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CHAPTER 6

A hybrid quantum algorithm to detect conical
intersections

6.1 Introduction

Conical intersections (CI) are degeneracy points in the Born-Oppenheimer
molecular structure Hamiltonians, where two potential energy surfaces
cross. Similar to Dirac cones in graphene [197], these intersections are
protected by symmetries of the Hamiltonian which guarantee that any
loop in parameter space around a conical intersection has a quantized
Berry phase [198]. CIs play an important role in photochemistry [199, 200],
as they mediate reactions such as photoisomerization and non-radiative
relaxation, which are key steps in processes such as vision [201] and pho-
tosynthesis [202]. Therefore, detecting the presence and resolving the
properties of CIs is important for computing reaction and branching rates
in photochemical reactions [203, 204]. Nevertheless, the study of such
processes requires electronic structure methods capable of accurately mod-
elling both the shape and the relative energies of the two intersecting
potential energy surfaces, a requirement that poses challenges for the cur-
rent available methods [205]. Given the need to develop novel methods for
identifying and characterizing CIs, quantum computers present themselves
as a highly promising option for this task.
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Quantum computing has long been driven by the desire to simulate
interacting physical systems, such as molecules, as a novel means of
investigating their properties [2, 70]. This is typically achieved by preparing
eigenstates of molecular Hamiltonians in quantum devices which can
natively store and process quantum states. This task would otherwise
require an exponentially-scaling classical memory. Recently, with the first
noisy and intermediate-scale quantum devices (NISQ) [18] being built, it
became increasingly important to research tailored and robust algorithms
that minimize the quantum device requirements [18]. Variational quantum
algorithms (VQA), such as the variational quantum eigensolver [19, 82]
(VQE) and its variations, caught the spotlight in this context, as they allow
to prepare and measure quantum states with circuits of relatively low depth.
The key feature of VQAs is the repeated execution of short parameterized
quantum circuits on the quantum device, from which measurement results
are sampled. These results are used to estimate a cost function, which
is then minimized by varying the parameters defining the gates of the
quantum circuit. Due to the noise introduced by sampling, a relatively
large number of circuit runs and measurements are typically needed to
estimate the cost function accurately. In chemistry, where VQEs are often
proposed as a method to resolve ground state energies to high accuracy,
the number of required samples to achieve such accuracy can become
prohibitively large [54]. Furthermore, the convergence of the cost function
to an optimum is typically only suggested heuristically, and it is proven
to be problematic in some cases that lack such heuristic structure [206].
Therefore, it is compelling to suggest VQAs that can access quantities
that are less reliant on the precision of both the optimization process and
the measurement procedure.
A promising target for VQAs is the computation of the Berry phase

ΠC , which can be used to resolve the existence of CIs. More specifically,
ΠC is defined as the geometric phase acquired by an eigenstate of a
parameterized Hamiltonian over a closed adiabatic path C in parameter
space [198]. Most importantly, it is known that in the presence of certain
symmetries, the Berry phase will be quantized to values 0 or π. This
quantization is exactly what makes the Berry phase an attractive target
for a VQAs, as it implies the final result of the computation need only
be accurate to error < π

2 . Quantum algorithms to compute Berry phases
have been already proposed, both variational [207, 208] and Hamiltonian-
evolution based [209]. Moreover, the long-known effects of Berry phase
on nuclear dynamics around a conical intersection [210–212] have been
explored recently in analog quantum simulation experiments [213–215].
Nevertheless, previous proposals did not attempt to detect CIs in realistic
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quantum chemistry problems with an efficient algorithm that can be run
on NISQ devices.
In this chapter, we propose a hybrid quantum algorithm to compute

the quantized Berry phase for ground states of a family of parameterized
real Hamiltonians. We focus on the specific application to molecular
Hamiltonians, where we can identify a conical intersection by measuring
the Berry phase along a loop in atomic coordinates space. We first review
the definition of CIs and Berry phases in Sec. 6.2. Then, we present all
the ingredients of the proposed algorithm in Sec. 6.3, which is similar
to a VQA in spirit, but it does not require full optimization; rather, the
variational parameters are updated by a single Newton-Raphson step for
each molecular geometry along a discretization of the loop. In Sec. 6.4, we
prove a convergence guarantee for the algorithm under certain assumptions
on the ansatz, by providing sufficient condition bounds on the total number
of steps and the acceptable sampling noise. Finally, we adapt our algorithm
to a specific ansatz in Sec. 6.5 and we benchmark it on a model of the
formaldimine molecule H2C––NH in Sec. 6.6. Section 6.7 presents our
conclusions, a discussion of potential application cases for our algorithm
and an outlook on possible enhancements.

The core code developed for the numerical benchmarks, which provides
a flexible implementation of an orbital-optimized variational quantum
ansatz, is made available in a GitHub repository [216].

6.2 Background
6.2.1 Conical intersections
Let us consider a molecular electronic structure Hamiltonian H(R) pa-
rameterized by the nuclear geometry R in some configuration space R. A
conical intersection is a point R× ∈ R where two potential energy sur-
faces become degenerate, leading to non-perturbatively large non-adiabatic
couplings, and thus a breakdown of the Born-Oppenheimer approxima-
tion [217, 218]. Conical intersections extend to a manifold of dimension
dim[R]− 2, and lead to the two potential energy surfaces taking the form
of cones in the remaining two directions x̂, ẑ. These two potential energy
surfaces can be described as eigenstates of the effective Hamiltonian

Heff(R) = hx[R −R×]xσx + hz[R −R×]zσz. (6.1)

The Pauli terms σx and σz form a complete basis for two-dimensional
real symmetric matrices. Thus, a single conical intersection cannot be
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lifted by any real-valued and continuous perturbation of Heff(R); such a
perturbation would only shift the value of R×. Moreover, the presence of
such an effective Hamiltonian implies that in any direction other than Rx
or Rz the energies must be degenerate.
Simulations involving conical intersections are challenging due to the

degeneracy of the two states involved, as the character of both states
needs to be considered. Active space methods are often used for organic
molecules, which involve selecting the chemical bonds that are formed or
broken in the reaction pathway as well as the most significant spectator
or correlating orbitals [219]. The situation is more complicated when
transition metals are involved because the close energetic spacing of d-
orbitals typically requires including all five d-orbitals of such a metal into
the active space. An additional complication arises if the two crossing
states correspond to different atomic configurations: a situation that is not
uncommon for the early or late d- (or f-) metals, for which configurations
with a different d- (f-) population are energetically close. In such cases,
one may need to either work with non-orthogonal orbitals [220] or add an
additional d-shell to the active space [221] to qualitatively describe the
nature of both states. For cases of practical interest in which one wants to
characterize and simulate the internal conversion processes in a complex
photo-excited system, the presence of transition metals may easily lead
to large active space requirements. These can not be met by classical
algorithms and would be highly challenging for quantum algorithms as
well.

One way to reduce the complexity of the problem is to first focus on the
presence or absence of conical intersections that connect the ground and
excited states. The measurement of the Berry phase in chemical systems
allows this: without explicitly computing the excited state surface and
non-adiabatic couplings, it should be possible to detect whether a loop in
the nuclear coordinate space encloses a conical intersection or not. In this
manner, one may alleviate the requirements for the active space selection
and orbital optimization and quickly establish the region in the potential
energy surface that contains an intersection with another surface and needs
to be scrutinized further [222]. Information about the location of conical
intersections is of interest also for ground-state dynamics; the CIs and the
Berry phase they induce influence the propagation of nuclear wave packets
on the adiabatic ground state surface and thereby affect the branching
rates and efficiency of reactions or isomerizations [223]. For both types of
applications, precise study of dynamics on ground state surfaces as well
as characterizing the efficiency of radiationless decay, it is of interest to
explore the possibilities offered by quantum algorithms.
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6.2.2 Berry phases in real Hamiltonians

The Berry phase ΠC is the geometric phase acquired by some eigenstate
|Φ(R)〉 of a system with parameterized Hamiltonian H(R) as it is adia-
batically transported around a closed loop in parameter space C ⊂ R. ΠC
can be defined as the closed line integral of the Berry connection along
the loop C

ΠC = −i
∮
C
dR · 〈Φ(R)| ∇R |Φ(R)〉 . (6.2)

The integrand must be imaginary, as

∇R 〈Φ(R)|Φ(R)〉 = 2 Re[〈Φ(R)| ∇R |Φ(R)〉] = 0, (6.3)

thus ΠC is real. In this work, we assume |Φ(R)〉 is the ground state of
H(R).
We need to parameterize the loop C = {R(t), t ∈ [0, 1]} in order to

evaluate the integral. Moreover, it is possible to multiply the ground state
|Φ(R)〉 by a t-dependent phase, resulting in a U(1)-gauge a transformation
which leaves all physical quantities invariant. We take

|Ψ(t)〉 = eiΘ(t)|Φ(R(t))〉, (6.4)

which allows us to rewrite the Berry phase as

ΠC = −i
∫ 1

0
dt〈Ψ(t)|∂t|Ψ(t)〉+

∫ 1

0
dt ∂tΘ(t). (6.5)

If there is a representation for which each Hamiltonian H(R) is real, it is
possible to choose eigenstates that have all real components. In this case,
we can choose Θ(t) such that |Ψ(t)〉 has real expansion, which implies the
first integrand is real; as ∂t〈Ψ(t)|Ψ(t)〉 = 0 this must also to be imaginary,
therefore 〈Ψ(t)|∂t|Ψ(t)〉 = 0. Under this choice, we can evaluate the Berry
phase as a boundary term

ΠC =
∫ 1

0
dt ∂tΘ(t) = Θ(1)−Θ(0) = arg

[
〈Ψ(0)|Ψ(1)〉

]
, (6.6)

where the last equality is obtained using the definition in Eq. (6.4). Fur-
thermore, |Ψ(1)〉 and |Ψ(0)〉 are real by construction, which implies ΠC
can only take two values (modulo 2π): 0 or π.

The quantization of ΠC implies that it is invariant for topological defor-
mations of C. If C can be contracted to a point, then ΠC = 0. A non-trivial
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ΠC = π can only occur when C encircles a degeneracy. One can check
with the effective Hamiltonian Eq. (6.1) that any loop encircling R× has
a Berry phase of π. This extends by continuity to any region of R around
the CI, as long as C does not enclose a second degeneracy point. Thus, we
have a one-to-one correspondence between CIs and the nontrivial Berry
phase.

6.2.3 Measuring Berry phase with a variational
wavefunction

There have been various proposals in the literature for computing Berry
phases using a gate-based quantum device [207, 209]. In this work, we
propose to use a variational algorithm to track |Ψ(t)〉 when parallel-
transported around the loop C, in the spirit of the variational adiabatic
method described in Ref. [54, 224]. We approximate

|Ψ(t)〉 ≈ |ψ(θ∗t )〉 := U(θ∗t ) |ψ0〉 , (6.7)

where |ψ(θ)〉 is a variational ansatz state, and θ∗t continuously tracks a
local minimum [∇θE(t,θ∗t ) = 0] of the variational energy

E(t,θ) = 〈ψ(θ)|H(R(t))|ψ(θ)〉. (6.8)

The angle θ∗t is well-defined as long as the Hessian ∇2
θE(t,θ) remains

positive definite in a neighbourhood of θ∗t for all t, ensuring the θ∗t is
continuous in t and non-degenerate. Although our treatment naturally ex-
tends to any variational ansatz that continuously parametrizes normalized
states |ψ(θ)〉 (including classical ansätze like e.g. matrix-product states),
we assume the operator U(θ) is implemented by a parameterized quantum
circuit (PQC) acting on an initial state |ψ0〉; this implies that information
about the state needs to be extracted from a quantum device through
sampling.

6.3 Methods
In this section, we detail all the ingredients needed to implement our
hybrid algorithm to resolve quantized Berry phases with a variational
quantum ansatz. Initially, in Sec. 6.3.1, we discuss how selecting an ansatz
that preserves the Hamiltonian’s symmetries establishes a natural gauge,
leading to the reduction of the Berry phase integral to the boundary term
Eq. (6.6). In Sec. 6.3.2, we introduce our parameter update approach,
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which employs single Newton-Raphson steps to trace the variational state
along a discretization of the loop C. In Sec. 6.3.3 we explain how to employ
a basic regularisation technique to handle the potential non-convexity of
the cost function and in 6.3.4 we explain how to measure the final overlap
using an ancilla-free Hadamard test. Finally, in Sec. 6.3.5, we provide a
full overview of the algorithm.

6.3.1 Fixing the gauge with a real ansatz

As discussed in Sec. 6.2, the quantization of the Berry phase is granted
by the symmetries of the Hamiltonian family H(R), which ensure the
existence of a basis for which each H(R) has a real representation. When
it comes to electronic structure Hamiltonians, it is always possible to find a
real representation for time-reversal symmetric Hamiltonians with integer
total spin [225]. Moreover, real noninteger-spin Hamiltonians are also
found throughout nonrelativistic quantum chemistry.
As our variational ansatz state [in Eq. (6.7)] is defined by a family of

unitary operators, it inherits a natural gauge from U(θ). In particular, if
U(θ) is written as a product of real rotations in the basis in which H(R)
is real, then we force |ψ(θ)〉 to have real components as well, which fixes a
global U(1) phase. This can be obtained by constructing the PQC with a
sequence of parameterized unitaries such as

Uj(θj) = eAjθj (6.9)

generated by antisymmetric operators Aj that are real in the chosen repre-
sentation. (We choose dimensional units such that ‖Aj‖ = 1 without loss of
generality, see Appendix 6.A). Examples from electronic structure include
real fermionic (de-)excitations, such as unitary singles (Apq = â†pâq − â†qâp)
and doubles (Apqrs = â†pâqâ

†
râs − â†qâpâ†sâr). Many PQC ansätze com-

monly proposed for quantum chemistry, such as unitary coupled cluster
(UCC) [19, 226, 227] and quantum-number preserving gate fabrics (NPF)
[57], are composed from these elementary rotations. Formally, our ansatz
state can then be defined as

|ψ(θ)〉 =
np∏
j=1

Unp−j(θnp−j) |ψ0〉 , (6.10)

where Uk are the aforementioned parameterized rotations applied in circuit-
composition order.
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In this case, the Berry phase can be estimated by

ΠC = arg
[
〈ψ(θ∗t=0)|ψ(θ∗t=1)〉

]
, (6.11)

which corresponds to the boundary term in Eq. (6.6). This implies that,
in the case of a non-trivial Berry phase, the path traced by θ∗t will not
close up on itself (i.e. θ∗1 6= θ∗0), highlighting an important difference
between the ansatz parameters θ, which fix the gauge of |ψ(θ)〉, and the
Hamiltonian parameters R, which define a ground state |Φ(R)〉 up to
a U(1) gauge freedom. However, the change in optimal parameters is
insufficient to prove the existence of a nontrivial Berry phase; we must
both successfully track the minimum θ∗t as t traces from 0 to 1, and
estimate the final overlap 〈ψ(θ∗0)|ψ(θ∗1)〉. While the argument (sign) of the
overlap will yield the Berry phase, its absolute value is a proxy of success
as it certifies the initial and final states are physically equivalent.

6.3.2 Avoiding full optimization via Newton-Raphson
steps

As mentioned above, the Berry phase ΠC is a discrete quantity, and
therefore we only need to estimate it to accuracy < π

2 . In Appendix 6.A,
we show that this implies that we can accept an error on the estimate θ̃1
of the final optimum θ∗1 bounded in 1-norm by ‖θ̃1 − θ∗1‖1 < 1. Thus, we
are not required to exactly track |ψ(θ∗t )〉 and as a result, the variational
energy Eq. (6.8) does not need to be fully re-optimized at every time-step
t. Instead, it suffices to keep the estimate θ̃t of the optimal parameters
within the basis of convergence of the true minimum θ∗t .

To achieve this, we still need an initial optimum as an input, which
is obtained by running one full optimization. If possible, the initial
point is selected such that optimization is simplest. Then, we propose
to use a single step of the Newton-Raphson algorithm at points t ∈
{∆t, 2 ∆t, . . . , 1−∆t, 1}.
The Newton-Raphson (NR) algorithm determines the update of the

estimate of the minimum θ̃ through the gradient G(t,θ) := ∇θE(t,θ)
and Hessian H(t,θ) := ∇2

θE(t,θ) of the variational energy Eq. (6.8).
The derivatives can be computed using either finite-difference methods or
parameter-shift rules [228]; either method requires sampling the variational
energy E(t,θ) at a number of different parameter points θ. Given the
estimate θ̃t of the optimum at point t as an initial guess, the NR step with
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cost E(t+ ∆t,θ) prescribes the update θ̃t+∆t = θ̃t + dθNRt,∆t, with

dθNRt,∆t = −H−1(t+ ∆t, θ̃t)G(t+ ∆t, θ̃t). (6.12)

The Newton-Raphson method is well-known to have a finite-sized basin
of quadratic convergence, as long as the cost function is strongly convex
at the optimum,

m(θ∗) := min
v

vTH(θ∗)v
vTv > 0. (6.13)

In other words, the lowest eigenvalue m of the Hessian of the cost function
(which we call convexity) at the optimum θ∗ needs to be positive. Details
on the convergence properties of NR are given in App. 6.D. In section 6.4,
we show that this quadratic convergence is fast enough to keep track of
the minimum with only a single step for each t-point.

6.3.3 Regularization and backtracking
To ensure that we successfully track the minimum of the cost function
θ∗t , the estimates θ̃t need to remain in the strongly convex region of
optimization space. The existence of such strongly convex region is not
always guaranteed since it depends on the ansatz. A common cause of
failure of this requirement is exemplified for ansätze with (local) over-
parametrization of the state manifold. In fact, if the ansatz has redundant
parameters the Hessian of the cost function Eq. (6.8) will always be singular
(m = 0). Then, arbitrarily small perturbations of the cost function can
then cause m < 0. When this occurs, the inversion of the Hessian needed
for the Newton-Raphson step is ill-defined.

The most direct approach to solve this issue is to select an ansatz with
no degeneracies, facilitating a strongly convex cost function at its minima.
Nevertheless, this is only possible for very simple problems, and even in
this case, quasi-degeneracies can make the convergence region extremely
small. Since this is a well-known problem, many alternative solutions have
been proposed in the literature. In this subsection, we will explore and
implement two of them – back-tracking and regularization.
Back-tracking — Small positive eigenvalues of the Hessian can cause the

standard Newton-Raphson step to overshoot along the relative parameter
eigenmodes. This effectively reduces the size of the neighborhood of the
minimum θ∗ in which quadratic convergence is granted (see Appendix 6.D).
Since for positive convexity the direction provided by the Newton-Raphson
step is guaranteed to be a descent direction, we can mitigate this overshoot
by implementing line-search of the minimum on the segment defined by

183



6 A hybrid quantum algorithm to detect conical intersections

6

the NR step. In the common variant of back-tracking, the Newton step
is iteratively damped by a constant β ∈ (0, 1). At each iteration, the
cost function in the new point is measured, until the cost function is
reduced enough (the detailed condition is given in Algorithm 6.1). While
some additional evaluations of the cost function are needed, the (more
expensive) gradient and Hessian are only calculated once. Due to the
repeated evaluation, one needs to consider extending line-search methods
to cost functions evaluated with sampling noise.
Regularization — For realistic ansätze and Hamiltonians, it is difficult

to avoid (quasi-) redundancies in some regions of parameter space. In
this case, the cost function might not be strongly convex around the
minimum, or the convexity might be too small to ensure a sufficiently-
large convergence region. Furthermore, even for an ideally-convex cost
function, noisy evaluation on a quantum device might result in a distorted
Hessian with non-positive eigenvalues. To mitigate this issue, we can use a
regularization technique that penalizes the change in parameters along the
quasi-redundant directions. We propose to use augmentation of the Hessian
to regularize the NR step, obtaining a so-called quasi-Newton optimizer.
Hessian augmentation is a common practice in quantum chemistry methods
that feature orbital optimization, such as self-consistent field methods
[219]. If the smallest eigenvalue of the Hessian λ0 is smaller than a positive
threshold convexity mthr, we construct the augmented Hessian as follows

B = H+ ν1, (6.14)

where we add a constant ν > |λ0|. The augmented Hessian is then positive,
and we can realize the NR update as

dθNR = −βB−1G. (6.15)

Here, β is the damping constant from back-tracking line search and G
is the gradient as in eq. (6.12). Regularization and back-tracking are
typically used in tandem, as quadratic convergence is harder to guarantee
when using regularization. The choice of ν is non-trivial: we want it to
be large enough to suppress parameter changes along quasi-redundant
directions, but we need to avoid exaggerating the damping along relevant
directions. Common solutions include choosing ν = ρ|λ0|+ µ with fixed
positive constants ρ and µ, or using a trust-region method [229, 230] where
the Newton step is constrained to lie within a ball of some radius h (such
that ||dθNR||2 ≤ h).

The augmented Hessian method does not require further evaluations of
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the cost function, although the damping of the parameter updates might
imply that more t-steps are needed to successfully resolve the Berry phase.

Algorithm 6.1: NR step subroutine with regularization and back-
tracking
Input: Initial estimated parameters θ̃τ

Estimated Hessian H̃
Estimated gradient G̃
Cost function E(θ) given by eq. (6.8)
Convexity requirement mthr > 0
Positive constants µ, ρ, α, β

Output: Updated estimated parameters θ̃τ + dθ.

1 λ0 ← lowest eigenvalue of H̃;
// Regularization

2 if λ0 < m then
3 B ← H̃+ (ρ|λ0|+ µ)1;
4 dθ ← B−1G̃
5 else
6 dθ ← H̃−1G̃

// Backtracking
7 while E(θ̃τ + dθ) > E(θ̃τ ) + α(G̃ · dθ) do
8 dθ ← βdθ

9 return θ̃τ + dθ

6.3.4 Measuring the final overlap

For a real ansatz, the overlap of the tracked states at t = 0 and t = 1 must
be real and it can be rewritten as〈

ψ(θ̃0)
∣∣ψ(θ̃1)

〉
= Re

[
〈0|U†(θ̃0)U(θ̃1) |0〉

]
. (6.16)
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This quantity can readily be measured by a Hadamard test, implemented
as

X

/ .

|0〉 H

|ψ0〉 U†(θ̃0) U(θ̃1)

The required number of samples is small, as we only need to resolve
whether the sign of the overlap is +1 (trivial ΠC = 0) or −1 (nontrivial
ΠC = π).

Implementing the circuit above requires to realize controlled-U(θ), which
might increase significantly the depth of the compiled quantum circuit and
make the implementation unfeasible on near-term hardware. However, this
requirement can be bypassed by using the control-free echo verification
technique [156, 196], in place of the standard Hadamard test, to sample
Eq. (6.16). This technique requires access to a reference state |ψref〉
orthogonal to |ψ0〉, which should acquire a known eigenphase ϕ under the
action of the PQC, U(θ) |ψref〉 = eiϕ |ψref〉. As most of the PQC ansätze
used for electronic structure states preserve the total number of electrons
(including UCC and NPF), the fully unoccupied state |0...0〉 can be used as
reference. Control-free echo verification circuits only require implementing
the non-controlled U(θ), and furthermore provide built-in error mitigation
power.

6.3.5 Overview of the algorithm

We are now ready to formalize the proposed algorithm for resolving Berry
phases, Algorithm 6.2. The formalization we present here will allow us
to bound the number of steps and the sampling cost in the following
Section 6.4. Given a path C and a number of steps 1/∆t, the algorithm
attempts to calculate ΠC yielding either ΠC = 0, ΠC = π, or a FAIL
state. Again, in Section 6.4 we will bound the probability of the FAIL
state occurring. Additional features that extend the practicality of the
algorithm and mitigate the failure cases are presented in Sec. 6.5 and later
implemented in Sec. 6.6.

If the algorithm fails, it can be re-run with a larger number of steps N
and thus a smaller step size ∆t. A smaller step size decreases additive NR
error bound (the error per step scales as ∆t2, the total bound thus scales
as ∆t).
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Algorithm 6.2: Resolve quantized Berry phase
Input: Family of Hamiltonians H(R), R ∈ R

Real ansatz PQC |ψ(θ)〉
Set of initial optimal θ∗0
Closed path C ∈ R, R(t) : [0, 1] 7→ C
Number of steps N to discretize C
Precision requirements σG > 0 and σH > 0
Convexity requirement mthr > 0
Regularization reg ∈ {False,True}
Final fidelity requirement F ∈ (0, 1)

Output: ΠC = 0 or ΠC = π or FAIL.

1 ∆t = 1/N ;
2 θ̃0 = θ∗0 ;
3 for τ ∈ {0,∆t, 2 ∆t, ..., 1− ∆t} do
4 E(t, θ)← define cost function as in Eq. (6.8);
5 G̃j ← sample the gradient to precision σG
6

[
G̃j = ∂E

∂θj
(τ + ∆t, θ̃τ )

]
;

7 H̃jk ← sample the Hessian to precision σH
8

[
Hjk = ∂E

∂θj∂θk
(τ + ∆t, θ̃τ )

]
;

9 if reg = False then
10 λ0 ← lowest eigenvalue of H̃;
11 if λ0 < mthr then return FAIL and exit;
12 dθNR ← −H̃−1G̃ (see Eq. (6.12)); θ̃τ+∆t ← θ̃τ + dθNR;
13 if reg = True then
14 θ̃τ+∆t ← Subroutine 1 (θ̃τ , G̃, H̃);

15 f ← final overlap as in Eq. (6.16) to precision F ;
16 if f2 < F then return FAIL and exit;
17 return ΠC = arg{f}
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6.4 Error analysis and bounding
In this section, we find analytic upper bounds on the cost of estimating
a quantized Berry phase ΠC on a fixed curve C using Algorithm 6.2. To
simplify the treatment regularization and back-tracking are not considered:
instead, we require each estimate θ̃j∆t at the j-th step to be within the
region of quadratic convergence of the cost function at the next t-step
E((j+1)∆t,θ). We prove that this translates to a guarantee of convergence
of the algorithm, under three conditions:

1. At the local minimum θ∗t , where ψ(θ∗t ) approximates the ground
state, the cost function E(t,θ) is strongly convex [as described in
Eq. (6.13)];

2. The number of discretization steps N is sufficiently large;

3. The sampling noise on each of the Hessian and gradient elements
(σH and σG respectively) is sufficiently small.

The first point entails a requirement on the cost function, defined by
the family of Hamiltonians H(R) and the choice of ansatz |ψ(θ)〉. This
requirement is not satisfied if the ansatz state is defined with redundant
parameters. We contend that, while strong convexity is a significant
assumption, incorporating regularization (or one of the other techniques
suggested in the outlook) can alleviate the necessity for such an assumption
in practical applications. Our proof provides upper bounds on N and lower
bounds on σH and σG , which suffice to grant convergence. However, these
are not to be considered practical prescriptions, as we do not believe them
to be optimal; rather they show which are the relevant factors playing a
role in the convergence of the algorithm. As the sampled gradient and
Hessian are random variables, the guarantee of convergence for bounded
error is to be understood in a probabilistic sense.

We first clarify natural assumptions and notation used in the calculation
of the basin of convergence of Newton’s method. We require the cost
function E(t,θ) to be twice-differentiable by θ, for all t, in a region around
the true minima θ∗t . We require the Hessian to be Lipschitz continuous
across this region,

‖H(t,θ)−H(t,θ + dθ)‖ < L‖dθ‖. (6.17)

(Here, the Lipschitz constant L can be considered a bound ‖T ‖ ≤ L on
the norm of the tensor of third derivatives T (t,θ) = ∇θ∇θ∇θE(t,θ).) We
also require that the gradient of the t-derivative Ġ = ∇θ dEdt is bounded
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by Ġmax in 2-norm. These regularity conditions are satisfied for the PQC
ansätze we consider in Sec. 6.5, and in App. 6.B we argue for bounds on
L and Ġmax. The strong convexity assumption described in the previous
paragraph entails a constant lower bound mthr on the smallest eigenvalue
of the Hessian H(t,θ∗t ) at the minimizer θ∗t for all t.

6.4.1 Bounding the NR error

We will first calculate a lower bound on ∆t that ensures the error δθ̃t = θ̃t−
θ∗t is bounded by a constant for all values of t. (as shown in Appendix 6.A,
a bound on ‖δθ̃1‖1 is sufficient to ensure ΠC can be accurately resolved.)
In this calculation, we will allow for an additive error σθ on θ̃t due to
sampling noise; we will simultaneously calculate an upper bound on σθ.
We sketch the calculation here and defer details to App. 6.D.

Firstly, it can be shown (Theorem 6.1 in Appendix 6.D) that the Newton-
Raphson step Eq. (6.12) with cost function E(t + ∆t,θ) is guaranteed
to converge quadratically [231] to the minimizer θ∗t+∆t as long as the
initial guess θ̃t is within a ball centred in the minimizer of radius mthr

4L .
Quadratic convergence means that the distance of the updated guess from
the minimizer will scale as the square of the distance of the initial guess
from the minimizer,

‖δθ̃t+∆t‖ ≤
L

mthr
‖θ̃t − θ∗t+∆t‖2. (6.18)

The right-hand side of this equation can be bounded through the triangle
inequality as

‖θ̃t − θ∗t ‖ ≤ ‖δθ̃t‖+ ‖θ∗t − θ∗t+∆t‖. (6.19)

We can bound the second term in this equation by taking the total t-
derivative of the optimality condition G(t,θ∗t ) = 0, yielding

‖θ∗t+∆t − θ∗t ‖ ≤ m−1
thrĠmax∆t. (6.20)

If at step t we are within the radius given by Theorem 6.1, the NR step
will quadratically converge, suppressing also the error from the previous
step, and yielding ‖δθ̃t‖ ≤ m2

thr
16L2 .

To account for sampling noise effect, we then consider a small additive
error σθ to θ̃t. Maximising this allowed sampling noise at each step (as
we will see, this becomes the bottleneck in our method) then yields the
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two bounds
σθ ≤

√
2− 1
4

mthr

L
, ∆t ≤ m2

thr
8LĠmax

. (6.21)

When both bounds are satisfied, we are guaranteed single steps of Newton’s
method will maintain convergence around the path C.

6.4.2 Bounding the sampling noise
We now translate the bound on σθ to bounds on the variance of estimates
of each element of the gradient and Hessian (σ2

G and σ2
H respectively).

This proceeds by simple propagation of variance through Eq. (6.12). We
find

σ2
θ := Var[dθNRt,∆t] ≤ ‖H−1‖2E

[
‖δG‖2

]
+ (6.22)

+‖H−1‖2E
[
‖δH‖2

]
‖dθNRt,∆t‖2,

where δG and δH are the random variables representing the errors on
gradient and Hessian. (a more detailed calculation is given in App. 6.E.)
Assuming θ has np elements, each element of the gradient is i.i.d. with
variance σ2

G , we get
E
[
‖δG‖2

]
= np σ

2
G . (6.23)

As δH is a np × np real symmetric matrix, assuming its elements are
i.i.d. with variance σ2

H, we can invoke Wigner’s semicircle law [232] to
approximate its norm by √np σH, thus

E
[
‖δH‖2

]
≈ np σ2

H. (6.24)

Combining these with Eq. (6.22), and requiring the resulting variance to
be small compared to the square allowed additive error σ2

θ we obtain the
bound

σ2
G + σ2

H‖dθNRt,∆t‖2 �
3− 2

√
2

16
m4

thr
npL2 . (6.25)

We can then bound the norm of the NR update as ‖dθNRt,∆t‖ ≤ m−1
thr‖G‖.

Splitting the error budget in half we obtain.

σ2
G �

3− 2
√

2
32

m4
thr

npL2 (6.26)

σ2
H �

3− 2
√

2
32

m6
thr

npL2‖G‖2 . (6.27)
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Note that these bounds are not tight. For instance, by applying Cauchy-
Schwartz inequality to bound ‖H−1 · G‖ ≤ ‖H−1‖‖G‖, we overlook the
fact that the gradient will change more slowly along a lower-eigenvalue
eigenmode of the Hessian. We believe further work might allow to define
tighter bounds.

6.4.3 Scaling of the total cost
To give an estimate on how many measurements we need to sample gradient
and Hessian to sufficient precision, we need to recast the quantities in
Eq. (6.27) (the dominant term of the sampling variance) in terms of
parameters of the problem. If we use an ansatz without redundancies
(or if we can get rid of redundancies through e.g. regularization), and
assuming we approximate the ground state well enough, the convexity
mthr will be larger than the ground state gap ∆, as every parameterized
rotation in the PQC ansatz will introduce a state orthogonal to the
ground state. The norm of the gradient and the Lipschitz constant can
be bound proportionally to their max norm, as shown in Appendix 6.B,
thus ‖G‖ ≤ √np‖H‖, ‖Ġ‖ ≤

√
np‖Ḣ‖ and L ≤ n

3/2
p ‖H‖ (where ‖H‖ is

the spectral norm of the Hamiltonian). The number of measurements
to sample the Hessian to precision Eq. (6.27) are proportional to the
inverse of the bound, with proportionality constant MH indicating the
number of shots required to sample a single element of the Hessian to
unit variance (this depends on details such as the decomposition taken to
measure the Hamiltonian, and the specifics of the derivative estimation
method). Multiplying this by the number of steps 1

dt [Eq. (6.21)] gives us
the total number of shots required for convergence

Mtot = 103npL
3‖G‖2Ġmax

∆8 MH (6.28)

< 103n
4
p‖H‖7‖Ḣ‖

∆8 MH. (6.29)

6.5 Adapting to an orbital-optimized PQC
ansatz

To achieve a good representation of the ground state character while
minimizing depth and number of evaluations of quantum circuits, we
employ a hybrid ansatz composed of classical orbital rotations and a
parameterized quantum circuit (PQC) to represent correlations within an
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active space. The concept of an orbital-optimized variational quantum
eigensolver (OO-VQE) is explored in [233, 234] In this section, we introduce
the construction of the OO-PQC ansatz and discuss its specific use in our
algorithm, where the orbitals need to continuously track a changing active
space depending on the nuclear geometry.

6.5.1 An OO-PQC ansatz with geometric continuity
To represent the electronic structure state, we start by choosing an atomic
orbital basis, i.e. a discretization of space defined by a set of N non-
orthogonal atomic orbitals χµ(R,x) (functions of the electronic coordinate
x ∈ R3, where we make explicit the parametric dependence on the nuclear
coordinates R); these orbitals define the overlap matrix

Sµν(R) =(χµ(R)|χν(R)) (6.30)

:=
∫

R3
χ∗µ(R,x)χν(R,x) d3x. (6.31)

The atomic orbitals (AOs), along with the overlap matrix, depend on the
geometry of the molecule specified by the nuclear coordinates R. (For the
sake of simplicity, we limit to considering real AOs.) From these, we could
define a set of parameterized orthonormal molecular orbitals (MO)

φp(R, CAO) =
∑
µ

χµ(R)CAO
µp , (6.32)

which would allow for the definition of a parameterized active space. The
downside of this parametrization is that, to ensure MO orthonormality,
we need CAO to satisfy the constraint

CAO†S(R)CAO = 1, (6.33)

which depends nontrivially from R. This implies that we cannot trivially
use the same CAO for different geometries R.

In order to address this problem, we have opted to use orthonormalized
atomic orbitals (OAO) that are derived from the AOs through symmetric
Löwdin orthogonalization [235] as reference in the definition of parame-
terized MOs. The OAOs are defined as φOAOp (R) =

∑
µ χµ(R)S−1/2

µp (R).
Building on these, we can define the MOs as

φq(R, C) =
∑
µ,p

χµ(R)S−1/2
µp (R)Cpq, (6.34)
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where C = S1/2(R) · CAO. The orthonormality constraint Eq. (6.33) then
reduces to requiring C to be orthogonal, and it is independent on R.
In summary, Eq. (6.34) defines a set of orthonormal molecular orbitals
parameterized by C, well-defined and continuous for changing R.

To start up our algorithm, the matrix CAO can be initialized by a Hartree-
Fock (or any other molecular coefficient matrix, e.g. coming from a small
CASSCF calculation) at some initial geometry R(0). From this we recover
C = S1/2(R(0)) · CAO, which is then treated as a variational parameter
of the ansatz. Using the parameterized MO Eq. (6.34) we construct the
electronic structure Hamiltonian H(R,C) in the (parameterized) molecular
basis.

Based on the initial Hartree-Fock orbital energies, we split the N orbitals
into a core set with NO doubly-occupied orbitals, an active set with NA
orbitals, and a virtual set with NV empty orbitals. Although the split
of the orbital indices remains constant throughout the algorithm, the
orbitals themselves continuously change through their dependence on R
and C. The correlations are treated only within an active space of ηA
electrons in NA orbitals. Tracing out the core and virtual orbitals yields
the active-space Hamiltonian HA(R, C).
The correlated active-space state |ψ(θ)〉 is represented on a quantum

device, using a PQC ansatz of the form Eq. (6.10). The cost function then
becomes

E(R, C,θ) = 〈ψ(θ)|HA(R, C) |ψ(θ)〉 , (6.35)

and it can be evaluated by sampling the 1- and 2-electron reduced den-
sity matrix (RDM) of the state [67]. (Other efficient sampling schemes,
e.g. based on double factorization [73, 236], can be used.)

6.5.2 Measuring boundary terms with the OO-PQC
ansatz

When evaluating the final overlap [Eq. (6.16)] with an orbital-optimized
ansatz, we have to consider that the states |ψ(θ0)〉 and |ψ(θ1)〉 are defined
on different active space orbitals, determined by the MO matrices C0
and C1 respectively. The transformation between the two sets of orbitals,
φ(R, C1) = φ(R, C0) · C0→1, is represented by the orthogonal matrix

C0→1 = C†0C1. (6.36)

If the algorithms successfully tracked the lowest-energy active space state
of the system, the Hilbert spaces spanned by the active orbitals defined
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by C0 and C1 should match. (The same is true for the core space and the
virtual space.) This implies the matrix C0→1 will have block structure,
with [C0→1]pq 6= 0 only if p, q are both in the same set of orbitals (core,
active or virtual). The orbital rotations within the core (virtual) subspace
will not generate any phase on the state of the system, as all orbitals are
doubly-occupied (doubly-unoccupied). The orbital rotation within the
active space can then be translated to a unitary transformation on the
state by a Bogoliubov transformation

G0→1 = exp
{ ∑
{p,q}∈AS

[log(C0→1)]pqc†pcq
}
, (6.37)

with c†p, cp fermionic creation and annihilation operators on the p orbital.
The final overlap

Re
[
〈0|U†(θ̃0)G0→1U(θ̃1) |0〉

]
=: ωC (6.38)

can then be sampled with a Hadamard test, given an quantum circuit
implementing the (eventually controlled) operation G0→1. Under Jordan-
Wigner encoding, a quantum circuit for G0→1 can be implemented as a
fabric of parameterized fermionic swap gates of depth NA following a QR
decomposition of the orbital rotation generator [log(C0→1)]pq, also known
as a givens rotation fabric [103]. These gates preserve the zero-electrons ref-
erence state, allowing to employ the ancilla-free echo verification technique
mentioned in section 6.3.4 to measure the final overlap.

6.5.3 Newton-Raphson updates of the OO-PQC ansatz
The proposed OO ansatz has two sets of parameters, C and θ. As the
MO matrix C is subject to the constraint Eq. (6.33), its elements cannot
be freely updated with NR. Instead, for each NR update with initial
MO matrix C, we reparametrize the MOs with a unitary transformation:
C ← Ce−κ, where κ is any antisymmetric matrix. The derivatives of
the energy with respect to any element κpq can be evaluated analytically
(see Appendix 6.C). Furthermore, under this parametrization it can be
shown that κpq where p, q are both core indices or both virtual indices
are redundant [219] in the definition of the active space orbitals; these
N2

O + N2
V parameters are set to zero without reducing the expressivity

of the ansatz. We call the unraveled set of remaining parameters κ.
To implement the Newton-Raphson step, the gradient and Hessian with
respect to the combined set of parameters (θ,κ) is computed. In this
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manner the gradient splits into two components, and the Hessian into
three components

∇(θ,κ)E = (∇θE,∇κE) (6.39)

∇2
(θ,κ)E =

[
∇2
θE ∇κ∇θE

(∇κ∇θE)ᵀ ∇2
κE

]
. (6.40)

The PQC parameter derivatives ∇θE and ∇2
θE can be evaluated through

parameter-shift rule [228, 237] or finite difference, by sampling on the
quantum device. The derivatives with respect to the OO parameters ∇κE
and ∇2

κE are linear functions of the 2-electron RDM, whose coefficients
can be computed analytically [219]. The remaining component, the mixed
Hessian ∇κ∇θE can be similarly evaluated as a linear function of θ-
derivatives of the RDM; for this, we can use the same data sampled
from the quantum device to evaluate ∇θE. We detail the procedure of
estimating these Hessian components in App. 6.C. Thus, evaluating the
derivatives with respect to the OO parameters does not require extra
sampling on the quantum device.

6.6 Numerical results
In this section, we demonstrate the application of our method to a small
model system: the formaldimine molecule H2C––NH, an established model
in the context of quantum algorithms for excited states in [233, 234, 238].
This molecule is known to have a conical intersection between the singlet
ground state and first excited state potential energy surfaces [239]. This CI
plays an important role in the photoisomerization process of formaldimine,
which in turn can be considered a minimal model for the photoisomerization
of the rhodopsin protonated Schiff-base (a key step in the visual cycle
process [240, 241]). We consider geometries obtained from the equilibrium
configuration by varying the direction of the N–H bond, defined by the
bending angle α and the dihedral angle φ (see Fig. 6.1d). Varying these
angles defines the considered plane in nuclear configuration space R. First,
we consider a minimal model of formaldimine (within the minimal basis
and a small active space), on which we can test the properties of the
algorithm 6.2. Then, we investigate the effects of sampling noise on these
results. Finally, we study a more complex model of the same molecule
(with a larger basis set and active space), and show that we can achieve
similar results by employing regularization and backtracking to deal with
the degeneracies of the ansatz manifold.
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6.6.1 Numerical simulation details
For our simulations, we use the PennyLane [171] package with the Py-
Torch backend to construct the hybrid quantum-classical cost function
of Eq. (6.35) supporting automatic differentiation (AD) with respect to
the PQC parameters. To achieve this, we implement the transformation
of the one- and two-body AO basis integrals to the parameterized MO
basis [Eq. (6.34)] with AD support. The transformed integrals are pro-
jected onto the active space and contracted with the active space one- and
two-electron RDM. The RDM elements and their derivatives with respect
to the PQC parameters are obtained using PennyLane and its built-in
AD scheme based on the parameter shift rule. In summary, gradients
and Hessians of the cost function with respect to the PQC parameters
are obtained using AD, the orbital gradient and Hessian components are
estimated analytically (see Appendix 6.C), and the off-diagonal block of
the composite Hessian [Eq. (6.40)] is retrieved by automatic differentiation
of the analytical orbital gradient. We use PySCF [242] to generate the
molecular integrals (i.e. the full space one- and two-electron integrals and
overlap matrices) in the atomic orbital basis.

The core code developed for this project is made available as a python
package in the GitHub repository [216]. This code provides a flexible
implementation of the orbital-optimized PQC ansatz, which can find many
applications in VQAs for chemistry. A tutorial Jupyter notebook showcas-
ing a calculation of Berry phase in the minimal model of Formaldimine is
provided in the examples folder in the repository.

6.6.2 Minimal model with an degeneracy-free ansatz
We first demonstrate the application of our algorithm to a minimal model
of formaldimine, for which we can approximate the ground state with a
simple ansatz with no degeneracies. The molecule is described in a minimal
STO-3G basis-set, and we select an active space of ηA = 2 electrons in
NA = 2 spatial orbitals [i.e. CAS(2,2)]. As the orbital optimization already
allows (spin-adapted) single excitations within the active space, the only
parameterized gate we can include in our PQC ansatz is the double-
excitation U(θ) = eθ(c

†
0c
†
1c2c3−c†2c

†
3c0c1); this corresponds to the unitary

coupled-cluster doubles [UCC(S)D] ansatz, where the singles (S) are not
explicitly included because they would be redundant with the orbital
optimization. This is enough to describe exactly any active space state
compatible with the symmetries of the model, without over-parametrizing
the ansatz state.
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Figure 6.1: (a) Three loops in the nuclear configuration space of
formaldimine; C1 (green), C× (red) and C2 (blue). C× encircles a CI,
resulting in a non-trivial Berry phase. In this representation, the loops are
discretized by N = 25 points. The color plot indicates the energy gap at
the full configuration interaction (FCI) level. (b) Energy and (c) change
in PQC parameter around the three loops, with the same color coding as
in (a) and the same N = 25. These results refer to a (2,2) active space, and
a minimal (STO-3G) basis set description of Formaldimine, with a OO-
UCCD ansatz that has a single θ parametrizing the only double excitation.
The continuous lines show the true optimum θ∗t and the relative energy
(obtained by full optimization), while the markers show the progress of the
estimate θ̃t from Algorithm 6.2, in absence of sampling noise. The Hessian
stays positive throughout the path, no regularization is needed. (e) Final
overlap computed by Algorithm 6.2 for the red loop containing a CI, for a
varying number of total discretization points N . For N < 9, the Hessian is
not always positive and regularization is needed to invert the Hessian, but
no backtracking is used. (d) Schematic representation of Formaldimine,
indicating the parameters used to define the nuclear geometries in this
work.

In Fig. 6.1 we demonstrate the application of our algorithm to this
model. The minimal basis set is small enough that we can run a full
configuration interaction (FCI) calculation to exactly resolve the ground
and first excited state energies E0(R) and E1(R). Observing the gap
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E1(R)− E0(R) (portrayed in Fig. 6.1a), we can determine the location
of the conical intersection φ× = 90°, α× ≈ 132°. We then define three
loops in the configuration space R, one loop C× containing the CI and
two “trivial” loops C1, C2. These loops are centered around φ = 90° and
α = 110° (C1), α = 130° (C×) and α = 150° (C2), and all have a radius
of 10°. Fig. 6.1c shows the progress of the estimate θ̃t (shifted by θ̃0) of
the optimal PQC parameter θ∗t throughout the N = 25 single-NR-update
t-steps. Note that, while we only plot the single PQC parameter relative
to the parameterized double excitation, the algorithm updates the MO
coefficients C̃t as well. We observe that θ̃1 = θ̃0 for the trivial loops C1, C2,
while θ̃1 6= θ̃0 for the loop C× containing the CI. This is an indication of the
effect of the Berry phase, but not the result of the algorithm yet; measuring
the overlap Eq. (6.38) yields the correct Berry phase ΠC = arg[ωC ]. The
estimated energy E(t, θ̃t) and the optimal E(t,θ∗t ) (obtained by full local
optimization) are shown in Fig. 6.1b. We can observe a small deviation
from the optimal energy in the region where the character of the state
changes faster (along the line φ = φ×, α < α×), but this does not disrupt
the tracking of the minimum. Finally, Fig. 6.1e shows that a number
of discretization points N ≥ 9 is needed to correctly resolve ΠC× = π,
through the evaluation of the overlap [Eq. (6.38)] ωC× = −1.

6.6.3 Sampling noise
In this section, we explore the robustness of our algorithm with respect to
the sampling noise characteristic of VQAs. To avoid defining a specific
sampling strategy and keep our results general, we directly add a proxy of
sampling noise η to each element of the gradient and Hessian. Each η is an
independent Gaussian random variable with variance σ2; a different η is
added to each element of the gradient of (6.39) and Hessian of Eq. (6.40)
to get the noisy estimates G̃ and H̃. In Fig. 6.2 we show the energy profile
of the three loops whose geometry is represented in Fig. 6.1a, for one such
random realisation of the sampling noise. (The plotted energy expectation
is evaluated exactly, noise is only added to the gradient and Hessian used
in the NR updates.) These three loops yield the same Berry phase results
as the noiseless case.
The probability Psuccess of Algorithm 6.2 correctly resolving the Berry

phase ΠC× on the nontrivial loop C× is reported in Fig. 6.3, as a function
of the number of discretization steps N and of the variance of the added
noise on each sampled quantity σ2. The expected final overlap Eq. (6.38)
is −1 for this case, as the loop contains a CI. For each value of N and σ2,
we simulate 100 noisy runs of the algorithm and we declare as successful
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Figure 6.2: Energies throughout the loops in Fig. 6.1 (discretized by
N = 25 steps), in the presence of sampling noise. Each element of the
composite gradient Eq. (6.39) and Hessian Eq. (6.40) are perturbed by
random gaussian noise with variance σ2 = 5× 10−6. In this instance the
Hessian stays positive around the path, so no regularization is needed. The
full lines, like in Fig. 6.1b, indicate the true optimum E(t,θ∗t ) obtained by
full optimization.

the ones that yield a negative final overlap (implying ΠC× = π). Finally
we average these outcomes to retrieve the succes probabilities Psucces.

From these simulations we conclude that sampling noise reduces the
accuracy of tracking the ground state and thus increases the probability
of obtaining inaccurate energies. Nevertheless, for a moderate amount of
sampling noise our algorithm still resolves the Berry phase correctly. We
observe that an error on each gradient and Hessian element with variance
of σ2 = 10−5 (or smaller) does not compromise the resolution of the Berry
phase, as long as the number of discretization points is sufficiently high
(N > 10, very close to the noiseless case portrayed in Fig. 6.1e). On
the other hand, a large enough sampling error (σ2 ≥ 5× 10−5) produces
essentially random results (Psuccess ≈ 50%).

6.6.4 Larger basis and active space
To test convergence for a more realistic case where the cost function is
not always strongly convex at its minima, we simulate the algorithm on
a more challenging model of formaldimine. The model is constructed
employing the cc-pVDZ basis set (43 atomic orbitals), and an active space
of four electrons in four spatial orbitals [CAS(4,4)]. As a PQC ansatz
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Figure 6.3: Success probability Psucces of the algorithm as a function of
the number of discretization points N and the sampling noise variance σ2

for the loop C× containing a CI. The details of the model and geometry
of the loop C× match Fig. 6.1 (red loop). Success is defined by resolving
a final overlap

〈
ψ(θ̃0)

∣∣ψ(θ̃1)
〉
< 0, which returns ΠC× = π. The success

probability is computed over 100 simulated runs. A Psuccess ≈ 50%
indicates the algorithm returns random outcomes. Regularization by
Hessian augmentation is enabled in these calculations, while no back-
tracking is used.

for the active space state, we use the number-preserving fabric (NPF)
ansatz introduced in [57], consisting of a fabric of spin-adapted orbital
rotations and double excitations on sets of two spatial orbitals (four spin-
orbitals). Four layers of this ansatz are enough to recover the exact CASCI
ground state energy inside the active space of 4 orbitals, resulting in 20
PQC parameters. This is an overparameterization of the ground state,
implying a global redundancy in the ansatz and resulting in a singular
hessian at every point. The goal of this numerical demonstration is to
show that Algorithm 6.2 can still recover the Berry phase, in this case
using regularization and backtracking.

In Fig. 6.4 the energies throughout two loops are shown. The location of
the conical intersection (α×, φ×) in the larger basis set moves compared the
case shown in Fig. 6.1 (this is to be expected, as the cc-pVDZ and STO-3G
models are effectively different); the basis is now too large to attempt an
FCI calculation that would resolve the gap exactly. One could instead
resort to a State-Averaged CASSCF calculation to resolve the location of
the CI, however, the state-average approach might bias the location of the
CI. For this demonstration, we manually select two loops with a slightly
larger radius of 15°, centered around α = 113° (C×, red line) and around
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Figure 6.4: Energies throughout two loops, for a more challenging model
of Formaldimine, described in the cc-pVDZ basis set and with a (4,4)
active space. The (red) blue loop indicates a (non-)trivial Berry phase,
centered around (α = 113°) α = 145° and φ = 90° (both), with a radius
of 15°, and discretized by N = 50 points (note these loops are different
from Fig. 6.1). The basis set is too large to run a FCI calculation to
locate the CI, and using another approximate method (e.g. state-average
CASSCF) might bias the CI location. Instead, we manually choose larger
loop geometries and use Algorithm 6.2 to find the value of ΠC .

α = 145° (C1, blue line). These values are chosen based on the location
of the CI at the level of theory of large state-average CAS(14,14)SCF
calculation, which returns α× ≈ 113°. We choose φ = 90°, as the CI is
forced to lie on the φ× = 90 hyperplane due to the Cs reflection point-
group symmetry. Indeed, we can resolve the correct Berry phase with only
N = 50 discretiation points, accumulating a small error around the loop
which has a minor effect on the final overlap [Eq. (6.38)] of ωC× = −0.9994
(loop containing the CI), and ωC1 = 0.99998 (trivial loop).

6.7 Conclusion and outlook
In this work, we introduced a hybrid algorithm to resolve conical intersec-
tions through the Berry phase they induce. This is achieved by tracking
the ground state with a variational quantum ansatz, along a closed path C
in nuclear configuration space. This algorithm only requires approximating
the ground state (in contrast to e.g. the state-average VQE [233]) for
one nuclear geometry R at a time, reducing the expressivity requirements
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of the ansatz. The key requirement of the algorithm is that the ansatz
parameters are changed smoothly, tracking a local minimum of the cost
function (6.8) and ensuring the U(1)-gauge (global phase) of the ansatz
state remains well-defined.
As the output is quantized (ΠC ∈ {0, π}), the result only needs to be

estimated to a constant precision, and the algorithm is robust to some
amount of error; we considered optimization error (the error on estimates of
a variational parameter, due to the approximate minimizer) and sampling
noise on the quantities measured on the quantum device. We showed that
one can update the variational parameters with a single newton step for
each geometry in a discretization of the loop C. We proved analytically
that the algorithm is granted to converge for a large enough number
of discretization steps N , and small enough additive error, under the
assumption that the cost function is strongly convex at its minimum. (We
consider sampling noise explicitly, but the robustness results extends to any
additive noise, including hardware noise.) We argue this result practically
extends to cases where the strong convexity assumption is not satisfied, as
long as some regularization technique is employed.

This reasoning is corroborated by numerical demonstrations of CI reso-
lution on a small example system – the formaldimine molecule. Using a
minimal description of formaldimine [STO-3G basis, a CAS(2,2), UCCD
ansatz], for which we have a strongly convex cost function, we show conver-
gence of Algorithm 6.2 without using regularization for a sufficiently large
N > 11, as we expect from our analytical results. We also demonstrate
the effect of sampling noise in this setting, showing that our algorithm
is robust to a sizable amount of noise, achieving convergence for N com-
parable to the noiseless case. Finally, we demonstrate the application of
Algorithm 6.2 with regularization on a more complicated and realistic
model of formaldimine [cc-pVDZ basis, CAS(4,4), NPF ansatz]. This case
shows that, even with a cost function that is never convex, we can employ
regularization to resolve the Berry phase correctly.

6.7.1 Paths towards improving convergence
The key step in our algorithm, where most of the cost in terms of quantum
resources is concentrated, is the evaluation of the (NR) parameter update.
Ensuring the parameter estimates remain within the basin of convergence
of the cost function is crucial, and it is the bottleneck in terms of the
cost of our algorithm. As shown in Section 6.4, the size of the basin of
convergence depends on the convexity of the cost function at the minimum
(6.13). Overparametrizations (local or global) of the cost function are
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especially disrupting, as they produce singular Hessians (m = 0) even at
optimal points. In this work, we proposed to use regularization by Hessian
augmentation and back-tracking to solve this problem; this technique
is practical and, as shown numerically in Section 6.6.4, it can produce
convergent results for systems with overparametrized cost functions. How-
ever, the success of these techniques may depend on the choice of their
hyperparameters (α, β, µ, ρ in Algorithm 6.1), and their application makes
the analytical study of the algorithm convergence harder. In this section,
we suggest alternative approaches to regularization and resource allocation
for the algorithm, which would require further study.
Quantum natural gradients — Quantum natural gradient (QNG) descent

is a recently-proposed parameter update technique [243, 244], which takes
into account the geometry of the ground state manifold. Natural gradient
techniques, already long in use in classical machine learning [245], are
invariant with respect to reparametrizations of the cost function; more
importantly for our case, they nullify the effect of overparametrizations
[246]. The idea of QNG is to transform gradients with respect to the
ansatz parameters into gradients with respect to Quantum Information
Geometry. This reparametrization is achieved through the Fubini-Study
metric tensor g(θ̃t) (to be evaluated at each update). A gradient descent
step would then become:

θ̃t+∆t = θ̃t − ηg+(θ̃t)G(t+ ∆t, θ̃t), (6.41)

where η is the learning rate and g+(θ̃t) is the pseudo-inverse of the metric
tensor. Here G(t + ∆t, θ̃t) is just the usual gradient of the energy as
in Algorithm 6.2. The resulting QNG step updates the ansatz by a
fixed amount in the norm induced by the distance between quantum
states, instead of a parameter-space norm, solving the issues connected
to overparametrization. Another option would be to use classical natural
gradients (NG) [245] defined on the 1- and 2-RDM manifold, which rely
on the classical Fisher information matrix.
Adaptive step selection — Choosing a sufficient number of steps N to

discretize C is key to the success of our algorithm, as proven in Section 6.4
and shown in Fig. 6.1 (bottom right). This is because the minimum θ∗t ,
along with its basin of convergence, changes between subsequent steps by
an amount proportional to the step size ∆t = 1/N . In Algorithm 6.2, we
propose to linearly discretize a given parametrization of C for the sake of
simplicity. An adaptive choice of ∆t could greatly reduce the cost of the
algorithm, letting the steps be larger in the regions where the ground state
changes the least, while concentrating more points in the regions where the
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ground state character sharply shifts. An adaptive step selection technique
that preserves the provable convergence could be easily implemented if
the gradient and Hessian of the cost function are measured through the 1-
and 2-electron RDM. In fact, the cost function can then be written as

E(t,θ) =
∑
ξ

D(θ)ξh(t)ξ, (6.42)

where ξ = pq, pqrs ∈ [NA] are the one- and two-body active-space orbital
indices, D(θ)ξ are the RDM elements and h(t)ξ are the one- and two-
electron integrals. The derivatives with respect to θ are then calculated
by chain rule from the derivatives of the RDMs, at the current parameter
value of θ = θ̃t. This allows to compute energy E(t′, θ̃t), gradient G(t′, θ̃t)
and Hessian H(t′, θ̃t) for any value t′, without further evaluations of the
PQC. The step size can be then chosen as the maximum ∆t such that the
Hessian convexity m(t + ∆t, θ̃t) remains above some positive threshold
value. Further research could quantify the improvement that adaptive
step selection would bring to our algorithm, and identify a method to
implement this for optimized energy derivatives sampling techniques, such
as those using double factorization [247].

6.7.2 Potential applications
The algorithm we propose resolves the Berry phase along a given path
C; the description of the loop is an input of the algorithm. This loop
construction will depend on the details of the considered application, and
might involve chemical intuition and the consideration symmetries of the
molecule where present. In realistic applications, we conceive our algorithm
as a tool that can help to (1) certify CIs proposed by other methods, (2)
determine whether a CI plays a role in a certain reaction, and/or (3) locate
a point of the CI manifold in parameter space. In either case, an initial
proposal of a path C that might contain the CI is necessary.
The case 1 is the most direct application of our algorithm. The loop
C is chosen to surround a quasi-degeneracy previously identified by an
approximate classical method. The result of our algorithm could then
confirm or disprove the presence of the CI. In case 2, given a photochemical
reaction whose geometry is approximately known, we can use our algorithm
on a set of loops to understand wether a CI plays a role in the reaction.
These loops can be constructed by variations of the reaction path along
perpendicular coordinates, focusing on the modes that influence the orbitals
involved in the reaction, thus greatly reducing the search space for the
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CI. Finally, to locate the CI (case 3) various search approaches can be
considered. For example, starting from a large loop C that is known to
contain the CI, binary-search can be used to iteratively shrink the loop
and locate the CI to the desired precision. The considered loops could be
defined on a plane, if there is heuristic information about the direction
along which the potential energy surfaces split. In alternative, a mesh
of orthogonal loops in a subspace of the nuclear configuration space R
can be tested. This, in combination with the data about the ground state
energy collected by running the optimization in our algorithm, could also
be used to determine the approximate location of the minimal energy
crossing point [i.e. the point RMECP on the CI manifold with minimum
E0(RMECP) = E1(RMECP)]. Further work is needed to explore these
problems, develop procedures to solve them and define and test practical
application cases in the three categories.

6.7.3 Outlook
The bounds presented in Section 6.4 have been calculated to provide a
guarantee of convergence for our method, which is an atypical feature
for variational quantum algorithms. These are not supposed to be tight
bounds or resource estimates for a realistic application of our algorithm.
Further research is needed to define better bounds. This, along with
the choice of a specific method to extract the energy and its derivatives
(e.g. RDM sampling and parameter shift rule) could allow estimating the
cost of a practical application of this algorithm. Furthermore, a study of
the errors due to the ansatz not perfectly reproducing the ground state,
and those induced by circuit noise, could help to understand the practical
limitations of the algorithm.
The computation of Berry phases is also central when characterizing

topological phases of matter [248]. For the specific case of non-interacting
Hamiltonians with chiral or inversion symmetry, the winding number is
analytically computed through the Zak phase [249], which is related to the
Berry phase that is accumulated after a closed loop through the Brillouin
Zone. For interacting systems, in which one cannot access momentum
space, there is a mechanism in which one introduces an external periodic
perturbation to the Hamiltonian [250, 251]. As long as the perturbation
does not close the gap and respects the symmetries of the system, the
Berry phase can be computed by considering a closed loop in parameter
space, similar to what is proposed in this work. As an outlook, one could
consider extending the VQE approach to detect topological phases of
matter through the computation of the Zak phase. Furthermore, VQA
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approaches to other topological invariants, such as the Chern number
[252] could be considered (possibly inspired by methods related to their
experimental detection, such as Thouless pumping [253]).
Finally, classical algorithms to resolve conical intersections from Berry

phases inspired by this approach could be designed. If the approximate
ground state is represented by a variational classical ansatz that fixes the
U(1) gauge, a simple extension of our method could be achievable. For
example, this could be achieved with an extension of CASSCF (essentially a
CASCI solver on top of an orbital optimization) that implements continuous
local optimization of the SCF matrix, to allow enforcing the smoothness
constrains that are crucial to keep the gauge of the state fixed.

6.A Bounding overlaps by change in ansatz
parameters

The variational Berry phase for a real ansatz state (as introduced in section
6.3.1) is resolved as the argument of the boundary term arg[

〈
ψ(θ̃(0))

∣∣ψ(θ̃(1))
〉
].

To obtain a nontrivial Berry phase, the initial and final parameters θ̃(0)
and θ̃(1) need to be far enough to allow

〈
ψ(θ̃(0))

∣∣ψ(θ̃(1))
〉

= −1. This
implies that the optimal parameters need to change enough along the
parametrization of the path (for t going from 0 to 1). In this appendix,
we translate this into a lower bound on the one-norm-distance between
initial and final parameters ‖θ̃(1) − θ̃(0)‖1. As a consequence, we also
find a lower bound on how much error can be allowed without on the final
parameter θ̃(1) compromising the Berry phase measurement.
We first state a lemma which will be useful in the proof:

Lemma 5
Given two unitary operators U,U ′, each decomposed as a product of N ≥ 2
unitary operators U = UN−1...U1U0, there holds the bound ‖U − U ′‖ ≤∑

j∈[N ]‖Uj − U ′j‖.

We prove this by induction. For N = 2, the proof is by the triangle
inequality

‖U ′1U ′0 − U1U0‖ = ‖U ′1(U ′0 − U0) + (U ′1 − U1)U0‖ (6.43)
≤ ‖U ′1‖‖(U ′0 − U0)‖+ ‖(U ′1 − U1)‖‖U0‖ (6.44)
= ‖(U ′0 − U0)‖+ ‖(U ′1 − U1)‖. (6.45)
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The proof for N + 1 can be similarly be reduced to the proof for N :

‖U ′NU ′N−1...U
′
0 − UNUN−1...U0‖ ≤ ‖U ′N − UN‖+ ‖U ′N−1...U

′
0 − UN−1...U0‖.

(6.46)

Let us consider the case of real Ansatz Eq. (6.10). We remind Ui = eAiθi

for antisymmetric real Ai. We can then bound the overlap between ansatz
states using Lemma 5,

1− 〈ψ(θ)|ψ(θ′)〉 = 1− 〈ψ0|U†(θ)U(θ′) |ψ0〉 (6.47)
= 〈ψ0|U†(θ)[U(θ)− U(θ′)] |ψ0〉 (6.48)
≤ ‖U(θ)− U(θ′)‖ (6.49)

≤
∑
j∈[N ]

‖Uj(θj)− Uj(θ′j)‖ (6.50)

=
∑
j∈[N ]

‖eAjθj − eAjθ
′
j‖ (6.51)

= 2
∑
j∈[N ]

∥∥∥∥sin
[
Aj
2 (θj − θ′j)

]∥∥∥∥ ≤ ∑
j∈[N ]

‖Aj‖|θj − θ′j |

(6.52)

The difference of parametrers |θj−θ′j | is always rescaled by the respective
‖Aj‖; we can interpret this by considering θj and Aj as dimensionful
quantities, with inverse dimension to each other. We can always redefine
units rescaling θj and Aj – without loss of generality we choose units
for which ‖Aj‖ = 1 (the only assumption being the boundedness of Aj).
Under this choice,〈

ψ(θ̃(0))
∣∣ψ(θ̃(1))

〉
= −1 =⇒ ‖θ̃(0)− θ̃(1)‖1 ≥ 2 (6.53)

Thus the parameters need to change (in 1-norm) by at least 2 along the
path to achieve the same state and nontivial Berry phase. By the same
reasoning, an error on the final parameters δθ̃(1) bounded by ‖δθ̃(1)‖1 < 1
will not change the argument (i.e. the sign) of the overlap, thus allowing
to resolve the correct Berry phase.
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6.B Bounding the norm of energy derivatives

Suppose we have a variational state parameterized by θ

|ψ(θ)〉 = U(θ) |0〉 =
np−1∏
k=0

Uk(θk)Vk |0〉 (6.54)

on a np-dimensional manifold (within a larger Hilbert space), where the
product is assumed to be taken in unitary composition order (right to left).
Assume each Uk is generated by anti-hermitian operators iAk with unit
norm

Uk(θ) = eiAkθ, Ak = A†k, ‖Ak‖ = 1. (6.55)

Given H is an observable of known norm ‖H‖, define

E(θ) = 〈ψ(θ)|H |ψ(θ)〉 . (6.56)

Define the tensors of derivatives,

Gj(θ) = ∂

∂θj
E(θ) (6.57)

Hjk(θ) = ∂2

∂θj∂θk
E(θ) (6.58)

Tjkl(θ) = ∂3

∂θj∂θk∂θl
E(θ) (6.59)

(6.60)

our goal is to bound their (vector-induced) 2-norms ‖G‖, ‖H‖, ‖T ‖.

We first notice that

∂

∂θj
U(θ) =

np−1∏
k=j

Uk(θk)Vk

 iAj

(
j−1∏
k=0

Uk(θk)Vk

)
= iÃjU(θ) (6.61)

where ‖Ãj‖ = ‖Aj‖ = 1, as conjugation by a unitary preserves norm.
Using this, we can get expressions for the tensors of derivatives in terms
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of commutators of Hermitian operators of known norm

Gj(θ) = i〈ψ(θ)|[H, Ãj ]|ψ(θ)〉 (6.62)
Hjk(θ) = −〈ψ(θ)|[[H, Ãj ], Ãk]|ψ(θ)〉 (6.63)
Tjkl(θ) = −i〈ψ(θ)|[[[H, Ãj ], Ãk], Ãl]|ψ(θ)〉 (6.64)

A trivial bound on this involves bounding each commutator by its norm,
e.g.

‖G(θ)‖2 =
np+1∑
k=0
‖〈ψ(θ)|[H, Ãj ]|ψ(θ)〉‖2 ≤ 4np‖H‖2. (6.65)

It is an open question wether we can improve on this bound.
We can get a similar result for the derivatives with respect to the orbital

rotations, considering the reparametrization described in Sec. 6.5.3. We
call |ψ〉 the PQC ansatz state in the full (active + core + virtual) space,
padded with virtual (core) registers of qubits in the state |0〉 (|1〉). We
drop explicit dependence on C and θ, and we make explicit the differential
rotation parameters κ. The cost function is then

E(κ) = 〈ψ| e
∑

pq
κpqEpqHe−

∑
rs
κrsErs |ψ〉 , Epq = c†p,↑cq,↑ + c†p,↓cq,↓,

(6.66)
where Epq is the generator of a spin-adapted orbital rotation. Its derivatives
at κ = 0 [note that the index pairs (pq) are collected in one index for the
purpose of rotating higher order derivatives] are easily calculated to be

G(pq)(κ = 0) = 〈ψ| [H,Epq] |ψ〉 , (6.67)
H(pq),(rs)(κ = 0) = 〈ψ| [[H,Epq], Ers] |ψ〉 , (6.68)

T(pq),(rs),(tu)(κ = 0) = 〈ψ| [[[H,Epq], Ers], Etu] |ψ〉 . (6.69)

Observing that ‖Epq‖ = 2 we obtain the same result as above (up to
constant factors 2, 4, 8 respectively, coming from this norm).

6.C Analytical orbital gradient and Hessian
In this section, we expand on the estimation of analytic orbital gra-
dient [right block of the vector in Eq. (6.39)] and orbital-orbital and
orbital-circuit Hessian [bottom right and top right blocks of the matrix
in Eq. (6.40), respectively]. We show how after the reparametrization
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C ← C · e−κ, the κ-derivatives of the cost function E(C · e−κ,θ) can be
expressed as a linear function of the 1- and 2-electron RDM, and the mixed
Hessian ∇κ∇θE(C · e−κ,θ) can be expressed in terms of θ-derivatives of
the same RDM.

We first define the 1- and 2-electron reduced density matrix (RDM) in
the spin-restricted formalism

γpq(θ) = 〈ψ(θ)|Epq |ψ(θ)〉 (6.70)
Γpqrs(θ) = 〈ψ(θ)| epqrs |ψ(θ)〉 , (6.71)

where Epq =
∑
σ c
†
pσcqσ and epqrs =

∑
στ c
†
pσc
†
rτ csτ cqσ = EpqErs− δqrEps.

Here, p, q, r, s are meant to be general indices (either occupied, active or
virtual), where the state |ψ(θ)〉 is to be intended as padded by two registers
of qubits in the |0〉⊗2NV (|1〉⊗2NO) state for the virtual (occupied) orbitals.
In the molecular orbital basis defined by C [orbitals in Eq. (6.34)], we can
write the Hamiltonian as

H =
∑
pq

hpqEpq + 1
2
∑
pqrs

gpqrsepqrs (6.72)

where hpq and gpqrs are the one- and two-electron integrals (with spatial
orbital indices p, q, r, s ordered according to the chemists’ convention), and
they implicitly depend on C through the MOs. The expectation value of
the Hamiltonian can then be written as a contraction of the integrals with
the RDM,

E(C,θ) = 〈ψ(θ)|H(C) |ψ(θ)〉 =
∑
pq

[h(C)]pqγpq + 1
2
∑
pqrs

[g(C)]pqrsΓpqrs

(6.73)

where we made explicit the dependence on C.
To derive analytical orbital rotation derivatives, we closely follow Ref. [219].

We start by separating the dependence on κ of the reparametrized cost func-
tion E(C · e−κ,θ), by using the equivalent state transformation formalism
provided by Thouless theorem [254]

E(C · e−κ,θ) = 〈ψ(θ)|H(C · e−κ) |ψ(θ)〉 = 〈ψ(θ)| eκ̂H(C)e−κ̂ |ψ(θ)〉
(6.74)

where κ̂ =
∑
pq κpqEpq is the operator that generates a unitary on the

Hilbert state space equivalent to the orbital rotation. We know that the
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rotations where p, q are both virtual indices form a redundant subgroup,
so we can freeze the corresponding κpq = 0; the same is true for p, q both
core space indices. In other terms, κpq = 0 if p, q ∈ V or p, q ∈ O, with V
and O the sets of virtual and core indices. The remaining elements of κpq
satisfy κpq = −κqp. We define a vector of unique non-redundant orbital
rotation parameters

κ = {κpq,∀p ∈ O ∪A,∀q ∈ A ∪ V : q > p}, (6.75)

and we redefine the cost function with respect to this vector,

E(C,κ,θ) ≡ E(C · e−κ,θ). (6.76)

We are interested in the derivative with respect to this vector; we can
always switch from the matrix κ to the unraveled vector of unique non-
redundant parameters κ, and vice versa. By comparing the Taylor series
in κ with the Baker-Campbell-Hausdorff expansion:

E(θ,κ) = 〈ψ(θ)|H |ψ(θ)〉+ 〈ψ(θ)| [κ̂,H] |ψ(θ)〉+ 1
2 〈ψ(θ)| [κ̂, [κ̂,H]] |ψ(θ)〉+ . . .

(6.77)

One can readily verify that the analytical orbital derivatives at κpq = 0
are given by:

[∇κE]pq := ∂E(θ,κ)
∂κpq

∣∣∣∣
κ=0

= 〈ψ(θ)| [E−pq, H] |ψ(θ)〉 (6.78)

[∇2
κE]pqrs := ∂2E(θ,κ)

∂κpq∂κrs

∣∣∣∣
κ=0

= 1
2(1 + Ppq,rs) 〈ψ(θ)| [E−pq, [E−rs, H]] |ψ(θ)〉

(6.79)

where Ppq,rs permutes the pair of indices pq with rs. The calculation of the
commutators in Eq. (6.78) and (6.79) can be found in common quantum
chemistry textbooks [219], and they all one- or two-body operators; thus
their expectation value can be written as a linear form in the RDM (γ, Γ).
The gradient evaluates to

[∇κE]pq = 2(Fpq(θ)− Fqp(θ)) (6.80)
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where F is the generalized Fock matrix,

Fpq(θ) =
∑
m

γpm(θ)hqm +
∑
mnk

Γpmnk(θ)gqmnk (6.81)

The Hessian evaluates to

[∇2
κE]pqrs = (1− Ppq)(1− Prs) [2γprhqs − (Fpr + Frp)δqs + 2Ypqrs] ,

(6.82)

where we introduced

Ypqrs =
∑
mn

Γpmrngqmns + Γpmnrgqmns + Γprmngqsmn (6.83)

and dropped the explicit dependence on θ. For the composite Hessian,
we simply take the gradient of Eq. (6.80) with respect to θ, by using the
chain rule

[∇κ∇θE]pq := ∂2E(θ,κ)
∂κpq∂θ

∣∣∣∣
κ=0

= 2
(
∂Fpq(θ)
∂θ

− ∂Fqp(θ)
∂θ

)
(6.84)

where

∂Fpq(θ)
∂θ

=
∑
m

∂γpm(θ)
∂θ

hqm +
∑
mnk

∂Γpmnk(θ)
∂θ

gqmnk. (6.85)

Thus, once we have the derivatives of the 1- and 2-RDM to sufficient
precision, we can evaluate the orbital gradient, Hessian and composite
Hessian analytically, recovering all terms in Eq. (6.39) and Eq. (6.40)
without any additional quantum cost.

6.D Bounding the cumulative error due to
Newton-Raphson updates

In this section, we prove that using a single Newton-Raphson (NR) param-
eter update per ∆t-step is sufficient to achieve an error on the estimate
of the minimizer scaling as O(∆t2) after any number of ∆t-steps, as long
as the cost function is strongly-convex at the minimum and ∆t is small
enough. First, we recall sufficient conditions for quadratic convergence of
the Newton-Raphson step. We then use these to bound the error of a single
NR-step when the cost function is changed from E(t,θ)→ E(t+ ∆t,θ).
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We translate this into an upper bound on ∆t which guarantees the error
stays bounded throughout the optimization path. Finally, we show that
we can allow a sufficiently small additive error on the Newton-Raphson
update and retain the bounded error throughout the path.
Quadratic convergence of NR — Consider a cost function E(θ) with

gradient Gj = ∂E
∂θj

and Hessian Hjk = ∂E
∂θj∂θk

, and an initial guess of a
minimizer θ(0). The Newton-Raphson step prescribes the update θ(0) 7→
θNR = θ(0) + dθNR with dθNR = H−1(θ(0))G(θ(0)). Theorem 3.5 from
Nocedal and Wright [231] gives sufficient conditions under which quadratic
convergence of the NR update is guaranteed. We simplify these conditions,
and obtain the following

Theorem 6.1
Consider a cost function E(θ) with Lipschitz-continuous Hessian ‖H(θ)−
H(θ + δθ)‖ ≤ L‖δθ‖ and a local minimizer θ∗ with positive convexity
m := ‖H−1(θ∗)‖−1 > 0. Given an initial guess θ(0) which is close enough
to the minimum, i.e.

‖θ(0) − θ∗‖ ≤ m

4L, (6.86)

the NR update will converge quadratically towards the minimum with

‖θNR − θ∗‖ ≤ L

m
‖θ(0) − θ∗‖2. (6.87)

To prove this, we only need to show that a strong convexity condition is
satisfied within a r-ball centered in θ∗ including all close-enough possible
initial guesses (r = m

4L ), i.e.

‖H−1(θ∗ + δθ)‖ ≤ 2m−1, ∀‖δθ‖ ≤ m

4L. (6.88)

To prove this we expand H−1(θ∗ + δθ) using Taylor’s theorem,

∃0 < s < 1 : H−1(θ∗ + δθ) = H−1(θ∗) + δθ · ∂H
−1

∂θ
(θ∗ + sδθ) (6.89)

∂H−1

∂θ
= −H−1 ∂H

∂θ
H−1 (6.90)

‖H−1(θ∗ + δθ)‖ ≤ ‖H−1(θ∗)‖+ ‖H−1(θ∗ + sδθ)‖2L‖δθ‖
(6.91)

≤ m−1 + ‖H−1(θ∗ + sδθ)‖2m4 , (6.92)

where we used the Lipschitz constant L as a bound on the derivative of
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the Hessian. This last condition holds if

‖H−1(θ∗ + sδθ)‖ ≤ 2m−1. (6.93)

As we can choose s < 1 and the result is clearly true at δθ = 0, the result
holds recursively.

Single NR update with a changing cost function — We now consider a
family of cost functions E(t,θ) continuously parameterized by t. Suppose
we have an approximation θ̃t of the minimizer θ∗t of E(t,θ), with error
‖θ̃t − θ∗t ‖. In each step of our method (Algorithm 6.2), we shift the cost
function E(t,θ)→ E(t+ ∆t,θ) by ∆t and we use the current minimizer
estimate θ̃t as initial guess for the next step; θ(0)

t+∆t = θ̃t. We can bound
the error of this initial guess by the triangle inequality,

‖θ(0)
t+∆t − θ

∗
t+∆t‖ ≤ ‖θ̃t − θ∗t ‖+ ‖θ∗t+∆t − θ∗t ‖. (6.94)

While the first term is the (given) error on the estimate, the second can
be obtained by taking the total t-derivative of the minimum condition
G(t,θ∗(t)) = 0, and applying Taylor’s theorem

∃τ ∈ [t, t+∆t] : ‖θ∗t+∆t−θ∗t ‖ =
∥∥∥∥dθ∗tdt ∣∣∣t=τ

∥∥∥∥∆t = ‖H−1(τ,θ∗τ )Ġ(τ,θ∗τ )‖∆t

(6.95)
with Ġ = ∇ ∂

∂tE(θ, t).

We now assume that the convexity at the minimum is bounded from
below throughout the whole t-path by a constant m ≥ 0,

m(t,θ∗t ) := ‖H−1(t,θ∗t )‖−1 > m ∀t ∈ [0, 1], (6.96)

and that the gradient of the change is never larger than Ġmax. (while
the first assumption imposes the nontrivial condition of strong convexity
at the minimum, the second is always granted for cost functions from a
continuous family of bounded Hamiltonians). We can then write

‖θ(0)
t+∆t − θ

∗
t+∆t‖ ≤ ‖θ̃t − θ∗t ‖+m−1Ġmax∆t. (6.97)

To ensure this initial guess is within the quadratic convergence region of
the NR step, we require

‖θ̃t − θ∗t ‖+m−1Ġmax∆t ≤ m

4L, (6.98)
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choosing an α, β ∈ (0, 1] this condition can be written as

∆t = m2

4LĠmax
αβ, (6.99)

‖θ̃t − θ∗t ‖ = (1− α)β m4L. (6.100)

This allows to apply Theorem 6.1, and bound the error after a single NR
step,

‖θ̃t+∆t − θ∗t+∆t‖ ≤
L

m

[
βm

4L

]2
= β2 m

16L. (6.101)

Multiple steps — We want to ensure the error on the minimizer estimate
remains bounded for t taking subsequent values is [0,∆t, 2 ∆t, ..., 1], while
taking a single NR step at a time. We can do this by imposing the error
after each step [Eq. (6.101)] is not larger than the error on the previous
step estimate,

β2 m

16L ≤ (1− α)β m4L. (6.102)

This is granted for any β ∈ (0, 1] by choosing α = 1− β
4 . The maximum

∆t = 3
4

m2

4LĠmax
is achieved by picking β = 1, and yields an error bounded

by the constant m
16L .

Allowing an additive error — To account for sampling noise, it is useful
to consider an additive error of magnitude σθ on the estimate θ̃t of the
minimizer θ∗t at each t-point, modifying Eq. (6.100) into

‖θ̃t − θ∗t ‖ = (1− α)β m4L + σθ. (6.103)

This yields the condition

L

m

[
βm

4L + σθ

]2
≤ (1− α)β m4L. (6.104)

If we define γ by σθ = γβm
4L , we can write

(1 + γ)2 m

16Lβ
2 ≤ (1− α)β m4L, (6.105)
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which is saturated by β = 4 1−α
(1+γ)2 . We then get

∆t = m2

LĠmax

α(1− α)
(1 + γ)2 , (6.106)

which is maximised (while keeping β ≤ 1) by α = max[ 1
2 , 1−

(1+γ)2

4 ]. The
allowed additive noise is then

σθ = γ

(1 + γ)2
m

L
(1− α) = γm

2L min[12 ,
1

(1 + γ)2 ], (6.107)

maximised for the choice γ =
√

2− 1 yielding

σθ =
√

2− 1
4

m

L
, ∆t = m2

8LĠmax
. (6.108)

6.E Bounding the sampling cost
We call σ2

G and σ2
H the variances of each element of the gradient and

Hessian respectively, due to sampling noise. To compute the error on the
parameter updates, we propagate these variances through the definition
of the NR update Eq. (6.12). The first-order differential change (here
denoted with δ) of the NR update dθNR with respect to changes in the
gradient and Hessian is

δ[dθNR] = H−1 · [−δG + δH · dθNR], (6.109)

where we use the ordered matrix-product notation, with vectors in boldface.
When δG and δH are the random variables representing the errors on the
gradient and Hessian, the expected mean square error on the NR update
defining the norm of the covariance matrix∥∥Var[dθNR]

∥∥ := E
[
‖δ[dθNR]‖2

]
= E

[
‖H−1 · δG‖2

]
+E
[
‖H−1 · δH · dθNR‖2

]
,

(6.110)
where we used the zero-average property of δG and δH to drop the expec-
tation values of mixed terms. This can further be bounded as

Var[dθNR] ≤ ‖H−1‖2E
[
‖δG‖2

]
+ ‖H−1‖2E

[
‖δH‖2

]
‖dθNR‖2. (6.111)

Assuming the same variance σ2
G on each of the np elements Gj of the

gradient, we get
E
[
‖δG‖2

]
= np σ

2
G . (6.112)
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As the Hessian is a random real symmetric matrix with i.i.d. elements,
each with a variance σH, we can invoke Wigner’s semicircle law [232] to
bound the spectral norm as

E
[
‖δH‖2

]
≤ (√np σH)2. (6.113)

Combining these with the strong convexity bound ‖H−1‖ ≤ m−1, we get

Var[dθNR] ≤ m−2 [np σ2
G + np σ

2
H‖dθNR‖2

]
(6.114)

The calculations in Appendix 6.D conclude that, for each ∆t-step, we
can afford an additive error on the NR update of at most σθ ≤ γ

4
m
L with

γ =
√

2− 1. Comparing this result to the variance just calculated, we can
formulate the requirement on the variance

m−2np
[
σ2
G + σ2

H‖dθNR‖2
]
� γ2

16
m2

L2 . (6.115)

This gives conditions on the elementary sampling variances

σ2
G �

γ2

16
m4

L2np
(6.116)

σ2
H �

γ2

16
m4

L2np ‖dθNR‖2
<
γ2

16
m6

L2np‖Ġmax‖2∆t2
(6.117)

To recast this bound in terms of variables of the problem, we use the
following relations derived in Appendix 6.B: L = max‖T ‖ < n

3/2
p ‖H‖ (the

norm of the third derivative tensor T is bounded by n3/2
p times by its

infinity norm), ‖Ġmax‖∆t <
√
np‖dHdt ‖∆t ≈

√
np‖H‖ (same infinity norm

bound). Furthermore, we assume the convexity is larger than the ground
state gap, m > ∆; this holds if the ansatz approximates the ground state
well enough, and changes in any ansatz parameter θk introduce a different
excited state. Substituting these relations we obtain

σ2
G � 0.01 ∆4

‖H‖2n4
p

, (6.118)

σ2
H � 0.01 ∆6

‖H‖4n5
p

. (6.119)

The number of total required shots to sample the Hessian (gradient) for all
the N steps will thus scale as σ−2

H ∆t−1 (σ−2
G ∆t−1). Picking the maximal
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∆t = m2

8LĠmax
, and considering only the dominant term (relative to sampling

the Hessian) we can write

#shots ∝ n7
p

‖H‖7‖dHdt ‖
∆8 (6.120)
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