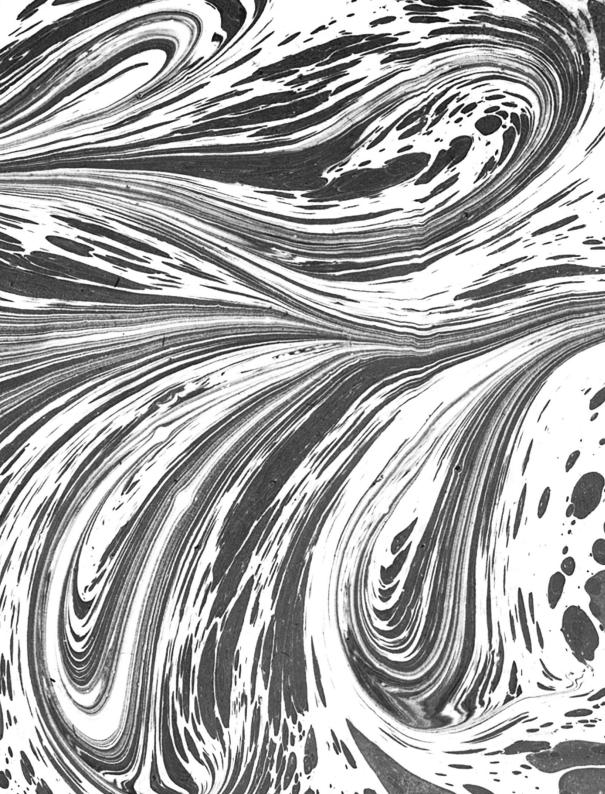


Evaluating the microcirculation in early phase clinical trials: novel methodologies and interventions


Kraaij, S.J.W. van

Citation

Kraaij, S. J. W. van. (2024, March 6). *Evaluating the microcirculation in early phase clinical trials: novel methodologies and interventions*. Retrieved from https://hdl.handle.net/1887/3719988

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3719988

Note: To cite this publication please use the final published version (if applicable).

LIST OF PUBLICATIONS

- van Kraaij SJW, Hamblin MR, Pickering G, Giannokopoulos B, Kechemir H, Heinz M, Igracki-Turudic I, Yavuz Y, Rissmann R, Gal P. A Phase 1 randomized, open-label clinical trial to evaluate the effect of a far-infrared emitting patch on local skin perfusion, microcirculation and oxygenation. Exp Dermatol. 2023 Nov 10. doi: 10.1111/exd.14962. Epub ahead of print. PMID: 37950549.
- van Kraaij SJW, Borghans L, Klaassen ES, Gal P, van der Grond J, Tripp K, Winrow C, Glasser C, Groeneveld GJ. Randomized placebo-controlled cross-over study to assess tolerability and pharmacodynamics of zagociguat, a soluble guanylyl cyclase stimulator, in healthy elderly. Br J Clin Pharmacol. 2023 Jul 24. doi: 10.1111/bcp.15861. Epub ahead of print. PMID: 37488930.
- van Kraaij SJW, Pereira DR, Smal B, Summo L, Konkel A, Lossie J, Busjahn A, Grammatopoulos TN, Klaassen E, Fischer R, Schunck WH, Gal P, Moerland M. Identification of peripheral vascular function measures and circulating biomarkers of mitochondrial function in patients with mitochondrial disease. Clin Transl Sci. 2023 Jul;16(7):1258-1271. doi: 10.1111/cts.13530. Epub 2023 May 12. PMID: 37177864; PMCID: PMC10339694.
- van Kraaij SJW, Gal P, Borghans LGJM, Klaassen ES, Dijkstra F, Winrow C, Glasser C, Groeneveld GJ. First-in-human trial to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of zagociguat (CY6463), a CNS-penetrant soluble guanylyl cyclase stimulator. Clin Transl Sci. 2023 Aug:16(8):1381-1395. doi: 10.1111/cts.13537. Epub 2023 May 3. PMID: 37118895; PMCID: PMC10432884.
- In 't Veld AE, Grievink HW, van der Plas JL, Eveleens Maarse BC,
 van Kraaij SJW, Woutman TD, Schoonakker M, Klarenbeek NB, de Kam ML, Kamerling IMC, Jansen MAA, Moerland M. Immunosuppression by hydroxychloroquine: mechanistic proof in in vitro experiments but limited systemic activity in a randomized placebo-controlled clinical pharmacology study. Immunol Res. 2023 Aug;71(4):617-627. doi: 10.1007/s12026-023-09367-3. Epub 2023 Feb 22. PMID: 36811819; PMCID: PMC9945836.
- Reumkens A, Bakker CM, **van Kraaij SJW**, Winkens B, Raijmakers MT, van Nunen AB, van Deursen CTBM, Masclee AAM. Safety of low-volume PEG-ASC bowel cleansing preparation for colonoscopy: identifying patients at risk for hypokalemia in a prospective cohort study. Endosc Int Open. 2021 Aug;9(8):E1198-E1204. doi: 10.1055/a-1478-3361. Epub 2021 Jul 16. PMID: 34447864; PMCID: PMC8383076.

CURRICULUM VITAE

Sebastiaan Jan Wilhelmus van Kraaij was born on the 12th of January 1994 in Nijmegen, The Netherlands. He graduated cum laude from secondary school "Sint-Maartenscollege" in Maastricht in 2011 and started studying medicine at Utrecht University. During his study, he joined the student association Unitas Studiosorum Rheno-Traiectina (U.S.R.), where he served several years as secretary of the debate society (A.D.C.) "Forsete Wara". After obtaining his bachelor's degree in 2015, he continued his education with the Master of Science in Medicine at Utrecht University, during which he performed research on renal Xenon-133 washout curves and their implications on the pathophysiology of hypertension, resulting in two poster presentations at international conferences. After graduating cum laude as a medical doctor in 2018, he started his professional career as a resident physician at the department of Internal Medicine in the Diakonessenhuis hospital in Utrecht. In 2019, he started working as a research physician at the Centre for Human Drug Research (CHDR). There he also started his PhD track investigating microcirculation under supervision of dr. P. Gal, dr. M. Moerland and prof. dr. J. Burggraaf. The studies contained in this thesis were performed at the CHDR, several in collaboration with different stakeholders in the pharmaceutical field. During his work at CHDR, he also contributed to numerous other clinical studies in the fields of immunology, neurology, and psychiatry. After completion of his PhD thesis, he continued his professional medical career and is currently employed as resident Internal Medicine in the Tergooi Hospital located in Hilversum.

LIST OF ABBREVIATIONS

		CRP
		CSE
1H-MRS	Proton magnetic resonance spectroscopy	CSF
AC	Adenyl cyclase	CTNI
ADMA	Asymmetric dimethylarginine	CV
AElast	Amount excreted in urine until last	CYP3A4
	sample, absolute	CYP450
AE _{last%}	Amount excreted in urine until last sample,	DBP
	percentage of plasma concentration	DNA
ALT	Alanine transaminase	Emax
ANCOVA	Analysis of covariance	EC
ANOVA	Analysis of variance	ECAR
APOGC	Haem-free guanylate cyclase	ECG
ASL	Arterial spin labelling	ECLIA
AST	Aspartate aminotransferase	EETS
ATP	Adenosine triphosphate	ELISA
AU	Arbitrary units	EMA
AUC	Area under the curve	ERP
AUC0-24	Area under the curve from timepoint	EU
	0 to 24 hours	FAD
AUC _{0-tz}	Area under the curve from timepoint	FCCP
	0 to the last measurable timepoint	
AUC _T	Area under the curve during 1 dosing	FDA
	interval	FDR
AUC _{last}	Area under the curve until the last	FI
	measurable concentration	FIH
AUC	Area under the curve extrapolated	FIR
	to infinity	FMD
AUEC _{0-tz}	Area under the biomarker curve from time	FMN
	point 0 to the last quantifiable data point	FMRI
BEBO	Stichting Beoordeling Ethiek Biomedisch	FMSF
	Onderzoek	GDF-15
BH4	Tetrahydrobiopterin	GGT
BLQ / BLOQ	Below limit of quantification	GI
BMI	Body mass index	GLP
BOLD	Blood-oxygen-level-dependent	GPCR
BP	Blood pressure	H ₂ O ₂
C _{max}	Maximum concentration	H₂S
C _{trough}	Trough concentration	НВ
CAM	Calmodulin	HBA1C
CAMP	Cyclic adenosine monophosphate	HED
CBF	Cerebral blood flow	HETES
CFB	Change from baseline	HNOX
CI	Confidence interval	HV
CIAS	cognitive impairment associated with	ICU
	schizophrenia	IL-6
CGMP	Cyclic guanosine monophosphate	JC1
CLR	Renal clearance	
CL/F	Total clearance	K2EDTA
CNS	Central nervous system	
CO2	Carbon dioxide	K _{Ca}
COVID-19	Coronavirus disease 2019	KATP
cox	Cyclooxygenase	KIR

C-reactive protein
Cystathionine-lyase
Cerebrospinal fluid
Cardiac troponin I
Coefficient of variation
Cytochrome P450 3A4
Cytochrome P450 epoxygenase
Diastolic blood pressure
Deoxyribonucleic acid
Maximum exposure-related concentration
Endothelial cell
Extracellular acidification rate
Electrocardiogram
Electrochemiluminescence immunoassay
Epoxyeicosatrienoic acids
Enzyme-linked immunosorbent assay
European Medicines Agency
Event-related potential
European Union
Flavin adenine dinucleotide
Carbonyl cyanide-p-trifluoromethoxy-
phenylhydrazone
Food and Drug Administration
False discovery rate
Food-interaction
First-in-human
Far infrared radiation
Flow mediated dilation
Flavin mononucleotide
Functional magnetic resonance imaging
Flow mediated skin fluorescence
Growth/differentiation factor 15
Gamma-glutamyl transferase
Gastrointestinal
Good laboratory practice
G-protein coupled receptor
Hydrogen peroxide
Hydrogen sulfide
Hemoglobin
Glycated hemoglobin
Human equivalent dose
Hydroxyeicosatrienoic acids
Heme-NO-oxygen binding domain
Healthy volunteer
Intensive care unit
Interleukin 6
Tetraethylbenzimidazolylcarbocyanine
iodide
Dipotassium ethylenediaminetetraacetic
acid
Ca ² +-actived potassium channel
ATD consitive notoosium channel

ATP-sensitive potassium channel

Inwardly rectifying potassium channel

L-ARG		PEEG
L-CIT	L-arginine L-citrulline	
	(High performance) liquid chromato-	PGS PK
	graphy with tandem mass spectrometry	PKA
LDH	Lactate dehydrogenase	PKG
L-NAME	L-nitro-arginine methyl ester	PLA,
L-NMMA	NG-monomethyl-l-arginine	
LOX	Lipoxygenase	PMBC
LSCI	Laser speckle contrast imaging	PORH
LSM	Least squares mean	PPV
LTH	Local thermal hyperaemia	PTR
LTS	Leukotrienes	PTX3
LXS	Lipoxines	PU
MAD	Multiple ascending dose	QD
MAX	Maximum	QEEG
MEDDRA	Medical dictionary for regulatory activities	R _{csf}
MEGJ	Myoendothelial gap junctions	651
MELAS	Mitochondrial encephalopathy, lactic	R _{csf-free}
	acidosis, and stroke-like episodes	csi=iiee
MIN	Minimum	RAUC
MITOD	Mitochondrial disease	AUC
ММР	Mitochondrial membrane potential	R _{max}
ммт	Milner learning maze test	mux
MMTT	Mixed meal tolerance test	R _{trough}
MRI	Magnetic resonance imaging	
Ν	Number	
NAA	N-acetylaspartate	ROS
NAD+	Nicotinamide adenine dinucleotide	SAD
NADH	Reduced nicotinamide adenine	SAP
	dinucleotide	SBP
NADP	Nicotinamide adenine dinucleotide	SD
	phosphate	SDFM
NADPH	Reduced nicotinamide adenine	SDMA
	dinucleotide phosphate	SEM
NF-L	Neurofilament light polypeptide	SGC
NIRS	Near infrared spectroscopy	
NMDA	N-methyl-D-aspartate	SMC
NO	Nitric oxide	SOD
NO ₂		SST
NOAEL	No observed adverse event level	T _{1/2}
NOS	Nitric oxide synthase	T _{½,eff}
NOS1 / INOS	Inducible nitric oxide synthase	T _{max} TEAE
NOS2 / NNOS	Neuronal nitric oxide synthase Endothelial nitric oxide synthase	
NOS3 / ENOS NT-PROBNP	N-terminal prohormone of brain	UB
NI-PROBNP	natriuretic peptide	ULN VAS
0	Superoxide	VAS VCAM-1
0 ₂ -• OCR	Oxygen consumption rate	VCAM-1 VSMC
OONO-	Peroxynitrite	VVLT
OXPHOS	Oxidative phosphorylation	
PAT	Peripheral arterial tonometry	
PD	Pharmacodynamic	
PDE	Phosphodiesterase	
	· · P	

Pharmaco-electroencephalography Prostaglandins Pharmacokinetic Protein kinase A Protein kinase G Phospholipase A2 Passive leg movement Peripheral blood mononuclear cell Post occlusive reactive hyperaemia Proportion perfused vessels Peak-to-trough ratio Pentraxin 3 Perfusion unit Once per day Quantitative electroencephalography Ratio of cerebrospinal fluid / plasma concentration Ratio of cerebrospinal fluid / free plasma concentration Accumulation ratio calculated from AUC $_{\tau}$ at steady state and after a single dose accumulation ratio calculated from Cmax at steady state and after a single dose accumulation ratio calculated from $C_{\mbox{trough}}$ at steady state and after a single dose Reactive oxygen species Single ascending dose Statistical analysis plan Systolic blood pressure Standard deviation Sidestream dark field imaging Symmetric dimethylarginine Standard error of the mean Soluble guanylyl cyclase (syn.: soluble guanylate cyclase) Smooth muscle cell Superoxide dismutase Serum separator tube Elimination half life Effective half life based on accumulation Time to maximum concentration Treatment emergent adverse event Ubiquitin Upper limit of normal Visual analogue scale Vascular cell adhesion molecule 1 Vascular smooth muscle cell Visual verbal learning test

CRP

ACKNOWLEDGEMENTS

This thesis could not have been written without the help, feedback, and support of countless people around me.

First, I would like to thank the participants in the scientific studies described in this thesis, as they form the bedrock of all clinical trials. Without their willingness to be at the forefront of pharmacological research, none of the techniques tested in this thesis would have existed.

I would like to thank my promotor, professor Koos Burggraaf, for his constructive feedback and guidance during the PhD process, which has helped me to impart a coherent scientific narrative to the reader of this thesis.

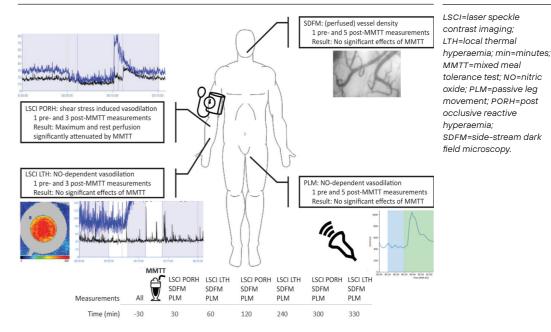
Dr Gal, dear Pim, you have been my mentor at CHDR, *really* introduced me to scientific thinking, and guided me through countless aspects of research, writing, and life. For your support and contributions to this thesis, I cannot thank you enough.

Dr Moerland, dear Matthijs, as a thesis advisor you have aided my work at CHDR tremendously. I have always enjoyed working with you as a team leader, and appreciated how you looked out for me and others in your team.

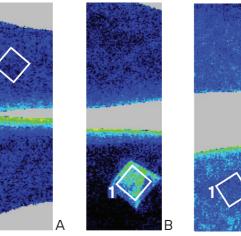
I would also like to express my gratitude and appreciation to professor Geert Jan Groeneveld for supervising and guiding me on multiple chapters in this thesis. Your keen observations and feedback I have taken with me in all subsequent writing and thinking

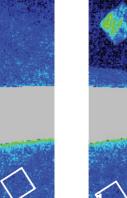
A thank you to professor Robert Rissmann as well, for your help with Chapter IV. Blood vessels meet skin everywhere, and our collaboration felt equally natural. A special thank you to all my direct colleagues at the immuno-cardiovascular group, the researchers of other therapeutic areas and all other hard workers of CHDR. Jointly, you keep CHDR running and provided indispensable contribution to the research described in this thesis.

I want to thank my rock-solid friends in Utrecht, Max, Joep and Naud, for being there for me, providing much needed relief of stress and thousands of hours of splendid conversation, card- and board gaming and general shenanigans.


Also, a thank you to the lads, Mick, Jacob, Pedram, Jelmer, Kieran, Christiaan, Pieter. The ever-expanding MTG crew especially has a warm place in my heart. My gratitude goes out specifically to Mick and my brother Vincent, for taking the solemn responsibility of being paranymphs.

Mom, dad, Tom, Vincent, Joris: thank you for 30 years of love and support, and unwittingly contributing a lot to my drive to complete this work. A lot of thanks also to my in-laws, Pashtoon, Zhala, Farshad, Albena and Tristan, for your unwavering support.


To my wife, Krishma, the love of my life: I think little needs to be written, since all has been said. Thank you for always sticking by me and supporting me more than I thought humanly possible.


And finally, to the little voice that rose recently in my family: Kianush, you light up my life.

CH.2 / F.1 Overview of employed imaging techniques and timepoints of assessments pre- and post-MMTT administration.

CH.4 / F.4 Representative LSCI images of baseline flow before and after patch application for subject 4 (A, B) and 6 (C, D).

The window in the patch through which measurements were performed is shown in picture B and D (area marked with 't' in picture B). LSCI=laser speckle contrast imaging.