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CHAPTER 5

Virtual mitigation of coherent non-adiabatic transitions
by echo verification

5.1 Introduction
The study of quantum many-body systems requires the precise estimation
of observables. Quantum state preparation is naturally a prerequisite to
this end, which is the rationale behind quantum computers or quantum
simulators. The adiabatic algorithm has demonstrated large success in a
variety of platforms [175, 176]. Still, the performance of current devices
is hindered by noise, which cannot be error corrected, yet. Therefore,
error mitigation techniques have been explored both theoretically and
experimentally and can significantly improve the estimation of observ-
ables [69, 79, 177]. Surprisingly, there have been few synergies jointly
considering error mitigation for the adiabatic algorithm.

Any quantum circuit can be efficiently simulated by the adiabatic algo-
rithm [178]. In adiabatic quantum computation, the system is initialized
in the ground state of a trivial Hamiltonian and one seeks to prepare the
ground state of the final Hamiltonian by slowly interpolating between
the two. The success of the algorithm is determined by the speed of the
adiabatic passage and spectral properties of the Hamiltonians [49, 179].
More precisely, the total evolution time, or circuit depth, depends inverse
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Figure 5.1: Schematic overview of the method. Density matrices are
expressed in the energy eigenbasis of the target Hamiltonian. The pure
state after the adiabatic evolution (ρad) approximates the true ground
state. Via a dephasing operation, the coherent error is promoted to an
incoherent error in ρd such that error mitigation techniques can be applied.
This allows measuring the kth degree purified observable 〈O〉(k) which
yields a lower bias than evaluating the state directly after the adiabatic
preparation

[
〈O〉ad

]
.

polynomially on the minimum spectral gap between the ground state and
the first excited state along the adiabatic path. These relations are quanti-
fied by the adiabatic theorem and versions thereof [51–53]. The adiabatic
algorithm is especially suited for devices that implement dynamics natively
without any Trotter overhead [180–183].

To address the restrictions in current hardware, various error mitigation
techniques have been explored in recent years to improve the usefulness
of a noisy quantum computation [79]. These methods include zero-noise
extrapolation, exploiting symmetry or purity constraints, and several other
approaches. Here, we focus on purity methods, which aim to suppress
stochastic errors by projecting the noisy state ρ onto the closest pure state,
given by the dominant eigenvector of ρ.

The purification can in general be achieved by collective measurements
of several copies of ρ, known as virtual state distillation [148] or error
suppression by derangement [184]. Echo verification (EV) achieves this
using two copies of ρ multiplexed in time, rather than in space [156–
158]. In EV, a desired state is prepared, an observable is measured
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Figure 5.2: (a) Quantum circuit for adiabatic echo verification to esti-
mate an observable 〈O〉. A quasi-adiabatic sweep U→ is followed by an
approximate ground state dephasing operation D. After the controlled
application of a unitary observable O and dephasing again, the sweep is
performed backward U←(6= U†→). Postprocessing the measurement result,
including the success information of the ground state projection, allows to
extract an improved expectation value. (b) Schematic of the Hamiltonian
dynamics. Approximate dephasing is implemented by evolving with the
target Hamiltonian at s = 1 for a random time. Typically, this time
is much smaller than the time required for the adiabatic algorithm as
depicted in (c), where we sketch a corresponding low-energy spectrum.

controlled by an auxiliary qubit, and the state is then uncomputed. This
allows to access expectation values of the so-called 2nd degree purified
state of ρ: 〈O〉EV = Tr

[
Oρ2]/Tr

[
ρ2]. Recently, purification-based error

mitigation has been tested experimentally in the context of the variational
quantum eigensolver [69]. Error mitigation methods tailored specifically
to the adiabatic algorithm have been explored considerably less in the
literature. Few exceptions consider error suppression and correction [185]
or symmetry-protection for Trotter dynamics [186].

In this work, we present a mitigation technique for estimating observables
on quasi-adiabatically-prepared states, in the spirit of echo verification
(Fig. 5.1). Along with stochastic device noise, our method seeks to sup-
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press the coherent error due to non-adiabatic transitions. Our method
which we denote Adiabatic Echo Verification (AEV) relies on dephasing
operations to promote the coherent errors to random errors, which can
then be mitigated. Similar to the original echo verification technique, the
leading order error in the ground state expectation value of an observ-
able is suppressed quadratically. In particular, we consider an imperfect
implementation of the dephasing operation using random-time evolution.
Related random-time dynamics have been successfully used in the context
of Zeno-type protocols [187]. The overhead from this dephasing operation
is only poly-logarithmic in the accuracy of the dephasing operation for
estimating observables of states within gapped phases. We discuss how
the protocol compares favorably against doubling the total evolution time
in the standard adiabatic algorithm. A key feature of our technique is that
hardware noise is also mitigated naturally through the EV method. Our
protocol only requires implementing positive-time evolution and applying
the operator of interest in a controlled way. Hence, the protocol is not
only suitable for purely gate-based quantum devices but also for hybrid
quantum simulators, e.g. using neutral Rydberg atoms [182].

5.2 The adiabatic algorithm and
purification-based error mitigation

In order to be able to measure observables on the ground state |E0〉 of
a target Hamiltonian HT , a state approximating |E0〉 with sufficient pre-
cision needs to be prepared. The quantum adiabatic algorithm (QAA)
is a suitable algorithm for this task. At the heart of the QAA is the
adiabatic theorem, which states that a system remains in an instantaneous
eigenstate if the Hamiltonian is changed sufficiently slowly and the eigen-
state is separated from other eigenstates by a minimum spectral gap ∆min
throughout the transition [50]. Hence, the desired ground state |ψT 〉 of
a Hamiltonian of interest HT can be prepared by interpolating from a
suitable Hamiltonian H0 with a trivial ground state |ψ0〉 as

H(s) = (1− s)H0 + sHT . (5.1)

where s = t/T is the parametrized time. The folk version of the adiabatic
theorem states that a total time T = O

(
∆−2

minε
−1/2) suffices to prepare

the ground state up to fidelity 1− ε. Rigorous versions of the adiabatic
theorem give a bound T = O

(
∆−3

minε
−1/2) if H(s) is twice differentiable [51,

52]. Given a finite coherence time, the QAA prepares an approximation
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to the target state |ψad〉 =
√

1− ε |E0〉 +
√
ε
∣∣E⊥0 〉 where 〈E0|E⊥0 〉 = 0.

Measuring an observable O, we obtain an approximation to the true value
Tr [O |ψ〉〈ψ|ad] = (1− ε)〈O〉|E0〉 +O(

√
ε).

Purification methods such as echo verification (EV) or virtual state
distillation improve the quality of an expectation value measurement on a
noisy (incoherent) approximation ρ of a pure state |ψ〉〈ψ|. This is achieved
by effectively measuring the expectation value Tr

[
Oρk

]
of O on the k-th

power of the density matrix. Raising ρ to the k-th power suppresses the
eigenvectors with smaller eigenvalues, increasing the relative weight of
the dominant eigenvector which, for small enough noise, should be |ψ〉.
As ρk is non-normalized, purification methods prescribe to independently
measure Tr

[
ρk
]
to calculate the desired estimator

〈O〉(k) := Tr
[
Oρk

]
/Tr

[
ρk
]
. (5.2)

If ρ has an eigenstate |E0〉 with large weight c0 = 1− ε (small positive ε),
we can write the density matrix as ρ = c0 |E0〉〈E0|+ ερ⊥ with ρ⊥ a density
matrix orthogonal to |E0〉 (i.e., ρ⊥ |E0〉 = 0). The kth degree purified
estimator is then

〈O〉(k) =
ck0 〈E0|O |E0〉+ εk Tr

[
ρk⊥O

]
ck0 + εk Tr

[
ρk⊥
] (5.3)

= 〈E0|O |E0〉+O(εk Tr
[
ρk⊥
]
‖O‖), (5.4)

where ‖·‖ is the operator norm. Echo verification implements purification
for k = 2 using a single register by multiplexing two state-(un)preparation
oracles in time. The method suppresses the error contributions O(ε) such
that the leading order becomes O(ε2).

5.3 Mitigating coherent errors in adiabatic
state preparation

Our main contribution is to propose a method where the echo verification
technique is applied to coherent errors. We focus on an application where
the coherent error arises in the adiabatic algorithm due to finite algorithm
runtimes. However, as the state prepared by a noiseless implementation of
the adiabatic algorithm is pure, naive purification will not have any effect.

To recover the error mitigation power on ρad = |ψad〉〈ψad|, we introduce
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an ideal dephasing channel that turns coherent errors into incoherent noise,

deph
H

[ρ] :=
∑
j

|Ej〉〈Ej | ρ |Ej〉〈Ej | = diag[ρ], (5.5)

where we sum over an eigenbasis {|Ej〉}j of the target Hamiltonian HT .
Here, we assume a nondegenerate spectrum and give an extension for
degenerate spectra in the Supplement. The dephasing channel projects a
density matrix onto its diagonal in the energy eigenbasis, removing the
off-diagonal coherences. Applying the channel to the state prepared by
the adiabatic algorithm yields

ρd := deph
H

[ρad] = c0 |E0〉〈E0|+ ερ⊥ =


c0 0 . . . 0
0
... ερ⊥
0

 (5.6)

with ρ⊥ =
∑
j 6=0 ρjjε

−1 |Ej〉〈Ej |. Then, using the echo verification tech-
nique on the dephased state, which is a mixed state, we obtain the following
result for the observable O:

Tr
[
Oρkd

]
Tr
[
ρkd
] = (1− γ) 〈E0|O |E0〉+ γ

Tr
[
Oρk⊥

]
Tr
[
ρk⊥
] , (5.7)

with γ =
[
1 + ck0/

(
εk Tr

[
ρk⊥
])]−1 ∼ O

(
εk Tr

[
ρk⊥
])
.

To implement echo verification, typically, an inverse pair of unitaries
(U→, U†→) would be required [156]. The unpreparation U†→ then uses
negative-time dynamics, which is generally not available in analog sim-
ulators. For our purposes, however, we can consider the two states
ρad = U→ |ψ0〉〈ψ0|U†→ and σad = U†← |ψ0〉〈ψ0|U←, where U← is a positive-
time adiabatic evolution with an inverted schedule from s = 1 to s = 0
[cf. Fig. 5.2(b)]. Both states have the same guaranteed fidelity with the tar-
get state |E0〉 from the adiabatic theorem and ground state coherences are
surpressed after the dephasing operation. This allows to use positive-time
dynamics for the unpreparation step in AEV.
Next, we consider the implementation of the dephasing channel. Im-

portantly, we observe that a channel that dephases only the ground state
would also be sufficient to achieve our goal, producing a state of the form
Eq. 5.6 with a more general, non-diagonal ρ⊥, provided that c0 still domi-
nates. In the following part, we analyze such an approximate dephasing
operation using positive-time dynamics.
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5.4 Implementation and cost of the
dephasing

We can implement an approximation of the dephasing channel [Eq. 5.5] by
a random-time evolution exp(−iHT τ), with τ sampled from a probability
distribution P (τ), as follows: We limit the support of P to the interval τ ∈
[0, Td]. This ensures the dephasing can be realized naturally in quantum
simulators and limits the time overhead of the dephasing operation to 2Td
for the AEV circuit. We define the approximate dephasing channel

deph
H,P

[ρ] :=
∫ Td

0
dP (τ)e−iHT τρeiHT τ (5.8)

=
∑
j,k

Fjk |Ej〉〈Ej | ρ |Ek〉〈Ek| , (5.9)

where Fjk := F [P ](Ej − Ek) is the Fourier transform of the random-time
distribution at the transition energies. We will make use of the shorthand
D[ρ] := dephH,P [ρ]. As we only need to dephase the ground state, we
require maxj>0 |F0j | < δ. Evaluating the adiabatic echo verification circuit
(Fig. 5.2) with the approximate dephasing channel D[ρ] yields an estimator
with expectation

〈O〉AEV = Tr[Oρ̃σ̃]
Tr[ρ̃σ̃] (5.10)

where ρ̃jk = Fjk[ρad]jk and σ̃kl = F∗kl[σad]kl, expressed as matrix elements
in the eigenbasis of the target Hamiltonian (cf. Supplement). We can bound
the deviation of the AEV estimator from the ground state expectation
value as ∣∣∣〈O〉AEV − 〈E0|O |E0〉

∣∣∣ . ‖O‖(ε1/2δ + ε2) (5.11)

with a small prefactor. To ensure this error is bounded by O(ε2), it is then
sufficient to take δ ∼ ε3/2.
An upper bound on the |F0j | can be obtained as a functional of the

distribution P (τ). We can thus redefine

δ := max
∆>∆T

∣∣F [P ](∆)
∣∣ (5.12)

where ∆T < E1 − E0 is a lower bound on the target Hamiltonian ground
state gap. In principle, different distributions can be chosen. We might, for
example, simply choose a uniform distribution P (τ) = 1/Td for τ ∈ [0, Td].
As its Fourier transform is the cardinal sine function sin(x)/x, we obtain
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δ ∼ (∆Td)−1. However, discontinuities in P or its derivatives limit the
asymptotic decay of F [P ] to a polynomial. We can improve upon this
without increasing the maximal evolution time by choosing a mollifier,
i.e. a smooth distribution supported on [0, Td]. A suitable example for our
purposes is the rescaled bump function

PTd(τ) =
{

2
NTd

exp
[

T 2
d

4τ(τ−Td)

]
if τ ∈ [0, Td],

0 otherwise,
(5.13)

where N ≈ 2.25 is a normalization factor. The Fourier transform of this
function decays super-polynomially. Adapting the results from Ref. 188,
we recover

δ <

√
8π√
e

(Td∆T )−3/4 exp
[
−
√
Td∆T /2

]
, (5.14)

with the full derivation included in the Supplement. A dephasing time
Td ∼ ∆−1

T log2[ε] is thus sufficient to achieve an overall error O(ε2). Often,
one is interested in observables of states in gapped phases [189], such that
only the poly-logarithmic term contributes to a non-constant overhead.

5.5 Comparison with standard adiabatic
algorithm.

We seek to compare the method proposed here with the trivial alternative
for improving the performance of the adiabatic algorithm, which is simply
doubling the evolution time in the QAA. In the standard adiabatic theorem,
there is a polynomial relationship between the accuracy and the evolution
time [51]. In principle, the adiabatic theorem can be improved towards an
exponential error dependence by assuming a sufficiently smooth schedule
with vanishing derivatives at the beginning and end of the schedule [53].
However, this is at the cost of passing the minimal spectral gap at a faster
rate, which, in general, leads to more transitions. In practice, we can
observe an exponential scaling (Landau-Zener regime) transitioning into
an inverse-quadratic scaling for longer times [190].
Regarding our method, we therefore conclude that if the error depen-

dence was indeed exponential, as in a Landau-Zener problem, the AEV
would yield a performance comparable to the QAA with double the evo-
lution time. Compared to the standard theorems with a polynomial
dependence, our method improves up to quadratically. For the sake of
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Figure 5.3: Comparing the QAA and AEV for different dephasing times
Td, as a function of the total sweep time T (QAA: T = Tad, AEV:
T = 2Tad). AEV improves over simply doubling the QAA sweep time in
the regime of polynomial error dependence. The respective estimator bias
from 〈E0|O |E0〉 is shown, where O = 1− 2 |E0〉〈E0| is a reflection on the
target state. The target Hamiltonian is an Ising modelHT = 0.2

∑5
j=1 σ

z
j−∑4

j=1 σ
z
jσ

z
j+1, and H0 =

∑5
j=1 σ

x
j , using a linear schedule. We perform

density-matrix simulations; time-dependent evolution is implemented by
Euler integration, ensuring a sufficiently small error when discretizing the
sweep. Approximate dephasing is implemented with P (τ) as in Eq. 5.13.

concreteness, we include numerical benchmarks in Fig. 5.3 showing an
advantage for preparing the ground state of a transverse field Ising model.

5.6 Discussion and practical considerations.
In this letter, we introduced Adiabatic Echo Verification (AEV), a scheme
to mitigate the coherent errors that characterize adiabatic state prepa-
ration. Our method is tailored to current quantum devices, which lack
the possibility to correct errors. AEV requires doubling the circuit time
compared to standard adiabatic state preparation, but improves up to

163



5 Virtual mitigation of coherent non-adiabatic transitions by echo
verification

5

quadratically in the estimator bias. The additional features of the protocol
are the following. First, in order to implement the verification part of
the circuit, the path of the quasi-adiabatic evolution is simply reversed.
Moreover, we show how the dephasing operation can be approximately
implemented with positive-time dynamics. Hence, only positive-time evo-
lution is required in AEV. This makes our method suitable for quantum
computers that operate in a hybrid mode of digital gates and analog
simulation. Rydberg atom arrays have recently demonstrated such ca-
pabilities [182, 191]. Additionaly, AEV naturally mitigates non-coherent
hardware noise through echo verification. While our focus in the paper
was not on the technical analysis of hardware noise mitigation, the results
in echo verification literature fully apply to our case [69, 156].

We note that our method is compatible with arbitrary sweep profiles
in the QAA. This is especially helpful as it is well known that slowing
down the adiabatic sweep at the position of the minimum spectral gap
mitigates transitions out of the ground state [192, 193]. More generally, our
technique can be applied to other coherent approximate state preparation
approaches, such as variational quantum algorithms (VQAs) [194]. This
applies to VQAs that prepare a pure state heuristically by a parametrized
operation U(θ) aiming at approximating the desired ground state. By
dephasing the prepared state and using the echo verification technique,
unpreparing the state with U(θ)†, we expect that the performance of VQAs
can be improved.

We note that the control-free versions of echo verification [69, 156], which
employ a reference state instead of a control qubit, are not naively avail-
able for AEV. This is due the dephasing channel annihilating coherences
between the reference state and the state of interest. Recently, a method
for rescaling survival probabilities was considered that has similarities with
control-free echo verification [195]. While their unnormalized estimator
Tr
[
ρOρO†

]
differs from the echo verification counterpart Tr

[
Oρ2], it would

still allow for mitigating errors for certain interesting observables such
as out-of-time-order correlators (OTOCs) [146]. Not requiring the imple-
mentation of a controlled operation can significantly simplify experiments.
This is why an extension of AEV without a control qubit is an interesting
direction for future work. Another promising research direction is the com-
bination of AEV with other purification-based error mitigation methods
such as virtual state distillation [148, 184]. Using multiple copies of the
quasi-adiabatically prepared state, further improvements for surpressing
errors seem possible.
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5.A Dephasing operation on a degenerate
spectrum

In Eq. 5.5 we define the perfect dephasing channel for an operator H with
non-degenerate spectrum. If the spectrum of H contains degeneracies, the
dephasing channel will project ρ to a block-diagonal operator, where the
blocks are defined by the (degenerate) eigenspaces of H:

deph
H

[ρ] =
∑
j

ΠjρΠj (5.15)

where Πj = δ(H − Ej) is the projector on the eigenspace of H with
eigenvalue Ej .

For AEV, we are only interested in dephasing the ground state with
respect to the rest of the spectrum; we only require the ground state of H
to be non-degenerate for Eq. 5.6 and the subsequent analysis to be valid.
This is anyway a typical requirement in adiabatic state preparation.

5.B Evaluation of AEV estimator with
approximate dephasing

In this section, we evaluate the error on the Adiabatic Echo Verification
(AEV) estimator with respect to the target value 〈E0|O |E0〉. We bound
it as a function of the adiabatic state (un)preparation error ε and the de-
phasing approximation error δ. The AEV circuits we consider only require
positive-time evolution with respect to the adiabatic Hamiltonian Eq. 5.1,
and the ability to perform a controlled-O operation (or a decomposition
thereof) to implement the Hadamard test.

We recall the echo verification (EV) expectation value estimator [69, 196]
is defined as

〈O〉EV := E[verified Hadamard test circuit (VHT)]
E[echo circuit (Echo)] . (5.16)
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In our case, the verified Hadamard test circuit is

VHT :=
|+〉 X + iY

|ψ0〉 U→ D O D U← |ψ0〉〈ψ0|
,

(5.17)
where U→ is the adiabatic state preparation, U← is the state unpreparation,
and deph := dephH,P is the approximate dephasing. At the end of the
circuit we need to measure X⊗ |ψ0〉〈ψ0| and Y ⊗ |ψ0〉〈ψ0| to recover the
real Re[〈O〉EV] and imaginary i Im[〈O〉EV] parts of the expectation value,
respectively. The output of a single sample of the circuit will be the
result of the Pauli X (±1) or Y (±i) on the control qubit if the system
register returns to the state |ψ0〉, and 0 otherwise. Our notation supposes
that O is a unitary operator, and its application is controlled by the
state of the control qubit. If O is not unitary, we can rewrite it as a
decomposition O =

∑
x ax Re[Ux] + bx Im[Ux] and measure the terms of

the decomposition separately [196]. The echo circuit, which is used to
compute the normalization of 〈O〉EV, is given as

Echo := |ψ0〉 U→ D D U← |ψ0〉〈ψ0| (5.18)

and obtained by substituting the operator O with the identity in the
previous circuit.

The adiabatic preparation and the adiabatic unpreparation are defined
as

U→ =T exp
{
−i
∫ Tad

0
H[s(t)] dt

}
; (5.19)

U← =T exp
{
−i
∫ Tad

0
H[s(Tad − t)] dt

}
, (5.20)

where T exp notates the time-ordered exponential, H(s) is the adiabatic
Hamiltonian (5.1), s(t) the adiabatic schedule with s(0) = 0 and s(Tad) = 1,
and Tad is the total evolution time of the adiabatic algorithm. Note that dt
is always positive, thus negative-time evolution is not required to implement
U→ and U←. Typically, in an EV circuit, if the preparation unitary is U ,
then the unpreparation is performed with its conjugate transpose U† such
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that UU† = 1. Here, however, this is not the case for the two operations
U← and U→. We will show that the added dephasing indeed removes this
requirement for our purposes.
In our calculations, we only assume that U→ (U←) implement an ap-

proximate state (un)preparation of |E0〉 with a fidelity of at least 1 − ε
with small ε > 0. Concretely, we define

| 〈E0|U→ |ψ0〉 |2 = 1− ε← , | 〈ψ0|U← |E0〉 |2 = 1− ε→, (5.21)

such that ε = max{ε←, ε→}. It is reasonable to assume the two adiabatic
processes will have a similar error, as any adiabatic theorem bounds both
in the same way.

The approximate dephasing channel, of the form Eq. 5.8, is defined via
a matrix of Fourier coefficients

Fjk := F [P ](Ej − Ek) ∈ C , D[ρ]jk = Fjkρjk (5.22)

We denote Ajk = 〈Ej |A |Ej〉 the matrix elements of an operator in the
eigenbasis of HT .
The only requirement on the dephasing channel is that the Fourier

coefficients are bounded maxj>0 |F0j | < δ, which imposes that the coher-
ences between the ground state and any other eigenstate are suppressed
by a factor smaller than δ. In the main text, we relate this factor to the
dephasing time and to ground state gap of the target Hamiltonian.
The expectation value of circuit Eq. 5.17 is

E[VHT] = Tr
{
U← D

[
CtrlO D

[
U→(|+〉〈+| ⊗ |ψ0〉〈ψ0|)U†→

]
CtrlO†

]
U†← (|ψ0〉〈ψ0| ⊗ 2 |0〉〈1|)

}
=

= Tr
{
U†← |ψ0〉〈ψ0|U←︸ ︷︷ ︸

σ

D
[
O D

[
U→ |ψ0〉〈ψ0|U†→︸ ︷︷ ︸

ρ

]]}
=

=
∑
jk

Fjk Tr
{
U†← |ψ0〉〈ψ0|U←·

· D
[
O |Ej〉 〈Ej |U→ |ψ0〉〈ψ0|U†→ |Ek〉︸ ︷︷ ︸

ρjk

〈Ek|
]}

=

=
∑
jkl

FjkFlkσklOlj ρjk (5.23)
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where we expand the dephasing channels, and we define the density matrices
ρ and σ, corresponding respectively to the pure states

U→ |ψ0〉 =
√

1− ε |E0〉+
√
ε
∑
j>0

αj |Ej〉 ,
∑
j>0
|αj |2 = 1; (5.24)

〈ψ0|U← =
√

1− ε 〈E0|+
√
ε
∑
j>0

β∗j 〈Ej | ,
∑
j>0
|βj |2 = 1. (5.25)

We can then absorb the dephasing coefficients into ρ̃jk = Fjkρjk and
σ̃kl = Flkσkl = F∗lkσkl, simplifying

E[VHT] = Tr[ρ̃σ̃O] , E[Echo] = Tr[ρ̃σ̃] , 〈O〉EV = Tr[ρ̃σ̃O]
Tr[ρ̃σ̃] . (5.26)

Comparing this result to the standard purification estimator Eq. 5.2, we
see that the ρ2 is substituted by ρ̃σ̃. The explicit expression for this
operator in the HT eigenbasis is

ρ̃σ̃ =
[
(1− ε)2 + ε(1− ε)

∑
j>0

α∗jβjF∗j0F0j

]
|E0〉 〈E0|

+
√
ε
√

1− ε
∑
j>0

[
(1− ε)αjFj0 + ε

∑
l>0

αjα
∗
l βlFjlF∗l0

]
|Ej〉 〈E0|

+
√
ε
√

1− ε
∑
j>0

[
(1− ε)β∗jFj0 + ε

∑
l>0

β∗jα
∗
l βlFjlF∗l0

]
|E0〉 〈Ej |

+ ε
∑
j,k>0

[
(1− ε)αjβ∗kFj0F∗0k + ε

∑
l>0

αjα
∗
l βlβ

∗
kFjlF∗lk

]
|Ej〉 〈Ek|

=[ρ̃σ̃]00 |E0〉 〈E0|+
∑
j>0

[ρ̃σ̃]j0 |Ej〉 〈E0|+

+
∑
j>0

[ρ̃σ̃]0j |E0〉 〈Ej |+
∑
j,k>0

[ρ̃σ̃]jk |Ej〉 〈Ek| . (5.27)

We proceed by bounding the error of 〈O〉EV with respect to the target
〈E0|O |E0〉,

error :=
∣∣∣∣Tr[Oρ̃σ̃]

Tr[ρ̃σ̃] − 〈E0|O |E0〉
∣∣∣∣

=
∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]

∣∣ · ∣∣Tr[ρ̃σ̃]
∣∣−1

. (5.28)
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In the HT eigenbasis, the relevant terms read

Tr[Oρ̃σ̃] = [ρ̃σ̃]00O00 +
∑
j>0

[ρ̃σ̃]0jOj0 +
∑
k>0

[ρ̃σ̃]k0O0k +
∑
j,k>0

[ρ̃σ̃]jkOkj ,

(5.29)

Tr[ρ̃σ̃] = [ρ̃σ̃]00 +
∑
j>0

[ρ̃σ̃]jj . (5.30)

We focus first on bounding the first factor on the right-hand side of Eq. 5.28,∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]
∣∣ =

∣∣Tr[(O −O00)ρ̃σ̃]
∣∣. (5.31)

We separate this expression through the triangle inequality,∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]
∣∣ =

=
∣∣∣∣∑
j>0

[ρ̃σ̃]0jOj0 +
∑
k>0

[ρ̃σ̃]k0O0k +
∑
j,k>0

[ρ̃σ̃]jkOkj −
∑
j>0

[ρ̃σ̃]jjO00

∣∣∣∣
≤ ‖O‖

(∣∣∣∣∑
j>0

[ρ̃σ̃]0j
∣∣∣∣+
∣∣∣∣∑
j>0

[ρ̃σ̃]j0
∣∣∣∣)+

∣∣∣∣ ∑
j,k>0

[ρ̃σ̃]jkOkj −
∑
j>0

[ρ̃σ̃]jjO00

∣∣∣∣,
(5.32)

where ‖ · ‖ is the operator norm. To bound the first term, we apply again
the triangle inequality,∣∣∣∣∑

j>0
[ρ̃σ̃]0j

∣∣∣∣ ≤ ∣∣∣∣∑
j>0

ρ̃00σ̃0j

∣∣∣∣+
∣∣∣∣ ∑
j,k>0

ρ̃0kσ̃kj

∣∣∣∣ (5.33)

and bound both resulting terms through Cauchy-Schwartz inequalities,∣∣∣∣∑
j>0

ρ̃00σ̃0j

∣∣∣∣ ≤(1− ε)3/2 ε1/2
∣∣∣∣∑
j

Fj0β∗j
∣∣∣∣

≤(1− ε)3/2 ε1/2 |~β| max
k>0
|F0k| = (1− ε)3/2 ε1/2δ; (5.34)
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∣∣∣∣ ∑
j,k>0

ρ̃0k σ̃kj

∣∣∣∣ = (1− ε)1/2 ε3/2
∣∣∣∣ ∑
j,k>0

F0kα
∗
kβkFjkβ∗j

∣∣∣∣
≤ (1− ε)1/2 ε3/2 |~β|

∑
j>0

∣∣∣∣∑
k>0
Fjkα∗kβkF0k

∣∣∣∣
≤ (1− ε)1/2 ε3/2 |~β|2 |~α| max

j,k>0
|Fjk| max

k>0
|F0k|

≤ (1− ε)1/2 ε3/2δ (5.35)

where we note that ~α and ~β are normalized by defintion, Fjk ≤ 1 and
maxk>0 |F0k| = δ. The same bound applies to the second term in the
parentheses in Eq. 5.32,

∣∣∑
j>0[ρ̃σ̃]j0

∣∣. The last term of Eq. 5.32 can be
rewritten as∑

j,k>0
[ρ̃σ̃]jkOkj −

∑
j>0

[ρ̃σ̃]jjO00 = Tr[Π> ρ̃σ̃Π>(O −O001)] (5.36)

where Π> = 1− |E0〉〈E0| is the projector on the subspace orthogonal to
|E0〉. We can then use the Von Neumann inequality to bound∣∣Tr[Π> ρ̃σ̃Π>(O −O001)]

∣∣ ≤ ‖O −O001‖ · ‖Π> ρ̃σ̃Π>‖1 (5.37)

where ‖A‖1 = Tr
√
A†A is the trace norm.

Now, by virtue of the triangle inequality, and the fact that ‖ |u〉〈v| ‖1 =
‖u‖‖v‖, for any vectors |u〉 , |v〉, we have

‖Π>ρ̃σ̃Π>‖1 ≤ε(1− ε)
∥∥∥∑
j>0

αjFj0 |Ej〉
∥∥∥∥∥∥∑

k>0
βkF0k |Ek〉

∥∥∥+

+ ε2
∑
l>0
|αl||βl|

∥∥∥∑
j>0

αjFjl |Ej〉
∥∥∥∥∥∥∑

k>0
βkFlk |Ek〉

∥∥∥
≤ε(1− ε)δ2 + ε2 (max

j,k>0
|Fjk|)2

∑
l>0
|αl||βl|

≤ε(1− ε)δ2 + ε2 (5.38)

where we used Cauchy-Schwartz in the last line.

Combining the bounds from Eqs. (5.34), (5.35) and (5.38), and using
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‖O −O001‖ ≤ 2‖O‖, we get∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]
∣∣ ≤

≤ 2‖O‖
[
(1− ε)3/2 ε1/2δ + 3(1− ε)1/2 ε3/2δ + ε(1− ε)δ2 + ε2

]
. (5.39)

Next, to bound the factor |Tr[ρ̃σ̃]|−1 in Eq. 5.28, we apply the reverse
triangle inequality to |Tr[ρ̃σ̃]|:

∣∣Tr[ρ̃σ̃]
∣∣ =

∣∣∣∣(1− ε)2 + 2ε(1− ε) Re
(∑
j>0

αjβ
∗
jF2

j0

)
+ ε2

∑
j,l>0

αjα
∗
l βlβ

∗
jF2

jl

∣∣∣∣
≥
∣∣(1− ε)2 − 2ε(1− ε)− ε2

∣∣ (5.40)

where we used that δ ≤ 1. For ε <
√

3/2− 1, the argument in Eq. 5.40 is
strictly positive, so we can remove the absolute value signs. The dominant
terms in the error Eq. 5.28 are then

error ∼ ‖O‖(ε1/2δ + ε2). (5.41)

We can verify that for δ → 0 we recover the error scaling with ε2, as
expected from perfect dephasing. To achieve the same scaling, it is in fact
sufficient to choose δ = ε3/2.

5.C Dephasing time for a smooth probability
distribution

In this section we motivate the choice of the rescaled bump function in
Eq. 5.13 for the distribution P (τ) used to implement dephasing by random-
time evolution (Eq. 5.8). We recall that we require P : [0, Td]→ R+ to have
support on [0, Td]. This ensures we only need to evolve for positive times
and the maximal dephasing time is Td. The performance for the dephasing
operation on the ground state is measured by δ = max∆>∆T

|F [P ](∆)|,
which is essentially a bound on the decay of the Fourier transformation of
P . As τ and ∆ are conjugate dimensionful variables, we can equivalently
study

δ = max
ω>∆TTd

|F [P̃ ](ω)| for P̃ : [0, 1]→ R+, (5.42)

where P̃ (τ∆T ) = P (τ).
To obtain the best possible asymptotic decay of the Fourier transform of

a function F [f ], we should choose f to be smooth. In fact, requiring the
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Fourier transform of f to decay as F [f ](k) . |k|−(r+1+ε) (for any choice
of ε > 0) implies that

∃Lr > 0 : ∀x
∣∣∣∣drf(x)

dxr

∣∣∣∣ =
∣∣∣∣ ∫ dk eikt krF [f ](k)︸ ︷︷ ︸

.|k|−(1+ε)

∣∣∣∣ < Lr, (5.43)

because |k|−(1+ε) is absolutely integrable away from 0 and F [f ](k) is
bounded. This implies that f and all its derivatives up to order r − 1
are Lipschitz continuous. Thus, to achieve a Fourier transform decaying
faster than any polynomial F [f ](k) = o(1/poly(k)), we have to choose
f(x) ∈ C∞ a smooth function.

One smooth function with compact support is the bump function

f(x) =
{
e−(1−x2)−1 if − 1 < x < 1,
0 otherwise,

(5.44)

we define its norm N :=
∫ 1
−1 f(x) dx ≈ 2.25. Based on this function, we

define the probability distribution

PTd(τ) = 2
TdN

f

(
2 τ
Td
− 1
)

=

 2
TdN

exp
([

4( τ
Td
− 1) τ

Td

]−1
)

if 0 < τ < Td,

0 otherwise,
(5.45)

which is normalized, smooth, and has support on [0, Td]. The Fourier
transform of this function can be estimated through the saddle point
approximation; we build on the results of Ref. 188 which provide a bound
the Fourier transform F [N f ] of the normalized f(x):

F [N f ](k) ≈ 2 Re
[√
−iπ√

2i
eik−

1
4−i
√
k

]
k−

3
4 e−

√
k. (5.46)

We construct a monotonic envelope for this oscillating function by sub-
stituting the real part for an absolute value, and we perform a change of
variables obtaining the bound

δ = max
∆>∆T

|F [PTd ](∆)| <
√

8π√
e

(Td∆T )−3/4
e−
√
Td∆T /2. (5.47)
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The validity of this bound is also verified numerically. This translates to a
statement on the dephasing time Td required to achieve a target dephasing
performance δtarget for a given gap ∆T between the ground state and the
first excited state of HT . Note that the inverse is defined in terms of the
principal branch W0 of the Lambert W function. We obtain

Td = 9
2 ∆T

W0

[
2
√

2π1/3

3 e1/6 δ
2/3
target

]
. O

(
log2(δ−1

target)∆−1
T

)
. (5.48)

Thus, Td grows linearly with ∆T and poly-logarithmically with δ−1
target.
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