
⋂
i Si is convex and by assumption it contains some x. For t ∈ [0, 1)



2.6. Voronoi cells 33

0
x

y(1− t)‖x− y‖

t‖x− y‖

Figure 2.2: Computation of ry from rx via similar triangles.

and y ∈
⋂
i Si we have zt = (1− t)x+ ty ∈ Si by 3. Thus zt ∈

⋂
i Si for all

t ∈ [0, 1), so y = limt→1 zt ∈
⋂
i Si, proving the reverse inclusion.

Lemma 2.6.6. Let H be a Hilbert space. Then for x, y ∈ H we have ‖y‖ ≤
‖y − x‖ if and only if 2〈x, y〉 ≤ 〈x, x〉, and similarly with ≤ replaced by <.

Proof. We have ‖y − x‖2 − ‖y‖2 = 〈x, x〉 − 2〈x, y〉, from which the lemma
trivially follows.

Proposition 2.6.7. For all Hilbert lattices Λ the set Vor(Λ) is symmetric,
convex and has topological closure

Vor(Λ) := {z ∈ HΛ | (∀x ∈ Λ) ‖z‖ ≤ ‖z − x‖}.

Proof. It follows readily from the definition that Vor(Λ) is symmetric. Now
for x ∈ Λ consider Hx = {z ∈ HΛ | 2〈x, z〉 < 〈x, x〉}. It is easy to show for
all x ∈ Λ that Hx is convex: For a, b ∈ Hx and t ∈ [0, 1] we have

2〈(1− t)a+ tb, x〉 = (1− t)2〈a, x〉+ t2〈b, x〉 < (1− t)〈x, x〉+ t〈x, x〉 = 〈x, x〉,

so (1 − t)a + tb ∈ Hx. As Vor(Λ) is the intersection of all Hx with x ∈ Λ
non-zero by Lemma 2.6.6, it follows from Lemma 2.6.5.1 that Vor(Λ) is
convex. The Hx are all open, and for x non-zero we have 0 ∈ Hx. Hence the
topological closure of Vor(Λ) equals {z ∈ HΛ | (∀x ∈ Λ\{0}) ‖z‖ ≤ ‖z−x‖}
by Lemma 2.6.5.4, from which the proposition follows.

Example 2.6.8. We do not have in general that HΛ = Λ + Vor(Λ) for all
Hilbert lattices Λ, as in the finite-dimensional case. Note that z ∈ HΛ is in
Λ+Vor(Λ) if and only if the infimum inf{‖z−x‖ |x ∈ Λ} is attained for some
x ∈ Λ. Consider Example 2.4.9, where we exhibit a lattice Λ and a coset
z + 2Λ of Λ/2Λ where inf{q(z + 2x) |x ∈ Λ} is not attained. Equivalently,
inf{‖1

2z − x‖ |x ∈ Λ} is not attained, so 1
2z 6∈ Λ + Vor(Λ).

Theorem 2.6.9. Let Λ be a Hilbert lattice and consider the natural map
HΛ → HΛ/Λ. Its restriction to Vor(Λ) is injective and for all ε > 0 its
restriction to (1 + ε) Vor(Λ) is surjective.
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Proof. Suppose x, y ∈ Vor(Λ) are distinct such that x− y ∈ Λ. Then

‖x‖ < ‖x− (x− y)‖ = ‖y‖ < ‖y − (y − x)‖ = ‖x‖,

which is a contradiction. Hence the map Vor(Λ)→ HΛ/Λ is injective.
Assume without loss of generality that P(Λ) = 2. Let ε > 0 and z ∈ HΛ.

Choose y ∈ Λ such that q(z − y) ≤ ε + inf{q(z − w) |w ∈ Λ}. Suppose
x ∈ Λ \ {0}. Then

(1 + ε)〈x, x〉 − 2〈x, z − y〉 = εq(x) + (q(z − y − x)− q(z − y))

≥ εq(x)− ε ≥ ε(P(Λ)− 1) = ε > 0.

It follows that 2〈x, (z − y)/(1 + ε)〉 < 〈x, x〉 for all x ∈ Λ \ {0}, so (z −
y)/(1 + ε) ∈ Vor(Λ) by Lemma 2.6.6. Thus z ∈ Λ + (1 + ε) Vor(Λ), and the
map (1 + ε) Vor(Λ)→ HΛ/Λ is surjective.

Proposition 2.6.10. For all Hilbert lattices Λ the set Vor(Λ) contains the
open sphere of radius ρ(Λ) around 0 ∈ Λ and Vor(Λ) is contained in the
closed sphere of radius r(Λ) around 0.

Proof. Let z ∈ HΛ be such that ‖z‖ < ρ(Λ) and let x ∈ Λ\{0}. By Cauchy–
Schwarz we have 〈x, z〉 ≤ ‖x‖ · ‖z‖ < ‖x‖ · 1

2‖x‖ = 1
2〈x, x〉, so z ∈ Vor(Λ)

by Lemma 2.6.6.
Let z ∈ Vor(Λ). For each r > r(Λ) there exists x ∈ Λ such that ‖z−x‖ ≤

r by definition of r(Λ). Then by Proposition 2.6.7 we have ‖z‖ ≤ ‖z−x‖ ≤ r.
Taking the limit of r down to r(Λ) proves the second inclusion.

Theorem 2.6.11. Let Λ be a Hilbert lattice. Then there is a unique subset
S ⊆ Λ \ {0} that is minimal with respect to inclusion such that Vor(Λ) =
{z ∈ HΛ | (∀x ∈ S) ‖z‖ < ‖z − x‖}. This subset is equal to indec(Λ).

Proof. For S ⊆ Λ write V (S) = {z ∈ HΛ | (∀x ∈ S) ‖z‖ < ‖z − x‖}.
First suppose V (S) = Vor(Λ) for some S ⊆ Λ \ {0}. Let z ∈ indec(Λ)

and note that 1
2z 6∈ Vor(Λ) since ‖1

2z‖ ≥ ‖
1
2z − z‖. As V (S) = Vor(Λ)

there must be some x ∈ S such that ‖1
2z‖ ≥ ‖

1
2z − x‖. Hence (x, z − x) is

a decomposition of z by Lemma 2.4.3, so z = x since z is indecomposable
and x 6= 0. We conclude that z ∈ S and indec(Λ) ⊆ S.

It remains to show that V (indec(Λ)) = Vor(Λ). We clearly have that
Vor(Λ) ⊆ V (indec(Λ)). Suppose z ∈ V (indec(Λ)) and let x ∈ Λ \ {0}.
By Proposition 2.4.5 we may write x =

∑n
i=1 xi for some n ∈ Z≥1 and

xi ∈ indec(Λ) such that
∑n

i=1〈xi, xi〉 ≤ 〈x, x〉. Then by Lemma 2.6.6 we
have

2〈x, z〉 =
n∑
i=1

2〈xi, z〉 <
n∑
i=1

〈xi, xi〉 ≤ 〈x, x〉
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and thus z ∈ Vor(Λ). We conclude that Vor(Λ) = V (indec(Λ)).

Corollary 2.6.12. Let Λ be a Hilbert lattice. Then

Vor(Λ) = {z ∈ HΛ | (∀x ∈ indec(Λ)) ‖z‖ ≤ ‖z − x‖}.

Proof. By Lemma 2.6.5.4 we have for S ⊆ Λ not containing 0 that V (S) =
{z ∈ HΛ | (∀x ∈ S) ‖z‖ ≤ ‖z − x‖} is the topological closure of V (S) as
defined in the proof of Theorem 2.6.11. The corollary then follows from
Proposition 2.6.7 and Theorem 2.6.11.

Example 2.6.13. For a Hilbert lattice Λ the set indec(Λ) can fail to be the
minimum among all sets S ⊆ Λ such that V (S) = {z ∈ HΛ | (∀x ∈ S) ‖z‖ ≤
‖z − x‖} equals Vor(Λ). We will give a counterexample.

Let I = Z≥0 ∪ {∞} and let f : I → R≥0 such that f |Z≥0
is strictly

decreasing with limit f(∞) > 0. Consider the lattice Λ = Λf2 as in Ex-
ample 2.4.9. Note that P(Λ) = 2f(∞)2 and that P(Λ) is not attained by
any vector. Hence 2e∞ ∈ Λ is indecomposable by Lemma 2.4.4. Now let
S = indec(Λ) \ {±2e∞}. We claim that V (S) = V (indec(Λ)), the lat-
ter being equal to Vor(Λ) by Corollary 2.6.12. It remains to show for all
z = (zi)i ∈ V (S) that ‖z‖ ≤ ‖z − 2e∞‖ by symmetry.

For all i let si ∈ {±1} such that sizi = |zi|. Since f is strictly decreasing
there exists some N ∈ Z≥0 such that f(n) <

√
3f(∞) for all integers

n ≥ N . For all integers n ≥ N we have snen + e∞ ∈ S by Lemma 2.4.4 as
q(snen + e∞) = f(n)2 + f(∞)2 < 4f(∞)2 = 2P(Λ). Then

0 ≤ ‖z − (snen + e∞)‖2 − ‖z‖2 = (1− 2|zn|)f(n)2 + (1− 2z∞)f(∞)2.

As z ∈ HΛ we must have limn→∞ |zn| = 0, so taking the limit over the
above inequality we get 0 ≤ 2(1 − z∞)f(∞)2 and thus z∞ ≤ 1. But then
‖z − 2e∞‖2 − ‖z‖2 = 4f(∞)2(1− z∞) ≥ 0 and we are done.
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CHAPTER 3
Indecomposable

algebraic integers
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3.1 Introduction

This chapter is based on [18]. In number theory, in particular the theory
of the geometry of numbers, one equips a number field K with an inner
product, turning any orderR inK into a lattice in R⊗QK. After normalizing
this inner product, we may define it on an algebraic closure Q of Q as

〈α, β〉 =
1

[Q(α, β) : Q]

∑
σ : Q(α,β)→C

σ(α) · σ(β),

where the sum ranges over all ring homomorphisms from Q(α, β) to C. We
write Z for the ring of integers of Q, i.e. the integral closure of Z in Q, and
we call its elements the algebraic integers. Although Z is not of finite rank,
we may still meaningfully call it a lattice in the sense of Chapter 2.

Theorem 3.2.10. The abelian group Z equipped with the inner product
from Definition 3.2.5 is a Hilbert lattice. Its shortest non-zero vectors are
precisely the roots of unity, which all have length 1, and its packing radius,
see Definition 2.6.1, is 1/2.

We will treat this lattice structure on Z as intrinsically interesting. The
theory in this chapter is motivated by the closest vector problem for Z.
Since Z has infinite rank, it may be that a closest vector does not exist.
Formally we ask the question: ‘Does there exist an algorithm that, given
n ∈ Z>0, some r ∈ R>0 ∩ Q and α ∈ Q, decides whether there exist n
distinct elements β ∈ Z such that ‖α − β‖ < r and if so computes n such
β?’ Since Z is enumerable, once we know such β exist we can find them.
However, it is certainly of interest to compute β efficiently. The following
result derived from classical capacity theory by T. Chinburg, for which we
give a direct proof in Section 3.6, answers the question affirmatively for
r > 1.

Corollary 3.6.7. Suppose r ∈ R and α ∈ Q. If r > 1, then there exist
infinitely many β ∈ Z such that ‖α− β‖ < r.

The proof is sufficiently constructive that we are able to derive an al-
gorithm to compute arbitrarily many such β, see Proposition 3.6.10. This
result also gives an upper bound on the covering radius.

Theorem 3.6.9. The covering radius of Z, see Definition 2.6.1, is between
4
√

1/2 and 1.

Our main result is the following theorem, which is complementary to
Corollary 3.6.7.
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Theorem 3.11.2. Suppose r ∈ R and α ∈ Q. If r < 4
√

e/4, then there exist
only finitely many β ∈ Z such that ‖α− β‖ < r.

Again, one can algorithmically enumerate all such β, solving the problem
for r < 4

√
e/4. This leaves a gap for r between 4

√
e/4 and 1 for which we do

not know an answer to the decision problem.
Next we consider the related problem of computing the indecomposable

vectors of Z, see Definition 2.4.1. A consequence of Corollary 3.6.7 is that
for every d ∈ Z>0 there exist only finitely many indecomposable algebraic
integers of degree up to d. We will prove the following effective upper and
lower bounds.

Theorem 3.7.7. There are least exp(1
4(log 2)d2 + O(d log d)) and at most

exp(1
2(1 + log 2)d2 +O(d log d)) indecomposable algebraic integers of degree

up to d.

A decomposition of α ∈ Z corresponds to a lattice point with distance
at most ‖α/2‖ to α/2, and non-trivial decompositions exist if and only if
there are at least 3 such lattice points. Hence deciding whether a lattice
point is indecomposable is easier than the closest vector problem. It is also
a good challenge problem for our algorithms. To this end, we derive the
following numerical results.

Theorem 3.14.1. There are exactly 2 indecomposable algebraic integers of
degree 1, there are exactly 14 of degree 2, and there are at least 354 and at
most 588 of degree 3.

It would be interesting to study other lattice invariants of Z, but most
constructions seem to fail to generalize to infinite rank, like the determinant
and the dual lattice. One that does survive is the isometry group. For Z it
certainly contains µ(Z)oGal(Q/Q), see Lemma 3.2.13, but we do not know
whether that is all.

3.2 The lattice of algebraic integers

We will write Q for an algebraic closure of Q. An algebraic integer is an
element α ∈ Q for which there exists a monic f ∈ Z[X] such that f(α) = 0.
The algebraic integers form a subring of Q, which we denote Z. In this
section we will prove that Z together with a natural choice of square-norm
is a Hilbert lattice.

Definition 3.2.1. For a ring K we define the fundamental set to be the
set X(K) of ring homomorphisms from K to C. For a ring L with subring
K and σ ∈ X(K) we define Xσ(L) = {ρ ∈ X(L) | ρ|K = σ}.
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Lemma 3.2.2. Let α ∈ Q and Q(α) ⊆ L ⊆ Q subfields with [L : Q] < ∞.
Then the quantities∏

σ∈X(L)

|σ(α)|1/[L:Q] and
1

[L : Q]

∑
σ∈X(L)

|σ(α)|2

are in R≥0, equal to zero if and only if α = 0, and do not depend on the
choice of L.

Definition 3.2.3. We define the maps N, q : Q→ R≥0 by

N(α) =
∏

σ∈X(Q(α))

|σ(α)|1/[Q(α):Q] and

q(α) =
1

[Q(α) : Q]

∑
σ∈X(Q(α))

|σ(α)|2.

Lemma 3.2.4. For α, β ∈ Q we have q(α+β) + q(α−β) = 2q(α) + 2q(β).

Proof. By Lemma 3.2.2 the restriction of q to L = Q(α, β) is given by
q(γ) = 1

[L:Q]

∑
σ∈X(L) |σ(γ)|2. The norm | · | on C satisfies the parallelogram

law and we may apply this term-wise to the sum defining q to obtain the
lemma.

Definition 3.2.5. For α, β ∈ Q we write 〈α, β〉 for the inner product on Q
induced by q as given by Theorem 2.2.5 and Lemma 3.2.4. Explicitly, it is
given by

〈α, β〉 =
1

[L : Q]

∑
σ∈X(L)

σ(α)σ(β)

for any field Q(α, β) ⊆ L ⊆ Q with [L : Q] <∞.

Lemma 3.2.6 (AM-GM inequality, Theorem 5.1 in [7]). Let n ∈ Z≥1 and
x1, . . . , xn ∈ R≥0. Then

n
√
x1 · · ·xn ≤

x1 + · · ·+ xn
n

,

with equality if and only if x1 = x2 = · · · = xn.

Definition 3.2.7. An element δ ∈ Q is called uniform if |σ(δ)| = |τ(δ)| for
all σ, τ ∈ X(Q).

Lemma 3.2.8. For all α ∈ Q we have N(α)2 ≤ q(α) with equality if and
only if α is uniform.
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Proof. This follows from a straightforward application of Lemma 3.2.6:

q(α) =
1

[Q(α) : Q]

∑
σ∈X(Q(α))

|σ(α)|2

≥
( ∏
σ∈X(Q(α))

|σ(α)|2
)1/[Q(α):Q]

= N(α)2,

with equality if and only if |σ(α)|2 = |ρ(α)|2 for all σ, ρ ∈ X(Q(α)).

Proposition 3.2.9. If α ∈ Z, then q(α) ≤ 1 if and only if α = 0 or α is a
root of unity. If α is a root of unity, then q(α) = 1.

Proof. Let α ∈ Z. The ‘if’ part of the implication follows directly from the
definition. For the ‘only if’ part, suppose α is non-zero. If q(α) ≤ 1, then
N(α)2 ≤ 1 by Lemma 3.2.8. Then N(α)[Q(α):Q] = |NQ(α)/Q(α)| ∈ Z≥1, so
N(α)2 = q(α) = 1. By Lemma 3.2.8 we have |σ(α)| = 1 for all σ ∈ X(Q(α)),
so α is a root of unity by Kronecker’s theorem (Corollary 5.6 in [38]).

Theorem 3.2.10. The abelian group Z equipped with the inner product
from Definition 3.2.5 is a Hilbert lattice. Its shortest non-zero vectors are
precisely the roots of unity, which all have length 1, and its packing radius,
see Definition 2.6.1, is 1/2.

Proof. By Lemma 3.2.4 and Proposition 3.2.9 respectively the group Z to-
gether with q satisfies the parallelogram law and is discrete, so indeed it
is a Hilbert lattice. The remaining statements follow also from Proposi-
tion 3.2.9.

We may write ‖x‖ for
√
q(x), the 2-norm of x ∈ Q. Similarly, we may

think of N(x) as the 0-norm of x, in the sense that limp→0 ‖x‖p = N(x).

Lemma 3.2.11. Suppose α, δ ∈ Q and δ is uniform. Then q(αδ) = q(α)q(δ).
If also α, δ ∈ Z and αδ is indecomposable, then α is indecomposable.

Proof. Let L ⊇ Q(α, δ). Then for all σ ∈ X(L) we have q(δ) = |σ(δ)|2.
Moreover,

q(αδ) =
1

[L : Q]

∑
σ∈X(L)

|σ(αδ)|2 =
1

[L : Q]

∑
σ∈X(L)

|σ(α)|2 · q(δ) = q(α)q(δ).

Now suppose α, δ ∈ Z and let (β, γ) ∈ dec(α). Then αδ = βδ + γδ and

q(αδ) = q(α)q(δ) ≥ (q(β) + q(γ))q(δ) = q(βδ) + q(γδ),
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so (βδ, γδ) ∈ dec(αδ). If αδ is indecomposable, then δ 6= 0 and 0 ∈ {βδ, γδ},
so 0 ∈ {β, γ} and (β, γ) must be a trivial decomposition. Hence α is inde-
composable.

Definition 3.2.12. Write µ∞ for the group of roots of unity in Z and
Gal(Q) for the group of ring automorphisms of Q. Note that Gal(Q) natu-
rally acts on µ∞, and write µ∞oGal(Q) for their semi-direct product with
respect to this action.

Lemma 3.2.13. The group µ∞oGal(Q) acts faithfully on the Hilbert lattice
Z, where µ∞ acts by multiplication and Gal(Q) by application.

Proof. Let α ∈ Z, ζ ∈ µ∞ and ρ ∈ Gal(Q). Let K be the normal closure of
Q(ζ, α) and n = [K : Q].

First we show that the individual group actions on Z are well-defined.
Clearly ζα ∈ Z and note that ζ is uniform with q(ζ) = 1. Hence multiplica-
tion by ζ is an isometry, i.e. preserves length, by Lemma 3.2.11. Recall that
automorphisms preserve integrality and thus ρ(α) ∈ Z. Since K is normal
over Q we have ρK = K and thus X(K) ◦ ρ = X(K). Hence applying ρ
to α simply results in a reordering of the terms in the sum defining q with
respect to K, and thus ρ is an isometry.

Note that for (χ, σ), (ξ, τ) ∈ µ∞ oGal(Q) we have

(χ, σ)
(
(ξ, τ)α

)
= χ · σ(ξ · τ(α)) = (χσ(ξ))((στ)(α)) =

(
(χ, σ) · (ξ, τ)

)
α,

so the semi-direct product acts on Z as well. Finally, suppose (ζ, ρ) acts as
the identity. Note that Gal(Q) fixes 1, so letting (ζ, ρ) act on 1 shows that
ζ = 1, and thus ρ = id. Hence the action is faithful.

Question 3.2.14. Is µ∞ oGal(Q) the entire isometry group of Z?

Proposition 3.2.15. Let α ∈ Z, r ∈ Z≥0 and s ∈ Z>0 such that r/s ≤ 1.
Then any root β of Xs − αr satisfies q(β) ≤ q(α)r/s.

Proof. Let β be a root of Xs − αr, let K = Q(α, β) and n = [K : Q]. The
case r = 0 follows from Proposition 3.2.9, so suppose r > 0. Then

q(β) =
1

n

∑
σ∈X(K)

|σ(β)|2 =
1

n

∑
σ∈X(K)

|σ(βs)|2/s =
1

n

∑
σ∈X(K)

|σ(αr)|2/s

=
1

n

∑
σ∈X(K)

(
|σ(α)|2

)r/s ≤ ( 1

n

∑
σ∈X(K)

|σ(α)|2
)r/s

= q(α)r/s,

where the inequality is n−1/r‖x‖r ≤ n−1/s‖x‖s from Lemma 2.2.14 applied
to the vector x = (|σ(α)|2/s)σ∈X(K), using that 0 < r ≤ s.
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3.3 Indecomposable algebraic integers

We will now focus on the indecomposables of the lattice Z.

α

0 1

i

β

γ

Figure 3.1: Integral α = 1
2(1 + i

√
7) with q(α) = 2.

Proposition 3.3.1. Let α ∈ Z. If 0 < q(α) < 2, then α is indecomposable.
If q(α) = 2, then α is decomposable if and only if it is the sum of two
roots of unity. Such roots of unity are necessarily orthogonal, unique up to
reordering, and of degree at most 2 over Q(α).

Proof. If 0 < q(α) < 2, then α is indecomposable by combining Theo-
rem 3.2.10 and Lemma 2.4.4. Suppose q(α) = 2. If α = ζ + ξ for roots of
unity ζ, ξ ∈ Q, then q(α) = 2 = q(ζ)+q(ξ), so (ζ, ξ) ∈ dec(α) is non-trivial.
Conversely, suppose (β, γ) ∈ dec(α) is non-trivial. By Theorem 3.2.10 we
have q(β), q(γ) ≥ 1. Then 0 ≤ q(α)− q(β)− q(γ) = 2− q(β)− q(γ) ≤ 0, so
we must have q(β) = q(γ) = 1. It follows that β and γ are orthogonal, and
by Proposition 3.2.9 they are roots of unity.

Suppose (β, γ) ∈ dec(α) is non-trivial. For any σ ∈ X(Q(α)) and ρ ∈
Xσ(Q(α, β)) the points 0, ρ(α), ρ(β) and ρ(γ) form the vertices of a rhom-
bus with unit length sides, as can be seen in Figure 3.1. It follows that
{ρ(β), ρ(γ)} is uniquely determined by ρ(α) = σ(α). As ρ is uniquely de-
termined by ρ(β) there are at most two elements in Xσ(Q(α, β)), in other
words [Q(α, β) : Q(α)] ≤ 2.

Remark 3.3.2. Proposition 3.3.1 gives us a way to decide whether an
α ∈ Z with q(α) = 2 is indecomposable, as it puts an upper bound on the
degree of the roots of unity, leaving only finitely many to check. Knowledge
of Q(α) can further reduce this number.

Example 3.3.3. There exist α ∈ Z with q(α) = 2 which are indecompos-
able. Consider f = X2−X+ 2 with root α ∈ Z, as in Figure 3.1. Note that
the roots of f in C are 1

2(1± i
√

7) with absolute value 1
2

√
12 + 7 =

√
2, so

q(α) = 2. Suppose (β, γ) ∈ dec(α) is a non-trivial decomposition. Proposi-
tion 3.3.1 shows that β and γ are roots of unity. Note that |α2| = 2 under
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all embeddings of α in C, and α2 = |α|2 ·βγ. Hence α2/2 = 1
2α− 1 is a root

of unity. Either one notes that α2/2 is not even integral, or that α2/2 = ±1,
as those are the only roots of unity in Q(α), which is clearly absurd. Hence
we have a contradiction and α is indecomposable.

Lemma 3.3.4. Let Q ⊆ K ⊆ L ⊆ Q be fields with [L : Q] < ∞. Then for
all α ∈ K and β ∈ L we have

[L : K] · 〈α, β〉 = 〈α,TrL/K(β)〉.

Proof. Recall for σ ∈ X(K) the definition Xσ(L) = {ρ ∈ X(L) | ρ|K = σ}
from Definition 3.2.1. For all σ ∈ X(K) and β ∈ L we have σ(TrL/K(β)) =∑

ρ∈Xσ(L) ρ(β). Then with α ∈ K and β ∈ L we have

[L : K] · 〈α, β〉 =
[L : K]

[L : Q]

∑
σ∈X(K)

∑
ρ∈Xσ(L)

ρ(α)ρ(β)

=
1

[K : Q]

∑
σ∈X(K)

σ(α)
∑

ρ∈Xσ(L)

ρ(β)

=
1

[K : Q]

∑
σ∈X(K)

σ(α)σ(TrL/K(β))

= 〈α,TrL/K(β)〉,

as was to be shown.

One could phrase Lemma 3.3.4 in terms of adjoint linear maps. For
number fields K ⊆ L, the linear map tL/K = [L : K]−1 · TrL/K : L → K,
the trace, is adjoint to the inclusion K → L with respect to the induced
inner products.

Proposition 3.3.5. Roots of unity ζ, ξ ∈ Z are orthogonal, i.e. 〈ζ, ξ〉 = 0,
if and only if ζ−1ξ does not have square-free order.

Proof. Let K = Q(ζ−1ξ). We have [K : Q] · 〈ζ, ξ〉 = [K : Q] · 〈1, ζ−1ξ〉 =
TrK/Q(ζ−1ξ) by Lemma 3.2.13 and Lemma 3.3.4. Recall that the trace of an
n-th root of unity equals µ(n), the Möbius function, which is zero precisely
when n has a square divisor in Z>1.

For α, β ∈ Z we say β divides α, and write β | α, if there exists some
γ ∈ Z such that α = βγ. We write β - α if β does not divide α. Recall from
Definition 3.2.7 that for δ ∈ Z we say δ is uniform if |σ(δ)| = |τ(δ)| for all
σ, τ ∈ X(Q).
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Proposition 3.3.6. If α ∈ Z is such that
√

2 | α or
√

3 | α, then α 6∈
indec(Z).

Proof. Let ζ ∈ Q be a primitive 8-th root of unity, which we may choose
such that ζ + ζ−1 =

√
2. Thus (ζ, ζ−1) ∈ dec(

√
2), because 〈ζ, ζ−1〉 = 0 by

Proposition 3.3.5. Moreover,
√

2, ζ and ζ−1 are all uniform. For any β ∈ Z
we get from Lemma 3.2.11 that

q(ζβ) + q(ζ−1β) = (q(ζ) + q(ζ−1)) · q(β) = q(
√

2) · q(β) = q(
√

2β),

so
√

2β has a non-trivial decomposition.
With ξ a primitive twelfth root of unity we have ξ+ξ−1 =

√
3 with ξ, ξ−1

and
√

3 uniform. We have a decomposition because 〈ξ, ξ−1〉 = 〈1, ξ−2〉 =
1
2 ≥ 0, so the argument from before applies.

Lemma 3.3.7. If α ∈ Z is such that
√

2 - α | 2 and α is uniform, then
α ∈ indec(Z).

Proof. By assumption we may write 2 = αγ for some non-zero γ ∈ Z. Note
that γ is not a unit, since otherwise

√
2 | 2 | α. Now let (β, α−β) ∈ dec(α).

Then by Lemma 2.4.3 and Lemma 3.2.11 we have q(α) ≥ q(α − 2β) =
q(α − αβγ) = q(α) · q(1 − βγ), so q(1 − βγ) ≤ 1. As γ is not a unit we
have βγ 6= 1, so βγ = 1 − ζ for some root of unity ζ of order say n by
Proposition 3.2.9. Suppose n is not a power of 2. Then 1 − ζ and 2 are
coprime. As 2 | 2β = α(1− ζ) we have that 2 | α, which contradicts

√
2 - α.

Hence n is a power of 2. If n > 2, then 1− ζ |
√

2 so
√

2 | α, which is again
a contradiction. Therefore n = 1 or n = 2, which correspond to the trivial
decompositions with β = 0 and β = α respectively. We conclude that α is
indecomposable.

Proposition 3.3.8. It holds that

2
√

2 ≤ sup{q(α) |α ∈ Z is indecomposable}.

Proof. We will prove that for each r ∈ Q∩ [1, 3/2) there exists α ∈ indec(Z)
such that q(α) = 2r.

Consider β = 1+
√
−7

2 as in Example 3.3.3 and write β = 1 − β for its
conjugate. Write r = a

b with integers a ≥ b > 0 and let γ ∈ Z be a zero of
Xb − β. Now take α = β · γa−b. We will show α satisfies the conditions to
Lemma 3.3.7. Because |σ(α)| = |σ(β)|r = 2r/2 for all σ ∈ X(Q), and hence
α is uniform, we then have that α is indecomposable and q(α) = 2r.

Note that α · γ2b−a = β · β = 2, so α | 2. Let v : K → R ∪ {∞} be a
valuation over 2 for some number field K which is Galois over Q containing
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the relevant elements. Because 0 = v(1) = v(β + β) ≥ min{v(β), v(β)}, we
have v(β) = 0 or v(β) = 0. By potentially composing v with an automor-
phism swapping β and β we obtain a valuation v′ such that v′(β) = 0.
We have 1 = v′(2) = v′(β · β) = v′(β) and thus v′(γ) = 1/b. Then
v′(α) = r − 1 < 1/2 = v′(

√
2), from which we conclude that

√
2 - α.

Thus α satisfies the conditions to Lemma 3.3.7, as was to be shown.

3.4 Enumeration of degree-2 indecomposables

The indecomposables of Z of degree 1 are 1 and −1. In this section we
compute the indecomposables of degree 2. The fields of degree 2 over Q are
Q(
√
d) for d ∈ Z \ {1} square-free. The following lemma is easily verified by

separating the cases d negative and positive.

Lemma 3.4.1. Let d ∈ Z \ {1} be square-free and let a, b ∈ Q. Then
q(a+ b

√
d) = a2 + |d| · b2.

Lemma 3.4.2. Let α ∈ Z and suppose one of the following holds:
1. the real part of α2 is at least 2 under every embedding Q(α)→ C;
2. the real part of α2 is at most −2 under every embedding Q(α)→ C;
3. α = (1 +

√
d)/2 with d ∈ Z square-free such that 9 ≤ d ≤ 25.

Then α has a non-trivial decomposition in a degree 2 extension of Q(α).

Proof. LetK = Q(α) and γ = α2/4. Let f = X2−αX+1 ∈ K[X], let β ∈ Z
be a root of f and write L = K(β). Then (β − α/2)2 = β2 − αβ + α2/4 =
α2/4 − 1 = γ − 1. For 1 and 3 we will show q(β − α/2) ≤ q(α/2). Then
(β, α− β) is a decomposition of α by Lemma 2.4.3, and since neither 0 nor
α is a root of f we conclude that this decomposition is non-trivial.

1. Let σ ∈ X(L). For δ ∈ L write Reσ(δ) and Imσ(δ) for the real
respectively imaginary part of σ(δ). By assumption Reσ(γ) ≥ 1/2. Thus
Reσ(γ− 1)2 = (Reσ(γ)− 1)2 ≤ Reσ(γ)2. As Imσ(γ− 1)2 = Imσ(γ)2 we may
conclude that |σ(γ − 1)| ≤ |σ(γ)|. Then

q(β − α/2) =
1

[L : Q]

∑
σ∈X(L)

|σ(γ − 1)| ≤ 1

[L : Q]

∑
σ∈X(L)

|σ(γ)| = q(α/2),

as was to be shown.
2. Let i ∈ Q be a primitive fourth root of unity. Then iα satisfies the

conditions to 1, hence it has a non-trivial decomposition (β, iα−β), where β
is a root ofX2−iαX+1. In turn, (−iβ, α+iβ) is a non-trivial decomposition
of α, where −iβ is a root of X2 − αX − 1. In particular −iβ is of degree at
most 2 over Q(α).
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3. Since d > 0 the field K is totally real. Let γ1, γ2 ∈ R be the images
of γ under X(K) such that γ1 < γ2. Because 9 ≤ d ≤ 25 we have γ1 =
(
√
d− 1)2/16 ≤ 1 and γ2 = (

√
d+ 1)2/16 ≥ 1. Hence

q(β − α/2) =
1

2

(
|γ1 − 1|+ |γ2 − 1|

)
=

1

2

(
(1− γ1) + (γ2 − 1)

)
=

2
√
d

16
≤ 1 + d

16
= q(α/2),

as was to be shown.

Theorem 3.4.3. The indecomposable elements of Z of degree 2 up to con-
jugacy and sign are

√
−1, 1+

√
−7

2 , 1+
√
−3

2 and 1+
√

5
2 , for a total of 14 inde-

composables.

Proof. First note that the 4 listed elements indeed are indecomposable: We
treated (1 +

√
−7)/2 in Example 3.3.3, and the remaining 3 have square-

norm less than 2, so Proposition 3.3.1 applies. Since conjugation and multi-
plication by −1 are isometries by Lemma 3.2.13, all 14 are indecomposable.

Let α ∈ Z be of degree 2 over Q. It remains to show that α, up to
conjugation and sign, admits a non-trivial decomposition or is one of the
4 listed indecomposables. Since α is of degree 2 over Q it is an element of
Q(
√
d) for some square-free d ∈ Z\{1}. Then we may write α = (a+b

√
d)/2

for some a, b ∈ Z with a+ b ∈ 2Z and by conjugating and changing sign we
may assume a, b ≥ 0. If a ≥ 2 we have

q(α/2−1) =
(a

4
−1
)2

+ |d|
( b

4

)2
=
((a

4

)2
+ |d|

( b
4

)2)
+
(

1− a
2

)
≤ q(α/2),

so (1, α − 1) is a decomposition of α. Since α 6= 1, this decomposition is
non-trivial. Similarly we get a decomposition (

√
d, α−

√
d) if b ≥ 2, so either

this decomposition is non-trivial or α =
√
d.

First suppose α =
√
d. If |d| < 2 then d = −1, and

√
−1 is listed. Oth-

erwise α2 = d satisfies the hypotheses of Lemma 3.4.2.1 or Lemma 3.4.2.2,
so
√
d is not indecomposable.

For α 6=
√
d the remaining cases are α = (1 +

√
d)/2, which is integral

only if d ≡ 1 mod 4. If d ≤ −9 the real part of α2 is (1 + d)/4 ≤ −2
under either embedding, so α satisfies the conditions to Lemma 3.4.2.2. If
−9 < d < 9 we have d ∈ {−7,−3, 5} and thus α = (1 +

√
d)/2 is listed. For

9 ≤ d ≤ 25 we may apply Lemma 3.4.2.3. The remaining case is 25 < d,
where we have that σ(α2) = [(1 ±

√
d)/2]2 ≥ (

√
d − 1)2/4 ≥ 2 for all

σ ∈ X(Q(
√
d)), so Lemma 3.4.2.1 applies. Hence α is either listed or not

indecomposable.
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It is interesting to note that all non-trivial decompositions of α ∈ Z of
degree 2 over Q that are produced in Theorem 3.4.3 live in a field extension
of degree at most 2 over Q(α).

3.5 Geometry of numbers

In this section we gather some known results about the geometry of num-
bers.

Definition 3.5.1. Let K be a number field. We write KR = R ⊗Q K and
KC = C⊗Q K.

Recall for a number field K the definition of X(K), the set of ring
homomorphisms from K to C.

Lemma 3.5.2. We have an isomorphism of C-algebras ΦK : KC → CX(K)

given by
ΦK(z ⊗ α) = (z · σ(α))σ∈X(K).

We have a natural inclusion KR → KC → CX(K), and its image is given by
the subspace of elements invariant under the involution (xσ)σ 7→ (xσ)σ. This
inclusion induces an isomorphism of R-algebras KR ∼= Rr ×Cs for integers
r, s ≥ 0 such that r = #{σ ∈ X(K) |σ[K] ⊆ R} and r + 2s = [K : Q].

Definition 3.5.3. We equip KC with the inner product induced by the
standard Hermitian inner product on CX(K) and KR with its restriction,
turning KR into a real inner product space. Since KR is an inner product
space we have an induced measure on KR we denote vol.

Remark 3.5.4. For a number field K and α ∈ K we have

‖α‖2 =
1

[K : Q]
‖ΦK(α)‖2.

In fact, KR is the universal Hilbert space of the lattice Z∩K. Note that the
norm on KR is not the ‘standard’ norm on Rr × Cs. In terms of the latter
vector space it is given by

(x1, . . . , xr, z1, . . . , zs) 7→
√
|x1|2 + · · ·+ |xr|2 + 2|z1|2 + · · ·+ 2|zs|2.

Theorem 3.5.5 (Proposition 4.26 in [38]). Let R be an order in a number
field K. Then ΦK [R] is a full rank lattice in KR with determinant |∆(R)|1/2,
where ∆(R) is the discriminant of R.

Definition 3.5.6. For a commutative ring R and d ∈ Z≥0 we write R[X]d =
{f ∈ R[X] | deg(f) < d}.
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Lemma 3.5.7. The functor −[X]d commutes with finite products.

Lemma 3.5.8. For a number field K we have an isomorphism of real vec-
tor spaces KR[X]d ∼= (R[X]d)

r × (C[X]d)
s for all d ∈ Z≥0 induced by the

isomorphism KR ∼= Rr × Cs of Lemma 3.5.2.

Theorem 3.5.9 (Minkowski, Theorem 4.19 in [38]). Let n ∈ Z≥0, let Λ ⊆
Rn be a full rank lattice and let S ⊆ Rn be a symmetric convex body. If
vol(S) > 2n det(Λ), then there exists a non-zero element in Λ ∩ S.

Definition 3.5.10. For all α ∈ Q the set X(Q) · α is finite. Hence we may
equip Q with the max-norm

|x|∞ = max
σ∈X(Q)

|σ(x)|.

We extend this definition to the universal Hilbert space containing Q, and
in turn restrict it to KC and KR for any number field K.

Lemma 3.5.11. For α ∈ Q we have ‖α‖ ≤ |α|∞ and for n ≥ 0 we have
|αn|∞ = |α|n∞.

3.6 Szegő capacity theory

In this section we will give a proof of a specialization of a theorem on ca-
pacity theory due to Szegő. As a corollary (Corollary 3.6.7) to this theorem
T. Chinburg derives a solution to the closest vector problem for large radii
as discussed in the introduction of this chapter. We will present the proof
in a manner to be explicit enough to derive an algorithm.

Definition 3.6.1. Let X be a metric space with metric d and let S ⊆ X
be a subset. A rounding function from X to S is a map b·e : X → S for
which there exists some constant ε ∈ R≥0 such that for all x ∈ X we have
d(x, bxe) ≤ ε. We call such an ε an error constant for b·e.

Example 3.6.2. For Z in Q with the metric induced by the usual absolute
value we may round to a nearest integer, giving a rounding function with
error constant 1/2. For a naive rounding map for an arbitrary order R with
basis (αi)i of a number field K with metric induced by q we may simply
send

∑
i xiαi ∈ K with xi ∈ Q to

∑
ibxieαi ∈ R. An error constant for this

rounding function is for example 1
2

∑n
i=1 |αi|∞. The same method works for

R in KR.
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Definition 3.6.3. Let A be a commutative ring, let c ∈ A, and let | · | be
a norm on A. We define the induced c-norm on A[X] to be the norm

f =

∞∑
k=0

fk · (X − c)k =

∞∑
k=0

fkY
k 7→ max

k
|fk|

for Y = X−c. Let R ⊆ A be a subring and [·] : A→ R a rounding function.
We say this rounding function is translation invariant if [a+ r] = [a] + r for
all a ∈ A and r ∈ R. We recursively define the induced rounding function
with respect to c to be the rounding function b·e : A[X]→ R[X] with respect
to the c-norm on A[X] given by b0e = 0 and

baXn + fe 7→ [a]Xn +
⌊
(a− [a])(Xn − Y n) + f

⌉
for all a ∈ A and f ∈ A[X]n.

We will verify that this is indeed a rounding function.

Proposition 3.6.4. Using the same notation as in Definition 3.6.3, the
map b·e : A[X]→ R[X] is a rounding function with the same error constant
as the rounding function [·] : A → R. If the latter is translation invariant,
then so is the former.

Proof. Let ε be the error constant for [·] and Y = X− c. We with induction
on n that b·e restricts to a rounding function A[X]n+1 → R[X]n+1 with
error constant ε. Clearly ‖0− b0e‖ = 0 ≤ ε. Suppose n ∈ Z≥0 and consider
aXn + f for a ∈ A and f ∈ A[X]n. Write

g = (a− [a])(Xn − Y n) + f ∈ A[X]n.

Then by the induction hypothesis

‖f − bfe‖ = ‖(a− [a])Y n + (g − bge)‖ = max{|a− [a]|, ‖g − bge‖} ≤ ε,

as was to be shown. Hence b·e : A[X] → R[X] is a rounding function with
error constant ε.

Suppose [·] is translation invariant. To show b·e is translation invariant,
it suffices to show with induction to n that for all a ∈ A, b ∈ R, f ∈ A[X]n
and g ∈ R[X]n we have b(aXn + f) + (bXn + g)e = baXn + fe+ (bXn + g).
The base case reduces to translation invariance of [·]. For n ≥ 0 we have

b(aXn + f) + (bXn + g)e
= [a+ b]Xn + b((a+ b)− [a+ b])(Xn − Y n) + f + ge
= ([a] + b)Xn + b(a− [a])(Xn − Y n) + fc+ g

= baXn + ge+ (bXn + g),

as was to be shown.
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Recall the the max-norm from Definition 3.5.10.

Theorem 3.6.5 (Szegő). Let R be an order of a number field K and let
r > 1. Then for each c ∈ K there exists a monic non-constant g ∈ R[X]
such that for all z ∈ KC satisfying |g(z)|∞ < r we have |z − c|∞ < r.

This theorem is a special case of a theorem of Szegő, adapted from [40].
For simplicity we take c ∈ K instead of c ∈ KR. The proof of this theorem
will be sufficiently constructive that one can easily distill an algorithm from
it.

Proof. Let [·] : K → R be some translation invariant rounding function, for
example as in Example 3.6.2, and let ε be its error constant. Let b·e be the
induced rounding function with respect to c. Let d ∈ Z>0 such that dc ∈ R,
which exists since c ∈ QR. Successively choose b, n ∈ Z>0 such that

(1) 2εr−b ≤ r − 1, (2) b! · db | n and (3) rn−1 ≥ 2.

We claim g = b(X − c)ne satisfies the conclusion to the theorem.
Write f = (X−c)n =

∑
k fkX

k. It follows from (2) that for all k ≤ b we
have dk | b!dbk! |

(
n

n−k
)
. Hence for all k ≥ n− b we have fk =

(
n

n−k
)
cn−k ∈ R.

Thus by translation invariance we have e : = f − g ∈ K[X]n−b. Let X(K)
act on K[X] coefficient-wise and fix σ ∈ X(K). Let z ∈ C such that s :=
|z − σ(c)| ≥ r. Then∣∣∣∣ σ(e)(z)

σ(f)(z)

∣∣∣∣ ≤ s−n n−b−1∑
i=0

ε · si ≤ εs−b

s− 1
≤ cr−b

r − 1

(1)

≤ 1

2
.

It follows that ∣∣∣∣σ(g)(z)

σ(f)(z)

∣∣∣∣ =

∣∣∣∣1− σ(e)(z)

σ(f)(z)

∣∣∣∣ ≥ 1

2
and

|σ(g)(z)| ≥ |σ(f)(z)|
2

≥ rn

2

(3)

≥ r.

Thus, if |σ(g)(z)| < r, then |z − σ(c)| < r. Taking the maximum over all
σ ∈ X(K) proves the theorem for c ∈ K.

Theorem 3.6.6 (Szegő). Suppose r ∈ R and α ∈ Q. If r > 1, then there
exist infinitely many β ∈ Z such that |α− β|∞ < r.

Proof. Consider K = Q(α) and let R ⊆ K be some order of K. By Theo-
rem 3.6.5 there exists some monic non-constant g ∈ R[X] such that for all
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z ∈ KC satisfying |g(z)|∞ < r we have |z − α|∞ < r. Now gn − 1 ∈ R[X] is
monic and non-constant for all n ∈ Z≥1, so

S = {β ∈ Z | (∃n ∈ Z≥1) gn(β) = 1}

is infinite. Let β ∈ S and L = K(β). It suffices to show that |α− β|∞ < r.
We have that

|g(β)|n∞ = |g(β)n|∞ = |1|∞ = 1,

so |g(β)|∞ < r. Thus by definition of g we have |α− β|∞ < r.

Combined with Lemma 3.5.11 we obtain the following.

Corollary 3.6.7. Suppose r ∈ R and α ∈ Q. If r > 1, then there exist
infinitely many β ∈ Z such that ‖α− β‖ < r.

Proposition 3.6.8. If α ∈ Z satisfies ‖α‖ > 2, then α has infinitely many
decompositions in Z.

Proof. Let γ = α/2. By Corollary 3.6.7 there are infinitely many β ∈ Z
such that ‖γ− β‖ < ‖γ‖ as ‖γ‖ = ‖α‖/2 > 1. By Lemma 2.4.3 each such β
gives a decomposition (β, α− β) of α.

It follows from this proposition, as we will show later in the form of
Proposition 3.7.4, that there are only finitely many indecomposables in Z
of a given degree.

Theorem 3.6.9. The covering radius of Z, see Definition 2.6.1, is between
4
√

1/2 and 1.

Proof. By Proposition 3.3.8 we have 23/4 ≤ sup{‖α‖ |α ∈ indec(Z)} and
consequently we get the lower bound 2−1/4 ≤ sup{‖α/2‖ |α ∈ indec(Z)}.
For any α ∈ indec(Z) we have by Lemma 2.4.3 for all x ∈ Z that ‖α/2‖ ≤
‖α/2 − x‖, and thus α/2 ∈ Vor(Z) by Corollary 2.6.12. Therefore 2−1/4 ≤
r(Z) by Proposition 2.6.10. For all r > 1 and α ∈ Q there exist β ∈ Z
such that ‖α − β‖ < r by Corollary 3.6.7. Taking the limit of r down to
1 and noting that Q = Q · Z is dense in the Hilbert space of Z proves the
theorem.

Proposition 3.6.10. There exists an algorithm that, given n ∈ Z>0, some
r ∈ R ∩Q and α ∈ Q, decides whether r > 1 and if so computes n distinct
β ∈ Z such that ‖α− β‖ < r, each represented by their minimal polynomial
over Q(α).
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Proof. Since r ∈ Q we may decide whether r = 1, and if it is not we may
approximate r to arbitrary precision so that we may decide whether r > 1.
We may compute an error constant ε ∈ Q>1 for the rounding function and
then the polynomial g as in Theorem 3.6.5. For sufficiently many m we then
compute the irreducible factors of gm−1 over Q(α) as in [31], following the
proof of Theorem 3.6.6.

Corollary 3.6.11. There is an algorithm that takes as input an n ∈ Z≥0

and an element α ∈ Z given by its minimal polynomial, and decides whether
‖α‖ > 2 and if so computes n non-trivial decompositions (β, γ) ∈ dec(α),
each represented by the minimal polynomial of β over Z[α].

Proof. We apply Proposition 3.6.10 with α/2 in the place of α and ‖α/2‖
in the place of r. Note that r ∈ R ∩Q.

3.7 Bounds on indecomposable algebraic integers

In this section we will prove an effective upper bound on the total number
of indecomposable algebraic integers of a given degree. In particular, we will
show that this number is finite. We do this by constructing a complete list
of candidates for indecomposability among all algebraic integers of given
degree. We also give a lower bound on the number of indecomposables.

Proposition 3.7.1. Suppose α ∈ indec(Z) has minimal polynomial f =∑n
k=0 fn−kX

k ∈ Z[X]. Then |fk| ≤
(
n
k

)
2k for all 0 ≤ k ≤ n.

Proof. Let α1, . . . , αn ∈ C× be the roots of f . We have Maclaurin’s inequal-
ities (Theorem 11.2 in [7])

s1 ≥ s1/2
2 ≥ s1/3

3 ≥ · · · ≥ s1/n
n , where sk =

(
n

k

)−1

·
∑

I⊆{1,...,n}
|I|=k

∏
i∈I
|αi|.

By Proposition 3.6.8 we have that ‖α‖ ≤ 2. Then by Lemma 2.2.14 we have

s1 =
1

n

∑
i

|αi| ≤
( 1

n

∑
i

|αi|2
)1/2

= ‖α‖ ≤ 2.

Then |fk| ≤
(
n
k

)
sk ≤

(
n
k

)
sk1 ≤

(
n
k

)
2k for all k, as was to be shown.

Corollary 3.7.2. Suppose α ∈ indec(Z) has degree at most m. Then there
exists a monic polynomial g =

∑m
k=0 gm−kX

k ∈ Z[X] of degree m such that
g(α) = 0 and |gk| ≤

(
m
k

)
2k for all 0 ≤ k ≤ m.
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Proof. Let f as in Proposition 3.7.1 and g = Xm−n · f . Then |gk| = |fk| ≤(
n
k

)
2k ≤

(
m
k

)
2k.

Proposition 3.7.3. Considered as functions of n ∈ Z≥1, the following hold:

log(n!) = n log n− n+O(log n);1.

log
( n∏
k=1

kk
)

= 1
2n

2 log n− 1
4n

2 +O(n log n);2.

log
( n∏
k=0

(k!)
)

= 1
2n

2 log n− 3
4n

2 +O(n log n);3.

log
( n∏
k=0

(
n

k

))
= 1

2n
2 +O(n log n).4.

Proof. 1. This is Stirling’s approximation, which is classical.
2. Note that f(x) = x log x is an increasing function on R≥1. Hence

log
( n∏
k=1

kk
)

=

n∑
k=1

f(k) ≤
∫ n+1

1
f(x) dx =

[
1
2x

2 log(x)− 1
4x

2
]n+1

x=1

= 1
2n

2 log(n)− 1
4n

2 +O(n log(n)).

We analogously get the same estimate for a lower bound by considering∫ n
1 f(x) dx.

3. From 1 and 2 we get

log
( n∏
k=0

(k!)
)

=

n∑
k=1

(
k log(k)− k +O(log(k))

)
=
(

1
2n

2 log(n)− 1
4n

2
)
− 1

2n
2 +O(n log(n)).

4. We first rewrite the binomials in terms of factorials and then apply 1
and 3, so that

log
( n∏
k=0

(
n

k

))
= log

(
(n!)n(∏n
k=0(k!)

)2) = n log(n!)− 2 log
( n∏
k=0

(k!)
)

= (n2 log(n)− n2)− 2(1
2n

2 log n− 3
4n

2) +O(n log n)

= 1
2n

2 +O(n log n),

as was to be shown.
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Proposition 3.7.4. Let n ∈ Z≥1. There are at most

n

n∏
k=1

(
2

(
n

k

)
2k + 1

)
= exp

(
log(2)+1

2 n2 +O(n log(n))
)

indecomposable elements in Z of degree up to n.

Proof. By Corollary 3.7.2 every indecomposable of degree at most n is the
root of a monic polynomial f =

∑n
k=0 fn−kX

k such that |fk| ≤
(
n
k

)
2k for

all 0 ≤ k ≤ n. Hence every such polynomial corresponds to at most n
indecomposables. For every 0 < k ≤ n there are 2

(
n
k

)
2k + 1 choices for fk,

and f0 = 1, proving the first upper bound. We may bound 2
(
n
k

)
2k + 1 ≤

3
(
n
k

)
2k, so that by Proposition 3.7.3.4 we get

n
n∏
k=1

(
2

(
n

k

)
2k + 1

)
≤ n · 3n · 2(n+1

2 ) ·
n∏
k=0

(
n

k

)
= exp

(
log(2)+1

2 n2 +O(n log(n))
)
,

as was to be shown.

For f ∈ Q[X] monic write q(f) for the average of the square length of the
roots of f in C, such that for all α ∈ Z with minimal polynomial fα ∈ Q[X]
we get q(α) = q(fα). Note that f = (X+ 2)n, although it is not irreducible,
has q(f) = 4 and attains the bounds of Proposition 3.7.1. However, that
does not imply that Proposition 3.7.4 cannot be improved, as it is not clear
that all combinations of coefficients occur for polynomials f with q(f) ≤ 4.
Some small degree numerical results might suggest improvements can be
made.

degree 1 2 3 4

# monic f ∈ Z[X] s.t. (∀k) |fk| ≤
(
n
k

)
2k 5 81 5525 1786785

# monic f ∈ Z[X] s.t. q(f) ≤ 4 5 49 989 48422
# α ∈ Z s.t. q(α) ≤ 4 5 39 739 40354

We also have the following lower bound.

Proposition 3.7.5. Let n ∈ Z≥1. There are at least

exp
( log 2

4
n2 +O(n log n)

)
indecomposable algebraic integers of degree n.
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Proof. Let n ∈ Z≥1 and recall the definition of Z[X]n from Definition 3.5.6.
Consider the set

Sn =

{
f =

n−1∑
k=0

fkX
k ∈ 2XZ[X]n−1 + 2

∣∣∣∣∣ (∀k) |fk|(
√

2)kn ≤ (
√

2)n−1

}
.

For f ∈ Sn consider g = Xn−f and note that g is irreducible by Eisenstein’s
criterion. Consider the ball D ⊆ C of radius r = (

√
2)1−1/n <

√
2 around 0.

For all z on the boundary of D we have

|f(z)| ≤
n−1∑
k=0

|fk||z|k ≤
n−1∑
k=0

|fk|(
√

2)k
(i)
≤

n−1∑
k=0

(
√

2)n−1

n
= (
√

2)n−1 = |z|n,

where (i) is strict for n sufficiently large due to |f0|n = 2n < (
√

2)n−1.
Hence by Rouché’s theorem (Theorem 4.18 in [1]) the polynomials Xn and
g have the same number of roots in D. It follows that all roots of g in C
have length less than

√
2. Thus q(α) < 2 for all roots α ∈ Z of g, so α is

indecomposable by Proposition 3.3.1.
We conclude that for n sufficiently large there are at least n · #Sn

indecomposable algebraic integers of degree n, so it remains to prove a
lower bound on #Sn. Note that the coefficients of f ∈ Sn satisfy indepen-
dent inequalities, so we may simply give a lower bound per coefficient. Let
B = n− 3 log2(n)− 2, which is positive for n sufficiently large. For k > B
we consider only fk = 0 and get a lower bound of 1 for this coefficient. For
0 < k ≤ B we have

2

⌊
(
√

2)n−k−1

2n

⌋
+ 1 ≥ 2

((
√

2)n−k−1

2n
− 1
)

+ 1 =
(
√

2)n−k−1

n
− 1 = (ii)

choices for fk. Then for n sufficiently large we have

n

(
√

2)n−k−2
≤ n

n3/2
≤
√

2− 1, so that (ii) ≥ (
√

2)n−k−2

n
.

Hence Sn contains, for n sufficiently large, at least

B∏
k=1

(
√

2)n−k−2

n
= exp

( log 2

2

B∑
k=1

(n− k − 2)−B log n
)

= exp
( log 2

4
n2 +O(n log n)

)
elements, from which the proposition follows.
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Corollary 3.7.6. Let n ∈ Z≥1. There are at least

exp
( log 2

4
n2 +O(n log n)

)
indecomposable algebraic integers of degree up to n.

From the upper and lower bound we may now conclude the following.

Theorem 3.7.7. There are least exp(1
4(log 2)d2 + O(d log d)) and at most

exp(1
2(1 + log 2)d2 +O(d log d)) indecomposable algebraic integers of degree

up to d.

3.8 Fekete capacity theory

In this section we present a proof of a special case of Fekete’s theorem
using Minkowski’s convex body theorem. Fekete’s theorem can be thought
of as a partial converse to Theorem 3.6.6 of Szegő. Although this does not
give us a converse to Corollary 3.6.7, using similar techniques as in this
section we will later prove Theorem 3.11.2 mentioned in the introduction.
The goal of this section is to showcase the proof technique we will use to
prove Theorem 3.11.2 so that we may later improve clarity by brevity. Recall
the definition of the norm | · |∞ from Definition 3.5.10.

Theorem 3.8.1 (Fekete). Suppose r ∈ R and α ∈ Q. If r < 1, then there
exist only finitely many β ∈ Z such that |β − α|∞ ≤ r.

Just like for Szegő’s theorem, it is possible to derive an algorithmic coun-
terpart to Fekete’s theorem. Combining Theorem 3.8.1 and Theorem 3.6.6,
the point r = 1 is still a singularity. For α ∈ Z and r = 1 clearly all
β ∈ α + µ∞ satisfy |β − α|∞ ≤ r. However, when α 6∈ Z we do not know
what happens in general. We start with a volume computation.

Definition 3.8.2. Let A be an R-algebra equipped with a real inner prod-
uct. We equip A[Y ] with an inner product

〈 ∞∑
k=0

fkY
k,

∞∑
k=0

gkY
k
〉

=

∞∑
k=0

〈fk, gk〉,

which is the ‘standard’ inner product when we naturally identify A[Y ] with
A(Z≥0). For n ∈ Z≥0 we equip A[Y ]n, as defined in Definition 3.5.6, with
the restriction of this inner product.
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Remark 3.8.3. Obviously R is an R-algebra with a real inner product. We
identify C with R2 by choosing R-basis {1, i}, and equip C with the inner
product induced by the natural inner product on R2. For a number field K
we remark that KR has a real inner product as in Definition 3.5.3.

Lemma 3.8.4. Let A be an R-algebra of dimension d <∞. For all a, b ∈ R,
c ∈ A and n ∈ Z≥0 we have an R-linear transformation φ on A[X]n given
by f 7→ bf(a(X − c)) with detφ = (an(n−1)/2 · bn)d.

Proof. Note that φ is trivially an R-linear transformation. Choose an R-
basis {e1, . . . , ed} for A. Writing φ as a matrix with respect to the basis
{eiXj | 1 ≤ i ≤ d, 0 ≤ j < n} for A[X]n we note that φ is a lower tri-
angular matrix with diagonal entries b, ba, ba2, . . . , ban−1, each occurring
with multiplicity d. The determinant of φ is then simply the product of the
diagonal.

Lemma 3.8.5. Let F be either R or C and let r ∈ R>0. For n ∈ Z≥0

consider

Sn(r) = {f ∈ F[Y ]n | (∀ z ∈ C) |z| ≤ r ⇒ |f(z)| ≤ r}.

Then as function of n we have

log vol(Sn(r)) ≥ −1
2n

2 · [F : R] · log r +O(n log n).

Proof. Write Sn = Sn(1). By applying the transformation f 7→ rf(r−1Y )
to F[Y ]n we bijectively map Sn to Sn(r). From Lemma 3.8.4 it follows that
log vol(Sn(r)) = −1

2n
2 · [F : R] · log r + log vol(Sn) + O(n log n). It remains

to prove log volSn ≥ O(n log n).
First suppose F = R. Consider the set

Tn =
{ n−1∑
k=0

fkY
k ∈ R[Y ]n

∣∣∣ n−1∑
k=0

|fk| ≤ 1
}
.

Note that for all f ∈ Tn and z ∈ C such that |z| ≤ 1 we have |f(z)| ≤∑n−1
k=0 |fk| ≤ 1, so f ∈ Sn. Hence Tn ⊆ Sn and vol(Tn) ≤ vol(Sn). With

Proposition 3.7.3.1 we compute log vol(Tn) = log(2n/n!) = O(n log n), from
which the lemma follows for F = R.

For F = C, note that we have an isometry R[X]2n → C[X]n given by
(f, g) 7→ f + i · g. For f, g ∈ 1

2Tn and z ∈ C such that |z| ≤ 1 we have
|f(z) + i · g(z)| ≤ |f(z)| + |g(z)| ≤ 1

2 + 1
2 = 1, so f + i · g ∈ Sn. Hence

log vol(Sn) ≥ log(vol(1
2Tn)2) = 2 log vol(Tn) − 2n log 2 = O(n log n), from

which the lemma follows for F = C.
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Theorem 3.8.6. Let R be an order of a number field K and let 0 < r < 1.
For all c ∈ KR there exists a non-zero g ∈ R[X] such that for all z ∈ KR,
if |z − c|∞ ≤ r then |g(z)|∞ ≤ r.

Proof. Write d = [K : Q]. Let n ∈ Z≥0 and consider the lattice Λn =
R[X]n in the inner product space KR[Y ]n, where Y = X − c. Note that
dimRKR[Y ]n = dn and that Λn is a full-rank lattice in KR[Y ]n with
det(Λn) = |∆(R)|n/2 by Lemma 3.8.4 and Theorem 3.5.5. Consider

Sn =
{
f ∈ KR[Y ]n

∣∣ (∀σ ∈ X(K)) (∀ z ∈ C) |z| ≤ r ⇒ |σ(f)(z)| ≤ r
}

and note that it is both symmetric and convex. Moreover, it follows from
Lemma 3.8.5 that log vol(Sn) ≥ −1

2n
2d log r +O(n log n). Hence

log
( vol(Sn)

2dn · det(Λn)

)
≥ −1

2n
2d log r +O(n log n).

Because −1
2d log r > 0 there exists some n sufficiently large such that

vol(Sn) > 2dn det(Λn). By Theorem 3.5.9 there then exists some non-zero
g ∈ Λn ∩ Sn which as polynomial in X satisfies the requirements.

Proof of Theorem 3.8.1. Let K = Q(α) and let R ⊆ K be some order of
K. Then by Theorem 3.8.6 there exists some non-zero g ∈ R[X] such that
for all z ∈ KR, if |z − α|∞ ≤ r then |g(z)|∞ ≤ r. Suppose β ∈ Z satisfies
|β − α|∞ ≤ r. Then |g(β)|∞ ≤ r, or equivalently |ρ(g(β))| ≤ r for all
ρ ∈ X(L). Hence

|NL/Q(g(β))| =
∏

ρ∈X(L)

|ρ(g(β))| ≤ r[L:Q] < 1.

As g(β) ∈ Z, we must then have g(β) = 0. As β must be a root of g and g
is non-zero, there can only be finitely many β.

3.9 Reduction to exponentially bounded
polynomials

We now prepare to prove the main theorem. If there are only finitely many
decompositions of an algebraic integer α, then certainly there exists a non-
zero polynomial f ∈ Z[X] such that f(β) = 0 for all decompositions (β, α−
β) of α. The goal is to exhibit such a polynomial when α is short using a
lattice argument, similarly to the proof of Theorem 3.8.1. In this section
we derive an analytic sufficient condition for a polynomial f to have this
property.
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Definition 3.9.1. Let K be a number field. We define S(K) = X(K)×C,
the coproduct (i.e. disjoint union) of measurable spaces of # X(K) copies
of C, where C has the standard Lebesgue measurable space structure. We
writeM(K) for the set of probability measures µ on S(K), i.e. all measures
µ such that µ(S(K)) = 1.

Definition 3.9.2. Let K be a number field and r ∈ R>0. For f ∈ KR[Y ]
we say f is exponentially bounded at radius r if for all µ ∈M(K) satisfying∫
|z|2 dµ(σ, z) < r2 it holds that

∫
log |σ(f)(z)| dµ(σ, z) < 0.

Proposition 3.9.3. Let α ∈ Z, K = Q(α) and r > ‖α/2‖. If f ∈ OK [X]
is exponentially bounded at radius r ∈ R>0 as polynomial in the variable
Y = X − α/2, then for all (β, γ) ∈ dec(α) we have f(β) = 0.

Proof. Suppose (β, γ) ∈ dec(α). Then ‖β−α/2‖ ≤ ‖α/2‖ < r by Lemma 2.4.3.
Let L = K(β) and

B = {(ρ|K , ρ(β − α/2)) | ρ ∈ X(L)} ⊆ S(K),

which has #B = [L : Q] and #(B ∩ ({σ} ×C)) = [L : K] for all σ ∈ X(K).
Let µ ∈M(K) be the uniform probability measure on B and write fY for f
as a polynomial in the variable Y . Because

∫
|x|2 dµ(σ, x) = ‖β−α/2‖2 < r2

and fY is exponentially bounded at radius r we get

log
(
N(f(β))[L:Q]

)
= log

∏
ρ∈X(L)

|ρ(f(β))| =
∑

ρ∈X(L)

log |ρ(fY (β − α/2))|

= [L : Q] ·
∫

log |σ(fY )(x)|dµ(σ, x) < 0.

We conclude that N(f(β)) < 1. Since f(β) is integral we have f(β) = 0, as
was to be shown.

Example 3.9.4. The set of polynomials of KR exponentially bounded at
radius r is closed under multiplication and is symmetric. However, we will
show that it is not convex.

Let r = 1 and K = Q. For all c ∈ (−1, 1) the constant polynomial
c is trivially exponentially bounded at any positive radius, in particular
at radius 1. Also the polynomial Y 2 is exponentially bounded: For any
µ ∈M(K) such that

∫
|z|2 dµ(σ, z) < 1 we have∫

log |z2|dµ(σ, z) ≤ log

∫
|z|2 dµ(σ, z) < log 1 = 0.

Here the first inequality is Jensen’s inequality for integrals. When µ has
finite support, this comes down to Lemma 3.2.6. For c ∈ (−1, 1) and
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k ∈ Z≥0 the product cY 2k of exponentially bounded polynomials at ra-
dius 1 is exponentially bounded at radius 1. We claim that 1

4(1 + Y 2k)
for k sufficiently large, which is a convex combination of 1

2 and 1
2Y

2k, is
not exponentially bounded at radius 1. Taking µ ∈ M(Q) with weight
1
5 at 2 and remaining weight at 0 we have

∫
|z|2 dµ(σ, z) = 4

5 < 1, yet∫
log |14(1 + Y 2k)| dµ(σ, z) = 1

5 log(1 + 22k) − log 4 → ∞ as k → ∞. We
conclude that the set of exponentially bounded polynomials at radius 1 is
not convex. A similar argument works for all radii and number fields.

Lemma 3.9.5. Let D ⊆ C be a convex subset and let f : D → C be analytic.
Then for distinct x, y ∈ D we have∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ sup
z∈D
|f ′(z)|.

Proof. Let γ : [0, 1] → D be the parametrization of the straight line con-
necting x and y, which is well-defined since D is convex. First note that∫ 1

0
f ′(γ(t)) dt =

∫ 1

0
f ′(tx+ (1− t)y) dt

=
1

x− y

[
f(tx+ (1− t)y)

]1

t=0

=
f(x)− f(y)

x− y
.

Then ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ =

∣∣∣∣ ∫ 1

0
f ′(γ(t)) dt

∣∣∣∣ ≤ ∫ 1

0

∣∣f ′(γ(t))
∣∣ dt

≤
∫ 1

0

(
sup
z∈D
|f ′(z)|

)
dt = sup

z∈D
|f ′(z)|,

as was to be shown.

We will now translate the measure theoretic property of Definition 3.9.2
to an analytic one. Our results in the coming sections only depend on the
‘if’ part of the following equivalence.

Theorem 3.9.6. Let K be a number field, 0 < r < 1 and f ∈ KR[Y ]. Then
f is exponentially bounded at radius r if and only if there exists an a ∈ R>0

such that for all σ ∈ X(K) and z ∈ C we have

|σ(f)(z)| ≤ exp(a(|z|2 − r2)).
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Proof. (⇐) Suppose such a exists. Let µ ∈M(K) such that∫
|z|2 dµ(σ, z) < r2.

Then∫
log |σ(f)(z)|dµ(σ, z) ≤

∫
a(|z|2 − r2) dµ(σ, z) < ar2 − ar2 = 0,

so f is exponentially bounded at radius r.
(⇒) Let D0 = {z ∈ C | |z| < r} and D∞ = {z ∈ C | |z| > r}. For

c ∈ {0,∞} let

Ac =
{
a ∈ R

∣∣ (∀ ρ ∈ X(K)) (∀ z ∈ Dc) |ρ(f)(z)| ≤ exp(a(|z|2 − r2))
}
.

Firstly, we show that A0 is non-empty. Let ρ ∈ X(K) and z0 ∈ D0, and
let µ ∈M(K) be the measure with weight 1 at (ρ, z0). Then

∫
|x|2 dµ(σ, x) =

|z0|2 < r2, so by exponential boundedness

|ρ(f)(z0)| = exp
(∫

log |σ(f)(x)| dµ(σ, x)
)
< 1.

It follows that 0 ∈ A0, and even (−∞, 0] ⊆ A0. This argument also shows
that ρ(f) is bounded by 1 on the boundary of D0, the circle of radius r.

Secondly, we show that A∞ is non-empty. Since exp(|z|2 − r2) grows
faster than any polynomial, there exists some b > r such that |ρ(f)(z)| ≤
exp(|z|2− r2) for all |z| ≥ b. Write B = {z ∈ C | |z| ≤ b}. Let ρ ∈ X(K) and
z ∈ B ∩D∞, and write g = ρ(f) and θ = z/|z|. As remarked at the end of
the previous paragraph we have |g(rθ)| ≤ 1, so that

log |g(z)| ≤ log(1 + |g(z)− g(rθ)|)
≤ |g(z)− g(rθ)|

=
|z|2 − r2

|z|+ r
·
∣∣∣∣g(z)− g(rθ)

z − rθ

∣∣∣∣
∗
≤ (|z|2 − r2) · supx∈B |g′(x)|

2r
≤ a(|z|2 − r2),

where ∗ follows from Lemma 3.9.5 and a is the maximum of 1 and all
(2r)−1 supx∈B |ρ(f)′(x)| for ρ ∈ X(K). Thus a ∈ A∞.

Thirdly, we show that A0 ∩ A∞ is non-empty. Suppose for the sake
of contradiction that A0 ∩ A∞ is empty. Clearly A0 and A∞ are closed.
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Hence there exist reals that are neither in A0 nor A∞, and let a be such
a real number. It follows that a > 0. In turn, there exist z0 ∈ D0 and
z∞ ∈ D∞ with ρ0, ρ∞ ∈ X(K) such that |ρ0(f)(z0)| > exp(a(|z0|2 − r2))
and |ρ∞(f)(z∞)| > exp(a(|z∞|2 − r2)). Choose some t ∈ (0, 1) such that
(1− t)|z0|2 + t|z∞|2 < r2 and let µ be the measure that assigns weight 1− t
to (ρ0, z0) and weight t to (ρ∞, z∞). Then

∫
|z|2 dµ(σ, z) < r2 and thus

0 >

∫
log |σ(f)(z)| dµ(σ, z) = (1− t) log |ρ0(f)(z0)|+ t log |ρ∞(f)(z∞)|.

Taking the limit of t up to s ∈ R such that (1− s)|z0|2 + s|z∞|2 = r2 we get

0 ≥ (1− s) log |ρ0(f)(z0)|+ s log |ρ∞(f)(z∞)|
> a((1− s)|z0|2 + s|z∞|2 − r2) = 0,

a contradiction. Hence A0 ∩A∞ is non-empty, as was to be shown.
Note that D0∪D∞ is dense in C, so any positive a ∈ A0∩A∞ gives the

inequality we set out to prove. Suppose a ∈ A0 ∩ A∞ is such that a ≤ 0.
Thus |ρ(f)(z)| ≤ exp(a(|z|2 − r2)) ≤ 1 for all z ∈ D∞ and ρ ∈ X(K), so
ρ(f) is a constant function. However, as |ρ(f)(z)| < 1 for z ∈ D0 as shown
before, this constant is strictly less than 1. Let c ∈ (0, 1) be a constant that
bounds ρ(f) for all ρ ∈ X(K). Then −r−2 log c ∈ A0∩A∞ is positive. Hence
A0 ∩A∞ always contains a positive element.

3.10 Volume computation

The next step is to compute the volume of a symmetric convex set of expo-
nentially bounded polynomials. As in Lemma 3.8.5 it suffices for the sake
of volume computation to consider the case where the radius is 1 and the
base field is R. In view of Theorem 3.9.6, we consider the unit-ball of the
following norm.

Definition 3.10.1. Let F be either R or C. We equip F[Y ] with the exp-
norm

‖f‖e = max
z∈C

|f(z)|
exp(|z|2)

,

not to be confused with ‖−‖p for p = e from Definition 2.2.11.

Lemma 3.10.2. Consider the map φ : Z≥0 → R≥0 given by

φ(n) =

{(
n
2

)
! if n is even(

n−1
2

)
! ·
√

n+1
2 if n is odd

.
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Then we have

log
( n∏
k=0

φ(k)
)

= 1
4n

2 log n− (3
8 + 1

4 log 2)n2 +O(n log n)

and for all x ∈ R≥0 and m ∈ Z≥0 we have

x2m+1

φ(2m+ 1)
≤ 1

2

(
x2m

φ(2m)
+

x2m+2

φ(2m+ 1)

)
.

Proof. Writing out the product we have

n∏
k=0

φ(k) =

( bn/2c∏
m=0

φ(2m)

)( b(n−1)/2c∏
m=0

φ(2m+ 1)

)

=

( bn/2c∏
m=0

m!

)( b(n−1)/2c∏
m=0

m!

)( b(n−1)/2c∏
m=0

√
m+ 1

)
.

We then apply Proposition 3.7.3 to compute

log
( n∏
k=0

φ(k)
)

= bn2 c
2
(

1
2 logbn2 c −

3
4

)
+ bn−1

2 c
2
(

1
2 logbn−1

2 c −
3
4

)
+ bn−1

2 c
(

logbn−1
2 c − 1

)
+O(n log n)

=
(
n
2

)2(1
2 log n

2 −
3
4

)
+
(
n
2

)2(1
2 log n

2 −
3
4

)
+O(n log n)

= 1
4n

2 log n− (3
8 + 1

4 log 2)n2 +O(n log n),

proving the first part. For the second, let m ∈ Z≥0 and x ∈ R≥0. Then

1

φ(2m)
+

x2

φ(2m+ 2)
=

1

m!

((
1− x√

m+ 1

)2
+

2x√
m+ 1

)
≥ 1

m!

2x√
m+ 1

= 2 · x

φ(2m+ 1)
,

from which the second part follows.

Recall the notation R[X]n from Definition 3.5.6, the subset of R[X] of
polynomials of degree strictly less than n.

Proposition 3.10.3. Write S = {f ∈ R[Y ] | ‖f‖e ≤ 1}. Then for n ∈ Z≥0

we have

log vol(S ∩ R[Y ]n) ≥ −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n).
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Proof. Consider φ as in Lemma 3.10.2 and define

T =
{ ∞∑
i=0

fiY
i ∈ R[Y ]

∣∣∣ (∀i) |fi| ≤ 1

2φ(i)

}
.

Then for all f ∈ T and z ∈ C we have using Lemma 3.10.2 that

|f(z)| ≤
∞∑
i=0

|fi| · |z|i ≤
∞∑
i=0

|z|i

2φ(i)

=
1

2

[ ∞∑
k=0

|z|2k

k!
+
∞∑
k=0

|z|2k+1

φ(2k + 1)

]

≤ 1

2

[ ∞∑
k=0

|z|2k

k!
+
∞∑
k=0

1

2

(
|z|2k

k!
+
|z|2k+2

(k + 1)!

)]

≤
∞∑
k=0

|z|2k

k!
= exp |z2|,

so f ∈ S and T ⊆ S. Then by Lemma 3.10.2 we have

log vol(T ∩ R[Y ]n) = −n log 2− log
( n−1∏
k=0

φ(k)
)

= −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n),

from which the proposition follows.

Proposition 3.10.3 is sufficient for our purposes. It may interest a reader
that the lower bound of Proposition 3.10.3 is actually an equality, which we
will show in the remainder of this section.

Theorem 3.10.4 (Brunn–Minkowski inequality, Theorem 4.1 in [16]). Let
n ∈ Z≥1 and let A,B ⊆ Rn be bounded non-empty measurable sets. Then
for all t ∈ [0, 1] such that

(1− t)A+ tB = {(1− t)a+ tb | a ∈ A, b ∈ B}

is measurable we have the inequality

vol((1− t)A+ tB)1/n ≥ (1− t)vol(A)1/n + tvol(B)1/n.

We will only apply this theorem to compact subsets of Rn, which are
indeed measurable and bounded. Moreover, for A,B ⊆ Rn compact and
t ∈ (0, 1) also the set (1− t)A+ tB is compact, hence measurable.
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Corollary 3.10.5. Let n ∈ Z≥0, let V ⊆ Rn be a subspace and let S ⊆ Rn
be a symmetric convex body. Then the map that sends x ∈ Rn to volV (V ∩
(S − x)) takes a maximum at 0.

Proof. Let x ∈ Rn and writem = dimV and Hx = V ∩(S−x). Ifm = 0 the
corollary holds trivially, so suppose m > 0. Note that H−x = −Hx since S
and V are symmetric. Because S and V are convex we have 1

2Hx+ 1
2H−x ⊆

H0. Hence by Theorem 3.10.4 we have

vol(H0)1/m ≥ vol(1
2Hx + 1

2H−x)1/m

≥ 1
2vol(Hx)1/m + 1

2vol(H−x)1/m

= vol(Hx)1/m,

from which the corollary follows.

Recall the definition of from Definition 2.5.1.

Corollary 3.10.6. Let n ∈ Z≥0, let U, V ⊆ Rn be subspaces such that
U V = Rn and write π for the projection U V → U . If S ⊆ Rn is a
symmetric convex body, then volRn(S) ≤ volU (πS) · volV (S ∩ V ).

Proof. By Corollary 3.10.5 we have

vol(S) =

∫
πS

volV (V ∩ (S − x)) dx

≤
∫
πS

volV (V ∩ S) dx

= volU (πS) · volV (V ∩ S).

Theorem 3.10.7. Write S = {f ∈ R[Y ] | ‖f‖e ≤ 1}. Then for n ∈ Z≥0 we
have

log vol(S ∩ R[Y ]n) = −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n).

Proof. We already proved a lower bound in Proposition 3.10.3, so it remains
to prove an upper bound. We will inductively show that

vol(S ∩ R[Y ]n) ≤ 2n
n−1∏
k=1

(2e
k

)k/2
.

It then follows from Proposition 3.7.3 that

log vol(S ∩ R[Y ]n) ≤ n log 2 +
1

2

n−1∑
k=1

k
(

log(2e)− log k)

= −1
4n

2 log n+ (3
8 + 1

4 log 2)n2 +O(n log n).
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For n = 0 and n = 1 the inequality certainly holds. Now suppose the in-
equality holds for n ≥ 1. Write R[Y ]n+1 = (RY n) R[Y ]n and let π : R[Y ]n+1

→ RY n be the projection map. By Corollary 3.10.6 it suffices to show for
n > 0 that vol(π(S ∩ R[Y ]n+1)) ≤ 2( n2e)−n/2. We do this by proving

π(S ∩ R[Y ]n+1)
(i)
⊆ S ∩ (RY n)

(ii)
⊆ [−1,+1]

(2e
n

)n/2
Y n.

(i) Suppose f ∈ R[Y ]n+1 and ‖f‖e < ‖π(f)‖e. Since π(f) is a monomial,
the function z 7→ |π(f)(z)| exp(−|z|2) takes its maximum on a circle of
radius say r. Then for all z on this circle we have

|f(z)| ≤ ‖f‖e exp(r2) < ‖π(f)‖e exp(r2) = |π(f)(z)|.

Hence by Rouché’s theorem (Theorem 4.18 in [1]), the polynomial f −
π(f) has as many roots as π(f) in the disk {z ∈ C | |z| ≤ r}, counting
multiplicities. However, since f − π(f) has degree at most n − 1 and π(f)
has n such roots, this is a contradiction. Hence ‖π(f)‖e ≤ ‖f‖e, from which
(i) follows.

(ii) Consider the map g : R≥0 → R≥0 given by x 7→ xn exp(−x2). Then

dg

dx
= xn−1(n− 2x2) exp(−x2) = 0 ⇐⇒ x = 0 ∨ x =

√
n/2.

Hence g takes a maximum at (n/2)1/2, so we conclude that ‖Y n‖e =
g((n/2)1/2) = ( n2e)n/2. Thus max{c ∈ R | cY n ∈ S} = (2e

n )n/2, as was to
be shown.

The theorem now follows by induction.

3.11 Proof of the main theorem

We are now ready to give a proof of Theorem 3.11.2.

Proposition 3.11.1. Let R be an order of a number field K, let α ∈ K
and 0 < r2 < 1

2 exp(1
2). Then there exists some non-zero f ∈ R[X] such

that f(X − α) is exponentially bounded at radius r.

Proof. Let n ∈ Z≥1 and d = [K : Q]. Write Y = X − α and consider
the real vector space KR[Y ]n, which we equip with an inner product as
in Definition 3.8.2 with respect to the variable Y . By Theorem 3.5.5 and
Lemma 3.8.4 the lattice R[X]n in KR[Y ]n is full rank and has determinant
det(R[Y ]n) = |det(R)|n = |∆(R)|n/2. For b ∈ R≥0 consider

Sn = {f ∈ KR[Y ]n | (∀σ ∈ X(K), z ∈ C) |σ(f)(z)| ≤ exp(bn(|z|2 − r2))}
= {f ∈ KR[Y ]n | (∀σ ∈ X(K)) ‖ exp(bnr2)σ(f)((bn)−1/2Y )‖e ≤ 1}.
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We have a natural orthogonal decomposition KR ∼= Ru×Cv for some u, v ∈
Z≥0 which in turn gives an orthogonal decomposition KR[Y ]n = (R[Y ]n)u×
(C[Y ]n)v. Note that Sn is simply a product over σ ∈ X(K) of

Sn(σ) = {f ∈ F[Y ]n | ‖ exp(bnr2) · σ(f)((bn)−1/2 · Y )‖e ≤ 1}

where F = R or F = C depending on whether σ(K) ⊆ R. Then using
Lemma 3.8.4 and Proposition 3.10.3 we compute

log vol(Sn) ≥ d
((
− 1

4n
2 log n+ (3

8 + 1
4 log 2)n2

)
+
(

1
4n

2 log(bn)− bn2r2
))

+O(n log n)

= dn2 · ε(b) +O(n log n),

with ε(b) = 1
4 log(2b) + 3

8 − r
2b. Choosing b = (2r)−2 we get ε(b) = 1

4(1
2 −

log(2r2)) > 0. Hence

log
( vol(Sn)

2dn · |∆(R)|n/2
)
≥ dn2 · ε(b) +O(n log n)→∞ (as n→∞).

Thus by Minkowski’s theorem there exists for n sufficiently large some non-
zero g ∈ Sn ∩ R[X]. Because g ∈ Sn, this polynomial is exponentially
bounded at radius r by Theorem 3.9.6.

Theorem 3.11.2. Suppose r ∈ R and α ∈ Q. If r < 4
√

e/4, then there exist
only finitely many β ∈ Z such that ‖α− β‖ < r.

Proof. Let γ = α/2, let K = Q(γ) and let R be some order in K. Choose
r ∈ R>0 such that ‖γ‖ < r < 4

√
e/4. Then by Proposition 3.11.1 there

exists some non-zero polynomial f ∈ R[X] which as polynomial in Y =
X − γ is exponentially bounded at radius r. Hence by Proposition 3.9.3 all
(β, α−β) ∈ dec(α) satisfy f(β) = 0. As f has only finitely many roots, the
theorem follows.

From the proof of Theorem 3.11.2 one easily derives the following result.

Proposition 3.11.3. There exists an algorithm that, given some r ∈ R∩Q
and α ∈ Q, decides whether r < 4

√
e/4 and if so computes all β ∈ Z such

that ‖α− β‖ ≤ r, each represented by their minimal polynomial over Q(α).

Proof. Clearly r 6= 4
√

e/4 as the latter is not algebraic. However, both are
computable, and after finitely many steps of approximation we can decide
whether r < 4

√
e/4. We have an explicit formula for a lower bound on the

volume of the set S as defined in the proof of Proposition 3.10.3. So moreover
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we can compute a sufficiently large n such that Minkowski’s theorem, as in
the proof of Proposition 3.11.1, guarantees the existence of a non-zero lattice
point in S. We may then simply enumerate all lattice points to eventually
find a polynomial f as in Proposition 3.11.1. We determine using [31] the
monic irreducible factors of f and decide which factors g have a root β
satisfying ‖α− β‖ ≤ r.

Corollary 3.11.4. There is an algorithm that takes as input an element
α ∈ Z given by its minimal polynomial, and decides whether ‖α‖ < 4

√
4e

and if so, computes all non-trivial (β, γ) ∈ dec(α), each represented by the
minimal polynomial of β over Q(α).

Proof. We apply Proposition 3.11.3 with α/2 in the place of α and ‖α/2‖
in the place of r. By Lemma 2.4.3 each β found gives a decomposition
(β, α− β). Note that we can filter out the trivial decompositions.

3.12 Remarks on the proof of the main theorem

In this section we briefly discuss the proof of Theorem 3.11.2 and make
some practical remarks for explicit computation.

The proof of Theorem 3.11.2 proceeds in the following steps:
1. We determine a sufficient condition for a polynomial to have all lattice

points close to α as roots.
2. We translate this condition into an analytic one.
3. We determine the volume of a symmetric convex set of polynomials

satisfying this condition.
4. We apply Minkowski’s convex body theorem to find integral polyno-

mials in this set.
Theorem 3.9.6 suggests that step (2) can hardly be improved upon. By
Theorem 3.10.7 we correctly computed the volume of our symmetric convex
set in step (3). However, in order to make it convex we fixed the constant a
that comes out of Theorem 3.9.6. It is easy to verify that we indeed made an
optimal choice of a in Proposition 3.11.1, although that does not guarantee
we chose the best convex subset. If the weakest link in the proof is step
(4), we likely require a completely different approach. It should be noted
however that Minkowski’s convex body theorem is powerful enough to prove
the classical Theorem 3.8.6.

One could also ask for stronger results in the case we are only interested
in decompositions of lattice points, i.e. when α ∈ 1

2Z. A piece of information
we can exploit is the following symmetry: For all α ∈ Z we have an involution
x 7→ α− x on Z which induces action on dec(α), given by (β, γ) 7→ (γ, β).
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Lemma 3.12.1. Let α ∈ Z and let Z[α] ⊆ R be an order of Q(α). For all
f ∈ R[X] such that f(β) = 0 for all (β, γ) ∈ dec(α), also g = f(α −X) ∈
R[X] satisfies g(β) = 0 for all (β, γ) ∈ dec(α).

Lemma 3.12.1 turns the involution on Z into an R-algebra automor-
phism on R[X]. We can incorporate this automorphism in our proof of
Theorem 3.11.2.

Proposition 3.12.2. Let α ∈ Z, let Z[α] ⊆ R be an order of K = Q(α) and
let r ∈ R>0. For all f ∈ R[X] such that f as a polynomial in Y = X − α/2
is exponentially bounded at radius r, so is f(X) · f(α−X) ∈ K[Y 2].

Proof. Note that the involution X 7→ α −X is with respect to Y given by
Y 7→ −Y . Hence if f as a polynomial in Y is exponentially bounded at radius
r, then so is f(α −X). As noted in Example 3.9.4, the set of polynomials
exponentially bounded at r is closed under multiplication. Hence g = f(X) ·
f(α − X) is exponentially bounded at radius r. Now g is invariant under
Y 7→ −Y , meaning all coefficients at odd degree monomials in Y are zero,
i.e. g ∈ K[Y 2].

An interesting question to ask is how dissimilar f and f(α − X) can
be for exponentially bounded f . Certainly both should have β as root for
all (β, γ) ∈ dec(α) by Lemma 3.12.1. In the context of finding ‘small’ f
algorithmically it seems that often f and f(α − X) are the same (up to
sign).

As a consequence of Proposition 3.12.2, when proving a specialization
of Theorem 3.11.2 to α ∈ 1

2Z we may look at the lattice R[X(α − X)] in
KR[Y 2] instead of R[X] inKR[Y ]. The effect is two-fold. Firstly, it simplifies
the volume computation of Proposition 3.10.3, as we no longer require the
ad-hoc function φ from Lemma 3.10.2. Secondly, any integral polynomial in
our symmetric body can be found in a lower dimensional lattice in Proposi-
tion 3.11.1. This follows from the suggested changes to Proposition 3.10.3,
but can heuristically be seen as follows. If f is a solution in the original lat-
tice R[X], then f(X) ·f(α−X) is a solution in our new lattice R[X(α−X)]
at the same dimension. However, as discussed before, f is likely to be an
element of R[X(α −X)] anyway, and if so we would have found f at half
the dimension in R[X(α −X)]. Neither of these changes have an effect on
the quality of our theoretical results. However, when we want to compute
decompositions in practice, the latter ‘dimension reduction’ is very useful.
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3.13 Computational example

We will now work out an example proving an algebraic integer α is inde-
composable.

Showing that α is indecomposable will be trivial when ‖α‖ ≤
√

2 as we
have seen in Proposition 3.3.1, so we will choose α such that ‖α‖ >

√
2 ≈

1.414. On the other hand, the algorithm from Proposition 3.11.3 terminates
faster the smaller ‖α‖ is, so for this example we will consider α = 3

√
3 with

‖α‖ = 31/3 ≈ 1.442.
Setup. Let α = 3

√
3 and let r2 = 6/11, so that ‖α/2‖ < r < 4

√
e/4.

Write K = Q(α) and R = Z[α] and consider the ring R[X]. Writing Y =
X−α/2, we are looking for a polynomial f ∈ R[X] such that f as polynomial
in Y is exponentially bounded at radius r. However, writing Z = X(α −
X) we may instead look for such a polynomial in R[Z], as follows from
Lemma 3.12.1.

Finding a polynomial. It is quite involved to systematically find short
vectors in a lattice. Instead we will employ a more ad-hoc approach, more
along the lines of Theorem 3.6.6. We guess that our polynomial f will be
monic in Z of some degree n. We start with Zn and then greedily subtract
Z[α]-multiples of lower degree powers of Z such that the resulting polyno-
mial in Y becomes ‘small’, i.e. has small coefficients under every embedding
K → C with lower degree terms weighing more heavily. Effectively, we are
applying a rounding function in the sense of Definition 3.6.3. Note that
Z = −Y 2 + α2/4. Similarly as in the proof of Theorem 3.6.6, taking n = 4
the Y 6 term becomes integral, which is useful. Thus we will try n = 4. We
compute:

Z4 = Y 8 −α2Y 6 +9
8αY

4 − 9
16Y

2 + 9
256α

2

α2Z3 = −α2Y 6 +9
4αY

4 −27
16Y

2 + 9
64α

2

Z4 −α2Z3 = Y 8 −9
8αY

4 +9
8Y

2 − 27
256α

2

−αZ2 = −αY 4 +3
2Y

2 − 3
16α

2

Z4 −α2Z3 +αZ2 = Y 8 −1
8αY

4 −3
8Y

2 + 21
256α

2

The remaining coefficients with respect to Y look pretty small in every
embedding K → C, so we guess

f(Y ) = Y 8 − 1
8αY

4 − 3
8Y

2 + 21
256α

2 = Z4 − α2Z3 + αZ2 ∈ R[Z].

is going to be exponentially bounded at radius r as polynomial in Y .
Proving exponentially boundedness. If we take b : R≥0 → R≥0

given by
b(w) = w4 + 1

8 · 3
1/3 · w2 + 3

8 · w + 21
256 · 3

2/3,
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then for all σ ∈ X(K) and z ∈ C we have |σ(f)(z)| ≤ b(|z|2). To prove that
f is exponentially bounded at radius r it suffices to find a ∈ R such that
b(w) ≤ exp(a(w − r2)) for all w ∈ R≥0. Because b(0) = 21

25632/3, we must
have a ≤ − log(b(0))/r2 ≈ 3.4. We will try a = 3 for simplicity. Consider
the function B(w) = b(w) · exp(−a(w − r2)), for which we want to show
B(w) ≤ 1 for all w. Then

0 = B′(w) = exp(−a(w − r2))(b′(w)− ab(w))

if and only if ab(w) − b′(w) = 0. Since the latter is simply a polynomial
equation we will find using standard techniques that it has no positive real
roots. We compute:

ab(w)− b′(w) = 3w4 − 4w3 + 3
831/3w2 + (9

8 −
1
431/3)w + ( 63

25632/3 − 3
8)

> 3w4 − 4w3 + 3
5w

2 + 3
4w + 1

4 .

For 1 ≤ w we get ab(w)− b′(w) > 3w4− 4w3 + 3
2 = w2(31/2w− 2 · 3−1/2)2 +

(3
2−

4
3w

2) ≥ 0 and for 0 < w ≤ 1 we get ab(w)−b′(w) > 3w4−4w3 + 3
2w

2 =

3w2(w2 − 4
3w + 1

2) ≥ 3w2(w − 2−1/2)2 ≥ 0. Hence B has no local maxima
besides possibly at 0, and because B(w) → 0 as w → ∞ we conclude that
B takes a maximum at 0. Therefore b is bounded by w 7→ exp(a(w − r2))
and thus f is exponentially bounded at radius r.

Finding decompositions. Writing f as a polynomial in X we get

f = X8 − 4αX7 + 7α2X6 − 21X5 + 13αX4 − 5α2X3 + 3X2

= X2 · (α−X)2 · (X4 − 2αX3 + 2α2X2 − 3X + α).

By Proposition 3.9.3 all decompositions of α can be found among the roots
of f . The factors X and α − X correspond to the trivial decompositions
(0, α) and (α, 0) of α. The polynomial h = X4−2αX3 +2α2X2−3X+α is
irreducible as it is Eisenstein at the prime (α). Let β ∈ Z be a root of h. By
Lemma 3.2.8 we have ‖β‖ ≥ N(β) = N(h(0)) = 31/3 = ‖α‖. We can only
have ‖β‖2 +‖α−β‖2 ≤ ‖α‖2 if ‖α−β‖ = 0, i.e. α = β, which is impossible.
Hence α is indecomposable by Lemma 2.4.3.

3.14 Enumeration of degree-3 indecomposables

In this section we discuss our attempt to compute the indecomposable al-
gebraic integers of degree 3 and derive Theorem 3.14.1. We will refer to
tables of computational results, which can be found in the appendix, and
are obtained by a computer program [19] written in Sage [41].
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We will write fα ∈ Z[x] for the minimal polynomial of α ∈ Z. We will
consider α up to ‘trivial isometries’ of Z, namely those of µ∞oGal(Q) as in
Lemma 3.2.13. Using Proposition 3.7.1 we compute a set of 5525 polynomi-
als among which we can find all minimal polynomials of the indecomposable
algebraic integers of degree 3. Among those 5525 polynomials f only 700 are
in fact irreducible with q(α) ≤ 4 for all roots α of f . We already eliminated
the Galois action by considering minimal polynomials instead of elements,
and by choosing only one element of each µ∞-orbit {f,−f(−x)} we elim-
inate the action of µ∞, and end up with ‘only’ 350 polynomials to check.
Of those 350, there are 27 polynomials fα such that q(α) < 2, so that α is
indecomposable by Proposition 3.3.1.

Small degree decompositions. For 95 polynomials f , the roots α of
f have a non-trivial decomposition in the ring of integers of Q(α). For 116
of the remaining polynomials fα we can find a non-trivial decomposition
(β, α − β) of α with β in the ring of integers of a degree 2 extension of
Q(α). Of those 116 there are 84 for which the minimal polynomial gβ of β
over Q(α) is of the form x2 − αx ± 1, a polynomial we encountered in the
proof of Lemma 3.4.2. The remaining 32 polynomials and corresponding de-
compositions can be found in Table 1. We are now left with 112 polynomials
to check.

Large degree decompositions. To find decompositions in higher de-
gree extensions we implemented a lattice algorithm. Since we are interested
in finding only one decomposition instead of all of them, and since verifying
whether something is a decomposition is computationally easy, we can get
away with a lot of heuristics. For (β, α−β) ∈ dec(α) we have, on average of
squares over all embeddings of Q(α, β) in C, that |β−α/2| ≤

√
q(α/2) = r

by Lemma 2.4.3. Hence if we write gβ =
∑

i ci(x − α/2)i we have that∑
i |ci|ri should be small. It is useful for our lattice algorithm to instead

consider the 2-norm (
∑

i r
i
∑

σ |σ(ci)|2)1/2 and hope this does not affect
the quality of our results for the worse. We enumerate small polynomials
ε ∈ Q(α)[x] of degree less than d ∈ Z>0 such that (x − α/2)d − xd + ε is
in the lattice of integral polynomials, and thus (x − α/2)d + ε is monic,
integral and small. We then verify for each of those whether they induce
a decomposition of α. The 41 polynomials fα for which this method has
found a non-trivial decomposition (β, α− β) of α with gβ of degree greater
than 2 are listed in Table 2 together with the polynomial gβ found. This
leaves 71 polynomials to check and gives an upper bound of 6 · 98 = 588 on
the number of indecomposable algebraic integers of degree 3.

Indecomposables. On the other hand, we want to prove that certain α
are indecomposable. To this end, we implemented a lattice algorithm similar
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to that of Proposition 3.11.3. To hopefully speed up the algorithm we also
apply the dimension reducing symmetry trick discussed from Lemma 3.12.1.
Writing R for the ring of integers of Q(α) and z = x(α− x), we enumerate
short g ∈ R[z] for which we verify whether g as polynomial in y = x− α/2
is exponentially bounded. The 32 polynomials fα for which we found such
a g proving indecomposability of α are listed in Table 3. We present g in
factored form for compactness. This leaves 39 polynomials undetermined
and gives a lower bound of 6 · 59 = 354 on the number of indecomposable
algebraic integers of degree 3.

Theorem 3.14.1. There are exactly 2 indecomposable algebraic integers of
degree 1, there are exactly 14 of degree 2, and there are at least 354 and at
most 588 of degree 3.

Proof. The degree 1 case is obvious: 1 and −1 are the only indecomposable
integers. The degree 2 case is Theorem 3.4.3. The bounds for degree 3 are
the result of the computation in this section.
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Graded rings
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4.1 Introduction

This chapter contains parts of [18] and [35], the authors of which include
H.W. Lenstra and A. Silverberg.

Let R be a ring. A grading of R is a decomposition R = {Rγ}γ∈Γ of R
as a Z-module such that Γ is an abelian group and for all γ, δ ∈ Γ we have
Rγ ·Rδ ⊆ Rγδ. We will refer to Γ as the group ofR. We equip the collection of
gradings of R with a category structure as we do for module decompositions
(see Preliminaries), where the morphisms {Rγ}γ∈Γ → {Sδ}δ∈∆ are group
homomorphisms f : Γ→ ∆ so that Sδ =

∑
γ∈f−1δ Rγ for all δ ∈ ∆.

By a theorem of Lenstra and Silverberg, every reduced order has a uni-
versal grading [34], see Definition 4.2.1. It proceeds by showing every re-
duced order has a lattice structure and thus a universal orthogonal decom-
position (Theorem 2.5.3), and that every grading is in fact an orthogonal
decomposition of this lattice. We will generalize their results to subrings of
Z.

Theorem 4.3.5. Every subring of Z has a universal grading with a count-
able abelian torsion group, and every countable abelian torsion group occurs.

Theorem 4.3.5 neither implies the results of Lenstra and Silverberg nor
vice versa. In Example 4.7.7 we exhibit an obstruction to a common gener-
alization.

For integrally closed subrings of Z we determine precisely which groups
occur as the group of their universal grading. For Z it turns out to be the
trivial group.

Theorem 4.4.3. The universal orthogonal decomposition and the universal
grading of Z are both trivial.

Theorem 4.5.3. Every integrally closed subring of Z has a universal grad-
ing with a subgroup of Q/Z, and every subgroup occurs.

In [17] we give an algebraic proof of the existence of a universal grading
that applies to a broader class of rings than that of reduced orders. The
following theorem is a similar generalization to Theorem 1.5 in [34]. We say
an element x ∈ R is homogeneous in a grading {Rγ}γ∈Γ of R if there exists
a unique γ ∈ Γ such that x ∈ Rγ .

Theorem 4.6.6. Let R be a commutative ring with a grading R = {Rγ}γ∈Γ

where Γ is a torsion group. Suppose for every prime p such that Γ has an
element of order p, in the ring R both p and 1+px are regular for all x ∈ R.
Then:

1. The ideal nil(R) is homogeneous, i.e. nil(R) =
∑

γ∈Γ(nil(R) ∩Rγ);
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2. The idempotents of R are in R1;
3. If R is connected, then the elements of µ(R) are homogeneous.

In [17] we give an algorithm to compute the universal grading of a re-
duced order. We will show that in a special case we can do this computation
in polynomial time. We write α(R) for the set of x ∈ R for which there ex-
ists some n ≥ 1 such that xn+1 = x. This set includes the idempotents and
roots of unity of R.

Theorem 4.7.13. There exists a polynomial-time algorithm that, given an
order R, decides whether α(R) generates R as a group and if so computes
the universal grading of R.

4.2 Definitions and basic properties

In this section k will be a commutative ring.

Definition 4.2.1. Let R be a k-algebra. A grading of R is a decomposition
{Rγ}γ∈Γ of R as a k-module such that Γ is an abelian group and for all
γ, δ ∈ Γ we have Rγ ·Rδ ⊆ Rγδ. For gradingsR = {Rγ}γ∈Γ and S = {Sδ}δ∈∆

of R, a morphism R → S of gradings is a morphism of decompositions for
which the underlying map Γ→ ∆ is a group homomorphism. A grading R
of R is universal if for every grading S of R there exists a unique morphism
R → S. We say an element x ∈ R is homogeneous in a grading {Rγ}γ∈Γ of
R if there exists a unique γ ∈ Γ such that x ∈ Rγ .

Lemma 4.2.2 (Lemma 2.1.1 in [34]). If {Rγ}γ∈Γ is a grading of a k-algebra,
then 1 ∈ R1.

Example 4.2.3. Let R be a k-algebra. Then R has a trivial grading {R}
with the trivial group. We may naturally grade R[X] with {Rn}n∈Z, where
Rn = RXn for n ≥ 0 and Rn = 0 otherwise. The ring Mat2(R) of 2 × 2-
matrices with coefficients in R admits a grading with the summands

{(
a 0
0 d

)
:

a, d ∈ R
}
and

{(
0 b
c 0

)
: b, c ∈ R

}
. Similarly Q2 can be graded with a group

of order 2 and summands Q · (1, 1) and Q · (1,−1).

Lemma 4.2.4. Suppose R = {Rγ}γ∈Γ is a grading of a k-algebra R and
let Γ′ = 〈γ ∈ Γ | Rγ 6= 0〉. Then:

1. We have that R′ = {Rγ}γ∈Γ′ is a grading of R.
2. The inclusion i : Γ′ → Γ is a morphism R′ → R of gradings.
3. If S is a grading of R and there exists a morphism f : R → S, then

there exists a unique morphism f ′ : R′ → S. It equals f ◦ i.
4. If there exists a morphism from R′ to a universal grading, then R′ is

universal.
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5. If R is universal, then Γ = Γ′.

Proof. Both 1 and 2 are trivial. For 3, clearly f ◦ i is such a morphism. For
uniqueness, it follows from the definitions that f ′ must equal f for all γ ∈ Γ
such that Rγ 6= 0, and such γ generate Γ′. For 4, we have a map from R′
to any other grading by passing through the universal grading, and such a
map is unique by 3. For 5, if R is universal, then so is R′ by 2 and 4, and
then i is a bijection because universal objects are uniquely unique.

Lemma 4.2.5. Let S and T be k-algebras and let π : S × T → S be the
natural projection.

1. Let R = {Rγ}γ∈Γ be a grading of S × T such that (1, 0) is homoge-
neous. Then πR := {π(Rγ)}γ∈Γ is a grading of S.

2. If S = {Sδ}δ∈∆ and T = {Tε}ε∈E are gradings of S and T respectively,
then S × T := {R(δ,ε)}(δ,ε)∈∆×E with

R(δ,ε) =


S1 × T1 if δ = ε = 1

Sδ × 0 if δ 6= 1 and ε = 1

0 × Tε if δ = 1 and ε 6= 1

0 × 0 otherwise

is a grading of S × T .

Note that by Theorem 1.5.ii in [34] the condition that (1, 0) be homo-
geneous is automatically satisfied when S and T are orders. We will show
in Theorem 4.6.6 that this is even true for a broader class of rings.

Proof. One easily verifies that if πR and S × T are decompositions, then
they are also gradings. It is clear that S × T is a decomposition, so this
remains to be shown for πR.

Note that S =
∑

γ∈Γ π(Rγ). We identify S with S × 0 ⊆ R, so that
π(Rγ) = (1, 0) ·Rγ . As (1, 0) ∈ R1, we find π(Rγ) ⊆ Rγ . Hence the sum of
the π(Rγ) is a direct sum, and thus πR is a decomposition.

Proposition 4.2.6. Let S and T be k-algebras, write R = S × T and let
π : R → S be the natural projection. Suppose that (1, 0) is homogeneous in
every grading of R. Then:

1. If R = {Rγ}γ∈Γ is a universal grading of S × T , then {π(Rγ)}γ∈Γ′

with Γ′ = 〈γ ∈ Γ | π(Rγ) 6= 0〉 is a universal grading of S.
2. If S and T are universal gradings of S and T respectively, then with

the notation as in Lemma 4.2.5 the grading S × T is universal.
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Proof. 1. From Lemma 4.2.5.1 and Lemma 4.2.4.1 we conclude that RS =
{π(Rγ)}γ∈Γ′ is a grading of S. Let S = {Sδ}δ∈∆ be a grading of S and let T
be the trivial grading of T . Then S ×T is a grading of R, so by universality
there exists a morphism f : Γ → ∆ × 1 that maps R to S × T . It is easy
to see the induced map f ′ : Γ′ → ∆ sends RS to S. By Lemma 4.2.4.3 this
map is unique, so RS is universal.

2. SupposeR = {Rγ}γ∈Γ is a grading of R and let ∆ and E be the groups
of S and T respectively. Again πR is a grading of S by Lemma 4.2.5.1
and analogously (1 − π)R is a grading of T . Universality gives morphisms
f : ∆→ Γ and g : E→ Γ that respectively map S to πR and T to (1−π)R.
LetR′ = {R′γ}γ∈Γ be the image of S×T under the induced map ∆×E→ Γ.
One easily verifies that πR = πR′. From Lemma 4.2.2 we obtain that
(0, 1) is also homogeneous, so analogously (1 − π)R = (1 − π)R′. Then
Rγ = π(Rγ)+(1−π)(Rγ) = π(R′γ)+(1−π)(R′γ) = R′γ for all γ ∈ Γ. Hence
R = R′ and indeed there exists a map S×T → R. That it is unique follows
from Lemma 4.2.4.3 and Lemma 4.2.4.5 together with the observation that
∆× E is generated by the coordinates where S × T is non-zero.

Example 4.2.7. The conclusion to Proposition 4.2.6 becomes false when
we drop the assumption that (1, 0) be homogeneous in R.

As in Example 4.2.3 the decomposition {Q · (1, 1),Q · (1,−1)} of Q2

gives a grading R with a group of order 2. However, the projection of R
to the first factor of Q2 is not a decomposition, let alone a grading, of S.
Hence 1 becomes false. For 2, note that the trivial decompositions of Q are
universal, while the product of two such trivial decompositions does not give
a universal grading of Q2. Namely, the product of trivial decompositions is
trivial, while a non-trivial grading R of Q2 exists.

Lemma 4.2.8. Suppose R is an commutative k-algebra that is a domain
and integral over the image of k in R. If {Rγ}γ∈Γ is a grading of R, then
Γ′ = {γ ∈ Γ |Rγ 6= 0} is a torsion subgroup of Γ.

Proof. Since 0 is the only zero-divisor in R, we have for γ, δ ∈ Γ′ that
0 ( RγRδ ⊆ Rγδ, so γδ ∈ Γ′. For γ ∈ Γ′ and x ∈ Rγ non-zero we have
xn =

∑n−1
i=0 aix

i for some n ∈ Z≥1 and ai ∈ k, so 0 6= xn ∈ Rγn ∩
∑n−1

i=0 Rγi .
Hence γn = γi for some 0 ≤ i < n, so the order of γ is finite and Γ′ is a
torsion group.

4.3 Universal gradings

In this section we generalize the result of Lenstra and Silverberg [34] that
reduced orders have universal gradings to subrings of Z. Recall that Z is a
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Hilbert lattice; see Theorem 3.2.10.

Lemma 4.3.1. Suppose R ⊆ Z is a subring and {Rγ}γ∈Γ is a grading of
R. Then for all δ, ε ∈ Γ distinct we have 〈Rδ, Rε〉 = 0.

Proof. Let x ∈ Rδ and y ∈ Rε. With Sγ = Rγ∩Z[x, y] we have an order S =⊕
γ∈Γ Sγ with grading {Sγ}γ . Note that our inner product on Z restricted to

S differs from the inner product defined on S in [34] by a factor equal to the
rank of S. Then by Proposition 5.8 in [34] we have that 〈x, y〉 ∈ 〈Sδ, Sε〉 = 0.
Hence 〈Rδ, Rε〉 = 0.

Proposition 4.3.2. Every subring of Z has a universal grading.

Proof. Let R be a subring of Z, which is also a sublattice of Z. Let U =
{Ui}i∈I be a universal decomposition of the lattice R, which exists by The-
orem 2.5.3. We obtain this decomposition by starting with the graph G on
the vertex set indec(R) with an edge between x, y ∈ indec(R) if and only if
〈x, y〉 6= 0, then taking I to be the set of connected components of G and
Ui the group generated by i ∈ I. For u =

∑
i ui ∈ R with ui ∈ Ui write

supp(u) = {i ∈ I |ui 6= 0}. Now consider the free abelian group Z(I) and
let Γ be the group obtained from it by dividing out

N = 〈i+ j − k | i, j ∈ I, k ∈ supp(Ui · Uj)〉.

We have an induced map f : I → Z(I) → Γ which induces a decomposition
f(U) = {Rγ}γ∈Γ of R, which is also a grading. We claim that it is universal.

Let {Sδ}δ∈∆ be a grading of R. Then by Lemma 4.3.1 this is also an
orthogonal decomposition of the lattice R. By universality there exists a
map α : I → ∆ such that α(U) = {Sδ}δ∈∆. This map factor through the
group homomorphism Z(I) → ∆, and we see that N is in the kernel. The
induced map a : Γ → ∆ sends {Rγ}γ∈Γ to {Sδ}δ∈∆. Such a map is neces-
sarily unique: For all γ ∈ Γ we have 0 6= Rγ ⊆ Sa(γ), so b(γ) = a(γ) for any
morphism b : Γ→ ∆ of decompositions.

Lemma 4.3.3. Suppose R ⊆ Z is a subring and {Rγ}γ∈Γ is a grading of
R. If the universal grading of R1 is trivial and Rγ 6= 0 for all γ ∈ Γ, then
{Rγ}γ∈Γ is universal.

Proof. Suppose {Sδ}δ∈∆ is a universal grading of R, which exists by Propo-
sition 4.3.2, and let f : ∆ → Γ be the map given by universality. Then
R1 =

⊕
δ∈ker(f) Sδ, which is a grading of R1. Since the universal grading of

R1 is trivial, it follows that R1 = S1. By Lemma 4.2.8 we have Sδ 6= 0 for
all δ ∈ ker(f), so it follows that ker(f) = 1 and that f is injective. From
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the fact that Rγ 6= 0 for all γ ∈ G it follows that f must be surjective. Thus
f is an isomorphism of gradings and {Rγ}γ∈Γ is universal.

Example 4.3.4. Every countable abelian torsion group occurs as the group
of a universal grading of a subring of Z. Note that such a group is a subgroup
of Ω =

⊕
p∈P(Q/Z), where P is some countably infinite set. We choose P

to be the set of positive prime numbers. Fixing some embedding Z → C
we have a well-defined x-th power of p in Q ∩ R>0 for all x ∈ Q. Let
[·] : Q/Z → [0, 1) ∩ Q be the (bijective) map that assigns to each class
its smallest non-negative representative. It is then easy to verify that R =
Z[px | p ∈ P, x ∈ Q≥0] ⊆ Z has a grading {R(xp)p}(xp)p∈Ω with

R(xp)p =
( ∏
p∈P

p[xp]
)
· Z.

In turn any subgroup Γ ⊆ Ω gives a grading {Rγ}γ∈Γ of the subring⊕
γ∈ΓRγ ⊆ R. This grading is universal by Lemma 4.3.3, as R1 = Z.

Theorem 4.3.5. Every subring of Z has a universal grading with a count-
able abelian torsion group, and every countable abelian torsion group occurs.

Proof. By Proposition 4.3.2 a universal grading {Rγ}γ∈Γ exists. By Lem-
ma 4.2.4.5 and Lemma 4.2.8 the group Γ = {γ ∈ Γ : Rγ 6= 0} is a torsion
group, which is countable by countability of Z. In Example 4.3.4 we show
all such groups occur.

4.4 Decompositions of the lattice of algebraic
integers

In this section we will show that Z is indecomposable as a Hilbert lattice.
The following lemma is a standard result from linear algebra.

Lemma 4.4.1. Let V be a vector space over an infinite field and let S be a
finite set of subspaces of V . If

⋃
U∈S U = V , then V ∈ S.

Proposition 4.4.2. Let S ⊆ Z with S finite and 0 6∈ S. Then there exist
α ∈ indec(Z) such that 〈α, β〉 6= 0 for all β ∈ S.

Proof. Let K be the field generated by S and fix 1 < r <
√

2.
We will construct an element u ∈ OK such that 0 6∈ 〈u, S〉 and |σ(u)| > r

for all σ ∈ X(K). For x ∈ K write x⊥ = {y ∈ K | 〈x, y〉 = 0}, which
is a proper Q-vector subspace of K when x 6= 0 because x 6∈ x⊥. Hence⋃
x∈S x

⊥ 6= K by Lemma 4.4.1, so there exists some non-zero u ∈ K such
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that 0 6∈ 〈u, S〉. By scaling u by some non-zero integer we may assume u ∈ Z
as well. By further scaling u with integers we may assume |σ(u)| > r for all
σ ∈ X(K), as was to be shown.

As |σ(u)| > r for all σ ∈ X(K) we have N(u) > r > 1, where N is as
in Definition 3.2.3, so u is not a unit. Let p ⊆ OK be a prime containing u
and let v ∈ p \ p2. Let fn = Xn − uXn−1 − v ∈ OK [X] for n ≥ 2 and note
that it is Eisenstein at p and therefore irreducible. Let αn ∈ Z be a root of
fn. It suffices to show that for n sufficiently large αn is indecomposable and
satisfies 0 6∈ 〈αn, S〉. By Lemma 3.3.4 and by construction of u it holds for
any n ≥ 2 that

〈αn, S〉 =
〈TrK(αn)/K(αn), S〉

[K(αn) : K]
=

〈u, S〉
[K(αn) : K]

63 0,

so it remains to be shown that αn is indecomposable for n sufficiently large.
Let D ⊆ C be the closed disk of radius r around 0. Let n be sufficiently

large such that we have |σ(v)| · r1−n < |σ(u)| − r for all σ ∈ X(K). Fix
σ ∈ X(K). For all x on the boundary of D we have

|xn − σ(v)| ≤ rn + |σ(v)| = rn−1(r + |σ(v)| · r1−n)

< |σ(u)| · rn−1 = |σ(u) · xn−1|.

Hence by Rouché’s Theorem (Theorem 4.18 in [1]) the analytic functions
σ(u)Xn−1 and σ(fn) = (Xn − σ(v))− σ(u)Xn−1 have the same number of
zeros in D, counting multiplicities, which for σ(u)Xn−1 clearly is n−1. For
the remaining zero xσ,n ∈ C of σ(fn) with |xσ,n| > r we have xn−1

σ,n (xσ,n −
σ(u)) = σ(v) and thus

|xσ,n − σ(u)| = |σ(v)| · |xσ,n|1−n < |σ(v)| · r1−n → 0 (as n→∞),

i.e. limn→∞ xσ,n = σ(u). Now summing over all σ ∈ X(K) we get

q(αn) =
1

n · [K : Q]

∑
σ∈X(K)

∑
ρ∈Xσ(K(αn))

|ρ(αn)|2

≤ 1

n · [K : Q]

∑
σ∈X(K)

(
(n− 1)r2 + |xσ,n|2

)
≤ r2 +

1

n · [K : Q]

∑
σ∈X(K)

|xσ,n|2 → r2 (as n→∞).

Because r2 < 2 we have for sufficiently large n that q(αn) < 2. From
Proposition 3.3.1 we may then conclude that αn is indecomposable, as was
to be shown.
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Theorem 4.4.3. The universal orthogonal decomposition and the universal
grading of Z are both trivial.

Proof. Let β, γ ∈ indec(Z). Then there exists some α ∈ indec(Z) such
that 〈α, β〉 6= 0 6= 〈α, γ〉 by Proposition 4.4.2. Hence α, β and γ must be
in the same connected component of the graph of Theorem 2.5.3. As this
holds for all β and γ the graph is connected and hence Z is orthogonally
indecomposable. Equivalently, the universal orthogonal decomposition is
trivial. It follows then from Lemma 4.3.1 and Lemma 4.2.8 that the universal
grading of Z is also trivial.

4.5 Integrally closed orders

In this section we study the universal gradings of integrally closed subrings
of Z.

Example 4.5.1. We will show that every subgroup of Q/Z occurs as the
group of a universal grading of an integrally closed subring of Z. Let µ =
µ(Z) and µp = µp(Z) be as in the Preliminaries. For a prime number p write

µp∞ = {ζ ∈ µ | (∃n ∈ Z≥0) ζp
n

= 1} and
µ0 = {ζ ∈ µ | (∃n square-free) ζn = 1}.

The map ζ 7→ ζp gives an isomorphism µp∞/µp → µp∞ . Taking the direct
sum over all p we get an isomorphism µ/µ0 → µ. Thus it suffices to show
that for every µ0 ⊆ M ⊆ µ the group Γ = M/µ0 occurs as a universal
grading group.

Consider R = Z[M], the smallest subring of Z containing M, which is
integrally closed. Define Rζ·µ0 = ζ ·Z[µ0] for all ζ ·µ0 ∈ M/µ0 and note that
this gives a grading {Rγ}γ∈Γ of R. To prove this is a universal grading it
suffices by Lemma 4.3.3 to show that the universal grading of Z[µ0] is trivial,
or in turn, by Lemma 4.3.1, that Z[µ0] is indecomposable. The elements of µ0

are indecomposable in Z[µ0] because they are so in Z by Proposition 3.3.1,
and they generate Z[µ0] as an additive group. From Proposition 3.3.5 we
may conclude that no pair ζ, ξ ∈ µ0 is orthogonal, so from Theorem 2.5.3
it follows that Z[µ0] is indecomposable. Hence the grading is universal.

Lemma 4.5.2. Suppose R ⊆ Z is a subring and {Rγ}γ∈Γ is a grading of R.
If K = Q(A) for some subset A ⊆

⋃
γ∈ΓRγ, then {Rγ ∩K}γ∈Γ is a grading

of R ∩K.

Proof. It is clear that {Rγ ∩ K}γ∈Γ is a grading of R ∩ K once we show⊕
γ(Rγ∩K) = R∩K. For this it remains to show that R∩K ⊆

∑
γ(Rγ∩K).
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Let x ∈ R ∩ K. As x ∈ R we may uniquely write x =
∑

γ xγ for some
xγ ∈ Rγ . Without loss of generality A is closed under multiplication, so
that A generates K as a Q-vector space. Then we may write x =

∑
a∈A raa

for some ra ∈ Q which are almost all equal to zero. Hence a positive integer
multiple nx of x satisfies

∑
γ nxγ = nx =

∑
a∈A nraa with nra ∈ Z for all

a and thus nraa ∈ Rγa for some γa ∈ G. It follows from uniqueness of the
decomposition that nxγ =

∑
a∈A, γa=γ nraa and thus xγ ∈ K. We conclude

that xγ ∈ Rγ ∩K and thus x ∈
∑

γ(Rγ ∩K), as was to be shown.

Theorem 4.5.3. Every integrally closed subring of Z has a universal grad-
ing with a subgroup of Q/Z, and every subgroup occurs.

Proof. That every subgroup of Q/Z occurs follows from Example 4.5.1.
Let R be an integrally closed subring of Z and let {Rγ}γ∈Γ be a universal
grading, which exists by Theorem 4.3.5. It suffices to show that every finitely
generated subgroup ∆ of Γ is cyclic.

Let ∆ ⊆ Γ be finitely generated and thus finite by Lemma 4.2.8. More-
over, by Lemma 4.2.8 we have Rδ 6= 0 for all δ ∈ ∆, so we may choose
some non-zero aδ ∈ Rδ. Let A = {aδ | δ ∈ ∆} and K = Q(A). Then by
Lemma 4.5.2 we get a grading {Rδ ∩ K}δ∈∆ of S = R ∩ K. Since K is a
field and R is integrally closed, the ring S is integrally closed. The field of
fractions of S is contained in K and is thus of finite degree over Q. Hence
we may apply Theorem 1.4 from [34] to conclude that the universal grading
of S has a finite cyclic grading group Y. By universality we get a morphism
of gradings and thus a morphism of groups Y → ∆. The latter is surjec-
tive since 0 6= Rδ ∩ K 3 aδ for all δ ∈ ∆. Thus ∆ is cyclic, as was to be
shown.

4.6 Algebraic methods

In this section we will generalize Theorem 1.5 of [34] on the homogeneity of
roots of unity and idempotents in gradings, from orders to a broader class
of rings. For a commutative ring R and an element p ∈ R we will consider
the property that 1 + px is a regular element for all x ∈ R. In particular,
such a p is not a unit, and for R a domain this is in fact equivalent.

Lemma 4.6.1. Let R be a commutative ring and let p ∈ R be such that
1 + px is regular for all x ∈ R. If I ⊆ R is a finitely generated ideal such
that pI = I, then I = 0.

Proof. This is an immediate consequence of Nakayama’s lemma.
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We will use the following notation in this section.

Definition 4.6.2. Let Γ be a finite abelian group. We define the polynomial
ring PΓ = Z[Xγ : γ ∈ Γ], which comes with a natural Γ-grading {Pγ}γ where
Xγ ∈ Pγ for all γ. For m ∈ Z≥0 we define the polynomials em,γ ∈ Pγ by(∑

γ∈Γ

Xγ

)m
=
∑
γ∈Γ

em,γ .

Let ~n = (nγ)γ ∈ (Z≥0)Γ. We define the weight wt(~n) ∈ Z≥0 and degree
deg(~n) ∈ Γ of ~n to be the degree of X~n =

∏
γ X

nγ
γ as monomial and as

element of the grading {Pγ}γ respectively. With m = wt(~n), we write(
m

~n

)
=

m!∏
γ∈Γ(nγ !)

so that
(∑
γ∈Γ

Xγ

)k
=

∑
wt(~n)=k

(
k

~n

)
X~n.

Proposition 4.6.3. Let p be a prime and let q > 1 be a power of p. Let R be
a commutative ring such that 1+px is regular for all x, and let R = {Rγ}γ∈Γ

be a grading with
⋂
n≥0 Γp

n
= 1. Let r ∈ R1 and x ∈ R. If rxq = x, then

x ∈ R1.

Proof. Write x =
∑

γ xγ with xγ ∈ Rγ and ~x = (xγ)γ∈Γ. Suppose first that
Γ is a finite group of exponent p. Note that∑

γ∈Γ

xγ = x = rxq =
∑
γ∈Γ

req,γ(~x)

with req,γ(~x) ∈ Rγ . From the fact that R is a grading we obtain xγ =
req,γ(~x). From congruences modulo p it follows that p -

(
q
~n

)
if and only if

nε = q for some ε, and all such ~n have trivial degree because εq = 1. With
I =

∑
γ 6=1 xγR we obtain xγ ∈ pI for all γ 6= 1, so pI = I. Thus I = 0 by

Lemma 4.6.1 and x = x1 ∈ R1.
Now consider the general case. By replacing Γ by a subgroup and R by

a subring we may assume that Γ is finitely generated by {γ ∈ Γ |xγ 6= 0}.
The quotient map π : Γ → Γ/pΓ induces a grading πR = {Sγ}γ∈Γ/pΓ. By
the special case above we have x ∈ S1, so Γ = 〈γ | xγ 6= 0〉 ⊆ pΓ. Hence
Γ ⊆

⋂
k≥0 p

kΓ = 1 and x = x1 ∈ R1.

Lemma 4.6.4. Let p be a prime and consider the ring P = PZ/pZ. Then
the ideals I =

∑
i 6=j XiXjP and J = p2I +

∑
i 6=0 ep,iP satisfy pep,0I ⊆ J .

Proof. Write ei = ep,i. Let the affine group Aff(Z/pZ) = (Z/pZ) o (Z/pZ)∗

act naturally on the variables of P . Then Z/pZ fixes each ei, while a ∈
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(Z/pZ)∗ maps ei to eai. In particular, the ideals I and J are invariant.
Because the action is 2-transitive, it suffices to show that pX0X1e0 ∈ J .

Consider now the ring P/J , on which Aff(Z/pZ) also acts. We have
iei ∈ J for all i ∈ Z/pZ. Hence

0 ≡ (p+ 1)

p−1∑
i=0

iXie−i = (p+ 1)

p−1∑
i=0

iXi

∑
wt(~m)=p

deg(~m)=−i

(
p

~m

)
X ~m

=
∑

wt(~n)=p+1
deg(~n)=0

(
p+ 1

~n

)( p−1∑
i=0

nii
)
X~n (mod J),

where the first equality is the definition of e−i and the second orders the
terms by monomial. Then note for each term that

∑p−1
i=0 nii ≡ deg(~n) ≡

0 (mod p), and that p |
(
p+1
~n

)
unless ni ≥ p for some i. Hence most terms

are in p2I ⊆ J . The remaining p terms equal

0 ≡
(
p+ 1

p+ 1

)
0Xp+1

0 +

(
p+ 1

p

) p−1∑
i=1

piX0X
p
i ≡ pX0

p−1∑
i=0

iXp
i (mod J).

We now apply the affine transformations a 7→ a and a 7→ 1 − a to this
equality, so that

0 ≡ X1

(
pX0

p−1∑
i=0

iXp
i

)
+X0

(
pX1

p−1∑
i=0

(1− i)Xp
i

)
= pX0X1

p−1∑
i=0

Xp
i ≡ pX0X1e0 (mod J)

by considering e0 modulo p, as was to be shown.

Proposition 4.6.5. Let p be a prime and let R be a connected commutative
ring such that p is regular in R and such that 1+px is regular for all x ∈ R.
Let R = {Rγ}γ∈Γ be a grading with

⋂
n≥0 Γp

n
= 1. Let x ∈ R∗. If xp is

homogeneous, then so is x.

Proof. Write x =
∑

γ∈Γ xγ with xγ ∈ Rγ and ei = ep,i for i ∈ Z/pZ.
First suppose Γ = Z/pkZ for some k. We will apply induction on k. For

k = 0 the statement is trivial. Now suppose k > 0 and that the statement
holds for groups of order less than pk. Consider the natural map ϕ : Γ →
Γ/pk−1Γ. We obtain from the induction hypothesis that x is homogeneous
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in ϕR. Thus there exists some c ∈ Z such that x =
∑

i≡c (pk−1) xi. With
~y = (xc, xc+pk−1 , . . . , xc+(p−1)pk−1) we have

xp =

p−1∑
i=0

ei(~y),

where ei(~y) ∈ Rf(i) with injective f : Z/pZ→ Γ given by i 7→ pc+ pki.
Since xp 6= 0 is homogeneous there exists a unique h such that xp ∈

Rf(h). If h 6= 0, then p | eh and thus p | xp is a unit. By Lemma 4.6.1 we
have pR = R = 0, which contradicts the connectivity assumption. Thus we
may assume xp = e0(~y) and ei(~y) = 0 for i 6= 0.

It follows from Lemma 4.6.4 that pI = p2I for I =
∑

i 6=j xixjR. Since p
is regular we get I = pI, so I = 0 by Lemma 4.6.1. Hence xixj = 0 for all
i 6= j. Let zi = xi/x. Then

zi(1− zi) = x−2xi(x− xi) = x−2xi
∑
j 6=i

xj = 0.

Thus zi is idempotent. Since R is connected we have zi ∈ {0, 1}. From∑
i zi = 1 it follows that zi = 1 for some i. Hence x = xi is homogeneous,

as was to be shown.
It remains to prove the proposition for arbitrary Γ. As per usual we

may assume Γ is finitely generated. Suppose there are distinct γ, δ ∈ Γ
such that xγ , xδ 6= 0. Then by either Pontryagin duality or the fundamental
theorem on finitely generated abelian groups one deduces that there exists
some subgroup ∆ ⊆ Γ such that γ∆ 6= δ∆ and such that Γ/∆ is cyclic
of p-power order. By the specific case above, applied to ϕR for ϕ : Γ →
Γ/∆, we have that δ∆ = γ∆, which is a contradiction. It follows that x is
homogeneous.

Theorem 4.6.6 (cf. Theorem 1.5 in [34]). Let R be a commutative ring
with a grading R = {Rγ}γ∈Γ where Γ is a torsion group. Suppose for every
prime p such that Γ has an element of order p, in the ring R both p and
1 + px are regular for all x ∈ R. Then:

1. The ideal nil(R) is homogeneous, i.e. nil(R) =
∑

γ∈Γ(nil(R) ∩Rγ);
2. The idempotents of R are in R1;
3. If R is connected, then the elements of µ(R) are homogeneous.

Proof. 1. This statement is equivalent to the following: If x =
∑

γ∈Γ xγ ∈ R
is nilpotent, then so is xγ for all γ ∈ Γ. Given x ∈ nil(R), we may pass to
the subgroup of Γ generated by {γ ∈ Γ |xγ 6= 0}, which is finite. Then by
Proposition 4.1.ii in [34] every xγ is nilpotent.
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It suffices for the following statements to prove them when Γ is a p-group
for the relevant primes p. For general Γ one reduces to this special case by
considering the projections to the Sylow subgroups.

2. Let e ∈ R be idempotent. Then ep = e, hence e ∈ R1 by Proposi-
tion 4.6.3.

3. Let ζ ∈ µ(R) be of order n. If (n, p) = 1, then there exists some
k ∈ Z>0 such that pk ≡ 1 ( mod n). Then ζpk = ζ, hence ζ ∈ R1 by Proposi-
tion 4.6.3. For general n we write n = pkm for m, k ∈ Z≥0 with (m, p) = 1.
Then ζp

k ∈ R1 by the special case. Inductively ζp
k−i is homogeneous for

0 ≤ i ≤ k by Proposition 4.6.5, so ζ is homogeneous.

We now present an alternative proof for Proposition 4.6.5 and hence
Theorem 4.6.6.2, with weaker assumptions on p, in the form of Proposi-
tion 4.6.11.

Lemma 4.6.7. Let B ⊆ C be commutative rings and G a group acting
on C via ring automorphisms that fix B pointwise and for which the orbits
under G are finite. Let p be a prime. Suppose p is not a unit in B and that

p
√
B := {x ∈ C | (∃n ∈ Z≥0) xp

n ∈ B}

generates C as a B-module and contains CG = {c ∈ C | (∀g ∈ G) gc = c}.
If B is connected, then C is connected.

Proof. Let p be a prime of B above p. As p
√
B generates C as B-module the

ring extension B ⊆ C is integral. Hence there exists a prime q of C such
that q ∩ B = p by the going up theorem. Let x ∈ C and write x =

∑
s∈S s

for some finite S ⊆ p
√
B. We claim that x ∈ q if and only if there exists

some n ∈ Z≥0 such that
∑

s∈S s
pn ∈ p. Namely, we have∑

s∈S
s ∈ q⇔

(∑
s∈S

s
)pn
∈ q⇔

∑
s∈S

sp
n ∈ q⇔

∑
s∈S

sp
n ∈ p,

where for the forward implications we take n sufficiently large such that
sp
n ∈ B for all s ∈ S. We conclude that membership to q only depends on

p, i.e. q is unique.
Let O be an orbit of non-zero idempotents of C under G, which is finite

by assumption on G. Let M = {
∏
s∈S s |S ⊆ O} be the monoid that O

generates, which has a partial order given by e ≤ f when ef = e. Let P be
the set of minimal non-zero elements ofM and let X be an orbit of P under
G. Then e =

∑
x∈X x ∈ CG ⊆

p
√
B is idempotent, so e = ep

n ∈ B for some
n. But B is connected and e 6= 0, so e = 1. Hence C ∼=

∏
x∈X C/(1 − x)C

and G acts transitively on the factors. In particular, the cardinality of every
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orbit of spec C under G is divisible by #X. However, {q} is an orbit, so
#X = 1. It follows that O = {1}, so C is connected.

Proposition 4.6.8. Let p be a prime and R a connected commutative ring
for which p is regular but not a unit. Then

1. for all ζ ∈ µp∞(Z), the ring R is connected if and only if R⊗Z Z[ζ] is
connected;

2. for all gradings {Rγ}γ∈Γ of R with Γ a finite abelian p-group, the ring
R is connected if and only if R1 is connected.

Proof. 1. Write S = R⊗ZZ[ζ]. As R→ S is injective, the backward implica-
tion holds trivially. It suffices to verify the conditions to Lemma 4.6.7 applied
to R ⊆ S with G = (Z/pkZ)∗ naturally acting: We have SG = R ⊆ p

√
R by

Proposition 3.15 in [17], and 〈ζ〉 ⊆ p
√
R generates S as R-module.

2. Write #Γ = pk and let ζ be a primitive pk-th root of unity. It suffices
by 1 to prove 2 for the grading S = {Sγ}γ∈Γ of S = R ⊗Z Z[ζ] with
Sγ = Rγ ⊗ZZ[ζ]. The forward implication is trivial. We apply Lemma 4.6.7
to S1 ⊆ S with G = Hom(Γ, 〈ζ〉), where χ ∈ G acts on S by sending x ∈ Sγ
to χ(γ) · x: We have that SG =

⊕
γ∈Γ S

G
γ = S1, since for all η ∈ 〈ζ〉 and

x ∈ S we have ηx = x if and only if η = 1 or x = 0, and clearly the
Sγ ⊆ p

√
S1 generate S.

Lemma 4.6.9. Let p be a prime and let R be a connected commutative
Z[ζ]-algebra with ζ a primitive p-th root of unity. Write π = 1 − ζ. Then
f = π−p

(
(1 + πX)p − 1

)
∈ Z[ζ][X] has at exactly p distinct roots in R,

namely the images of (ζi − 1)/π ∈ Z[ζ] in R for i ∈ Z/pZ.

Proof. Recall that p = uπp−1 for some u ∈ Z[ζ]∗. Hence (1 + πX)p − 1 ≡
0 (mod πp), so indeed f ∈ Z[ζ][X]. Moreover, f is monic. We compute f ′ =
u(1 +πX)p−1. Then u−1(1 +πX)f ′−πpf = 1, so fR[X] + f ′R[X] = R[X].
Then by Theorem 1.5 in [32] we have that f has at most p roots in R. Each
ri = (ζi − 1)/π ∈ Z[ζ] for 0 ≤ i < p is a roots of f . For 0 ≤ i < j < p we
have rj − ri = ζi(1 − ζj−i)/π ∈ Z[ζ]∗. The image of rj − ri in R is also a
unit, and since R 6= 0 the images of r0, . . . , rp−1 are all distinct, as was to
be shown.

Lemma 4.6.10. Let p be a prime and let R be a connected commutative
Z[ζ]-algebra with ζ a primitive p-th root of unity. Suppose p is regular in R
and let R = {Rξ}ξ∈〈ζ〉 be a grading of R. Let x ∈ R∗. If xp ∈ R1, then x is
homogeneous.

Proof. Write x =
∑

ξ∈〈ζ〉 xξ with xξ ∈ Rξ. Let σ be the Z[ζ]-algebra homo-
morphism of R that maps y ∈ Rξ to ξy ∈ Rξ. Since xp ∈ R1, the element
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η = σ(x)/x ∈ R satisfies ηp = σ(xp)/xp = 1. Write π = 1 − ζ. Then
σ(x) ≡ x (mod πR), so η = 1 +πy for some y ∈ R. As π, because it divides
p, is regular we obtain (η−1)/π = y = (ζi−1)/π for some i by Lemma 4.6.9,
and η = ζi ∈ R∗1. From σ(x) = ηx it follows that ξxξ = ηxξ for all ξ ∈ 〈ζ〉.
Unless ξ = η, we have that ξ− η is regular as it divides p, and thus xξ = 0.
Hence x = xη is homogeneous.

Proposition 4.6.11. Let p be a prime, let R be a connected commutative
ring such that p ∈ R is regular but not a unit. Let R = {Rγ}γ∈Γ be a
grading of R with

⋂
n≥0 Γp

n
= 1. Let x ∈ R∗. If xp is homogeneous, then x

is homogeneous.

Proof. As in Proposition 4.6.5 we may assume that Γ is a finite p-group.
We apply induction on #Γ. If #Γ = 1, then clearly all elements are ho-
mogeneous. Suppose #Γ > 1. Then we may choose a subgroup ∆ ⊆ Γ
of order p. By induction x is homogeneous in ϕR for the natural map
ϕ : Γ → Γ/∆, so x =

∑
γ∈ε∆ xγ for some ε ∈ Γ and xγ ∈ Rγ . Then

xp = y + pz where y =
∑

γ∈ε∆ x
p
γ ∈ Rεp and z ∈ R. As p is not a unit, xp

can only be a homogeneous unit if xp ∈ Rεp . Let ζ be a primitive p-th root
of unity and consider the ring A = R[ζ][Γ] with grading A = {Aγ}γ∈Γ where
Aγ =

⊕
β∈Γ βRβ−1γ [ζ]. By Proposition 4.6.8 the ring A is connected. Since

A is a free R-module, we conclude that p is regular but not a unit in A. Note
that Rγ = Aγ ∩R and that x is homogeneous in R if and only if w = ε−1x
is homogeneous in A. Since wp ∈ A1 and 〈γ ∈ Γ |wγ 6= 0〉 ⊆ ∆ ∼= 〈ζ〉, we
may apply Lemma 4.6.10 to w in the grading {Aγ}γ∈∆ to conclude that w
is homogeneous, as was to be shown.

Example 4.6.12. Proposition 4.6.11 is an improvement to Proposition 4.6.5,
with the difference being the relaxation of the assumption that 1 + px be
regular for all x ∈ R to simply p not being a unit. We will show that a
similar relaxation is not possible for Proposition 4.6.3.

Let ` and p be primes with ` | p− 1. Consider R = Z[X]/(X`, `X) with
grading {Z ·Xk}k∈Z/pZ. Note that p is regular but not a unit in R, and that
R is even connected. The element x = 1 + X is an `-th root of unity, so
xp = x. However, x 6∈ R1, as was to be shown.

The following proposition can be used, together with other results from
this section, to show that results from Chapter 5 can be similarly generalized
from orders to rings with properties studied here.

Lemma 4.6.13. Let R be a commutative ring and p ∈ R. If
⋂
n≥1 p

nR = 0,
then 1 + px is regular for all x ∈ R. If R is Noetherian, then the converse
holds.
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Proof. This follows from Theorem 10.17 in [2].

Lemma 4.6.14. Let p be a prime, let R be a commutative ring and let
I ⊆ nil(R) be an ideal. Then:

1. 1 + I is a subgroup of R∗;
2. if I ⊆ R[p∞], then 1 + I ⊆ R∗[p∞];
3. if I[p∞] = 0, then (1 + I)[p∞] = 1.

Proof. 1. For 1 − x ∈ 1 + I we have xm = 0 for some m > 0, hence
(1− x)(1 + x+ · · ·+ xm−1) = 1− xm = 1 and 1− x ∈ R∗.

2. One shows inductively that (1 + x)p
k ∈ 1 + xJk for each x ∈ R and

J = pR+xR. Given x ∈ I we may take k sufficiently large so that xJk = 0
to conclude that 1 + x ∈ R∗[pk].

3. We may replace R by R[1/p], since I[p∞] = 0 implies the restriction
of R → R[1/p] to 1 + I is injective. Thus we replace the assumption that
I[p∞] = 0 by p ∈ R∗. We may also assume without loss of generality that I
is finitely generated. Hence there exists some m such that I2m = 0. We will
prove the lemma with induction on m. For m = 0 the statement becomes
trivial.

Suppose I2m+1
= 0 and consider the ideal K = I2m . The image J of

I in R/K satisfies J2m = 0 and thus (1 + J)[p∞] = 1 by the induction
hypothesis. It remains to show that (1 + K)[p∞] = 1. Note that K2 = 0,
so we have a group isomorphism 1 + K → K given by 1 + x 7→ x. Hence
(1 +K)[p∞] ∼= K[p∞] = 0.

Proposition 4.6.15. Let p be a prime and R a Noetherian commutative
ring such that 1 + px is regular for all x ∈ R. Then nil(R)[p∞] is finite if
and only if µp∞(R) is finite.

Proof. (⇐) This follows from Lemma 4.6.14.2.
(⇒) First suppose R is a domain. For k ≥ 0 write

Ik =
∑

ζ∈µ
pk

(R)

(1− ζ)R.

As R is Noetherian, the chain I0 ⊆ I1 ⊆ · · · stabilizes at index say n.
Because R is a domain we may choose a generator ξ for µpn+1(R), and let
us suppose that it is primitive. As 1−ξa = (

∑a−1
i=0 ξ

i)(1−ξ) for all a ∈ Z≥1,
we conclude that (1 − ξ)R = In+1 = In = (1 − ξp)R. Since (1 − ξ)R 6= 0
we obtain π =

∑p−1
i=0 ξ

i ∈ R∗. But πpn ≡ Φp(ξ
pn) = 0 (mod p). Hence

p | πpn is a unit, which contradicts 1 − pp−1 being regular. We conclude
that µp∞(R) = µpn(R) is finite.
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Consider the case where R is reduced. We have an injective map

R→
∏

p min. prime

R/p.

Note that 1 + px 6∈ p for all x ∈ R and minimal primes p, as each p consists
of only zero divisors (Theorem 3.1 in [12]). As R/p is a domain, it follows
that 1+py is regular for all y ∈ R/p. From the previous case we obtain that
µp∞(R/p) is finite for all p. As R is Noetherian, it has only finitely many
minimal prime ideals (Theorem 7.13 in [2]), and thus µp∞(R) is finite.

Consider the case where p acts regularly on nil(R). Consider the map
R → R/nil(R). The induced map µp∞(R) → µp∞(R/nil(R)) is injective,
because its kernel (1 + nil(R))[p∞] is trivial by Lemma 4.6.14.3. It suffices
that µp∞(R/nil(R)) is finite, which is the reduced case.

Consider the general case where T = nil(R)[p∞] is finite. As before we
consider the quotient map R→ R/T . We have that (1 + T )[p∞] is finite as
T is finite, while R/T satisfies the conditions to the previous case. Hence
µp∞(R) is finite.

Example 4.6.16. It is still possible for a reduced Noetherian commutative
ring R to have infinitely many roots of unity when 1 + px is regular for all
primes p and x ∈ R.

Consider Z[µ0] as in Example 4.5.1 and let R be a localization of Z[µ0]
such that for each prime p there is precisely one prime pp ⊂ R above p.
Clearly R has infinitely many roots of unity. Since each prime p is non-
invertible and R is a domain, the element 1 + px is regular for all x ∈ R.
For a prime p and primitive ζp ∈ µp one shows inductively that, for finite
subgroups 〈ζp〉 ⊆ G ⊂ µ0, the unique prime of S = R ∩Q(G) over p equals
pS + (1 − ζp)S. Hence pp = pR + (1 − ζp)R is finitely generated for all p,
and thus R is Noetherian.

4.7 Algorithms

In this section we describe an algorithm to compute the universal grading of
a special type of order in polynomial time. Recall that we have an encoding
for finitely generated abelian groups. To encode a grading {Rγ}γ∈Γ of an
order, where Γ is a finitely generated abelian group, we specify this group Γ
as well as the group Rγ for all γ such that Rγ 6= 0. By Theorem 1.4 in [17]
we may compute the universal grading of any reduced order, but in general
this does not run in polynomial time. We will restrict to orders generated
by autopotents.
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Definition 4.7.1. Let R be a ring. We call x ∈ R autopotent if xn+1 = x
for some n ∈ Z>0. Write α(R) for the set of autopotents of R.

Lemma 4.7.2. Let S and R be rings. Then:
1. The roots of unity and idempotents of R are autopotent;
2. The product of any two commuting autopotents of R is autopotent;
3. We have µ(R× S) = µ(R)× µ(S) and α(R× S) = α(R)× α(S);
4. Let x ∈ R. Then x ∈ α(R) if and only if there exist an idempotent
e ∈ R and ζ ∈ µ(R) such that x = eζ = ζe;

5. If R is commutative, then R is generated as a ring by α(R) if and only
if its additive group is generated by α(R);

6. As groups, R× S is generated by autopotents if and only if each of R
and S is generated by autopotents;

7. If R is connected, then α(R) = µ(R) ∪ {0}.

Proof. Statements 1, 2 and 3 are trivial.
4. The ‘if’-part follows from 1 and 2. Conversely, suppose xn+1 = x.

Then e = xn satisfies e2 = e, so e is idempotent. Assume without loss of
generality that R = Z[x], so R is commutative. Hence we may decompose
R = eR×(1−e)R. As ex ∈ eR is an n-th root of unity, so is ζ = ex+(1−e) ∈
R. Then x = eζ = ζe.

5. By 2 the set of autopotents is closed under multiplication.
6. Combine 3 with the fact that 0 ∈ α(R) and 0 ∈ α(S).
7. This follows trivially from 4.

Lemma 4.7.3. Let R be an order that is generated as a group by α(R).
Then R is reduced.

Proof. It suffices to prove that K = R ⊗Z Q is reduced, because R → K
is injective. Each x ∈ α(R) has a minimal polynomial in K[X] dividing
Xn+1 − X for some n > 0. In particular x is separable, and consequently
so are all elements of K. As 0 is the only separable nilpotent element, the
lemma follows.

We now equip reduced orders with the (Hilbert) lattice structure as
defined in [34], similar to the Hilbert lattice structure defined on Z.

Definition 4.7.4 (Example 3.4 in [34]). For an order R we define a bilinear
map

〈x, y〉R =
∑

σ∈X(R)

σ(x) · σ(y),

where the sum ranges over all ring homomorphisms from R to C, of which
there are only finitely many.
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Remark 4.7.5. Following Example 3.4 in [34], the order R is reduced if
and only if the map from Definition 4.7.4 is non-degenerate, i.e. 〈x, x〉 = 0
implies x = 0 for all x ∈ R. We have a bijective correspondence

{σ : R→ C} ↔ {(p, σp) | p ⊆ R a minimal prime ideal, σp : R/p→ C}

that sends σ : R→ C to (ker(σ), σ̃) where σ̃ : R/ ker(σ)→ C is given by the
homomorphism theorem, and conversely sends (p, σp) to σp composed with
the projection πp : R→ R/p. Thus for all x, y ∈ R we have

〈x, y〉R =
∑
p⊆R
〈πp(x), πp(y)〉R/p,

where the sum ranges over all minimal prime ideals.

Remark 4.7.6. For an order R which is a domain, i.e. R ⊆ Z, we have now
two lattice structures, namely that of a sublattice of Z and the one from
Definition 4.7.4. However, they are equal up to a factor #X(R). In partic-
ular, the property of orthogonality is the same under either inner product.
One might try to construct a common generalization of both inner products
to subrings of Zn for some n ∈ Z≥0. The following example highlights an
obstruction for this.

Example 4.7.7. For arbitrary reduced ordersR ⊆ S the restriction 〈−,−〉S
to R is not a scalar multiple of 〈−,−〉R, as is the case for the inner product
on Z. Consequently, there is no natural definition of an inner product on
any class of rings that includes both Z and reduced orders.

For R = Z × Z[
√

2] and S = Z[
√

2] × Z[
√

2] the element x = (0,
√

2)
satisfies 〈x, x〉R = 4 = 〈x, x〉S , while y = (1, 1) satisfies 〈y, y〉R = 3 and
〈y, y〉S = 4.

Lemma 4.7.8. For all orders R that are generated as a group by α(R)
we have 〈R,R〉R ⊆ Z. There exists a polynomial-time algorithm that, given
an order R that is generated as a group by α(R) and x, y ∈ R, computes
〈x, y〉R.

Proof. Note that R is reduced by Lemma 4.7.3. Let X be the set of minimal
primes of R. Using Theorem 1.10 in [33] we may compute X and for each
p ∈ X the map R → R/p in polynomial time. Note that as a group, R/p
is generated by α(R/p). Then by the formula of Remark 4.7.5 it suffices
to prove the lemma for the ring R/p. Thus we suppose R is a domain and
consequently α(R) = µ(R) ∪ {0} by Lemma 4.7.2.7. For ζ, ξ ∈ µ(R) and
a ring homomorphism σ : R → C we have σ(ζ) · σ(ξ) = σ(ζξ−1). Thus
〈ζ, ξ〉R =

∑
σ∈X(R) σ(ζξ−1), which is the trace of ζξ−1 from R to Z, and
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hence is an integer. As R is generated as a group by µ(R), it follows that
〈R,R〉R ⊆ Z as well. Moreover, this shows that computing 〈x, y〉R reduces to
computing traces of roots of unity, which clearly can be done in polynomial
time.

Lemma 4.7.9. There exists a polynomial-time algorithm that, given a finite-
dimensional commutative Q-algebra A and a finite set X ⊆ A, computes a
Q-basis Y of the subalgebra B of A generated by X, where each element in
Y is a finite (possibly empty) product of elements of X.

Proof. We will write QY for the vector space generated by Y . The algorithm
proceeds as follows. Start with Y = {1}. Compute the set of products
Z = {xy | x ∈ X, y ∈ Y } and update Y to be a maximal Q-linearly
independent subset of Z ∪ Y containing Y . Repeat this until Y is stable.

Writem for the dimension of B. Suppose in some step QY = Q·(Z∪Y ).
Then Z ⊆ QY , so QY is closed under taking products with X. Since X
generates B as a Q-algebra and 1 ∈ QY by the choice of initial Y , it follows
that QY = B. Note that #Y ≤ m and thus there are at most m steps
in the algorithm. Moreover, in each step #Z ≤ #(X × Y ) is polynomially
bounded in the input length, so in total there are only polynomially many
multiplications. Lastly, note that in step i of the algorithm each element
of Y can be written as a product of i elements from X, and therefore the
encoding of every element has length proportional to at most i times that
of the longest element of X. Hence the multiplications can be carried out
in polynomial time.

Example 4.7.10. Although it is possible to compute α(R) for a reduced
order R, we cannot in general do this in polynomial time, even if R is
connected. Note that for the ring

R = {(ai)i ∈ Zn | (∀ i, j) ai ≡ aj mod 2},

the set {−1, 1}n = µ(R) = α(R) is exponentially large.

Proposition 4.7.11. There exists a polynomial-time algorithm that, given
an order R, computes a set Y ⊆ α(R) such that Z · Y = Z · α(R).

Proof. We may factor R into a product of connected orders in polynomial
time using Algorithm 6.1 in [32]. Combined with Lemma 4.7.2.7 we may
assume R is connected and α(R) = µ(R) ∪ {0}. Apply Theorem 1.2 in [32]
to compute in polynomial time a set X of generators of the group µ(R).
Using Lemma 4.7.9 we may compute a basis Z ⊆ µ(R) for the subalgebra
Q · µ(R) of R ⊗ Q as Q-vector space. We claim that |∆| ≤ n3n/2, where
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∆ = det((TrQ·µ(R)/Q(xy))x,y∈Z) is the discriminant of Z · Z and n = #Z =
dimQ(Q ·µ(R)). This follows from Hadamard’s inequality and the fact that
|Tr(ζ)| ≤ n for ζ ∈ µ(R). In particular, # log2(Z·µ(R)/Z·Z) is polynomially
bounded.

First we set Y = Z. Then we iterate over x ∈ X and y ∈ Y and add xy
to Y whenever xy 6∈ Z ·Y . Once Z ·Y stabilizes we have Z ·Y = Z ·µ(R) and
may return Y . Each new element added to Y decreases log2 #(Z·µ(R)/Z·Y )
by at least 1, so the cardinality of Y and the number of steps taken in the
algorithm are polynomially bounded. Finally, we remark that there is a
polynomial upper bound on the lengths of the encodings of the elements of
Y , since each element is the product of at most #Y elements of X and an
element of Z. Hence the algorithm runs in polynomial time.

Example 4.7.12. If R is an order generated as Z-module by µ(R), then
not every set Y ⊆ µ(R) that generates QR as Q-module also generates
R as a Z-modules. In particular, Lemma 4.7.9 is not sufficient to prove
Proposition 4.7.11. Consider the ring R generated by µ(Z[i]2). Then Y =
{(1, 1), (1,−1), (i, i), (−i, i)} is a basis for QR = Q(i)2. However, (1, i) =
1
2

∑
y∈Y y 6∈ ZY .

Theorem 4.7.13. There exists a polynomial-time algorithm that, given an
order R, decides whether α(R) generates R as a group and if so computes
the universal grading of R.

Proof. Using Algorithm 6.1 in [32] we may factor R into a product of con-
nected orders. By Lemma 4.7.2.3 and Proposition 4.2.6 we may reduce to
the case where R be connected, which we will now assume.

We compute V ⊆ µ(R) as in Proposition 4.7.11. We may then simply
decide whether Z · V = R. Next we note that the elements of V are inde-
composable by Corollary 5.6 in [34], as multiplication by elements of V is
an automorphism of the lattice. We simply construct the graph as in Theo-
rem 2.5.3 for this V and compute its connected components explicitly using
Lemma 4.7.8. Thus we obtain the universal orthogonal decomposition of R.
The universal grading of R, as constructed in the proof of Theorem 1.3 of
[34], can then also be explicitly computed.
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5.1 Introduction

This chapter is based on [35], the authors of which include H.W. Lenstra and
A. Silverberg. Given a ring A and a (multiplicatively written) group G we
may construct the group ring A[G], a ring whose additive group is simply the
free A-module with basis G, and multiplication is given by ag ·bh = (ab)(gh)
for a, b ∈ A and g, h ∈ G. This construction describes a functor

Ring×Group→ Ring.

The Isomorphism Problem for Group Rings asks to describe the fibers of
this map up to isomorphism, i.e. given a ring R, what can one say about the
pairs (A,G) such that A[G] ∼= R? We will refine this question by not just
asking for the existence of an isomorphism, but asking for the isomorphism
as well, meaning we study the triples (A,G, φ) such that φ : A[G] → R is
an isomorphism. We will specialize to the case where A and G, and hence
R, are commutative. Equivalently, for non-zero rings R, we study the set

D(R) = {(A,G) | subring A ⊆ R, subgroup G ⊆ R∗, A[G] = R},

where A[G] = R is to mean that the natural map A[G] → R is an isomor-
phism of rings. We say a ring R is stark if it is non-zero, commutative and
can only be written as a group ring in the trivial way, i.e. #D(R) = 1. Our
main result reads as follows.

Theorem 5.6.4. Let R be a non-zero reduced order. Then there exist a
stark ring A, unique up to ring isomorphism, and a finite abelian group G,
unique up to group isomorphism, such that R ∼= A[G] as rings.

Clearly, if A is a ring and I and H are groups, then A[I × H] and
(A[I])[H] are isomorphic as rings. The following result, which is more or
less equivalent to Theorem 5.6.4, expresses that, among reduced orders,
group rings can only be isomorphic if they are so for this obvious reason.

Theorem 5.6.3. Suppose A and B are reduced orders and G and H are
finite abelian groups. Then the following are equivalent:
(i) A[G] ∼= B[H] as rings,
(ii) there exist an order C and finite abelian groups I and J such that

A ∼= C[I] and B ∼= C[J ] as rings and I ×G ∼= J ×H as groups.

If R, A and G are as in Theorem 5.6.4, then A is isomorphic to a subring
of R, and G is isomorphic to a subgroup of µ(R), but as Example 5.5.20
shows, this subring and subgroup need not be uniquely determined. How-
ever, the following theorem shows that in an important special case there is
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a sense in which the subrings and subgroups that can be used are entirely
independent. To a connected reduced order R we associate a group U∗(R)
acting on R by ring automorphisms (Definition 5.5.16), and Aut(R) in turn
clearly acts on D(R).

Theorem 5.5.19. Let R be a connected reduced order and suppose (A,G),
(B,H) ∈ D(R) are such that A and B are stark. Then A ∼= B as rings,
G ∼= H as groups, and (A,G), (A,H), (B,G) and (B,H) are all in D(R)
and in particular in the same U∗(R)-orbit.

As can be seen in Example 5.5.21, we cannot drop the assumption that
R be connected in Theorem 5.5.19.

We will prove Theorem 5.5.19 using the theory of gradings from Chap-
ter 4. For a non-zero commutative ring R and (A,G) ∈ D(R) we have a
natural grading R = {Rζ}ζ∈µ(R) where Rζ = Aζ if ζ ∈ G and Rζ = 0
otherwise. If R has a universal grading, we write Γ(R) for the group of
this grading, and we obtain a homomorphism f : Γ(R)→ µ(R) correspond-
ing to R. For a connected reduced order R we also get a homomorphism
dR : µ(R)→ Γ(R), the degree map, from Proposition 4.6.5. It turns out that
the morphisms f : Γ(R)→ µ(R) for which the induced grading comes from
a group ring are precisely those for which fdRf = f . We proceed to study
dR by commutative algebra on the Mitchell embedding.

Throughout this chapter, for abelian groups M and N we write the
group Hom(M,N) additively, regardless of the notation used for N . Let
A be a connected reduced order and G a finite abelian group. We have a
left action of Aut(A) on Hom(G,µ(A)) given via the restriction Aut(A)→
Aut(µ(A)) and a right action of Aut(A) on Hom(Γ(A), G) via the natural
map Aut(A)→ Aut(Γ(A)). This is used implicitly in the following theorem,
where we describe the automorphism group of a group ring over a stark
reduced connected order.

Theorem 5.7.8. Let A be a stark connected reduced order with degree map
dA : µ → Γ and let G be a finite abelian group. We equip the cartesian
product

M =

(
Aut(A) Hom(G,µ)

Hom(Γ, G) Aut(G)

)
of Aut(A), Hom(G,µ), Hom(Γ, G), and Aut(G) with the following multi-
plication:(

α1 s1

t1 σ1

)(
α2 s2

t2 σ2

)
=

(
α1α2 + s1t2 α1s2 + s1σ2

t1α2 + σ1t2 t1dAs2 + σ1σ2

)
,
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where the sum in Aut(A) is as in Lemma 5.7.7 and the sum in Aut(G)
is taken inside End(G). For x ∈ A and g ∈ G write ( xg ) for the element
x · g ∈ A[G]. Then:

1. M is a group;
2. there is a natural isomorphism M ∼−→ Aut(A[G]) such that the evalu-

ation map M ×A[G]→ A[G] is given by(
α s

t σ

)(
x

g

)
=

(
α(x) · s(g)

t(γ) · σ(g)

)

for all g ∈ G, γ ∈ Γ and x ∈ Aγ.

We also have an algorithmic result. We call a ring element x autopotent
if xn+1 = x for some n ≥ 1.

Theorem 5.8.4. There is an algorithm that, given a non-zero reduced order
R, computes a stark subring A ⊆ R and a subgroup G ⊆ µ(R) such that
A[G] = R. This algorithm runs (a) in polynomial time when the additive
group of R is generated by autopotents, and generally (b) in time nO(m)

where n is the length of the input and m is the number of minimal prime
ideals of R.

Note that the algorithm runs in polynomial time when m is bounded
by a constant. The case m = 1 is precisely the case where R is a domain,
in which case one necessarily has A = R and G = 1. A notable special case
for (a) is when R is the product of finitely many group rings over Z. We
do not know whether there exists a polynomial-time algorithm that decides
whether a given reduced order is stark.

5.2 Modules and decompositions

In this section we gather some results on modules, by which we mean left
modules.

Definition 5.2.1. Let R be a ring and M an R-module. We write Dec(M)
for the set

Dec(M) = {(D,N) | D, N are submodules of M with D ⊕N = M},

or equivalently the set of {1, 2}-indexed decompositions of M . We equip
Dec(M) with a partial order given by (D,N) ≤ (D′, N ′) if and only if there
exists a submodule C ⊆M such that D = D′ ⊕ C and N ⊕ C = N ′.
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Theorem 5.2.2 (Krull–Remak–Schmidt; see Theorem X.7.5 of [30]). Sup-
pose R is a ring and M is an R-module of finite length. Then there exists
a decomposition of M into finitely many indecomposable submodules, and
such a decomposition is unique up to automorphisms of M and relabeling of
the indices.

Definition 5.2.3. Let R be a ring, and let M be a non-empty set of R-
modules of finite length. For an R-module M we call an R-module D a
divisor of M if M ∼= D ⊕ N for some R-module N . As a consequence of
Theorem 5.2.2, there exists up to isomorphism exactly one R-module D
that is a divisor of every M ∈ M with the property that every R-module
that is a divisor of everyM ∈M is also a divisor of D; it is called a greatest
common divisor of the setM. Every such D is of finite length. We say R-
modules M and N are coprime if the greatest common divisor of {M,N}
is 0. Likewise, ifM is a finite set of R-modules of finite length, then there
exists up to isomorphism exactly one R-module L of which each M ∈ M
is a divisor with the property that L is a divisor of each R-module of finite
length of which eachM ∈M is a divisor; it is called a least common multiple
ofM. Every such L is of finite length.

Definition 5.2.4. Suppose R is a ring, M is an R-module, and h ∈
End(M). We define the R-modules

lim im(h) =
∞⋂
n=1

im(hn) and lim ker(h) =
∞⋃
n=1

ker(hn).

Lemma 5.2.5 (Fitting; see Theorem X.7.3 of [30]). Suppose R is a ring, M
is an R-module of finite length, and h ∈ End(M). Then M = lim im(h) ⊕
lim ker(h), the restriction of h to lim im(h) is an automorphism, and the
restriction of h to lim ker(h) is nilpotent.

Lemma 5.2.6. Suppose R is a ring,M and N are R-modules, and f : M →
N and g : N →M are morphisms. Then f restricts to morphisms

i : lim im(gf)→ lim im(fg) and k : lim ker(gf)→ lim ker(fg).

If M and N have finite length, then i is an isomorphism.

Proof. For all n ≥ 1 we have

f(im((gf)n)) = im((fg)nf) ⊆ im((fg)n).

Hence f(lim im(gf)) ⊆ lim im(fg), so i is well-defined. As

f(ker((gf)n+1)) ⊆ ker(g(fg)n) ⊆ ker((fg)n+1)
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for all n ≥ 1 we also get f(lim ker(gf)) ⊆ lim ker(fg), so k is well-defined.
By symmetry we obtain a restriction j : lim im(fg) → lim im(gf) of g.
Under the finite length assumption both ji and ij are automorphisms by
Lemma 5.2.5, hence i is an isomorphism.

Proposition 5.2.7. Suppose R is a ring,M is an R-module of finite length,
and A1, A2, B1, B2 ⊆M are submodules such that A1 and A2 are coprime,
A1 ⊕A2 = B1 ⊕B2 = M , and A1

∼= B1. Then A1 ⊕B2 = B1 ⊕A2 = M .

Note that under the above assumptions it immediately follows that A1⊕
B2
∼= B1⊕B2 = M . This is not equivalent to A1⊕B2 = M , as this concerns

a specific isomorphism A1 ⊕ B2 → M . We need to show that the natural
map B1 →M → A1 is an isomorphism.

Proof. From Theorem 5.2.2 it follows that A2
∼= B2 and thus B1 and B2

are coprime as well. By symmetry it therefore suffices to show B1 ⊕ A2 =
M . We consider the maps as in the following commutative diagram, where
ϕ : A1 → B1 is an isomorphism, the maps to and from M are the natural
inclusions and projections, and the fi and gi are defined to make the diagram
commute.

A1 A1

A1 B1 M M B1 A1

A2 A2

e1

g1

ϕ

f1

f2

e

p1

p2

p ϕ−1

e2

g2

Note that idB1 = pe and idM = e1p1 + e2p2, so

idA1 = ϕ−1peϕ = ϕ−1p(e1p1 + e2p2)eϕ

= ϕ−1pe1 · p1eϕ+ ϕ−1pe2 · p2eϕ = g1f1 + g2f2.

Lemma 5.2.6 shows that D = lim im(g2f2) ∼= lim im(f2g2), so D is a di-
visor of both A1 and A2 by Lemma 5.2.5. Since A1 and A2 are coprime,
we must have that D = 0 and thus g2f2 is nilpotent. We conclude that
g1f1 = idA1 −g2f2 is an automorphism of A1. Hence f1 is injective, and
since A1 is of finite length it must be an automorphism. It follows that
p1e = f1ϕ

−1 : B1 → A1 is an isomorphism, so M = B1 ⊕ A2, as was to be
shown.

Definition 5.2.8. Let R be a ring. A class S of R-modules is multiplicative
if 0 ∈ S and for all R-modulesM , N and D withM ∼= N⊕D and N , D ∈ S
one hasM ∈ S. We say a multiplicative class S of R-modules is saturated if
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for all M ∈ S and all divisors D of M one has D ∈ S. For a multiplicative
class S of R-modules and an R-module M , write

DecS(M) = {(M1,M2) ∈ Dec(M) |M2 ∈ S},

where Dec(M) is as in Definition 5.2.1. We equip DecS(M) with the par-
tial order inherited from Dec(M), and write max(DecS(M)) for its set of
maximal elements.

Proposition 5.2.9. Let R be a ring, let S be a multiplicative class of R-
modules, and let M and N be R-modules. Then:

1. if M ∼= N and N ∈ S, then M ∈ S;
2. the set DecS(M) is non-empty.

Suppose also that S is saturated and (A1, A2) ∈ DecS(M). Then
3. one has (A1, A2) ∈ max(DecS(M)) if and only if 0 is the only divisor

of A1 that is in S;
Suppose also that M is of finite length and (B1, B2) ∈ DecS(M). Then

4. the set max(DecS(M)) is non-empty and consists of one orbit of
DecS(M) under the action of Aut(M);

5. if (A1, A2), (B1, B2) ∈ max(DecS(M)), then (A1, B2), (B1, A2) ∈
max(DecS(M)).

Proof. 1. Apply the definition of multiplicative with D = 0.
2. The trivial element (M, 0) is in DecS(M).
3. If (A1, A2) is maximal but A1 = D ⊕ B1 for some D ∈ S and some

B1, then (A1, A2) ≤ (B1, A2 ⊕D) ∈ DecS(M) and thus A2 = A2 ⊕D and
D = 0. Conversely, suppose 0 is the only divisor of A1 that is in S and
(A1, A2) ≤ (B1, B2). Then there is some C such that A1 = B1 ⊕ C and
B2 = A2 ⊕C. Since S is saturated we have C ∈ S, and since C is a divisor
of A1 we must have that C = 0. Hence (A1, A2) = (B1, B2) is maximal.

4. Let M =
⊕

i∈IMi with each Mi indecomposable. If A2, respectively
A1, is the direct sum of those Mi that are, respectively are not, in S, then
(A1, A2) is in DecS(M) and it is maximal by 3. If (B1, B2) is also max-
imal, then B2, respectively B1, is a direct sum of indecomposables that
are, respectively are not, in S; this follows from the definition of DecS(M)
and from 3. Since together these decompositions give a decomposition ofM
into indecomposables, Theorem 5.2.2 implies that A1

∼= B1 and A2
∼= B2,

so (B1, B2) belongs to the Aut(M)-orbit of (A1, A2). Because the action
of Aut(M) preserves the partial order, this orbit is conversely contained in
max(DecS(M)).

5. By 3 we have that A1 and A2 are coprime and by 4 we have A1
∼= B1

andA2
∼= B2. We may conclude from Proposition 5.2.7 that (A1, B2), (B1, A2) ∈

DecS(M). Applying 3 again we may conclude they are maximal.
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5.3 Morphisms as modules

In this section we will interpret a morphism of (finite) abelian groups as a
(finite length) module, as expressed by Proposition 5.3.2. We will then study
decompositions of this module and what this decomposition corresponds to
in terms of the original morphism. This will enable us in the next section
to apply the Krull–Remak–Schmidt theorem to morphisms of finite abelian
groups.

We write
( Z 0
Z Z
)
for the ring of lower-triangular 2 × 2 matrices with

integer coefficients, Ab for the category of abelian groups, and ab for the
category of finite abelian groups.

Definition 5.3.1. Let C be a category. We define the arrow category of C,
written Arr(C), to be the category where the objects are the morphisms of
C and for objects f : A→ B and g : C → D the morphisms from f to g are
the pairs (α, β) ∈ HomC(A,C)×HomC(B,D) such that βf = gα.

The following proposition can be thought of as an explicit instance of
Mitchell’s embedding theorem for abelian categories.

Proposition 5.3.2. There is an equivalence of categories, specified in the
proof, between the category Arr(Ab) and the category of

( Z 0
Z Z
)
-modules. This

equivalence restricts to an equivalence of categories between the subcategory
Arr(ab) and the subcategory of

( Z 0
Z Z
)
-modules of finite length.

Proof. WriteM for the category of
( Z 0
Z Z
)
-modules. We will define functors

F : Arr(Ab)→M and G : M→ Arr(Ab)

such that FG and GF are naturally isomorphic to the identity functors of
their respective categories. For an object f : A → B we take F (f) to be
A⊕B, where the

( Z 0
Z Z
)
-module structure is given by(
x 0

y z

)(
a

b

)
=

(
xa

yf(a) + zb

)
,

for x, y, z ∈ Z, a ∈ A and b ∈ B. For a
( Z 0
Z Z
)
-module M we take G(M) to

be the morphism E11M → E22M given by multiplication with E21, where
Eij is the 2×2 matrix having a 1 at position (i, j) and zeros elsewhere. The
remainder of this proposition is a straightforward verification.

Definition 5.3.3. Write I for the class of
( Z 0
Z Z
)
-modules that correspond

to isomorphisms under the equivalence of categories of Proposition 5.3.2.
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One readily checks that the class I is multiplicative and saturated in the
sense of Definition 5.2.8. We observe that a

( Z 0
Z Z
)
-moduleM belongs to I if

and only if its
( Z 0
Z Z
)
-module structure can be extended to a

( Z Z
Z Z
)
-module

structure. This fact will not be needed, and we omit the proof.

Remark 5.3.4. Using the equivalence of categories of Proposition 5.3.2,
one can translate terminology related to modules into terminology about
morphisms of abelian groups. We briefly go through what is most relevant
to us:

1. If f : A → B is a morphism of abelian groups, then a submodule of
the

( Z 0
Z Z
)
-module corresponding to f corresponds to a restriction of f , i.e.

a morphism f ′ : A′ → B′ where A′ ⊆ A and B′ ⊆ B are subgroups and
f ′(a′) = f(a′) ∈ B′ for all a′ ∈ A′.

2. For morphisms f : A → B and g : C → D of abelian groups and for
r = (α, β) ∈ Hom(f, g), the image im(r) equals the restriction im(α) →
im(β) of g, and the kernel ker(r) equals the restriction ker(α) → ker(β) of
f .

3. If (fi)i∈I is a family of morphisms fi : Ai → Bi of abelian groups,
then we write

⊕
i∈I fi for the natural map

⊕
i∈I Ai →

⊕
i∈I Bi and we

write f/fi for the induced map A/Ai → B/Bi. One verifies that
⊕

i∈I fi
corresponds to the coproduct of the

( Z 0
Z Z
)
-modules that the fi correspond

to. If f : A→ B is a morphism and fi : Ai → Bi is a family of restrictions of
f then, just as we do for modules, we will write

⊕
i∈I fi = f if the natural

map
⊕

i∈I fi → f is an isomorphism.
4. For a morphism f : A → B, the set Dec(f) is the set of all pairs

(f0, f1) of restrictions of f such that f0⊕f1 = f , which is a partially ordered
set as in Definition 5.2.1. The set DecI(f) is the set of (f0, f1) ∈ Dec(f)
such that f1 is an isomorphism.

Definition 5.3.5. Let f : A → B be a morphism of abelian groups. We
say f is nil if for all morphisms g : B → A the element fg ∈ End(B) is
nilpotent, or equivalently gf ∈ End(A) is nilpotent.

Lemma 5.3.6. Suppose f : A→ B is a morphism of abelian groups.
1. If f is a nil isomorphism, then A = B = 0.
2. If f is nil, then every divisor of f is nil.

Proof. 1. If f is a nil isomorphism, then ff−1 = idB is nilpotent, hence
A = B = 0. 2. Suppose f = f0 ⊕ f1 for morphisms fi : Ai → Bi. Let
g1 : B1 → A1 be a morphism. Then g = g1 ⊕ 0 : B1 ⊕ B2 → A1 ⊕ A2 is a
morphism such that fg is nilpotent if and only if f1g1 is nilpotent. Hence
f1 is nil if f is nil.
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Lemma 5.3.7. Let f : A→ B be a morphisms of finite abelian groups.
1. Then f is nil if and only if all isomorphisms dividing f are trivial.
2. Suppose f = f0 ⊕ f1. Then f is nil if and only if f0 and f1 are nil.
3. We may uniquely, up to automorphisms of f , write f = f0 ⊕ f1 with
f0 nil and f1 an isomorphism.

4. Suppose (f0, f1) ∈ DecI(f). Then (f0, f1) is maximal if and only if f0

is nil.

Proof. 1. If f is nil, then every divisor is nil and the only nil isomorphism is
trivial by Lemma 5.3.6. Suppose all isomorphisms dividing f are trivial. Let
g : B → A be a morphism. Then lim im fg = 0 by Lemma 5.2.6, otherwise
the restriction of f to lim im fg → lim im gf is an isomorphism and a non-
trivial divisor of f . Hence fg is nilpotent by Lemma 5.2.5 and f is nil.

Both 2 and 3 follow from 1 combined with Theorem 5.2.2, while 4 follows
from 1 and Proposition 5.2.9.3.

5.4 The group U ∗

In this section we fix a morphism d : A → B of abelian groups. We will
define a group U∗ that acts on d and study some of its properties.

Definition 5.4.1. For f, g ∈ Hom(B,A), we define f ?g = fdg and extend
? to a ring multiplication on the additive group Q = Q(d) = Z⊕Hom(B,A)
by

(m, f) ? (n, g) = (mn,mg + nf + fdg)

for m,n ∈ Z and f, g ∈ Hom(B,A). We define the multiplicative monoid

U = U(d) = 1 + Hom(B,A) ⊆ Z⊕Hom(B,A) = Q

and write U∗ = U∗(d) = U ∩Q∗.

It is easy to check that Q is indeed a ring with unit element 1 = (1, 0),
and that the projection map Q → Z is a ring homomorphism with kernel
Hom(B,A). The inverse image of 1 equals U , and U∗ is a group because it
is the kernel of the induced group homomorphism Q∗ → Z∗. The following
lemma is easy to verify.

Lemma 5.4.2. We have a ring homomorphism q : Q→ End(d) defined by
sending 1 to the identity idd and f ∈ Hom(B,A) to (fd, df). It restricts to
a group homomorphism U∗ → Aut(d).

Remark 5.4.3. Note that A and B are End(d)-modules. The map q makes
A and B into Q-modules in such a way that d is Q-linear.
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In the following results, we use the terminology from Remark 5.3.4. We
let U∗ act on Dec(d) via the map U∗ → Aut(d) from Lemma 5.4.2.

Lemma 5.4.4. Let di : Ai → Bi with i ∈ {−1, 0, 1} be restrictions of d such
that (d0, d1) and (d0, d−1) belong to Dec(d), and suppose that d0 or d1 is an
isomorphism. Then (d0, d−1) ∈ U∗ · (d0, d1).

Proof. We have A0⊕A1
∼= A ∼= A0⊕A−1. Hence the map A1 → A−1 given

by x 7→ x−1 where x = x0 + x−1 with xi ∈ Ai is an isomorphism. Similarly,
we have a natural isomorphism g1 : d1 → d/d0 → d−1, and its extension g =
idd0 ⊕ g1 ∈ Aut(d) maps (d0, d1) to (d0, d−1). Letting r = idd−g ∈ End(d),
then r(d1) ⊂ d0 and r(d0) = 0, so r2 = 0. We first construct f ∈ Hom(B,A)
that maps to r under q : Q→ End(d). Write r = (rA, rB) with rA ∈ End(A)
and rB ∈ End(B). Since d0 or d1 is invertible, there exists f1 : B1 → A0

such that the diagram

A1 B1

A0 B0

d1

rA rB
f1

d0

commutes. Then f = 0 ⊕ f1 with 0: B0 → A1 satisfies (fd, df) = r, so f
does map to r under q : Q→ End(d). From f ? f ? f = fdfdf = r2

Af = 0 we
see that f is nilpotent, so the element 1− f ∈ U belongs to U∗. Since 1− f
maps to idd−r = g via q, it sends (d0, d1) to (d0, d−1).

The proof of the following proposition, which can be considered a sharp-
ening of Proposition 5.2.9.4 when R =

( Z 0
Z Z
)
, is the main reason for con-

sidering d as a module.

Proposition 5.4.5. Assume A and B are finite. Then the set of maximal
elements of DecI(d) equals one orbit of DecI(d) under the action of U∗.

Proof. By Proposition 5.3.2 we may apply Proposition 5.2.9.4. Thus it suf-
fices to show that any two maximal elements (d0, d1), (e0, e1) ∈ DecI(d) are
in the same U∗-orbit. Recall that (d0, e1) ∈ DecI(d) by Proposition 5.2.9.5.
Applying Lemma 5.4.4 we obtain (d0, e1) ∈ U∗ · (d0, d1) since d1 is an iso-
morphism, and (e0, e1) ∈ U∗ · (d0, e1) since e1 is an isomorphism. Thus
(e0, e1) ∈ U∗ · (d0, e1) = U∗ · (d0, d1).



108 5. Group rings

5.5 The degree map

In this section we will prove facts about group rings and interpret them as
a special case of gradings. We will rely heavily on [34].

Definition 5.5.1. For a ring A and a group G the group ring A[G] is an
A-algebra with as underlying group the free A-module with basis G where
multiplication is given by(∑

g∈G
agg
)
·
(∑
g∈G

bgg
)

=
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.

We associate with A[G] its natural grading {Ag}g∈G.

First we observe that that the properties of being reduced and being
connected are preserved under construction of group rings, as a consequence
of Theorem 1.5 in [34] or Theorem 4.6.6.

Corollary 5.5.2. Let A be an order and G a finite abelian group. Then:
1. We have nil(A[G]) = nil(A)[G], and A is reduced if and only if A[G]

is reduced;
2. We have Id(A[G]) = Id(A), and A is connected if and only if A[G] is

connected;
3. If A is connected, then µ(A[G]) = µ(A)×G.

Definition 5.5.3. Let R be a reduced order. By Theorem 1.3 in [34] or
Theorem 6.21 in [17] the ring R has a universal grading {Rγ}γ∈Γ (see Def-
inition 4.2.1). We will write Γ(R) for this group Γ.

Remark 5.5.4. If R and R′ are commutative rings that have universal
gradings, then any ring isomorphism R→ R′ induces a group isomorphism
Γ(R) → Γ(R′), so Γ(R) behaves functorially under ring isomorphisms; in
particular, the group Aut(R) of ring automorphisms of R acts in a natural
way on Γ(R).

Lemma 5.5.5. Let R be a connected reduced order and let {Rγ}γΓ(R) be
its universal grading. Then there exists a morphism of finite abelian groups
d : µ(R) → Γ(R) that sends ζ ∈ µ(R) to the unique γ ∈ Γ(R) such that
ζ ∈ Rγ.

Proof. The group Γ(R) is finite by Theorem 1.3 of [34], and µ(R) is finite by
Lemma 3.3.ii in [32]. By Theorem 1.5.iii of [34], if ζ ∈ µ(R), then there exists
a γ ∈ Γ(R) such that ζ ∈ Rγ . The element γ is unique, since Rγ ∩ Rδ = 0
for all γ 6= δ. That d is a homomorphism follows from the definitions.
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Definition 5.5.6. For a connected reduced order R we call the map d : µ(R)
→ Γ(R) from Lemma 5.5.5 the degree map of R.

The above definition depends on the choice of universal grading. How-
ever, the universal grading of R is uniquely unique. Moreover, the proof
of Theorem 1.3 of [34], which states that a reduced order has a universal
grading, exhibited an explicit canonical choice of universal grading. Thus
we can confidently refer to the degree map of a connected reduced order.
We now describe the degree map dA[G] of A[G].

Proposition 5.5.7. Let A be a connected reduced order and let G be a
finite abelian group. Let (Γ(A), (Aγ)γ) and (Γ(A[G]), (Rγ)γ) be the universal
grading of A and A[G] respectively. Then

1. we have Γ(A[G]) = Γ(A) × G, and R(γ,g) = Aγ · g for all γ ∈ Γ(A)
and g ∈ G;

2. if we identify µ(A[G]) with µ(A)×G as in Proposition 5.5.2.iii, then
the degree map dA[G] : µ(A)×G→ Γ(A)×G equals dA × idG;

3. we have Γ(A) = 〈γ ∈ Γ(A[G]) : Rγ ∩A 6= 0〉.

Proof. Let A = (Γ(A), (Aγ)γ) and R = (Γ(A[G]), (Rγ)γ) be the univer-
sal gradings of A and A[G] respectively and write A[G] = (Γ(A)×G, (Aγ ·
g)(γ,g)). By universality there exists a unique morphism of gradings ϕ : R →
A[G], which by Definition 4.2.1 is a group homomorphism Γ(A[G]) →
Γ(A)×G, and we will show that it is an isomorphism. Let π : Γ(A)×G→ G
be the projection and ∆ = ker(πϕ). For g ∈ G we have g ∈ RdA[G](g) and
g ∈ A1 ·g, so πϕdA[G] is the identity on G. It follows that Γ(A[G]) = ∆×G.
Then RA = (∆, (Rδ)δ) is a grading of A, and ϕ restricts to a morphism of
gradings ϕ′ : RA → A with ϕ = ϕ′ × idG. With ∆′ = 〈δ ∈ ∆ : Rδ 6= 0〉 we
have ⊕

(δ,g)∈∆′×G

Rδ · g = A[G],

so by Lemma 4.2.4.5 we obtain ∆′×G = Γ(A[G]) = ∆×G. Hence ∆′ = ∆,
so RA is universal by Lemma 4.2.4.4. It follows that ϕ′ and hence ϕ is an
isomorphism, proving 1. Now 2 and 3 follow by inspection.

Proposition 5.5.7.2 expresses the degree map of A[G] in terms of G and
the degree map of A, but we will mainly use it in the opposite direction.
Specifically, for a connected reduced order R, an element (A,G) ∈ D(R)
corresponds to a certain decomposition (dA, idG) ∈ DecI(d) of the degree
map d of R, as defined in Definition 5.2.1 and Definition 5.3.3.
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Example 5.5.8. Note that the conclusion to Proposition 5.5.7 becomes
false when we drop the assumption that A be connected.

Let A = Z × Z, which has a trivial universal grading A by Propo-
sition 4.2.6.2, and let G be a non-trivial finite abelian group. Because
A[G] ∼= Z[G]× Z[G] we get Γ(A[G]) = G×G by Proposition 4.2.6.2, while
A[G] is G-indexed. Hence A[G] is not universal.

Definition 5.5.9. Suppose R is a commutative ring. We define the set

D(R) =

(A,G)

∣∣∣∣∣∣∣
A ⊆ R is a subring,
G ⊆ R∗ is a subgroup,
A[G] = R


which we equip with a partial order ≤ given by (B,H) ≤ (A,G) if and only
if H ⊆ G and B ⊇ A.

Lemma 5.5.10. Suppose R is a non-zero order. Then for each (A,G) ∈
D(R) the order of G is at most the rank of R as Z-module, and D(R)
contains a maximal element.

Proof. By definition of D(R) the elements of G are linearly independent,
from which the first claim follows. We have (R, 1) ∈ D(R), so D(R) is not
empty. Thus if (A,G) ∈ D(R) and #G is maximal, then (A,G) is a maximal
element of D(R).

Lemma 5.5.11. Let R be a connected order and let (A,G), (B,H) ∈ D(R).
Then (B,H) ≤ (A,G) if and only if there exists some subgroup J ⊆ µ(R)
such that B = A[J ] and G = J ×H.

Proof. The implication (⇐) is obvious, so it remains to prove (⇒). By
Lemma 5.5.10 the group H is finite, and by Proposition 5.5.2.3 the multi-
plication map µ(B)×H → µ(R) is an isomorphism. Since the inverse image
of G is J×H, we have G = J×H. Thus A[J ][H] = A[J×H] = A[G] = B[H]
and therefore A[J ] = B.

Example 5.5.12. The conclusion to Lemma 5.5.11 does not hold in general
for non-connected orders. Let p be prime and let G = Cp × Cp with Cp
a group of order p. Then G is a 2-dimensional Fp-vector space and thus
there are precisely p + 1 subgroups H0, . . . ,Hp of G of order p. We have
Hi ·Hj = G if and only if i 6= j. Let R = Z[G]×Z[G] and let ∆: G→ µ(R)



5.5. The degree map 111

be the map given by g 7→ (g, g). Now consider the elements (Z×Z,∆(G)) ≥
(Z[H0]× Z[H1],∆(Hp)) of D(R). As Proposition 5.5.2 implies

µ(Z[H0]× Z[H1]) = µ(Z[H0])× µ(Z[H1])

= {(±h0,±h1) : h0 ∈ H0, h1 ∈ H1},

we get J = ∆(G) ∩ µ(Z[H0]× Z[H1]) = 1 and (Z× Z)[J ] 6= Z[H0]× Z[H1].

Recall that we say a commutative ring R is stark if there do not exist
a ring A and a non-trivial group G such that R is isomorphic to the group
ring A[G], or equivalently for R non-zero, if #D(R) = 1.

Lemma 5.5.13. Let R be a non-zero commutative ring and let (A,G) ∈
D(R). If (A,G) is maximal, then A is stark. When R is a connected order,
the converse also holds.

Proof. If A = B[J ] for some J ⊆ µ(A), then (A,G) ≤ (B, J ×G) ∈ D(R).
Hence if (A,G) is maximal we have (A,G) = (B, J×G) and thus J = 1, so A
is stark. For connected orders, the converse follows from Lemma 5.5.11.

Note that from Theorem 5.6.3 it follows that maximality of (A,G) ∈
D(R) for a non-zero reduced order R is equivalent to A being stark even
when R is not connected. However, we have not proved this yet.

Remark 5.5.14. Let R be a connected reduced order with universal grad-
ing {Rγ}γ∈Γ and degree map d : µ→ Γ. Note that the group Aut(R) acts on
the category of gradings of R. Under this action, σ ∈ Aut(R) sends {Rγ}γ∈Γ

to {σ(Rγ)}γ∈Γ, which is again a universal grading of R. Thus, by universal-
ity this induces a unique isomorphism f : Γ → Γ between them. It follows
that Aut(R) acts on Γ. Clearly Aut(R) acts on µ(R), and it is then easy to
see that the combination of these actions gives an action Aut(R)→ Aut(d).
Through this map the group Aut(R) acts on DecI(d).

Theorem 5.5.15. Let R be a connected reduced order. We have a natural
isomorphism

D(R)→ DecI(dR)

of partially ordered Aut(R)-sets given by

(A,G) 7→ (dA : Γ(A)→ µ(A); idG : G→ G)( ⊕
γ∈Γ0

Rγ , µ1

)
7→(d0 : Γ0 → µ0; d1 : Γ1 → µ1),

where the first map is as induced by Proposition 5.5.7.2 and {Rγ}γ∈Γ(R) is
the universal grading of R.
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Proof. That the maps are well-defined and mutually inverse can be easily
deduced from Proposition 5.5.7. Both maps are functorial, and thus com-
mute with the action of Aut(R). That they respect the partial order follows
from Lemma 5.5.11.

Definition 5.5.16. For a connected reduced order R with degree map
d : µ→ Γ we write U∗(R) or U∗(d) for the group as in Definition 5.4.1.

Lemma 5.5.17. Let R be a connected reduced order with degree map d. Let
ϕ : U∗(d) → Aut(d) be as in Lemma 5.4.2 and χ : Aut(R) → Aut(d) as in
Remark 5.5.14. We then have a commutative diagram

U∗(d)

Aut(R) Aut(d)

ψ ϕ

χ

where ψ is a morphism given in terms of the universal grading {Rγ}γ∈Γ of
R by 1 + f 7→ (x ∈ Rγ 7→ f(γ) · x).

Proof. Let 1 + f, 1 + g ∈ U∗ and recall that their product equals (1 + f) ?
(1 + g) = 1 + f + g + fdg in U∗. It is easy to see that ψ(1 + f) is an
endomorphism of R. For γ ∈ Γ we have

x ∈ Rγ
ψ(1+g)7−−−−→ g(γ) · x ∈ Rdg(γ) ·Rγ ⊆ Rdg(γ)·γ
ψ(1+f)7−−−−→ f(dg(γ) · γ) · g(γ) · x = f(γ)g(γ)fdg(γ) · x,

so indeed ψ(1+f)◦ψ(1+g) = ψ((1+f)?(1+g)). It follows that ψ(1+f) ∈
Aut(R) and that ψ is a morphism.

Let 1+f ∈ U∗ and write F = ψ(1+f). For ζ ∈ µ we have F (ζ) = f(dζ)ζ,
so F |µ(R) = idµ +fd. For γ ∈ Γ and x ∈ Rγ non-zero we have F (x) =
f(γ) ·x, so the induced action on Γ sends γ to df(γ)γ. Hence 1+f gets sent
to idΓ +df , since {γ ∈ Γ | Rγ 6= 0} is a generating set of Γ by Lemma 4.2.4.5.
We conclude that χ(ψ(1 + f)) = (idµ +fd, idΓ +df) = ϕ(1 + f), as was to
be shown.

Example 5.5.18. The map ψ : U∗ → Aut(R) need not be injective, even
when R is stark. Consider the subring R = Z · (1, 1) + 2S of S = Z[i]× Z[i]
where i2 = −1, which is clearly connected, reduced, and has µ(R) = {±1}×
{±1}. Let Γ = µ(R) and write

R1,1 = R ∩ (Q×Q) = Z · (1, 1) + Z · (1,−1),

R1,−1 = 2i · (Z× {0}), R−1,1 = 2i · ({0} × Z), R−1,−1 = 0.
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Then (Γ, (Rγ)γ) is the universal grading of R. Consider the identity id : Γ→
µ. Note that 2 id = 0 and d = 0, hence (1+id)2 = 1 in Q and so 1+id ∈ U∗.
Moreover, ψ(1 + id) is the identity of R, so ψ is not injective. To see R is
stark, we can apply Lemma 5.7.1 below since d = 0.

Note that U∗(R) acts on D(R) through Aut(R).

Theorem 5.5.19. Let R be a connected reduced order and suppose (A,G),
(B,H) ∈ D(R) are such that A and B are stark. Then A ∼= B as rings,
G ∼= H as groups, and (A,G), (A,H), (B,G) and (B,H) are all in D(R)
and in particular in the same U∗(R)-orbit.

Proof. Let d be the degree map of R and let Φ: DecI(d) → D(R) be the
map from Theorem 5.5.15. Suppose (A,G), (B,H) ∈ D(R) are such that A
and B are stark. Then (A,G) and (B,H) are maximal elements of D(R)
by Lemma 5.5.13, and thus Φ(A,G) = (d0, d1) and Φ(B,H) = (e0, e1) are
maximal in DecI(d). Then by Proposition 5.2.9.5 and Proposition 5.4.5 all
of (d0, d1), (d0, e1), (e0, d1), and (e0, e1) are maximal and in the same U∗-
orbit. Note that the action of U∗ on DecI(d) factors through Aut(R) by
Lemma 5.5.17, so Φ respects the action of U∗. Since Φ(d0, e1) = (A,H)
and Φ(e0, d1) = (B,G), the last assertion of the theorem follows. As a
consequence, (A,G) and (B,H) are in the same orbit of Aut(R), so A ∼= B
as rings and G ∼= H as groups.

Example 5.5.20. Let C2 = 〈σ〉 be a group of order 2 and let R = Z[i][C2],
where i2 = −1. We will compute D(R).

By Proposition 5.5.2 the ring R is both reduced and connected. With
Γ = (Z/2Z)2, consider the grading (Γ, (Ra,b)(a,b)) of R with Ra,b = Ziaσb,
where although ia is not well-defined, Zia is. Since a universal grading ex-
ists, and all Ra,b are of rank 1 over Z, this must be the universal grading.
Let d : µ → Γ be the degree map. It follows from Proposition 5.5.2.3 that
µ = 〈i, σ〉 ∼= Z/4Z×Z/2Z. We will first compute DecI(d). Suppose we have
(d0, d1) ∈ DecI(d) with di : µi → Γi. If µ1 = 1, then d0 = d, and (d0, d1)
corresponds via Theorem 5.5.15 to the trivial element (R, 1) of D(R). Now
suppose µ1 6= 1. Since d1 is an isomorphism, the groups µ1 and Γ1 are
isomorphic, so µ1 is isomorphic to a direct summand of µ and of Γ. Since
Z/2Z is the greatest common divisor of µ and Γ as Z-modules (in the sense
of Definition 5.2.3), we have that µ1 is a direct summand of µ isomor-
phic to Z/2Z. It follows that µ1 = 〈(−1)bσ〉 for some b ∈ Z/2Z, and the
corresponding group Γ1 equals 〈(0, 1)〉 in both cases. On the other hand
µ0 = 〈iσa〉 for some a ∈ (Z/2Z) since it must be a cyclic group of order 4,
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and Γ0 = 〈(1, a)〉. Upon inspection, all pairs (a, b) do indeed give a decom-
position (d0, d1) ∈ DecI(d). The rings corresponding to the possible d0 are
Z[iσa], and the groups corresponding to d1 are 〈(−1)bσ〉. This gives

D(R) = {(R, 1)} ∪ {(Z[iσa], 〈(−1)bσ〉) | a, b ∈ Z/2Z}.

Interesting to note is that, although (Z[iσ], 〈σ〉) differs from (Z[iσ], 〈−σ〉),
the corresponding gradings are isomorphic, since Z[iσ] · σ = Z[iσ] · (−σ).

Example 5.5.21. The conclusion to Theorem 5.5.19 does not hold in gen-
eral for non-connected reduced orders. Let C be a non-trivial finite abelian
group and consider R = Z[C × C]× Z[C]. Let

A = Z[C × 1]× Z, G = {((1, γ), γ) | γ ∈ C},
B = Z[1× C]× Z, H = {((γ, 1), γ) | γ ∈ C}.

Then A and B are stark, and A[G] = R = B[H]. However, the natural map
A[H]→ R has image Z[C × 1]× Z[C] 6= R.

5.6 Proofs of main theorems

In this section we prove Theorems 5.6.3 and 5.6.4 by reducing to the con-
nected case, where we can apply Theorem 5.5.19. Recall the definition of D
from Definition 5.5.9.

Lemma 5.6.1. Let S and T be orders with S non-zero, let R = S × T
with projection map π : R → S, and let (A,G) ∈ D(R). Then we have
(π(A), π(G)) ∈ D(S) and the restriction G→ π(G) of π is a group isomor-
phism.

Proof. We have a natural map π(A)[G] � π(A)[π(G)] → S. Since S
equals π(A[G]) =

∑
g∈G π(A)π(g), this map is clearly surjective. Suppose∑

g∈G π(ag)g is in its kernel. Writing e = (1, 0) ∈ R and identifying S with
S × {0}, we have π(x) = ex for all x ∈ R. By Proposition 5.5.2.2 we have
e ∈ A and therefore

∑
g∈G eagg = 0 in A[G]. We conclude that for all g ∈ G

we have π(ag) = eag = 0, so the map π(A)[G]→ S is an isomorphism. Then
the maps π(A)[G]→ π(A)[π(G)] and π(A)[π(G)]→ S are isomorphisms as
well. Since S 6= 0, this implies that the map G → π(G) is an isomorphism
and that (π(A), π(G)) ∈ D(S).

Given a group ring structure on a product of orders, Lemma 5.6.1 con-
structs on each of the factors a group ring structure, with the same group.
The following proposition does the opposite. For the definition of greatest
common divisors, see Definition 5.2.3.
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Proposition 5.6.2. Let X be a finite non-empty set. For all x ∈ X let Rx
be a connected order, let (Ax, Gx) ∈ D(Rx), and suppose we write Gx =
Dx ⊕ Ex for some subgroups Dx, Ex ⊆ Gx such that for all y, z ∈ X we
have Dy

∼= Dz. Consider

R =
∏
x∈X

Rx and A =
∏
x∈X

Ax[Ex], and let D ⊆
∏
x∈X

Dx

be a subgroup for which all the projection maps πx : D → Dx are isomor-
phisms. Then (A,D) ∈ D(R). If in addition (Ax, Gx) is maximal in D(Rx)
for all x ∈ X, and D is a greatest common divisor of {Gx |x ∈ X}, then
(A,D) is maximal in D(R).

Proof. Clearly A ⊆ R and D ⊆ µ(R). There is a sequence of ring isomor-
phisms

A[D] ∼=
∏
x∈X

(Ax[Ex][D]) ∼=
∏
x∈X

(Ax[Ex][Dx]) ∼=
∏
x∈X

Ax[Gx] = R,

where one obtains the first isomorphism by tensoring A =
∏
x∈X Ax[Ex]

with Z[D] over Z and the second isomorphism is induced by the group
isomorphisms πx. The resulting isomorphism A[D] → R restricts to the
inclusion on both A and D, so A[D] = R and indeed (A,D) ∈ D(R).

Now suppose that (Ax, Gx) is maximal in D(Rx) for all x ∈ X, and that
D is a greatest common divisor of {Gx |x ∈ X}. Let (B,H) ∈ D(R) be such
that (A,D) ≤ (B,H). For x ∈ X let Bx and Hx be the projection of B
and H to Rx respectively. By Lemma 5.6.1 we have (Bx, Hx) ∈ D(Rx) and
H ∼= Hx. Choose (Cx, Ix) ∈ D(Rx) to be maximal such that (Bx, Hx) ≤
(Cx, Ix). Since Rx is connected, Lemma 5.5.11 implies that there exists a
finite abelian group Fx such that Ix ∼= Hx ⊕ Fx. Since both (Ax, Gx) and
(Cx, Ix) are maximal in D(Rx), we have Gx ∼= Ix by Theorem 5.5.19. Hence
Gx ∼= Ix ∼= Hx ⊕ Fx ∼= H ⊕ Fx. Thus H is a common divisor of all Gx, and
H contains D. Since D is a greatest common divisor, we obtain H = D.
From A[D] = B[H] = B[D] and A ⊇ B we see A = B, so (A,D) = (B,H)
and (A,D) is maximal.

Theorem 5.6.3. Suppose A and B are reduced orders and G and H are
finite abelian groups. Then the following are equivalent:
(i) A[G] ∼= B[H] as rings,
(ii) there exist an order C and finite abelian groups I and J such that

A ∼= C[I] and B ∼= C[J ] as rings and I ×G ∼= J ×H as groups.



116 5. Group rings

Proof. If A = 0 or B = 0, then Theorem 5.6.3 holds trivially. Hence assume
A and B are non-zero. (ii ⇒ i) Assuming (ii), we have ring isomorphisms

A[G] ∼= C[I][G] ∼= C[I ×G] ∼= C[J ×H] ∼= C[J ][H] ∼= B[H].

(i ⇒ ii) First assume A[G] is connected. Let (C, V ) ≥ (A,G) and
(D,W ) ≥ (B,H) be a maximal element of D(A[G]), respectively D(B[H]).
By Lemma 5.5.13 the orders C and D are stark, so by Theorem 5.5.19 there
exists a ring isomorphism σ : B[H] → A[G] that sends (D,W ) to (C, V ).
It follows that (C, V ) ≥ (σ(B), σ(H)), so applying Lemma 5.5.11 twice, we
find subgroups I, J ⊆ V such that I × G = V = J × σ(H) ∼= J ×H and
C[I] = A and C[J ] = σ(B) ∼= B. This concludes the proof of the connected
case.

Next consider the general case, where A[G] =
∏
x∈X Rx is a non-empty

product of connected reduced orders Rx. Without loss of generality we may
assume A[G] = B[H]. Let x ∈ X. Write Ax and Bx for the image of A,
respectively B, of the projection onto Rx. Then Ax[G] ∼= Rx ∼= Bx[H] by
Lemma 5.6.1. Since Rx is connected and we proved (i⇒ ii) in the connected
case, there exist a reduced order Cx and finite abelian groups Ix and Jx such
that Cx[Ix] ∼= Ax and Cx[Jx] ∼= Bx and Ix ×G ∼= Jx ×H = Px. Replacing
Cx by Cx[Dx] for some greatest common divisor Dx of Ix and Jx, we may
assume that Ix and Jx are coprime. It follows that Px is a least common
multiple of G and H, as defined in Definition 5.2.3. In particular, when x
ranges over X, the finite abelian groups Px are pairwise isomorphic, and
as a consequence the same holds for the groups Ix. Hence there exists a
subgroup I ⊆

∏
x∈X Ix such that all projections I → Ix are isomorphisms,

so from Proposition 5.6.2.1 it follows that C[I] ∼= A with C =
∏
x∈X Cx.

Similarly we find a finite abelian group J that is isomorphic to all Jx such
that C[J ] ∼= B. Now I and J together satisfy I×G ∼= J×H, as desired.

Theorem 5.6.4. Let R be a non-zero reduced order. Then there exist a
stark ring A, unique up to ring isomorphism, and a finite abelian group G,
unique up to group isomorphism, such that R ∼= A[G] as rings.

Proof. Let (A,G) ∈ D(R) be a maximal element (Lemma 5.5.10). Then
A is stark by Lemma 5.5.13. Suppose B is a stark ring and H is a finite
abelian group such that B[H] ∼= R. By Theorem 5.6.3 there exist an order
C and finite abelian groups I and J such that A ∼= C[I] and B ∼= C[J ] and
I ×G ∼= J ×H. Since both A and B are stark we conclude that I = J = 1,
so G ∼= H and A ∼= C ∼= B. Hence A and G are unique up to ring and group
isomorphism, respectively.
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5.7 Automorphisms of group rings

In this section we will describe Aut(A[G]), for a stark connected reduced
order A with degree map d and a finite abelian group G, in terms of U∗(d),
G, and Aut(A). In this section we write Q(A) for Q(d) and similarly for
U and U∗ as defined in Definition 5.4.1. In our context U∗(A) is equal to
U(A) due to the following.

Lemma 5.7.1. Let A be a connected reduced order with degree map d : Γ→
µ. Then the following are equivalent:
(i) A is stark;
(ii) d is nil;
(iii) Hom(Γ, µ) = nil(Q(A));
(iv) Hom(Γ, µ) = Jac(Q(A));
(v) U∗(A) = U(A);

Proof. We will write Q = Q(A) and similarly for U and U∗.
(i ⇔ ii) This follows from Theorem 5.5.15 and Lemma 5.3.7.4.
(ii ⇔ iii) This follows immediately from the definition of nil and the

multiplication on Q, and the fact that in general nil(Q) ⊆ Hom(Γ, µ).
(iii ⇒ iv) Since nil(Q) is a nil two-sided ideal we have Hom(Γ, µ) ⊆

nil(Q) ⊆ Jac(Q). The surjection Q � Z must map Jac(Q) to Jac(Z) = 0,
so in general Jac(Q) ⊆ Hom(Γ, µ), hence we have equality.

(iv ⇒ v) We have U = 1 + Jac(Q) ⊆ Q∗, so U = U∗.
(v ⇒ iii) The involution x 7→ 1− x on Q maps U to Hom(Γ, µ). Hence

both sets have the same number of idempotents, which by assumption is
only 1 for U . Since Hom(Γ, µ) is finite, every element has some power which
is idempotent and hence 0, so Hom(Γ, µ) ⊆ nil(Q). The reverse inclusion
holds in general.

A category C is small if the class of objects of C is a set, and for any
two objects A and B of C the class Hom(A,B) is a set. A category C is
preadditive (see Section 1.2 in [4]) if for any two objects A and B of C the
class Hom(A,B) is an abelian group such that composition of morphisms is
bilinear, i.e. for all objects A, B, and C and morphisms f, f ′ : A → B and
g, g′ : B → C we have g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) and (g + g′) ◦ f =
(g ◦ f) + (g′ ◦ f).

Lemma 5.7.2. Let C be a preadditive small category with precisely two
objects 0 and 1. Then:

1. With Mij = Hom(j, i) for i, j ∈ {0,1} both M00 and M11 are rings
and M01 and M10 are a M00-M11-bimodule and M11-M00-bimodule
respectively.
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2. The product of groups

M(C) =
∏

i,j∈{0,1}

Mij =

(
M00 M01

M10 M11

)

is a ring with respect to the addition and multiplication implied by the
matrix notation.

3. If M01 ·M10 = im(M01 ⊗M10 →M00) ⊆ Jac(M00), then

M10 ·M01 ⊆ Jac(M11),

Jac(M(C)) =

(
Jac(M00) M01

M10 Jac(M11)

)
and

M(C)∗ =

(
M∗00 M01

M10 M∗11

)
.

Proof. That the Mij are groups, and that the addition is compatible with
the composition of morphisms, follows from the fact that C is preadditive.
It is then easy to verify that the Mij are rings and modules as claimed, and
that M(C) is a ring, giving 1 and 2.

Now supposeM01 ·M10 ⊆ Jac(M00). We will show that for all m ∈M01

and n ∈ M10 we have nm ∈ Jac(M11). Let s ∈ M11. Then (ms)n ∈
M01 ·M10 ⊆ Jac(M00), so 1 +msn has an inverse r ∈M00. Then

(1− snrm)(1 + snm) = 1− sn(r(1 +msn)− 1)m

= 1− sn(1− 1)m = 1.

Hence 1 + snm has a left inverse 1 − snrm, and similarly 1 − snrm is a
right inverse of 1 + snm. Thus 1 + snm ∈ M∗11 and nm ∈ Jac(M11). We
conclude that M10 ·M01 ⊆ Jac(M11). Consider

T =

(
Jac(M00) M01

0 0

)
and B =

(
0 0

M10 Jac(M11)

)

and write J = T + B. We will first show that T ⊆ Jac(M(C)). For x =(
a b
0 0

)
∈ T it suffices to show for all y =

(
r m
n s

)
∈ M(C) that 1 + xy ∈

M(C)∗. As 1 + xy =
(

1+ar+bn ma+bs
0 1

)
is upper triangular, it is invertible

if its diagonal elements are. The element 1 + ar + bn is invertible because
ar+ bn ∈ Jac(M00), so T ⊆ Jac(M(C)). Analogously B ⊆ Jac(M(C)). Thus
we have a two-sided ideal J ⊆ Jac(M(C)). To see equality, note that the
ring M(C)/J ∼= (M00/Jac(M00))× (M11/Jac(M11)) has a trivial Jacobson
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radical. An element of M(C) is a unit if and only if it maps to a unit
in M(C)/Jac(M(C)), hence if and only if its diagonal elements are units,
proving the final statement.

Naturally, the construction M(C) can be generalized to categories C with
any finite number of objects. We call M(C) the matrix ring of C.

Remark 5.7.3. Given four abelian groups Mij with i, j ∈ {0, 1} together
with compatible (i.e. associative) multiplications Mij ⊗ Mjk → Mik for
all i, j, k ∈ {0, 1} with appropriate unit elements, we can construct the
preadditive category C with two objects 0 and 1, with Hom(j, i) = Mij , and
with composition being these multiplications. In particular, ifM00 andM11

are rings, M01 is an M00-M11-bimodule, and M10 is an M11-M00-bimodule,
then it remains only to specify the multiplications M01 ⊗M10 → M00 and
M10 ⊗M01 →M11.

Let A be a connected reduced order and G a finite abelian group.
Recall that µ(A) and Γ(A) are Q(A)-modules by Remark 5.4.3, hence
Hom(G,µ(A)) and Hom(Γ(A), G) are respectively left and right Q(A)-
modules. We next describe U∗(A[G]) in terms of A and G.

Proposition 5.7.4. Let A be a connected reduced order and G a finite
abelian group. Then:

1. We have a matrix ring

E =

(
Q(A) Hom(G,µ(A))

Hom(Γ(A), G) End(G)

)
,

where Hom(G,µ(A))⊗Hom(Γ(A), G)→ Hom(Γ(A), µ(A)) ⊆ Q(A) is
the composition map and Hom(Γ(A), G) ⊗ Hom(G,µ(A)) → End(G)
is given by g ⊗ f 7→ gdf .

2. There is a natural ring isomorphism E ∼−→ Q(A[G]) that respects the
action of Aut(A).

3. If A is stark, then the map in 2 restricts to an isomorphism(
U∗(A) Hom(G,µ(A))

Hom(Γ(A), G) Aut(G)

)
∼−→ U∗(A[G]).

Proof. 1. Apply Remark 5.7.3 and Lemma 5.7.2.2. Since all multiplications
are defined in terms of compositions of morphisms, the associativity condi-
tions are trivially satisfied.
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2. Write Γ = Γ(A) and µ = µ(A). We have by Proposition 5.5.7.ii that

Q(A[G]) = Z⊕Hom(Γ×G,µ×G) ∼= Z⊕

(
Hom(Γ, µ) Hom(G,µ)

Hom(Γ, G) End(G)

)
,

where the isomorphism is one of abelian groups. Then the map Q(A[G])→
E with respect to the latter representation given by

(
n,

(
p q

r s

))
7→

(
(n, p) q

r n+ s

)

is an isomorphism of rings that by functoriality respects the action of
Aut(A).

3. Suppose A is stark. Then Hom(Γ, µ) = Jac(Q(A)) by Lemma 5.7.1.
It follows that the ideal Hom(G,µ) · Hom(Γ, G) ⊆ Hom(Γ, µ) is contained
in Jac(Q(A)). Now apply Lemma 5.7.2.3.

In Remark 5.7.5 and Proposition 5.7.6 we describe Aut(A[G]) in terms
of A and U∗(A[G]).

Remark 5.7.5. Let G be a finite abelian group. Then −[G] and U∗ act
functorially on isomorphisms of connected reduced orders. Let A be a con-
nected reduced order. From Proposition 5.5.7.ii we get a natural inclusion
Hom(Γ(A), µ(A))→ Hom(Γ(A[G]), µ(A[G])), which extends to an inclusion
of rings Q(A)→ Q(A[G]). Then we have a commutative diagram

U∗(A) Aut(A) Aut(U∗(A))

U∗(A[G]) Aut(A[G]) Aut(U∗(A[G])),

Lem 5.5.17 U∗

−[G]

Lem 5.5.17 U∗

and the composition U∗(A)→ Aut(U∗(A)) is the conjugation map.

Proposition 5.7.6. Let A be a stark connected reduced order and G a finite
abelian group. Then the maps and actions from Remark 5.7.5 fit in an exact
sequence

0→ U∗(A)
ι−→ U∗(A[G]) o Aut(A)

π−→ Aut(A[G])→ 0,

where ι and π are homomorphisms such that ι(u) = (u−1, u) and π maps
each component to Aut(A[G]).
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Proof. For all u, v ∈ U∗(A) we have

ι(u)ι(v) = (u−1, u)(v−1, v) = (u−1(uv−1u−1), uv) = ι(uv)

by Remark 5.7.5, so ι is a homomorphism. Moreover, ι is injective because
it maps injectively to the first factor. By the same lemma π is a homomor-
phism.

We will now show that π is surjective. Suppose σ ∈ Aut(A[G]). By The-
orem 5.5.19 there exists 1+f ∈ U∗(A[G]) that maps (A,G) to (σ(A), σ(G)),
so without loss of generality we may assume σ(A) = A and σ(G) = G. By
applying the restriction σ|A ∈ Aut(A) we may assume σ is the identity on
A. Consider the map f : Γ(A) × G → µ(A[G]) given by (δ, g) 7→ σ(g)g−1

and note that 1 + f ∈ U(A[G]) gets mapped to σ. We similarly obtain the
inverse of 1 + f in U(A[G]) from (δ, g) 7→ σ−1(g)g−1, so 1 + f ∈ U∗(A[G]).
It follows that σ is in the image of π and thus π is surjective.

To show the sequence is exact, it remains to show im(ι) = ker(π). It is
clear that im(ι) ⊆ ker(π), so suppose (1 + f, α) ∈ ker(π). As α−1 equals the
restriction of 1 + f by assumption, it suffices to show that 1 + f ∈ U∗(A).
For g ∈ G we have g = (1 + f)α(g) = f(g)g, and since g is a unit we have
f(g) = 1, i.e. G ⊆ ker(f). Moreover im(f) ⊆ µ(A), since multiplication by
any unit (ζ, g) ∈ µ(A) × G = µ(A[G]) not in µ(A) sends A to Ag 6= A.
Hence f ∈ Hom(Γ(A), µ(A)) and 1 + f ∈ U(A). The same holds for the
inverse 1 + e ∈ U∗(A[G]) of 1 + f , so 1 + e ∈ U(A) and thus 1 + f ∈ U∗(A).
It now follows that (1 + f, α) = ι(1 + e), so ker(π) ⊆ im(ι), as was to be
shown.

Proposition 5.7.4 and Proposition 5.7.6 combined gives us a description
of Aut(A[G]) in terms ofA andG. We now prove Theorem 5.7.8 and describe
Aut(A[G]) by less canonical means.

Lemma 5.7.7. Let A be a stark connected reduced order. Then the group
Hom(Γ(A), µ(A)) has a (right) action on the set Aut(A), which for α ∈
Aut(A) and f ∈ Hom(Γ(A), µ(A)) is given by

(α, f) 7→ α+ f =
(
x ∈ Aγ 7→ α(x) · f(γ)

)
.

Proof. Let α ∈ Aut(A) and f, g ∈ Hom(Γ(A), µ(A)). Note that α + f =
α◦ (1+α−1f) ∈ Aut(A), where 1+α−1f ∈ U(A) = U∗(A) by Lemma 5.7.1
and the composition is taken inside Aut(A) via Lemma 5.5.17. For γ ∈ Γ(A)
and x ∈ Aγ we clearly have

[(α+ f) + g](x) = [α+ f ](x) · g(γ)

= α(x) · f(γ) · g(γ)

= [α+ (f + g)](x),
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so the action is well-defined.

Theorem 5.7.8. Let A be a stark connected reduced order with degree map
dA : µ → Γ and let G be a finite abelian group. We equip the cartesian
product

M =

(
Aut(A) Hom(G,µ)

Hom(Γ, G) Aut(G)

)
of Aut(A), Hom(G,µ), Hom(Γ, G), and Aut(G) with the following multi-
plication:(

α1 s1

t1 σ1

)(
α2 s2

t2 σ2

)
=

(
α1α2 + s1t2 α1s2 + s1σ2

t1α2 + σ1t2 t1dAs2 + σ1σ2

)
,

where the sum in Aut(A) is as in Lemma 5.7.7 and the sum in Aut(G)
is taken inside End(G). For x ∈ A and g ∈ G write ( xg ) for the element
x · g ∈ A[G]. Then:

1. M is a group;
2. there is a natural isomorphism M ∼−→ Aut(A[G]) such that the evalu-

ation map M ×A[G]→ A[G] is given by(
α s

t σ

)(
x

g

)
=

(
α(x) · s(g)

t(γ) · σ(g)

)
for all g ∈ G, γ ∈ Γ and x ∈ Aγ.

Proof. To check that M is a group it remains to verify that t1ds2 + σ1σ2 ∈
Aut(G). This follows from Lemma 5.7.1, namely t1ds2 ∈ Jac(End(G)). Note
that the map ϑ : M → Aut(A[G]) can be written as the composition of the
homomorphism ϕ : M → U∗(A[G]) o Aut(A) given by(

α s

t σ

)
7→

(
1 s

tα−1 σ

)
· α

where U∗(A[G]) is written in terms of the matrix representation of Propo-
sition 5.7.4, and the homomorphism π : U∗(A[G]) o Aut(A) → Aut(A[G])
from Proposition 5.7.6. The map π is still surjective when restricted to the
image of ϕ. Namely any

(
u s
t σ

)
·α ∈ U∗(A[G])oAut(A) has the same image

as
( 1 s
tβ−1 σ

)
· βα, where β is the image of u in Aut(A). Hence the map ϑ

is surjective. By Proposition 5.7.4.3 and Proposition 5.7.6, respectively, we
have

#M

#U∗(A[G])
=

# Aut(A)

#U∗(A)
=

# Aut(A[G])

#U∗(A[G])
,
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so the groups M and Aut(A[G]) have the same (finite) cardinality, so ϑ is
bijective.

5.8 Algorithms

In this section we will prove Theorem 5.8.4, the algorithmic counterpart to
Theorem 5.6.4.

Lemma 5.8.1. For each of R = Z and R =
( Z 0
Z Z
)
there exists a polynomial-

time algorithm that, given finite R-modulesM1 andM2, computes a greatest
common divisor D of M1 and M2 as defined in Definition 5.2.3, together
with injections ιi : D →Mi and a complement Ni ⊆Mi such that Ni⊕ιiD =
Mi.

Proof. By Theorem 2.6.9 in [5] we may compute the exponents of M1 and
M2, and their least common multiple n, in polynomial time. Note that M1

and M2 are R/nR-modules and that replacing R by R/nR does not change
the problem. Since R/nR is a finite ring, the problem reduces to Theorem
4.1.1 in [5].

Proposition 5.3.2 allows us to interpret a morphism of finite abelian
groups as a finite length

( Z 0
Z Z
)
-module. Although both types of objects

are represented differently, one easily deduces from the proof of Proposi-
tion 5.3.2 that we can change representations in polynomial time.

In the following result, DecI(d) is as defined in Definition 5.2.8, Re-
mark 5.3.4, and Definition 5.3.3.

Proposition 5.8.2. There exists a polynomial-time algorithm that, given
finite abelian groups A and B and a morphism d : A → B, computes a
maximal element of DecI(d).

Proof. By Lemma 5.8.1 we may compute in polynomial time a greatest
common divisor D of A and B as Z-modules. Similarly we may compute a
greatest common divisor E of d and idD as

( Z 0
Z Z
)
-modules. We also obtain

submodules d0 and d1 of d such that d1
∼= E and d = d0 ⊕ d1. We claim

that (d0, d1) is a maximal element of DecI(d).
First note that d1 is a divisor of idD and thus must be an isomorphism.

As d = d0⊕d1 we indeed have that (d0, d1) ∈ DecI(d). Let (e0, e1) ≥ (d0, d1)
be maximal in DecI(d). Since e1 is an isomorphism, it is isomorphic to idF
for some finite abelian group F . Since e1 is a direct summand of d, the
group F is a direct summand of both A and B, so F is a divisor of their
greatest common divisor D. Thus e1 is a divisor of idD. It follows that e1
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is a divisor of E ∼= d1, so (d0, d1) = (e0, e1) and thus (d0, d1) is maximal, as
was to be shown.

Recall that we have specified an encoding for gradings of orders in Sec-
tion 4.7.

Proposition 5.8.3. There exists a polynomial-time algorithm that, given a
reduced order R and a universal grading of R, computes a maximal element
of D(R) as defined in Definition 5.5.9.

Proof. First suppose R is connected. By Theorem 1.2 in [32] we may com-
pute µ = µ(R) in polynomial time and thus also the group homomor-
phism d : µ→ Γ as defined in Definition 5.5.6. We may compute a maximal
element (d0, d1) ∈ DecI(d) with di : µi → Γi in polynomial time using
Proposition 5.8.2. Under the isomorphisms of partially ordered sets of The-
orem 5.5.15 this d corresponds to a maximal element (A,G) ∈ D(R), where
A =

∑
γ∈Γ0

Rγ and G = µ1, which we may compute in polynomial time.
Now consider the general case. By Theorem 1.1 in [32] we may compute

in polynomial time connected reduced orders {Rx}x∈X for some index set
X such that R ∼=

∏
x∈X Rx, together with the projections πx : R → Rx.

Using Proposition 4.2.6 we may construct universal gradings for the Rx in
polynomial time. Hence by the special case we may compute a maximal
element of D(Rx) for all x ∈ X in polynomial time. Finally, we may apply
Proposition 5.6.2 to compute a maximal element of D(R), observing that
the construction in Proposition 5.6.2 can be carried out in polynomial time
using Lemma 5.8.1.

Computing a maximal element of D(R) for a reduced order R is now
reduced to finding a universal grading of R.

Theorem 5.8.4. There is an algorithm that, given a non-zero reduced order
R, computes a stark subring A ⊆ R and a subgroup G ⊆ µ(R) such that
A[G] = R. This algorithm runs (a) in polynomial time when the additive
group of R is generated by autopotents, and generally (b) in time nO(m)

where n is the length of the input and m is the number of minimal prime
ideals of R.

Proof. We compute the universal grading of R. For (a), we use Theo-
rem 4.7.13, while for (b) we use Theorem 1.4 in [17]. The theorem now
follows from Proposition 5.8.3.
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CHAPTER 6
Roots of ideals in number rings
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6.1 Introduction

Let R be an order, not necessarily in a number field. A fractional ideal of
R is a finitely generated R-submodule a ⊆ QR such that Qa = QR. For
fractional ideals a and b of R we write a + b and a · b for the R-submodule
of QR given by {a + b | a ∈ a, b ∈ b} and generated by {ab | a ∈ a, b ∈ b}
respectively. We say a fractional ideal a of R is invertible if there exists a
fractional ideal a−1 of R such that aa−1 = R, and we write I(R) for the
group of invertible fractional ideals of R.

Any fractional ideal of R is a free abelian group of the same rank as
R, and we will encode a fractional ideal of R by a Z-basis in QR. Using
standard techniques as in [5], it is possible to compute a∩ b, a+ b, a · b and
a−1 in polynomial time on input R, a and b. This chapter we dedicate to
the computation of another elementary operation, namely taking roots of
fractional ideals.

A fractional R-ideal can have multiple n-th roots as I(R) can have non-
trivial torsion, while if R is the maximal order the n-th root is unique if it
exists. This makes it impossible to produce such a root functorially under
isomorphisms; see Example 6.7.6. Instead we solve the following problem.

Theorem 6.7.3. There exists a polynomial-time algorithm that, given an
order R in a number field and fractional ideal a of R, computes the maximal
n ∈ Z≥0 with respect to divisibility for which there exist an order R ⊆
S ⊆ QR and fractional ideal b of S such that bn = Sa, where b0 := S,
and additionally computes such S and b. The output of this algorithm is
functorial under isomorphisms of R.

If a fractional R-ideal a has an n-th root say b, then the S-ideal Sa also
has an n-th root, namely Sb, for any order R ⊆ S ⊆ QR. However, if Sa
has an n-th root for some S, then a does not need to have an n-th root; see
Example 6.7.5.

A maximal order in a number field has unique prime factorization of
ideals. However, we cannot expect to compute in polynomial time, given
an ideal a of a number ring R, the set of prime ideals a ⊆ p of R, for the
same reason that factorization of integers is considered hard. An often good
enough substitute is a coprime factorization: For a set X of ideals of R,
we compute a set C of pairwise coprime invertible proper ideals so that
every ideal of X is a (necessarily unique) product of ideals of C, potentially
enlarging the order R in the process as in Theorem 6.7.3. We say C is reduced
if 〈C〉 is a direct summand of I(R). For finite C this is equivalent to the
elements of C having no proper roots in I(R). For orders R ⊆ S ⊆ QR and
a set X of fractional ideals of R we write S ·X = {Sa | a ∈ X}, and we say
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C is strongly reduced if S ·C is reduced for every order R ⊆ S ⊆ QR. Using
the previous theorem we may compute strongly reduced coprime bases.

Theorem 6.8.5. There exists a polynomial-time algorithm that, given a
order R in a number field and a finite set X of fractional ideals contained
in R, computes an order R ⊆ S ⊆ QR such that S · X has a strongly
reduced coprime basis and computes such a coprime basis. The output of
this algorithm is functorial under isomorphisms of R.

For both theorems we produce an order S functorially, so one can wonder
whether this S has a compact definition other than it being the output of
the algorithm, as will be the case in Theorem 6.2.5 and Theorem 6.4.8.
However, we were unable to find such a description.

6.2 Fractional ideals

Let R be a commutative ring. We say x ∈ R is regular if multiplication by
x is injective and invertible if it is surjective. Let S be the set of regular
elements of R. Then S is a multiplicatively closed set, and we write Q(R) =
S−1R, the localization of R by S, for the total ring of fractions of R. The
natural map R→ Q(R) is an injective ring homomorphism, and we treat it
as an inclusion. If R is a reduced order, then Q(R) = QR. If R ⊆ S ⊆ Q(R)
are (sub)rings, then Q(S) = Q(R).

For R-submodules a, b ⊆ Q(R) we write a + b = {a + b | a ∈ a, b ∈ b},
write a · b or ab for the additive group generated by {ab | a ∈ a, b ∈ b} and
write a : b = {x ∈ Q(R) |xb ⊆ a}. A fractional ideal of R, which is not
necessarily an ideal of R, is a finitely generated R-submodule a ⊆ Q(R)
such that Q(R) · a = Q(R). An invertible ideal of R is a fractional ideal a
of R for which there exists an R-submodule b ⊆ Q(R) such that ab = R.

Lemma 6.2.1. Let R be a commutative ring with fractional ideal a. Then
a contains a regular element of R.

Proof. Since Q(R)a = Q(R) we may write
∑n

k=1(rk/sk) · ak = 1 for some
n ∈ Z≥0, rk, sk ∈ R and ak ∈ a with sk regular. Multiplying this equation by
the regular element s =

∏n
k=1 sk we obtain a 3

∑n
k=1 rk(s/sk)ak = s.

Lemma 6.2.2. Let R be a commutative ring and suppose a, b and c are
fractional ideals of R. Then

1. R, a + b and ab are fractional ideals of R;
2. (a + b)c = ac + bc and a : R = a;
3. If b ⊆ c, then a + b ⊆ a + c, ab ⊆ ac, b : a ⊆ c : a and a : b ⊇ a : c;
4. We have c(R : c) = R if and only if c is invertible;
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5. If c is invertible, then ac : bc = a : b, a : c = a(R : c), and ac ⊆ bc
implies a ⊆ b;

6. If R is Noetherian or c is invertible, then a : c is a fractional ideal;
7. If a is of the form Ra for some unit a ∈ Q(R), then a is invertible. If
R is semi-local, then the converse also holds.

Proof. We will prove the non-trivial parts.
4. If cd = R for some d, then d ⊆ R : c and R = cd ⊆ c(R : c) ⊆ R, so

we have equality throughout. Suppose c(R : c) = R. It suffices to show that
R : c is finitely generated. We have 1 =

∑
i∈I cidi for some finite set I and

ci ∈ c and di ∈ R : c. If x ∈ R : c, then x =
∑

i∈I(cix)di ∈
∑

i∈I Rdi, so the
di generate R : c.

5. Write d = R : c. Note that a : b ⊆ ae : be for all e. Hence a : b ⊆ ac :
bc ⊆ acd : bcd = a : b, so we have equality throughout. Using this we have
a : c = ad : cd = ad : R = ad. Note that e ⊆ f is equivalent to R ⊆ f : e,
from which one then deduces the last statement.

6. We have cR ⊆ c for some c ∈ Q(R)∗ by Lemma 6.2.1, so a : c ⊆ a :
cR = 1

ca. Assuming R is Noetherian, a : c is Noetherian because 1
ca
∼= a is

Noetherian. If c is invertible, then a : c = a(R : c) is fractional.
7. For all maximal ideals m choose am ∈ a and bm ∈ R : a so that

ambm ∈ R \m, and choose λm ∈ R \ m with λm ∈ n for all maximal n 6= m.
Then a =

∑
m λmam ∈ a and b =

∑
m λmbm ∈ R : a satisfy ab ≡ λ2

mambm 6≡
0 (mod m) for all m. Hence ab ∈ R∗ and a ∈ Q(R)∗. Finally a = aba ⊆
a(R : a)a = aR ⊆ a and we have equality throughout.

If a is an invertible ideal of R, we write a−1 = R : a for the unique
R-submodule of Q(R) such that aa−1 = R. We write I(R) for the set of
invertible ideals of R, which by Lemma 6.2.2 is closed under taking inverses,
and is thus a group under multiplication.

Example 6.2.3. The group I(R) can contain non-trivial torsion for an
order R in a number field.

Consider R = Z[2i]. Then i ∈ QR \ R is a fourth root of unity, hence
iR ∈ I(R) is non-trivial torsion. More generally, for orders R ⊆ S ⊆ QR
the group S∗/R∗ is torsion and the natural map to I(R) is injective.

Lemma 6.2.4. Let R ⊆ S ⊆ Q(R) be commutative (sub)rings. There is a
map from the set of fractional ideals of R to the set of fractional ideals of S
that sends a to Sa, and it preserves inverses of invertible ideals and respects
addition and multiplication.



6.3. Lengths of modules 129

Theorem 6.2.5. There exists a polynomial-time algorithm that, given an
order R in a number field and a fractional R-ideal a, computes the unique
minimal order R ⊆ S ⊆ QR such that Sa is invertible.

Proof. In [8] it is shown that Sa is invertible for the order S = an : an

with n = [K : Q] − 1. Any order R ⊆ T ⊆ QR where Ta is invertible
satisfies S = an : an ⊆ T (an : an) ⊆ (Tan) : (Tan) = T , so S is the unique
minimum.

Theorem 6.2.5 probably also holds when R is any order, with essentially
the same proof. This generalization would be sufficient to prove generaliza-
tions to general orders for all algorithmic theorems in this chapter.

6.3 Lengths of modules

Let R be a commutative ring and M a R-module. A chain in M is a set of
submodules of M that is totally ordered by inclusion. We define the length
of M to be

`R(M) = sup{#C |C a chain in M} − 1 ∈ Z≥0 ∪ {∞}.

Note that we do not distinguish between infinite cardinal numbers. Similarly
we define the Krull dimension of R to be

dim(R) = sup{#C |C a chain in R of prime ideals} − 1.

Note that `R(0) = 0 and dim(0) = −1. We say M has finite length if
`R(M) <∞, which is equivalent toM being both Noetherian and Artinian.
For a prime ideal p ⊆ R write Rp for the localization of R at p and Mp =
Rp ⊗RM . If M has finite length we write

[M ]R =
(
`Rm(Mm)

)
m
∈ Z(max specR)

≥0 .

where max specR is the set of maximal ideals of R.

Lemma 6.3.1 (Theorem 2.13 in [12]). Let R be a commutative ring and
N ⊆M be R-modules. Then `R(M) = `R(N) + `R(M/N) and

`R(M) =
∑
m⊆R

`Rm(Mm),

where the sum ranges over all maximal ideals m.

Lemma 6.3.2. Let R be a Noetherian commutative ring. If dim(R) ≤ 1,
then for every fractional R-ideal a ⊆ R the R-module R/a has finite length.
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Proof. Write chain(R) for the set of chains of prime ideals of R. The primes
ofR/a correspond to the primes ofR containing a, so we get a surjective map
f : chain(R)→ chain(R/a) that discards primes not containing a. Minimal
prime ideals contain no regular elements (Theorem 3.1 in [12]), while a does
(Lemma 6.2.1). Maximal elements of chain(R) contain a minimal prime,
which gets discarded by f . Hence dim(R/a) ≤ dim(R) − 1 ≤ 0. It then
follows from Corollary 9.1 in [12] that R/a has finite length.

Examples of a Noetherian commutative ring with Krull dimension at
most 1 include any order and its localizations.

Proposition 6.3.3. Let R ⊆ S ⊆ Q(R) be commutative (sub)rings. If
dim(R) ≤ 1 and `R(S/R) <∞, then for all invertible ideals a ⊆ R we have
[S/Sa]R = [R/a]R.

Proof. It suffices to prove for local R that `(S/Sa) = `(R/a). In this case
a = αR for some regular α ∈ R. Note that the map S/R → Sa/a given
by x 7→ αx is an isomorphism since α is regular in S. We conclude that
`(Sa/a) = `(S/R) <∞. We have exact sequences of R-modules

0→ R/a→ S/a→ S/R→ 0 and 0→ Sa/a→ S/a→ S/Sa→ 0.

Hence `(R/a) + `(S/R) = `(Sa/a) + `(S/Sa) by Lemma 6.3.2.

Example 6.3.4. With the notation as in Proposition 6.3.3, the R-modules
R/a and S/Sa need not be isomorphic. In fact, if R and S are orders, then
the modules need not even be isomorphic over Z.

Take R = Z[2i] and S = Z[i] with a = 2iR, which is clearly invertible.
Then R/a ∼= Z/4Z and S/Sa ∼= (Z/2Z)2 as Z-modules, which are non-
isomorphic.

Lemma 6.3.5. Let R be a commutative ring with fractional ideals a ⊆ b.
Then there exists some regular r ∈ R such that rb ⊆ a. If R is Noetherian
with dim(R) ≤ 1, then `R(b/a) <∞.

Proof. We may choose generators r1/s1, . . . , rn/sn ∈ Q(R) of b. Then y =∏
i si is regular and satisfies yb ⊆ R. By Lemma 6.2.1 there exists some

regular x ∈ R such that xR ⊆ a. Hence we may take r = xy. We have a
surjection b/xR→ b/a, so it suffices to show `R(b/xR) <∞. The injection
b/xR → 1

yR/xR and the fact that 1
yR/xR

∼= R/xyR has finite length by
Lemma 6.3.2 finish the proof.
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As a consequence of Lemma 6.3.5, every fractional ideal a of R can be
written as b : c for some ideals b, c ⊆ R with c invertible: As ra ⊆ R for some
regular r we may take b = ra and c = rR. Under additional invertibility
assumptions we may even take b and c coprime.

Lemma 6.3.6. Let R be a commutative ring and let a be a fractional R-
ideal such that a and R + a are invertible. Then R + a−1 is invertible and
b = (R+ a−1)−1 and c = (R+ a)−1 satisfy (1) b, c ⊆ R; (2) b + c = R and
(3) a = b : c.

Proof. Note that R + a−1 = a−1(R + a) is invertible. Rearranging gives
a = (R+ a) : (R+ a−1) = b : c. We have b + c = ac + c = (a +R)c = R. In
particular, we have b, c ⊆ R.

Proposition 6.3.7. There exists a polynomial-time algorithm that, given
an order R in a number field and an invertible ideal a of R, decides whether
a is torsion, and if so computes the minimal order R ⊆ S ⊆ QR such that
Sa = S.

Proof. We compute using Theorem 6.2.5 the minimal order R ⊆ S ⊆ QR
where R+a becomes invertible. We claim a is torsion if and only if Sa = S.

(⇒) As Sa is the quotient of b = (S + (Sa)−1)−1 and c = (S + Sa)−1

as in Lemma 6.3.6 with b + c = S, the ideal Sa is torsion if and only if b
and c are. However, since b, c ⊆ S, this is only possible if b = c = S. Hence
Sa = S : S = S.

(⇐) Let k ∈ Z>0. For x ∈ R : S we have xS = xSak ⊆ Rak = ak, so
x ∈ ak. Hence R : S ⊆ ak ⊆ S. By Lemma 6.3.5 the R-module S/(R : S)
has finite length, so in particular it is a finite group. Thus ak can take only
finitely many values, so by invertibility a must be torsion.

Finally, suppose that a is torsion and R ⊆ T ⊆ QR is an order such
that Ta = T . Then T (R + a) = T is invertible, so S ⊆ T . Hence S is the
unique minimal order where Sa = S.

6.4 Coprime bases

It is easy to see that for a set C of pairwise coprime invertible proper ideals
of a commutative ring R the natural map Z(C) → I(R) is injective with
image 〈C〉 and that 〈C〉 is closed under addition. In fact, Z(C) → 〈C〉 is an
isomorphism of partially ordered groups.

Lemma 6.4.1. There exists a polynomial-time algorithm that, given a re-
duced order R and a finite set C of pairwise coprime invertible proper ideals
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of R and some invertible ideal a of R, decides whether a is in the image of
the injection Z(C) → I(R) and if so computes the preimage.

Proof. First verify whether R+ a is invertible, as it should be if a ∈ 〈C〉. If
so, then by Lemma 6.3.6 we may write a = b : c for invertible b, c ⊆ R. We
then proceed using trial division.

Definition 6.4.2. Given a commutative ring R and a set X of fractional
ideals contained in R, we write 〈〈X〉〉 for the multiplicative monoid generated
by X with unit R, and we define the closure of X, written clR(X) or simply
cl(X), to be the smallest set of fractional ideals in R such that 〈〈X〉〉 ⊆ cl(X)
and for all a, b ∈ cl(X) we have ab, a + b ∈ cl(X), and if b is invertible and
a : b ⊆ R also a : b ∈ cl(X).

From Lemma 6.2.4 we deduce the following.

Lemma 6.4.3. Let R ⊆ S ⊆ Q(R) be commutative (sub)rings and let X be
a set of fractional ideals contained in R. Writing S ·X = {Sa | a ∈ X}, we
have S · clR(X) ⊆ clS(S ·X).

Lemma 6.4.4. Let R be a commutative ring R and C a set of invertible
ideals contained in R which are pairwise coprime. Then cl(C) = 〈〈C〉〉.

Proof. Clearly 〈〈C〉〉 ⊆ cl(C). For all a, b ∈ 〈〈C〉〉 we may write a =
∏

c∈C cac

and b =
∏

c c
bc with ac, bc ∈ Z≥0. Then

a + b =
∏
c∈C

cmin{ac,bc} and a : b =
∏
c∈C

cac−bc .

Hence a + b ∈ 〈〈C〉〉, and a : b ∈ 〈〈C〉〉 if a : b ⊆ R. Thus 〈〈C〉〉 = cl(C).

Definition 6.4.5. Let R be a commutative ring and X a set of fractional
ideals contained in R. A coprime basis for X is a set C of invertible proper
ideals of R, which are pairwise coprime and satisfy X ⊆ 〈〈C〉〉.

Note that a coprime basis need not exist for every X. At the very least,
the ideals in X should be invertible.

Lemma 6.4.6. For a commutative ring R and a set X of fractional ideals
contained in R we may equip the set of coprime bases of X with a partial
order where C ≤ D if and only if 〈〈C〉〉 ⊆ 〈〈D〉〉.

Proof. It suffices to verify for coprime bases C and D that 〈〈C〉〉 = 〈〈D〉〉
implies C = D. Let mcd ∈ Z≥0 be such that c =

∏
d∈D dmcd . Since the

elements of C are pairwise coprime, there is for every d ∈ D at most one



6.4. Coprime bases 133

c ∈ C such that mcd > 0. Because 〈〈D〉〉 ⊆ 〈〈C〉〉, there is no d ∈ D such that
for all c ∈ C we have mcd = 0.

Let d ∈ D. Then there exist c ∈ C and m > 0 such that c = dm and
in turn by symmetry e ∈ D and n > 0 such that e = cn. Then e = dmn, so
e = d and m = n = 1. Thus d = c ∈ C and D ⊆ C. By symmetry we have
C = D.

Proposition 6.4.7. Let R be a Noetherian commutative ring and X a set
of fractional ideals contained in R. Then:

1. X has a coprime basis if and only if cl(X) ⊆ I(R);
2. if X has a coprime basis, then it has a unique minimal one;
3. if C is a coprime basis of X, then C is minimal if and only if C ⊆

cl(X).

Proof. (1) Suppose X has a coprime basis D. Then X ⊆ 〈〈D〉〉 = cl(D)
by Lemma 6.4.4, so cl(X) ⊆ cl(D) = 〈〈D〉〉 ⊆ I(R). Suppose instead that
cl(X) ⊆ I(R). We will show that

C = {a ∈ cl(X) | ∀ b ∈ cl(X), a ( b⇔ b = R}

is a coprime basis of X.
First, note that the elements of C are pairwise coprime: For a, b ∈ C

we have a + b ∈ cl(X). If a ( a + b, then a + b = R by definition of C,
and similarly when b ( a + b. Otherwise a = a + b = b. Second, we show
cl(X) ⊆ 〈〈C〉〉 using Noetherian induction: Certainly R ∈ 〈〈C〉〉. Now let
a ∈ cl(X) \ {R} and suppose c ∈ 〈〈C〉〉 for all c ∈ cl(X) with a ( c. Either
a ∈ C, or there is some b ∈ cl(X) such that a ( b ( R, in which case
b, (a : b) ∈ 〈〈C〉〉 by the induction hypothesis and hence a ∈ 〈〈C〉〉. Thus C
is a coprime basis for X, as was to be shown.

(2) Suppose now that X has a coprime basis. We will show that C as
in (1) is the unique minimal coprime basis. Let D be any coprime basis of
X. We have C ⊆ cl(X), so cl(C) ⊆ cl(X). On the other hand, X ⊆ cl(C),
so cl(C) = cl(X). Similarly for D we have cl(X) ⊆ cl(D). Hence 〈〈C〉〉 =
cl(C) = cl(X) ⊆ cl(D) = 〈〈D〉〉 by Lemma 6.4.4. Thus C ≤ D, as was to be
shown.

(3) It is clear that the minimal coprime basis from (2) satisfies C ⊆
cl(X). Let D be any coprime basis of X such that D ⊆ cl(X). Then as
before we obtain 〈〈D〉〉 = cl(D) = cl(X). Hence 〈〈C〉〉 = cl(X) = 〈〈D〉〉 and
C = D by Lemma 6.4.6. Hence D is minimal.

Theorem 6.4.8. There exists a polynomial-time algorithm that, given a
order R in a number field and a finite set X of fractional ideals contained
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in R, computes the unique minimal order S such that R ⊆ S ⊆ QR and
cl(S ·X) ⊆ I(S), and then computes the minimal coprime basis of S ·X.

Note that the output of this algorithm is clearly functorial under iso-
morphisms of R.

Proof. Start with S equal to the minimal order R ⊆ S ⊆ Q(R) where the
elements of X become invertible using Theorem 6.2.5, and let C = X.

Iteratively compute c = Sa + Sb for distinct a, b ∈ C. If c 6= S, replace
S by the unique minimal order S ⊆ T ⊆ Q(R) where T c is invertible using
Theorem 6.2.5, replace a and b in C by Ta : T c and Tb : T c, and add T c
to C. Once Sa + Sb = S for all distinct a, b ∈ C we terminate and return
the order S and coprime basis S · C.

Polynomial run time follows from the fact that
∑

a∈C `R(S/aS), which
is bounded by the length of the input, decreases by at least 1 after every
iteration where c 6= S. For this, the fact that S changes throughout the algo-
rithm is irrelevant by Proposition 6.3.3. This also gives a polynomial bound
on #C and hence the number of pairs a, b ∈ C to check for coprimality
every iteration.

It remains to show correctness. With induction on the number of steps
one shows that during the algorithm S · X ⊆ 〈〈S · C〉〉, so that S · C is
indeed a coprime basis for S ·X, and S ·C ⊆ cl(S ·X), so it is minimal by
Proposition 6.4.7. Suppose R ⊆ T ⊆ Q(R) be such that cl(TX) ⊆ I(T ).
Then at every point of the algorithm we could replace S by S ∩ T and
preserve invertibility, so S ⊆ T at every step by minimality of S guaranteed
by Theorem 6.2.5. Hence S is minimal such that cl(SX) ⊆ I(S), and the
algorithm is correct.

In the above algorithm, once Sa+Sb = S for some S, we will also have
Ta + Tb = T for any S ⊆ T ⊆ Q(R). Keeping track of which pairs are
coprime could speed up the iterative algorithm in practice. Moreover, once
we compute Sa we may replace a in C by Sa to potentially speed up later
computations.

6.5 Fitting ideals

Let R be a commutative ring and M a finitely generated R-module. Then
there exists an exact sequence

R(I) f−→ Rn →M → 0
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for some set I and n ∈ Z≥0, where we interpret f as a matrix. Note that I
can be infinite, as M need not be finitely presentable. For k ≤ n we define
the k-th Fitting ideal of M , written Fitk(M), to be the R-ideal generated
by the determinants of all (n− k)× (n− k) minors of the matrix f , which
is 0 when no such minors exist. Note that Fitk(M) = 0 for k < 0, and
vacuously Fitn(M) = R as the determinant of a 0×0 matrix is 1. It is clear
that Fiti(M) ⊆ Fitj(M) for i ≤ j ≤ n. We extend the definition of Fitk(M)
to arbitrary k ∈ Z where Fitk(M) = R for k > n. By a theorem of Fitting
[14] the Fitting ideals do not depend on the choice of exact sequence.

Lemma 6.5.1. Let R be a non-zero Artinian commutative ring,M a finitely
generated R-module and k ∈ Z≥0. Then:

1. M can be generated by k elements if and only if Fitk(M) = R;
2. M is free of rank k if and only if Fitk−1(M) = 0 and Fitk(M) = R;
3. if M is free of rank k, then every set of generators of M of cardinality
k is a basis.

Proof. The first two follow from Propositions 20.6 and 20.8 in [12], while
the third is elementary.

Proposition 6.5.2. There exists a polynomial time algorithm that, given a
finite commutative ring R and a finitely generated R-module M , computes
the minimal number of generators n for M , and Fitn−1(M).

Proof. Using Theorem 4.1.3 from [5] we may compute such minimal n and
generators m1, . . . ,mn of M . We may then compute an exact sequence
Rm

f−→ Rn →M → 0, so that Fitn−1(M) is the ideal generated by the co-
efficients of f .

It is very possible a more direct proof of Proposition 6.5.2 can be given.

6.6 Finite-étale algebras

Let R be a commutative ring and S an R-algebra. We write So for the
opposite ring of S. Then Se = S ⊗R So is a ring and S is an Se-module
where the module structure is given by (s ⊗ s′) · t = sts′. We say S is
separable if S is projective as Se-module. We say S is finite-étale over R if
S is commutative and S is projective and separable over R.

Lemma 6.6.1. Let R be a commutative ring and S a finite-étale R-algebra.
Then

1. for all ideals a ⊆ R the R/a-algebra S/aS is finite-étale;
2. for all maximal ideals m ⊆ R the Rm-algebra Sm is finite-étale;
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3. if R is a field, then S is a product of fields.

Proof. For 1 and 2 it suffices to verify separability. For 1 it is trivial that R/a
is separable over R, hence S/aS is separable over R/a by Proposition III.1.7
of [28]. For 2 we have Proposition III.2.5 of [28]. Finally, 3 is a consequence
of Theorem III.3.1 of [28].

Proposition 6.6.2. There exists a polynomial-time algorithm that, given
a finite commutative ring R and a finite commutative R-algebra S, decides
whether S is finite-étale over R and if not, computes either some ideal 0 (
a ( R or some ideal 0 ( b ( S. The output of this algorithm is functorial
under isomorphisms.

Proof. Projectivity over finite rings can be tested using Theorem 5.4.1 from
[5], hence the finite-étale property can be tested. Suppose S is not finite-
étale. If S is not free over R, then the ideal a we obtain from Proposi-
tion 6.5.2 satisfies 0 ( a ( R by Lemma 6.5.1. If S is not separable over
Z, we obtain a ideal 0 ( b ( S from Proposition 6.1.3 from [5] which is
functorial under isomorphisms.

Suppose S is free over R and separable over Z. Then certainly S is
projective over R. Hence S is separable over R by Proposition 6.2.14.ii from
[5], so S is finite-étale over R.

6.7 Roots of ideals

In this section we will prove the main theorems on taking roots in orders.

Proposition 6.7.1. Let Z ⊆ R ⊆ S ⊆ Q(R) be commutative (sub)rings
such that Z is Dedekind and S is finitely generated as a Z-module. Let a ⊆ R
be an invertible ideal. Write a = a ∩ Z and suppose R/a is finite-étale over
Z/a. If m ∈ Z≥0 is such that there exists an ideal b ⊆ S with Sa = bm,
then there exists an ideal b ⊆ Z with a = bm.

In this proposition one can think of Z as Z and S as the maximal order
of a number field Q(R).

Proof. It suffices to prove the proposition for local Z: All conditions on the
rings and ideals are preserved by localization at a prime of Z, which for
the finite-étale property is Lemma 6.6.1.2, and the conclusion holds if it
holds everywhere locally. If Z is a field, then Z = R = S = Q(R) and the
proposition holds trivially. Thus we may assume Z is a discrete valuation
ring with maximal ideal p = πZ. Note that Z is Noetherian, hence S and
consequently R are Noetherian Z-modules and in particular Noetherian
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rings. Hence because Z is semi-local and of dimension 1, so are both R and
S.

Suppose b ⊆ S is such that Sa = bm. Write a = pk for some k ≥ 0.
To show there exists an ideal b with a = bm, it suffices to show that m | k.
We may assume that k > 0, otherwise this is trivial. Because a and b are
invertible ideals of a semi-local ring, we have a = αR and b = βS for some
regular α ∈ R and β ∈ S by Lemma 6.2.2.7.

By Lemma 6.3.5 we have `R(S/R) <∞, so by Proposition 6.3.3 we have
[R/αR]R = [S/αS]R. We have inclusions

S ⊇ βS ⊇ · · · ⊇ βmS = αS.

For all i we have an isomorphism S/βS → βiS/βi+1S since βi is regular, so

[R/αR]R = [S/αS]R = m · [S/βS]R.

Write Ai = πi · (R/αR). We have inclusions

A0 ⊇ A1 ⊇ · · · ⊇ Ak = 0.

Because R/αR as Z/πkZ-algebra is finite-étale by assumption, it is pro-
jective and hence free. Therefore multiplication by πi for 0 ≤ i < k is an
isomorphism A0/A1 → Ai/Ai+1 of Z-modules and hence of R-modules. We
conclude that

k · [A0/A1]R = [R/αR]R = m · [S/βS]R.

Note that A0/A1 is finite-étale over Z/πZ by Lemma 6.6.1, and that Z/πZ
is a field. Hence A0/A1 = R/(αR + πR) is a product of fields. In par-
ticular, if we choose any maximal m ⊂ R containing αR + πR we obtain
[A0/A1]R(m) = `Rm((A0/A1)m) = 1. It follows that k = m · [S/βS]R(m), as
was to be shown.

Example 6.7.2. Under the assumptions of Proposition 6.7.1 it need not
be the case that a itself be an m-th power in I(R).

Let R = Z[2
√

2] and a = (2 + 2
√

2)R. Then R/a ∼= Z/a as Z/a-algebra
for a = a ∩ Z = 4Z, so R/a is certainly étale. Since 1 +

√
2 is a unit in the

maximal order S = Z[
√

2], we have that Sa = (S
√

2)2. Suppose c ∈ I(R)
satisfies c2 = a. Square roots of ideals in S are unique, so Sc = S

√
2 and

c ⊆ S
√

2. On the other hand we have

c = a · (R : c) ⊇ a · (S2 : S
√

2) = 2
√

2S.

Thus c corresponds to some R-submodule d of S/2S with square (1+
√

2)R+
2S. Clearly d 6= S/2S, so d = dR + 2S for some d ∈ S/2S. As d2 ∈ {0, 1}
we conclude that d2 6= (1 +

√
2)R+ 2S, so no such c exists.
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Theorem 6.7.3. There exists a polynomial-time algorithm that, given an
order R in a number field and fractional ideal a of R, computes the maximal
n ∈ Z≥0 with respect to divisibility for which there exist an order R ⊆
S ⊆ QR and fractional ideal b of S such that bn = Sa, where b0 := S,
and additionally computes such S and b. The output of this algorithm is
functorial under isomorphisms of R.

Note that n = 0 corresponds to the case where a is torsion.

Proof. First compute some orderR ⊆ S ⊆ Q(R) such that Sa and S+Sa are
invertible using Theorem 6.2.5. Then write Sa = a+ : a− with a+, a− ⊆ S
invertible and coprime as in Lemma 6.3.6, and apply the algorithm recur-
sively to a+ and a− separately with S in the place of R. Since the ideals
are coprime, we may obtain a solution n = gcd(n+, n−) from solutions n+

and n− for a+ and a− respectively, and similarly we may construct S and
b. Hence we may now assume that a ( R.

Suppose that at some point during the algorithm we obtain an ideal a (
d ( R. Then compute some extension T and a coprime basis C for {Ta, Td}
using Theorem 6.4.8. Using Lemma 6.4.1 we may write Ta =

∏
c∈C(T c)mc

for some mc ∈ Z≥0. As before we may solve the problem by applying the
algorithm recursively to all c ∈ C. By the assumption on d we have a ( c
for all c ∈ C, so the recursion is well-founded.

Now we proceed to the actual algorithm. Compute a ∈ Z>1 such that
a∩Z = aZ. By Proposition 6.6.2 we may assume that R/a is finite-étale over
Z/aZ, otherwise we can proceed recursively as above. Then write a = bm for
some b,m ∈ Z>0 withm maximal. If b 6∈ a, then we may proceed recursively
with d = bR + a. Otherwise b ∈ aZ, so a = b and m = 1, in which case the
solution is n = 1 and b = a by Proposition 6.7.1.

That the algorithm runs in polynomial time follows from all theorems
applied.

Corollary 6.7.4. There exists a polynomial-time algorithm that, given an
order R in a number field, a fractional ideal a of R and a positive integer
n, decides whether there exist an order R ⊆ S ⊆ QR and fractional ideal b
of S such that bn = Sa and if so computes such S and b. The output of this
algorithm is functorial under isomorphisms of R.

Example 6.7.5. A fractional ideal of an order R can have a square root
in an order R ⊆ S ⊆ QR, while not having such a square root in R, even
when R is a domain.

Let R = Z[2i] and a = 2R. For S = Z[i] and c = (1 + i)S we have
c2 = 2iS = aS, so a has a square root in a larger order. Since S is Dedekind,
the group I(S) is torsion-free, so c is even the unique square root of aS.
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Suppose b is some fractional ideal of R such that b2 = a. Then bS = c
by uniqueness of c, so b ⊆ c ⊆ S. Let x ∈ b. Then x = s+ ti for s, t ∈ Z. As

2R = b2 3 x2 = (s2 − t2) + 2sti,

we conclude that s, t ∈ 2Z. Hence b ⊆ 2S. But then 2R = b2 ⊆ 4S, which
is false. Hence b does not exist.

Example 6.7.6. It is impossible to functorially take square roots of ideals
in arbitrary number rings without passing to a larger order.

Consider R = Z[2i] with invertible fractional ideals b = 2(1 + i)R ⊆ R
and c = 2(1 − i)R ⊆ R. We have b2 = 8iR = c2. Note that 8iR is invari-
ant under the automorphism group of R, so likewise should a functorially
chosen square root of it be invariant. Since b and c are distinct conjugates,
there should be a third square root of 8iR. We will show that the 2-torsion
subgroup I(R)[2] of I(R) has cardinality 2, giving a contradiction.

Suppose a ∈ I(R) satisfies a2 = R. Write S = Z[i] for the maximal order.
Then (Sa)2 = S, and because S is Dedekind also Sa = S, so a ⊆ S. On the
other hand we have a ⊇ a2(R : a) ⊇ R(R : S) = 2S. Hence a corresponds
to some subgroup of S/2S. Clearly a is neither S nor 2S, leaving 3 possible
subgroups. However, the order of I(R)[2] is a non-trivial power of 2, so this
power must be 2, as was to be shown.

6.8 Reduced coprime bases

Now that we can take roots of ideals we will use this to give a variation on
the coprime basis algorithm (Theorem 6.4.8).

Definition 6.8.1. Let G be a group. We say a subgroup H ⊆ G is pure if
for all h ∈ H and k ∈ Z>0 for which there exists a g ∈ G such that gk = h,
such a g exists in H.

Lemma 6.8.2. Let R be a reduced order. Suppose H ⊆ I(R) is a finitely
generated torsion-free subgroup, then H is a direct summand of I(R) if and
only if it is a pure subgroup.

Proof. We have a natural isomorphism I(R) ∼=
⊕

p I(Rp) and H is a sub-
group of some direct summand G =

⊕
p∈P I(Rp) for a finite set of maximal

ideals P. Note that H is pure in I(R) if and only if it is pure in G. Since
G is finitely generated and H is torsion free, the equivalence follows.

Definition 6.8.3. Let R be a commutative ring, X a set of fractional ideals
contained in R and C a coprime basis ofX. We say that C is reduced if 〈C〉 is
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a pure subgroup of I(R). Let O be the integral closure of R in Q(R). We say
that C is strongly reduced if S · C is reduced for every subring R ⊆ S ⊆ O.

Equivalently, C is strongly reduced if O · C is reduced.

Example 6.8.4. Not every X that admits a coprime basis also admits a
reduced coprime basis.

Consider R = Z[ 2
√

2, 3
√

2] and X = {2R} and suppose C is a reduced
coprime basis of X. As ( 2

√
2R)2 = 2R = ( 3

√
2R)3 the group 〈C〉 should

include a second and third root of 2R. If we uniquely express 2R =
∏

c∈C ckc ,
then 6 | kc for all c. In particular, 2R = b6 for some b ⊆ R. Since R/2R ∼=
(Z/2Z)6 as group, we must have that `Z/2Z(R/b) = 1 and R/b ∼= Z/2Z
as ring. Hence b is a prime above 2, which must be b = 2

√
2R + 3

√
2R. As

b5 ⊆ 2R we have that b6 6= 2R, so we arrive at a contradiction.

Theorem 6.8.5. There exists a polynomial-time algorithm that, given a
order R in a number field and a finite set X of fractional ideals contained
in R, computes an order R ⊆ S ⊆ QR such that S · X has a strongly
reduced coprime basis and computes such a coprime basis. The output of
this algorithm is functorial under isomorphisms of R.

Proof. Compute an order R ⊆ S ⊆ QR and a minimal coprime basis C for
S · X using Theorem 6.4.8. Then compute an order S ⊆ T ⊆ QR where
every T c for c ∈ C has a maximal root bc and compute B = {bc | c ∈ C}
using Theorem 6.7.3. From the fact that the elements of B are pairwise
coprime we may deduce that 〈B〉 is pure, even for larger orders in QR.
Hence B is strongly reduced. One easily verifies that B is minimal.
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The cover of this thesis features abstract sunflowers, each of which is
constructed as the Voronoi tesselation of a spiral of points that is subse-
quently projected onto the surface of revolution of a hyperbolic spiral. The
image was created in the Python API of Blender (v3.5.1) using the SciPy
library (v1.10.1). It is produced by the following code, which is optimized
for compactness.

import bpy, bmesh, numpy as np; from scipy.spatial import Voronoi
nm,a2,col=np.linalg.norm,np.arctan2,bpy.data.collections.new(’c’)
def make_cell(vs,fs,cs,s):

r,i=[a if a >= 0 else len(cs) for a in s],len(vs)
l=[cs[a] for a in s if a>=0]; c=sum(l)/len(l); cs+=[c*3/nm(c)]
x=sorted([(nm(cs[a]),cs[a]) for a in r]); d=(x[0][1]+x[−1][1])/2
t=min(nm(d)*.2,.15); t=0 if t<.03 else t
l=[(1−t)*cs[a]+t*c for a in r]; vs+=[list(d)+[0]]
for c,d in zip(l,l[1:]+[l[0]]):

for t in np.linspace(0,1,max(2,int(10*nm(c−d))))[1:]:
vs+=[list(t*d+(1−t)*c)+[0]]; fs+=[[i,len(vs)−1,len(vs)]]

fs[−1][−1]=i+1; return (vs,fs,cs)
def make_object(name,mesh,colors,location,cuts):

l,m=bpy.data.meshes.new(name),bpy.data.materials.new(name)
m.use_nodes=True; n=m.node_tree.nodes
x=[n.get(’Material Output’)]+list(map(lambda s:n.new(’ShaderNode’
+s),2*[’BsdfDiffuse’]+[’MixShader’,’NewGeometry’]))

for i,a,j,b in [(0,0,3,0),(3,1,1,0),(3,2,2,0),(3,0,4,6)]:
m.node_tree.links.new(x[i].inputs[a],x[j].outputs[b])

for i in [0,1]: x[i+1].inputs[0].default_value=colors[i]
l.from_pydata(mesh[0],[],mesh[1]); l.update()
o=bpy.data.objects.new(name,l); o.data.materials.append(m)
col.objects.link(o); o.location,m=(location,0,0),bmesh.new()
m.from_mesh(o.data); bmesh.ops.subdivide_edges(m,edges=m.edges,
use_grid_fill=1, cuts=cuts); m.to_mesh(o.data); o.data.update()

for v in o.data.vertices:
t=nm(v.co); p=(v.co/t)*(1.−np.sin(4*t)/4/t)
v.co=[p[0],p[1],−np.cos(4*t)/4/t]

def mkflower(offset,rad=.65,exp=.6,cell=350):
p=2*np.pi; ct=lambda a,r:r*np.array([np.cos(p*a),np.sin(p*a)])
points=[ct(.6180339*c,rad*(c/cell)**exp) for c in range(cell)]
v=Voronoi(points); m=[[[],[],list(v.vertices)] for i in [0,1]]
for j in filter(lambda j:j+3>2<len(v.regions[j]),v.point_region):

s=v.regions[j]; l=[m[1][2][a] for a in s if a>=0]; c=sum(l)/len(l)
f=lambda:[a2(*(m[1][2][i]−c if i>=0 else c)[:2]) for i in s]
k=np.argmin(f()); s=[s[(i+k)%len(s)] for i in range(len(s))]
if all(x<=y for (x,y) in zip(f(),f()[1:])): s.reverse()
b=all(i>=0 for i in s) and nm(c)<=.75; m[b]=make_cell(*m[b],s)

make_object(’p’,m[0],((1,.72,0,1),(1,.45,0,1)),offset,25)
make_object(’s’,m[1],((.7,.16,0,1),(.11,.45,0,1)),offset,7)

c,d=bpy.context.scene.collection,bpy.data.cameras.new(’v’)
d.lens=55; v=bpy.data.objects.new(’v’,d); c.children.link(col)
v.location,v.rotation_euler=(3.1,1.6,5.6),(.55,−.55,2.65)
c.objects.link(v); mkflower(0); mkflower(−3.1); mkflower(−6.2)
mkflower(−9.3); mkflower(−12.4); mkflower(−15.5);
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