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CHAPTER 4

Optimizing the information extracted by a single qubit
measurement

4.1 Introduction
The largest bottleneck in quantum algorithm design is the encoding and
decoding of a quantum state. Although each full characterization of a
quantum state requires an exponentially large amount of information,
direct measurements of an N -qubit quantum state ρ extract only N bits
of information, and collapse ρ to a state described by those N bits alone
— erasing any other information. Performing this repeatedly allows the
estimation of an expectation value 〈O〉 := Tr[Oρ] of any operator O that is
diagonal in the measurement basis. The rate at which such a measurement
converges is known as the standard quantum or shot noise limit [153] -
after M repeated preparations, 〈O〉 can be estimated with variance

Var[O] = M−1
(〈
O2〉− 〈O〉2) . (4.1)

Though this rate can be improved upon [66, 129, 154, 155], doing so
requires implementing long coherent circuits or performing large correlated
measurements, which are not feasible in the current NISQ era [18].
Instead of using all N qubits to extract data from a quantum state,
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one may perform a partial measurement that extracts less than N bits,
and use the remaining qubits to detect and mitigate errors [29, 66, 122].
Error mitigation is key in obtaining precise results from NISQ circuits,
such as variational algorithms [19, 82], where the output of the quantum
algorithm is a set of estimates of expectation values. Echo verification (EV
- see Section 4.2.2) [69, 156–158] allows one to strongly mitigate errors in
a wide class of algorithms, by recasting measurements as Hadamard tests.
In each EV circuit, a single bit of information is extracted from the system
register as a measurement, freeing up the remainder of the register for error
detection/mitigation. One may combine results of multiple EV circuits
(through classical post-processing) into an error-mitigated estimator of any
target quantity. However, the stringent requirement that only one bit of
information be extracted from the device further tightens the bottleneck
of quantum-classical I/O.

In this paper we study how we can optimize information extraction from
a quantum system to estimate the expectation value of an observable O,
under the restriction that only a single bit of information is measured per
state preparation. This matches the requirements of EV, the rest of the
information being reserved for error mitigation. We do not focus in this
work on the effectiveness of EV as an error mitigation strategy, and consider
only the case of error-free quantum simulation. We define measurements
with a single-bit outcome in terms of the Hadamard test, use these to
construct an expectation value estimator for a more complicated operator
via a linear decomposition, and calculate the variance of this resulting
estimator. We prove necessary conditions for such a linear decomposition
to be optimal; i.e. to minimize the cost of expectation value estimation.
We construct a provably optimal (in some sense) decomposition for a
fast-forwardable operator, and give a general (albeit expensive) method to
implement this decomposition through quantum signal processing [46–48].
We analyse our methods numerically, comparing the variance of estimators
based on our optimal method with other known approaches such as Pauli
decompositions and the Dirichelet kernel measurements introduced in [159].
We find an asymptotic improvement between our optimal decomposition
and a simple Pauli decomposition of a factor N0.7, which at 13 qubits
gives already an order of magnitude improvement.

4.2 Single-qubit measurements
The most general measurement that extracts one bit of information from
a N -qubit state |ψ〉 is a binary Positive-Operator Valued Measurement
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(binary POVM); this is defined by two positive operators Π+,Π− > 0 such
that Π+ + Π− = 1. The outputs of such measurement, which we label +1
and −1, have probabilities p± = 〈ψ|Π± |ψ〉. Schematically,

|0⟩ V

+ %

&
U

|0⟩ H ' ±1

|0⟩ V

%

Π±
& ±1

|0⟩ V
&

U V† 0 0 , {0,1}

|0⟩ H ' ±1
0
+1
−1
0

|0⟩ Vcat& − 1

0 0 , {0,1}

|0⟩ H ' ±1

0
+1
−1
0U Vcat

†

,

where we defined the unitary preparing the state V |0〉 := |ψ〉. In section
4.2.1, we review the Hadamard test and we show that there exists a
one-to-one equivalence between outcomes of Hadamard tests and binary
POVMs.
Extracting only a single bit allows further processing of the quantum

information remaining in the state register. For instance, inverting the
unitary that prepared |ψ〉 and measuring in the computational basis yields
a powerful error mitigation technique, echo verification [156–158], which
we review in Section 4.2.2. In another example, the Hadamard test may
be used to estimate the gradient of a cost function with respect to a
variational term exp(iAθ) in a circuit, as d

dθ exp(iAθ) = iA exp(iAθ) [160,
161]. Both these methods require operating on the system register after
the binary measurement is performed, preventing further information
extraction. (For the specific case of EV, we show in App. 4.B that extracting
more than one bit of information is counterproductive.) Furthermore,
this restricted output model of quantum computation can be relevant
in quantum-enhanced metrology settings [154, 162], where a single-qubit
probe is used [163]. A similar restricted access model has been studied in
the context of Hamiltonian learning [164, 165]. Note that this single qubit
access model is different to the one clean qubit model of computation
(DQC-1) [166]; here we consider using a single qubit to extract information
from a non-trivial quantum state.

4.2.1 The Hadamard test

A Hadamard test (HT) is a binary measurement performed on a state |ψ〉s
in the N -qubit system register s. It is implemented through a control qubit
c initialized in the state |+〉c, a controlled unitary CU and a projective
Pauli measurement Xc on the control qubit. As a quantum circuit this
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can be written
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and the resulting state before measurement can be easily calculated to be

|Φ〉 = 1√
2

(
|0〉 |ψ〉+ |1〉U |ψ〉

)
. (4.2)

Tracing out the system register then yields the following reduced density
matrix on the control qubit,

ρc = 1
2

(
1 〈U〉
〈U〉∗ 1

)
. (4.3)

One may estimate the expectation value of Re(U) := 1
2 (U + U†) by

measuring the control qubit in the X basis, which returns Tr[Xρc] =〈 1
2 (U + U†)

〉
.

To prove the equivalence between HT and binary POVM, we explicitly
construct one from another. To construct the binary POVM corresponding
to the HT, we define the measurement operators that represent the back-
action of the measurement on the system register

M± = 〈±|c CU |+〉c = 1± U
2 , (4.4)

and the relative positive operators Π± = M†±M± used to compute proba-
bilities p± = 〈ψ|Π± |ψ〉 of measuring ±1 on the ancilla. Vice versa, given
a binary POVM {Π+,Π−}, we can construct a corresponding Hadamard
test by choosing a unitary U that satisfies Re(U) = Π+ −Π−,

U = exp[i arccos(Π+ −Π−)]. (4.5)

This is always possible because Π+ − Π− is Hermitian and ‖Π+ − Π−‖ <
‖Π+ + Π−‖ = 1. It is easy to check that the Hadamard test constructed
from this unitary return the correct positive operators Π±.
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4.2.2 Echo verification

The name echo verification (EV) refers to a class of powerful error miti-
gation techniques [156–158], applicable in most algorithms that make use
a Hadamard test to perform measurements on a system register. This
technique was originally introduced by the name of verified phase esti-
mation [156] as it considered estimating expectation values of multiple
unitaries Ul = eiHtl , with an archetypal application in the context of
single-ancilla phase estimation. However, in this work, we consider the
more general expectation-value estimation subroutine yielding 〈Re(U)〉.
We prefer the name echo verification (used also in [69, 79]) due to the
similarities to a Loschmidt echo.

Echo Verification relies on a key idea: exploiting the information left in
the system register after the application of the controlled-unitary operator
prescribed by the Hadamard test. This information is used to detect errors
and mitigate their effect on estimated quantities. This is done by “echoing”
the preparation unitary V , i.e. applying V † after the controlled evolution,
and verifying whether the register s returns to the initial state |0〉. The
corresponding circuit is
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,

where the multiplication of the classical information channels (red double-
lines) sets the circuit output to zero upon failed verification (i.e. if the final
system state is orthogonal to |0〉s), and to the output of the Hadamard
test otherwise.
Let us denote the combined state after the controlled unitary as |Φ〉,

and let Πψ = |ψ〉〈ψ| = V † |0〉〈0|V be the projector on the state |ψ〉s.
The estimate of 〈Re(U)〉 can be obtained by measuring the operators
XEV := X ⊗ Πψ on |Φ〉 (EV circuit), as opposed to Xc := X ⊗ 1 (HT
circuit). One can confirm that, in the absence of error, these operators
have identical expectation values on the state at the end of the circuit [156]

〈Φ|XEV|Φ〉 = 〈Φ|Xc|Φ〉 = 〈ψ|Re(U)|ψ〉. (4.6)

For an intuitive explanation, note that if the controlled unitary changes
the state of the system register, the ancilla qubit must have been in the
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|1〉 state, and 〈1|X|1〉 = 0. This implies that the expectation value of
X ⊗ (1N −Πψ) is 0.
In the presence of a circuit error, verification is likely to fail. This

decreases the expectation value measured by the error probability, which
can be measured separately. Rescaling the result by the error probability
yields a noise-mitigated estimate of the expectation value 〈ψ|Re(U)|ψ〉.
The error mitigation power of this method is explored in [79, 156–158, 167]
and experimentally tested in [69]. In this work, we only consider noiseless
circuits.

The EV circuit implements a ternary measurement, with outputs +1,−1, 0.
Compared to a standard HT defined by the same unitary, the probabil-
ities p+ and p− are reduced by the same amount (p0

2 ), yielding a result
with the same expected value. As a consequence, the variance of an EV
measurement is always smaller than that of the corresponding HT (this is
formalized in Appendix 4.A).

An extension of Echo Verification allows extracting more than one qubit
of information per circuit run by using multiple auxiliary qubits. However,
as the measurement is quadratic in |ψ〉〈ψ| (resulting by the use of two
copies of Vψ in the circuit), reconstructing the desired expectation values
requires nonlinear processing of the measurement results. Furthermore,
as each measurement interferes with the verification of the others, all the
variances of estimated expectations increase. In appendix 4.B we explore
this, and we prove that measuring more than one bit of information per
EV experiment is always counterproductive in terms of final variance, for
a fixed total number of shots.

4.2.3 Ancilla-free echo verification
The direct (control-based) measurement via the HT may often be replaced
by an indirect measurement using an altered circuit [156, 168, 169], allowing
control-free implementations of these single-bit measurements. We review
briefly the control-free echo verification scheme.

In the Hadamard test, the control qubit provides a clock-reference state
|0〉 |ψ〉, which is not changed by the application of CU . This clock-reference
state is necessary to give physical meaning to the phase U induces on
the system register states, thus making it measurable. If U has a known
eigenstate U |ψr〉 = eiφr |ψr〉 orthogonal to |ψ〉, this state can be used
as a clock-reference removing the need for a control qubit. In quantum
simulation, this state can often be found thanks to the symmetries of the
system. For example, in second-quantized simulation of particle systems
the vacuum state |0〉 is an eigenstate of any particle-number preserving
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operator.
The control-free EV scheme prescribes preparing a cat-state 1√

2 (|ψ〉+
|ψr〉), applying U , and measuring XCFEV = (|ψ〉 〈ψr|+ |ψr〉 〈ψ|). This can
be done with the circuit
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where Vcat |0...00〉 = |ψr〉 and Vcat |0...01〉 = |ψ〉. After the application of
U , the state is |Φ〉 = 1√

2 (U |ψ〉+ eiφr |ψr〉), thus

〈Φ|XCFEV |Φ〉 = 〈ψ|Re(Ue−iφr ) |ψ〉 . (4.7)

If φr 6= 0, the desired result 〈ψ|Re(U) |ψ〉 can be obtained by substituting
U → Ueiφr or applying a phase gate e−iφr/2Z to the first qubit before
measurement.

4.2.4 Variance of a binary POVM
The Hadamard test differs from the projective measurement of Re(U) :=
1
2 (U +U†) (the Hermitian part of U). Each instance of the Hadamard test
can only output +1 or −1, whereas the spectrum of Re(U) can have up
to 2N distinct eigenvalues in the range [−1, 1]. This has a direct impact
on the estimation uncertainty: performing the Hadamard test M times
and measuring the control qubit in the X-basis yields an estimator of
〈Re(U)〉 = Re(〈U〉) with a variance

Var∗
[
〈Re(U)〉

]
= 1− 〈Re(U)〉2

M
, (4.8)

which can be seen to be strictly larger than the variance one would obtain
by performing a projective measurement of Re(U) on M copies of |ψ〉
[Eq. (4.1)],

Var
[
〈Re(U)〉

]
≤ Var∗

[
〈Re(U)〉

]
, (4.9)

as
〈
Re(U)2〉 ≤ 1. Our goal is to optimize estimators of expectation values

〈O〉 of a given operator, which use data from multiple HTs with different
unitaries U [each with the given variance Eq. (4.8)], and assuming one
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test per state preparation. We want to minimize the total number of state
preparations (distributed over different choices of U) needed to achieve an
estimator of 〈O〉 with error smaller than a fixed ε.

4.3 Operator decompositions
It is common in quantum computing to estimate the expectation value
of an operator O by writing O as a linear combination of simpler terms
(a.k.a. a decomposition) which have their expectation values estimated
independently [19, 54, 170]. In this work, we make use of this method,
and consider estimating these simpler terms via Hadamard tests. Let us
fix a decomposition1 X,

O =
∑
x∈X

cx Re(Ux) ↔ 〈O〉 =
∑
x∈X

cx 〈Re(Ux)〉 , (4.10)

and consider estimating 〈O〉 by estimating each 〈Re(Ux)〉 independently
and summing the results. As Re(Ux) and O are Hermitian operators we
may assume cx to be real without loss of generality, and we may further
assume cx ≥ 0 by absorbing a minus sign onto Ux. Note that the arrow in
Eq. (4.10) points both ways as the set of expectation values on all states
|ψ〉 uniquely defines an operator.

Once a suitable decomposition X of an operator O [Eq. (4.10)] has been
chosen, to calculate the total cost of the algorithm we must allocate a
number mx of repeated single-shot HT experiments to estimate individual
〈Re(Ux)〉. We assume a single-bit measurement per state preparation,
i.e. each HT requires resetting the circuit and re-preparing |ψ〉, and the
total number of re-preparations MX =

∑
x∈X mx is the relevant cost of

implementing our measurement scheme. If each 〈Re(Ux)〉 is estimated
independently, the variance on a final estimate of 〈O〉 can be calculated
by standard propagation of variance

Var∗X
[
〈O〉

]
=
∑
x∈X

c2x Var∗
[
〈Re(Ux)〉

]
(4.11)

=
∑
x∈X

c2x(1− 〈Re(U)〉2)
mx

. (4.12)

1In a slight abuse of notation, throughout this work we will use the same label (e.g. X)
to represent the entire linear decomposition defined by the set {cx, Ux} in Eq. 4.10,
and the set of labels x that we sum over.
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Eq. (4.9) implies that under the same decomposition of O

VarX
[
〈O〉

]
:=
∑
x∈X

c2x Var[〈Re(Ux)〉] ≤ Var∗X
[
〈O〉

]
, (4.13)

for all states ρ.

4.3.1 Adaptive shot allocation
Given a decomposition X and a total shot budget MX , an optimal choice
for the mx may be found using Lagrange multiplier methods [121]

mx = MX

cx

√
1− 〈Re(Ux)〉2∑

y∈X cy

√
1− 〈Re(Uy)〉2

, (4.14)

recalling that cx ≥ 0. This yields a bound on the required MX to estimate
〈O〉 with Var∗

[
〈O〉

]
= ε2

MX ≥MX := ε−2
[∑
x∈X

cx

√
1− 〈Re(Ux)〉2

]2
. (4.15)

We callMX the cost of the decomposition X. This may be compared to
well-known results for measurement bounds using standard tomography
methods [54, 66, 68, 121] by substituting Var∗ for Var in Eq. (4.11).
Though exact values of 〈Ux〉 will not be known in advance, these can be
estimated using a small initial fraction of measurements before a final
distribution of measurements is allocated.

4.3.2 The decomposition hierarchy
We have shown above how to optimize measurement allocation given a
linear decomposition X [Eq. (4.10)]. Let us now consider how to optimize
X to minimize Eq. (4.15).
We first consider the effect of possible rescalings of Re(Ux). If any

term cx Re(Ux) has ‖Re(Ux)‖ < 1,2 one can find some unitary Ux′ for
which Re(Ux′) = Re(Ux)/‖Re(Ux)‖; substituting Ux → Ux′ (and cx → cx′

accordingly) will always improve the bound in Eq. (4.15). (For now we
do not worry about how the unitaries may be implemented as quantum
circuits; we will consider this issue later.)

2Unless stated otherwise, all norms in this work are the spectral norm.
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One may next consider subdividing individual terms Re(Ux) of X, by
writing

cx Re(Ux) = cx,0 Re(Ux,0) + cx,1 Re(Ux,1), (4.16)

where Ux,0 and Ux,1 are both unitary, and cx, cx,0, cx,1 > 0. As we can
assume ‖Re(Ux)‖ = 1, such a decomposition requires cx,0 + cx,1 ≥ cx, to
preserve the spectral norm of Re(Ux,0) and Re(Ux,1). When this inequality
is saturated, we call the sub-decomposition norm-preserving. It turns
out that this condition is sufficient for the sub-decomposition to be non-
increasing in the cost M of estimation [Eq. (4.15)], for all states |Ψ〉;
formally:

Lemma 1
Given a linear decomposition X of a target operator O [Eq. (4.10)], a sub-
decomposition X ′ [Eq. (4.16)] that is norm-preserving has non-increasing
cost,MX′ ≤MX [Eq. (4.15)], for any state |Ψ〉.

We give a proof of this lemma in Appendix 4.C.1
We would like to extend the above lemma to a statement that norm-

increasing subdecompositions of a linear decomposition X are always
suboptimal in some sense. To achieve this, note that as a corollary to
lemma 1, we can improve on all terms cx Re(Ux) in a linear decomposition
X by a norm-preserving identity shift

cx Re(Ux) = cx(1− λ̄x) Re(Ux̃) + cxλ̄x1, (4.17)

where λx = 1
2 (λmin

x + λmax
x ), λmin

x and λmax
x are the lowest and highest

eigenvalues of Re(Ux) respectively, and Re(Ux̃) has the same eigenvectors
of Re(U) (with its spectrum shifted and rescaled). We call the outcome
decomposition X̃ of the procedure above the center of X. Though a
norm-increasing subdecomposition of X may not be suboptimal relative
to X, it is suboptimal relative to this center:

Lemma 2
Let X be a linear decomposition of O with all ‖Re(Ux)‖ = 1; let X̃ be the
center of X and let X ′ be a strictly norm-increasing sub-decomposition.
There exists at least one state |Ψ〉 for which the costMX̃ <MX′ .

We give a proof of this lemma in Appendix 4.C.2.
To recap, the above two lemmas show a) that norm-preserving sub-

decompositions do not increase the cost of estimating expectation values
via Hadamard tests on any given state, and b) norm-increasing sub-
decompositions not only can increase expectation value estimation costs
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on some states, but are guaranteed to do so on at least one. This result
is in direct contrast to standard expectation value estimation, where
independent estimation of 〈A〉 and 〈B〉 is sub-optimal to joint estimation
of 〈A+B〉 whenever the latter is possible. This suggests a path towards
optimizing HT expectation value estimation, by repeatedly dividing terms
Re(Ux) in a norm-preserving manner, until no further sub-decomposition
can reduce the cost any state. It turns out that not all choices of division
lead to the same end-point, however all end points of this procedure have
one common property (proven in Appendix 4.C.3):

Lemma 3
A decomposition X of an operator O has no non-trivial norm-preserving
sub-decompositions if and only if all operators Re(Ux) in X are reflections:
Re(Ux)2 = 1.

It should be no surprise that we find reflection operators Re(Ux)2 = 1 to
be a crucial ingredient to optimize HT tomography, as these are the only
operators that saturate the bound in Eq. (4.9) for all states |Ψ〉. We call
a decomposition X that consists of reflection operators only a reflection
decomposition. We give some simple examples of these in Appendix 4.C.4.

4.3.3 Optimizing reflection decompositions

Above we demonstrated that, for a decomposition X of an operator O to
be optimal with regards to the costMX of estimating expectation values
on a set of states (Eq. 4.15), all terms in X must be reflection operators.
Otherwise, we demonstrated a means of sub-dividing single terms in the
distribution to generate a new distribution with lower cost. However,
this is not to say that all reflection decompositions X have the same
costMX . (These two statements are consistent as we cannot transform
between reflection decompositions using subdivision.) The set of reflection
decompositions of O form a convex set that is 22N−N -dimensional if all
Ux are diagonal in the eigenbasis of O. This raises two questions: is there
an optimal decomposition amongst the set of reflection decompositions,
and does it achieve the von Neumann bound [Eq. (4.13)]?

Lemma 4
Let O be an operator and Πj be projectors onto the eigenvalues of O;
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OΠj = ΠjO = λjΠj. The Ξ-decomposition of O, given by

O = λ0 + λJ
2 1 +

J−1∑
x=1

δλx
2 Ξx (4.18)

Ξx = 1−
∑
j<x

2Πj , δλx = λx − λx−1, (4.19)

uniquely achieves the bound Var∗Ξ[O] = Var[O] on all states |Ψ〉 with
support on up to two eigenstates of O. No such decomposition achieves
this bound on all states |Ψ〉 with support on three or more eigenstates of
O.

We prove this lemma in Appendix 4.C.5. Note that the Ξ-decomposition
can be immediately restricted to any subspace of the full-2N -dimensional
Hilbert space containing |Ψ〉 (i.e. if we knew that due to a symmetry or by
virtue of being a low-energy state, |Ψ〉 had support only on such a space),
and the optimality result still holds. This implies in turn that no linear
decomposition X can achieve the von Neumann variance bound even for
as small as a 3-dimensional subspace. This makes sense, as our restriction
to measure one bit of information per state preparation forms a bottleneck
with respect to the 3 nonzero-probability outcomes of a Von Neumann
measurement on this space.

4.3.4 Implementing the optimal decomposition

In order to realize the Ξ-decomposition estimator, we need to implement
HT circuits that (approximately) estimate 〈Ξx〉. This may be achieved by
realising that

Ξx = sgn[O − µx] , µx = λx−1 + λx
2 , (4.20)

where sgn is the sign function. An approximation of this unitary operator
can then be realized using quantum signal processing (QSP) [46–48] of the
sign function [86], requiring only one additional ancillary qubit. The QSP

132



4.4 Numerical experiments

4

circuit is given by
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consists of reflection operators only a reflection decomposi-
tion. We give some simple examples of these in Appendix C 4.

C. Optimizing reflection decompositions

Above we demonstrated that, for a decomposition X of
an operator O to be optimal with regards to the cost MX of
estimating expectation values on a set of states [Eq. (15)],
all terms in X must be reflection operators. Otherwise, we
demonstrated a means of subdividing single terms in the
distribution to generate a new distribution with lower cost.
However, this is not to say that all reflection decompositions X
have the same cost MX . (These two statements are consistent
as we cannot transform between reflection decompositions
using subdivision.) The set of reflection decompositions of
O form a convex set that is 22N −N dimensional if all Ux are
diagonal in the eigenbasis of O. This raises two questions: Is
there an optimal decomposition amongst the set of reflection
decompositions, and does it achieve the von Neumann bound
[Eq. (13)]?

Lemma 4. Let O be an operator and ! j be projectors
onto the eigenvalues of O; O! j = ! jO = λ j! j . The #-
decomposition of O, given by

O = λ0 + λJ

2
1 +

J−1∑

x=1

δλx

2
#x, (18)

#x = 1 −
∑

j<x

2! j , δλx = λx − λx−1, (19)

uniquely achieves the bound Var∗
#[O] = Var[O] on all states

|%〉 with support on up to two eigenstates of O. No such de-
composition achieves this bound on all states |%〉 with support
on three or more eigenstates of O.

We prove this lemma in Appendix C 5. Note that the #
decomposition can be immediately restricted to any subspace
of the full 2N -dimensional Hilbert space containing |%〉 (i.e.,
if we knew that due to a symmetry or by virtue of being
a low-energy state, |%〉 had support only on such a space),
and the optimality result still holds. This implies in turn that
no linear decomposition X can achieve the von Neumann
variance bound even for as small as a three-dimensional sub-
space. This makes sense, as our restriction to measure one bit
of information per state preparation forms a bottleneck with
respect to the three nonzero-probability outcomes of a von
Neumann measurement on this space.

D. Implementing the optimal decomposition

In order to realize the #-decomposition estimator, we need
to implement HT circuits that (approximately) estimate 〈#x〉.
This may be achieved by realizing that

#x = sgn[O − µx] , µx = λx−1 + λx

2
, (20)

where sgn is the sign function. An approximation of this
unitary operator can then be realized using quantum signal
processing (QSP) [16–18] of the sign function [35], requir-
ing only one additional ancillary qubit. The QSP circuit is

given by

repeat for r = 0, ..., R − 1

|0 c RX(φr)
e−iZ⊗(O−µx)t

RX(φR)

|ψ S / ,

where RX (φr ) = e−i X
2 φr implements a unitary block encoding

Qφ of a degree-R trigonometric polynomial Sφ of the operator
(O − µx )t :

〈1|cQφ|0〉c =
R∑

r=0

cr (φ)e−ir(O−µx )t := Sφ[(O − µx )t]. (21)

Here, φ is a vector containing the individual angles φr
implemented during the QSP circuit. We can then sample
〈Re{Sφ[(O − µx )t]}〉 through HT (or EV), using another qubit
controlling all gates in the QSP circuit. To approximate
Eq. (20) with our block-encoded operator Sφ, we must choose
t < π

‖O−µx‖ to avoid aliasing, and find the optimal φ:

φ = arg min(φr=−φR−r )

∫ π−δ

0+δ

dω[sgn(ω) − Im[Sφ (ω)]].

(22)

Here, the constraint φr = −φR−r ensures Im[Sφ (ω)] is an odd
function of ω. A resolution parameter δ ! 0 can be intro-
duced to improve the approximation away from the nodes
ω = {0,±π} of Sφ (ω). In Appendix D we give further details
of this decomposition, and analyze the approximation error
numerically. We find that this error converges exponentially
in the number of circuit blocks R.

IV. NUMERICAL EXPERIMENTS

To investigate performance of various decompositions on
states that have support on more than two eigenstates of O, and
therefore are not covered by Lemma 4, we perform numerical
simulations using random variationally generated states and
a simple toy operator O =

∑
j Z j . (In Appendix F, we report

this scaling for other systems.) We measure the variances on
states generated by a hardware-efficient Ansatz [36] with ran-
dom input parameters using PENNYLANE [37]. For each data
point 100 random states are generated. We consider estimating
〈O〉 in a realistic scenario where the 〈Re(Ux )〉 values will not
be known in advance to optimally choose mx via Eq. (14).
Instead, for each random state we generate a prior estimate of
each 〈Re(Ux )〉 from 105 measurements of the state, and use
these to determine mx (which are then only approximately op-
timal). This leaves the total shot count MX as a free parameter;
we resolve this in Fig. 1 by calculating MX Var∗

X [〈O〉]. (This
gives a quantity that is relevant regardless of the number of
the shots actually used to estimate 〈O〉.)

An average of MX Var∗
X [〈O〉] over the 100 states is formed

and plotted in Fig. 1 for each grouping method. This is com-
pared to the von Neumann measurement variance Var[O],
which does not require any shot allocation, and sets a lower
limit to the other estimators [see Appendix C 5, Eq. (C15)].
The # decomposition (orange, “#”) has the best asymptotic
scaling of all decompositions, being suboptimal to Var[O] by

012403-5

where RX(φr) = e−i
X
2 φr , implements a unitary block encoding Qφ of a

degree-R trigonometric polynomial Sφ of the operator (O − µx)t:

〈1|cQφ |0〉c =
R∑
r=0

cr(φ)e−ir(O−µx)t := Sφ[(O − µx)t]. (4.21)

Here, φ is a vector containing the individual angles φr implemented during
the QSP circuit. We can then sample 〈Re{Sφ[(O − µx)t]}〉 through HT
(or EV), using another qubit controlling all gates in the QSP circuit. To
approximate Eq. (4.20) with our block-encoded operator Sφ, we must
choose t < π

‖O−µx‖ to avoid aliasing, and find the optimal φ

φ = arg min
(φr=−φR−r)

∫ π−δ

0+δ
dω
[

sgn(ω)− Im[Sφ(ω)]
]
. (4.22)

Here, the constraint φr = −φR−r ensures Im[Sφ(ω)] is an odd function of
ω. A resolution parameter δ ≥ 0 can be introduced to improve the approx-
imation away from the nodes ω = {0,±π} of Sφ(ω). In Appendix 4.D we
give further details of this decomposition, and analyse the approximation
error numerically. We find that this error converges exponentially in the
number of circuit blocks R.

4.4 Numerical experiments
To investigate performance of various decompositions on states that have
support on more than two eigenstates of O, and therefore are not covered
by Lemma 4, we perform numerical simulations using random variationally-
generated states and a simple toy operator O =

∑
j Zj . (In appendix 4.F,

we report this scaling for other systems.) We measure the variances on
states generated by a hardware-efficient ansatz [59] with random input
parameters using PennyLane [171]. For each datapoint 100 random states
are generated. We consider estimating 〈O〉 in a realistic scenario where
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Ξ, m = 1.29± 0.03

GPSK, m = 1.77± 0.01

Pauli, m = 2.04± 0.0

Von Neumann, m = 1.04± 0.01

Figure 4.1: Comparison study of variances of different decompositions on
random states generated by a hardware-efficient ansatz (see text for details).
Different colours correspond to different decompositions [Eq.(4.10)] of the
target operator O (see text for the description of all decompositions).
Dashed lines are power-law fits to the data (obtained exponents are given
in legend).

the 〈Re(Ux)〉 values will not be known in advance to optimally choose
mx via Eq. (4.14). Instead, for each random state we generate a prior
estimate of each 〈Re(Ux)〉 from 105 measurements of the state, and use
these to determine mx (which are then only approximately optimal). This
leaves the total shot count MX as a free parameter; we resolve this in
Fig. 4.1 by calculating MXVar∗X [〈O〉]. (This gives a quantity that is
relevant regardless of the number of the shots actually used to estimate
〈O〉.)

An average ofMXVar∗X [〈O〉] over the 100 states is formed and plotted in
Fig. 4.1 for each grouping method. This is compared to the Von Neumann
measurement variance Var[O], which does not require any shot allocation,
and sets a lower limit to the other estimators [see App. 4.C.5, Eq. (4.52)].
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The Ξ-decomposition [orange, ‘Ξ’] has the best asymptotic scaling of all
decompositions, being suboptimal to Var[O] by a factor ≈ N1/3. The QSP
approximation of Ξ, [teal, ‘SGN’], has a slightly worse asymptotic scaling,
which we associate to the error in approximating sgn(O − µj). At the
largest considered N = 13, these two decompositions suffer approximately
a factor 2 penalty in their total cost compared to Var[〈O〉]. The generalized
parameter-shift kernel decomposition [159] [green, ‘GPSK’, described in
Appendix 4.E] has the worst overall performance out of the investigated
estimators, due to the constant factor. It has however a better asymptotic
scaling than a simple Pauli decomposition Ux = Zj [red, ‘Pauli’, Appendix
4.C.4]. In Appendix 4.F we investigate the scaling of different sets of
observables. We observe that the order of the performance of the different
decompositions remains consistent throughout, but the relative gains and
losses in performance can be significantly different.

4.5 Conclusion
In this work we studied the optimization of expectation value estimation for
a quantum state in the case where we are only allowed to measure a single
qubit per state preparation (e.g. through Hadamard tests, with relevant
application to echo verification). We calculated the cost of estimating the
expectation value of an operator O by linearly decomposing O into a linear
combination of sub-unitary terms, assuming an optimal shot allocation.
We demonstrated that this cost is strictly non-increasing when terms are
further subdivided, under the constraint that this subdivision preserves the
induced 1-norm of the term coefficients. We showed that the end-points of
this procedure of repeated division are linear decompositions of O where
all terms are reflection operators; a so-called ‘reflection decomposition’.
We identified one such decomposition, the Ξ-decomposition, as unique in
its ability to estimate 〈O〉 with a variance matching the Von Neumann
measurement limit on any linear combination of up to 2 eigenstates of
O. We demonstrated how the Ξ-decomposition may be approximately
implemented through quantum signal processing. Numerical results demon-
strate that on simple systems, the Ξ-decomposition and its approximate
couterpart demonstrate clear constant and asymptotic improvements over
other reflection decompositions (in the cost of estimating 〈O〉 on random
states), with up to a factor 10× improvement for estimation on 20 qubits.
Though these results are encouraging, the significant discrepancy be-

tween Var∗Ξ[O] and Var[O] is worrying for NISQ algorithms that already in-
cur a significant cost to tomograph complex Hamiltonians [54, 66, 122, 172–
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174]; either one incurs a large overhead for measurement due to the need
to invoke quantum signal processing or incur the clear asymptotic scaling
cost that comes with measuring single Pauli terms per state preparation.
Given that echo verification has a sampling cost scaling as 1/F 2 (for a
circuit fidelity F ) [156], this result adds to the unlikelihood of beyond-
classical NISQ variational algorithms in chemistry. Finding reflection
decompositions with lower circuit depth is a clear avenue for future work.

4.A Echo verification estimators

The estimator used for echo verification is not identical to the one studied
in the main text, and so its variance is not quite identical. In particular,
we have (XEV)2 = Πψ which implies that the variance on an estimate of
〈Φ|XEV|Φ〉 is

Var∗EV[〈Re(U)〉] = 〈Φ|1⊗Πψ |Φ〉 − 〈ψ|Re(U) |ψ〉2

M
. (4.23)

Clearly | 〈Φ|ψ〉 |2 ≤ 1, which implies Var∗EV[Re(U)] ≤ Var∗[Re(U)] [by
comparison with Eq (4.8)]. In other words, the varianc of the EV estimator
is always smaller or equal to the variance of the relative HT estimator. It
is easy to calculate from the circuit above that

〈Φ|Πψ ⊗ 1 |Φ〉 = 1
2 |1 + 〈ψ|U |ψ〉 |2, (4.24)

(noting that 〈Re(U)〉 = Re(〈U〉), which can be subtituted back into our
variance estimate to obtain

Var∗EV[Re(U)] ≥ 1− 〈ψ|Re(U)|ψ〉2
2M , (4.25)

Thus, we have

Var∗[〈Re(U)〉] ≥ Var∗EV[〈Re(U)〉] ≥ Var∗[〈Re(U)〉]
2 . (4.26)

This justifies our focus in the main text on optimizing the estimator from a
standard Hadamard test; this estimator is simpler to analyse, more general,
and differs from the EV estimator (that motivated this work) by at most
a factor 2.
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4.B Parallelizing echo verification

In absence of echo verification, we can trivially parallelize Hadamard
tests measuring K commuting operators {Re(U0), ...,Re(UK−1)} using K
ancillary qubits, one controlling each Uk. If each Uk is controlled by a
separate ancillary qubit (labeled k, where CkUk represents the k-th unitary
controlled by the k-th control qubit), the combined state of the system
register s and ancillary qubits after all the unitaries are applied will be⊗

k

CkUk |+〉k |ψ〉 . (4.27)

The probabilities of obtaining ±1 when measuring X on the j-th control
qubit are

pj± =

∥∥∥∥∥∥
⊗
k 6=j

CkUk |+〉k
1± Uj

2 |ψ〉

∥∥∥∥∥∥
2

(4.28)

= 1
4 〈ψ| (1± U

†
j )(1± Uj) |ψ〉 (4.29)

which coincides with the probabilities of a single Hadamard test with
unitary Uj .

When performing echo verification, parallelization is more complicated.
The result of verification (the measurement of Πψ = |ψ〉〈ψ| on the system
register) is affected by all the controlled-Uk, and thus its result cannot
be simply associated to one specific ancilla being in the state |1〉. To
mitigate errors, all the cases in which the register is found in a state
orthogonal to |ψ〉 should be considered as null towards all of the ancilla
measurement results. The echo-verified probability of measuring the binary
string ~σ = (σ0, ..., σk), where each σk is ±1 corresponding to the state |±〉
measured on the k-th ancilla, is then

pEV~σ =
∣∣∣∣∣〈ψ|∏

k

〈σk|k CkUk |+〉k |ψ〉
∣∣∣∣∣
2

= 1
4K

∣∣∣∣∣〈ψ|∏
k

(1 + σkUk) |ψ〉
∣∣∣∣∣
2

. (4.30)

The product in this equation can be then developed into a linear combi-
nation of 2K expectation values (note that, as all Uk commute, the order
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does not matter). Under the assumption that all these expectation values
are real [granted if Uk = Re(Uk)] Eq. (4.30) defines a quadratic system of
2K equations with 2K − 1 unknowns3. Solving such system we find that
the expectation value of a single Re(Uj) can be estimated by processing
the sampled pEV~σ as

〈Re(Uj)〉 =

 ∑
~σ:σj=+1

√
pEV~σ

2

︸ ︷︷ ︸
pEV
j+

−

 ∑
~σ:σj=−1

√
pEV~σ

2

︸ ︷︷ ︸
pEV
j−

, (4.31)

where we denoted pEVj± the terms that reproduce the probabilities that
would be returned by a single, un-parallelized EV experiment

pEVj± = 1
4 |〈ψ| 1± Uj |ψ〉|

2
. (4.32)

We assume pEV~σ are sampled by averaging M shots of the parallel EV
experiment. These are probabilities of mutually-exclusive measurements,
thus the covariance matrix of the pEV~σ estimators is defined by

Var[pEV~σ ] = 1
M
pEV~σ (1− pEV~σ ), (4.33)

Cov[pEV~σ , pEV~ρ ] = − 1
M
pEV~σ pEV~ρ if ~σ 6= ~ρ. (4.34)

We can then propagate the error through Eq. (4.31) to obtain the variance
on the parallel-EV (PEV) estimator of 〈Re(Uj)〉

M Var∗PEV[〈Re(Uj)〉] =

∑
~σ

pEVjσj
pEV~σ

pEV~σ (1− pEV~σ )−
∑
~σ 6=~ρ

σjρj

√
pEVjσj√
pEV~σ

√
pEVjρj√
pEV~ρ

pEV~σ pEV~ρ

=
∑
~σ

pEVjσj − 〈Re(Uj)〉

=2K−1(pEVjσ+
+ pEVj− )− 〈Re(Uj)〉 . (4.35)

3In the case of a more general U = Re(U)+i Im(U), a similar system can be constructed
by measuring each Uk and iUk with 2K ancillas. Showing this is besides the scope of
our work, and for the sake of simplicity we restrict ourselves to the case of Hermitian
Uk = Re(Uk).
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which explodes exponentially with the size of the parallelization K.
More generally, we can compute the covariance matrix for all the pEVj,σj

through error propagation

Var[pEVjσj ] = pEVjσj (2
K−1 − pEVjσj ) (4.36)

Cov[pEVjσj , p
EV
kρk

] = δj,k

√
pEVjσjp

EV
kρk
− pEVjσjp

EV
kρk

(4.37)

[where the covariance assumes (j, σj) 6= (k, ρk)]. This shows that, increas-
ing K, we effectively add to the covariance matrix a positive semi-definite
term with a norm that scales exponentially in K. As all the decompositions
Eq. (4.10) are ultimately to be estimated as linear combinations of the
sampled probabilities pEVjσj , parallelizing error verification is counterpro-
ductive.

4.C Proof of decomposition optimality
hierarchy

In this section we build up to the proof that the Ξ-decomposition is
optimal in terms of cost (4.15), by proving the lemmas introduced in
the main text. We first prove that a norm-preserving sub-decomposition
has non-increasing cost with respect to its parent decomposition, for all
states |ψ〉. We then prove that a sub-decomposition that does not have
the norm-preserving property is always sub-optimal (i.e. it has strictly
greater cost than an alternative norm-preserving sub-decomposition). The
iteration of the norm-preserving sub-decomposition procedure leads to
one of many alternative improving sequences of decompositions. The
endpoint of each sequence is a norm-preserving linear decomposition of O
for which all unitaries are reflection operators. Finally, we prove that one
of such decompositions (the Ξ-decomposition) achieves the Von-Neumann
measurement variance bound on a certain set of states, and that no
unbiased estimator based on single-qubit measurements can achieve this
bound on a larger set of states.

4.C.1 Proof of Lemma 1, and corollaries

Given a linear decomposition X of an operator O [Eq. (4.10)], consider a
norm-preserving sub-decomposition X ′ where a single term x ∈ X is split
according to Eq (4.16). The bound on the total number of shots Eq. (4.15)
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will then change:

MX →MX′ = ε−2
[∑
y 6=x

cy

√
1− 〈Re(Uy)〉2 (4.38)

+ cx,0

√
1− 〈Re(Ux,0)〉2 + cx,1

√
1− 〈Re(Ux,1)〉2

]2
.

[with the change with respect to Eq.(4.15) being the second row]. This
results in a reduction of the cost, as can be seen by calculating

c2x
[
1− 〈Re(Ux)〉2

]
= (cx,0 + cx,1)2 −

(
cx,0 〈Re(Ux,0)〉+ cx,1 〈Re(Ux,1)〉

)2
= c2x,0

[
1− 〈Re(Ux,0)〉2

]
+ c2x,1

[
1− 〈Re(Ux,1)〉2

]
+ 2cx,0cx,1

(
1− 〈Re(Ux,0)〉2 〈Re(Ux,1)〉2

)
≥ c2x,0

[
1− 〈Re(Ux,0)〉2

]
+ c2x,1

[
1− 〈Re(Ux,1)〉2

]
+ 2cx,0cx,1

√[
1− 〈Re(Ux,0)〉2

][
1− 〈Re(Ux,1)〉2

]
=
[
cx,0

√
1− 〈Re(Ux,0)〉2 + cx,1

√
1− 〈Re(Ux,1)〉2

]2
, (4.39)

where, in the center inequality we have used the fact that for 0 ≤ a, b ≤ 1,

1− ab ≥
√

(1− a2)(1− b2). (4.40)

As a corollary and example, we look at identity shifts of a term x ∈ X.
For Re(Ux) with unit norm, we can assume without loss of generality the
largest eigenvalue is λmax = 1, and the smallest is λmin. We can then
perform the simple norm-preserving decomposition

cx Re(Ux) = cx(1− λ̄) Re(Ux′) + cxλ̄1 (4.41)

with λ̄ = 1
2 (λmin + λmax). The resulting Re(Ux′) has maximum eigenvalue

+1 and minimum eigenvalue −1, thus it does not admit non-trivial identity
shift.

A norm-preserving sub-decomposition Eq. (4.16) of a term with |Re(Ux)| =
1 will only admit terms with |Re(Ux,i)| = 1. (This can be checked by
taking the expectation value of both sides of Eq. (4.16) on the eigenstate
on which | 〈Re(Ux)〉 | = 1.) By the same reasoning, terms with Re(Ux)
having maximum eigenvalue +1 and minimum eigenvalues −1 [like those
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obtained by the identity shifts Eq. (4.41)] only admit sub-decompositions
whose terms have the same property.

4.C.2 Proof of Lemma 2
In this appendix we compare the costs of two decompositions derived by an
original decomposition X: the center X̃ where all terms are transformed
according to Eq. (4.17), and the norm-increasing subdecomposition X ′

where a term x ∈ X is changed according to Eq. (4.16) assuming cx,0 +
cx,1 > cx. Remembering that all coefficients are positive cy > 0, the cost
of each decomposition Eq. (4.15) is the square of a sum of positive values;
the terms in this sum for y 6= x do not change for X → X ′, and have a
non-increasing value for X → X̃. We thus focus only on the term x ∈ X
and the derived ones, highighted here

MX′ = ε−2
[ m′︷ ︸︸ ︷∑
j∈{0,1}

cx,j

√
1− 〈Re(Ux,j)〉+...

]2
, (4.42)

MX̃ = ε−2
[
cx(1− λ̄x)

√
1− 〈Re(Ux̃)〉2︸ ︷︷ ︸
m̃

+...
]2
. (4.43)

We now prove there exists a state |Ψ〉 for which m̃ < m′, which implies
MX̃ <MX′ .
Let |ψ+〉 and |ψ−〉 be eigenvectors of Re(Ux̃) with eigenvalue +1 and
−1 respectively. We consider three cases:

1. | 〈ψσ|Re(Ux,j) |ψσ〉 | < 1 for at least one combination of σ ∈ {+,−}
and j ∈ {0, 1}. In this case, on the state |Ψ〉 = |ψσ〉 we get m̃ = 0 <
m′ 6= 0.

2. 〈ψσ|Re(Ux,j) |ψσ〉 = σ for all combinations of σ ∈ {+,−} and
j ∈ {0, 1}. By combining Eq. (4.16) and Eq. (4.17) and taking the
expectation value on |ψσ〉 we obtain σ[cx,0+cx,1−cx(1−λ̄x)] = cxλ̄x,
which implies cx,0 + cx,1 = cx, violating one of the hypotheses of the
lemma.

3. 〈ψσ|Re(Ux,j) |ψσ〉 = (−1)jσ for all combinations of σ ∈ {+,−}
and j ∈ {0, 1}. We define the state |Ψ〉 = |ψ+〉+|ψ−〉√

2 , on which〈
Re(Ũx)

〉
=
〈
Re(Ũx,0)

〉
=
〈
Re(Ũx,1)

〉
= 0. On this state, the costs
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are MX̃ = ε2c2x(1 − λ̄x)2 and MX′ = ε2(cx,0 + cx,1)2. As λ̄x ≥ 0
and cx,0 + cx,1 > cx,MX′ <MX̃ .

4.C.3 Proof of Lemma 3
In this appendix, we prove that the end-point of norm-preserving decom-
position sequences are reflection operators. In other terms, if Re(Ux) is a
reflection operator, it only admits a norm-preserving sub-decomposition
[Eq. (4.16)] if Re(Ux,0) = Re(Ux,1) = Re(Ux).

To prove this, consider a state |ψ〉 in the +1 eigenspace of Re(Ux). For
a norm-preserving decomposition, we must have

cx,0 + cx,1 = cx = cx〈ψ|Re(Ux)|ψ〉
= cx,0〈ψ|Re(Ux,0)|ψ〉+ cx,1〈ψ|Re(Ux,1)|ψ〉. (4.44)

As ‖Re(Ux,0)‖, ‖Re(Ux,1)‖ ≤ 1, this equality can only be satisfied if |ψ〉 is
also a +1 eigenstate of both Ux,0 and Ux,1. A similar argument holds for all
−1 eigenstates of Ux, and so Ux,0, Ux,1 and Ux share the same eigenstates
and eigenvalues and must be equal. Taking such a sub-decomposition has
no effect on the estimator of 〈O〉, as the same HT are performed and the
total number of shots doesn’t change, i.e.MX′ =M in Eq. (4.38).

4.C.4 Examples of reflection decompositions
The simplest example of a reflection-based decomposition is a decomposi-
tion in terms of Pauli operators

O =
J∑
j

cjZj , (4.45)

with cj ≥ 0. We could be tempted to measure 〈O〉 with a single HT circuit
(assuming access to a block-encoding of O

‖O‖ , which is optimal). In this
case, as O = ‖O‖Re(U), the bound Eq. (4.15) is

M ≥ ε−2‖O‖2
[

1− 〈O〉
2

‖O‖2

]
. (4.46)

To improve on this, we can estimate each 〈Zj〉 separately, each with a
Hadamard test with Uj = 〈Zj〉 (a binary operator). As the spectral
norm of O is equal to the induced 1-norm ‖O‖1 =

∑J
j cj , Eq. (4.45) is a
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norm-preserving decomposition. The bound Eq. (4.15) then becomes

M ≥ ε−2

∑
j

cj

√
1− 〈Zj〉2

2

, (4.47)

which is always smaller or equal than Eq. (4.46) [easily proven through
Eq. (4.40)]. This inequality is only saturated when the considered state ρ
has support only on the ‖O‖2-eigenvalue subspace of O2; the operator O
projected on this subspace is effectively a binary operator.

Norm-preserving decompositions do not need to involve only mutually
commuting Pauli operators. As a practical example, we consider the
two-qubit operator O = XX + Y Y , which appears commonly in quantum
Hamiltonians. As O = 2 Im[iSWAP], this operator can be measured with
a single Hadamard test circuit. Furthermore, in the context of electronic
structure Hamiltonians, O preserves particle number, so in general a
control-free scheme using the vacuum as reference state can be employed
for the measurement. This operator has three eigenvalues {0,±1}, which
means we can improve its measurement by decomposing it in binary
operators. We propose three decompositions O = ReU0 + ReU1 The
obvious Pauli decomposition U0 = XX,U1 = Y Y has the downside of not
conserving particle number. To fix this, we can take

Uj = 1
2[(XX + Y Y ) + (−1)j(Z1 + 1Z)]. (4.48)

These are particle-number preserving, reflection operators and can be easily
implemented by combining iSWAP with single-qubit e±iZπ/4 rotations on
both qubits. The last decomposition,

Uj = 1
2[(XX + Y Y ) + (−1)j(ZZ + 11)], (4.49)

uses particle-preserving reflection operators with different eigenvalue mul-
tiplicities: unlike Pauli operators, the ±1-eigenvalue subspaces of Uj have
unequal dimension 1 and 3. For any state in the 0-eigenvalue subspace,
spanned by {|00〉 , |11〉}, the estimate variance Var∗[〈Re(Uj)〉] = 0 for de-
composition Eq. (4.49). This is not true for the other two decompositions,
which indicates that not all decompositions in binary operators are born
equal. We will deal with this in the next section. Another example of
a few-qubit reflection operator that is a sum of non-commuting Pauli
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operators is the three-spin all-to-all Heisenberg coupling

O = 1
3

2∑
l=1

l−1∑
m=0

XmXl + YmYl + ZmZl, (4.50)

which appears e.g. in the Kagome-Heisenberg Hamiltonian.

4.C.5 Proof of Lemma 4

In this appendix we prove Lemma 4, which formally states the optimality
and uniqueness of the Ξ-decomposition. To do this, we first define a
variance bound for a class of estimators of 〈O〉 on a state |ψ〉. We prove
that the bound is achieved on all eigenstates of O if all the sampled
operators Re(Ux) are diagonal in the eigenbasis of O. We then construct
the Ξ-decomposition, and prove that the related estimator saturates the
bound on the set S2 of all states with support on at most two eigenstates
of O. Finally, we prove no other decomposition satisfies this requirement
(i.e. the Ξ-decomposition is unique), and no decomposition satisfies the
bound on a superset S ⊃ S2.
A decomposition X [Eq. (4.10)] of an operator O is optimal on a state
|ψ〉 if no other decomposition produces an estimator with lower cost
[Eq. (4.15)] for that state. Optimality can be defined for a set S of states:
X is optimal on S if, for each |ψ〉 ∈ S, no decomposition X ′ has lower
cost MX′ < MX . (Note that this can be readily generalized to mixed
state, without changing any of our next results.) Lemmas 1-3 imply a
necessary condition for optimality on the whole Hilbert space: X can only
be optimal on all states if it has the form

O =λ̄O1 +
∑
x∈X

cx Re(Ux), (4.51)

cx > 0, |λ̄O|+
∑
x∈X

cx = ‖O‖, Re(Ux)2 = 1

where λ̄O is the average of the largest and smalles eigenvalues of O. In
other words, X is a norm-preserving decomposition of the center of O
where all sampled terms are reflection operators. This condition is not
sufficient: as many non-equivalent instances of such decompositions exist,
as exemplified in Appendix 4.C.4.

We now construct a bound on the variance of the estimator of 〈O〉 based
on the decomposition X: saturating this bound on all |ψ〉 ∈ S implies
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optimality of X on S. [The cost of the decomposition Eq. (4.15) is defined
as the minimum value of M required to achieve target variance ε2, so
minimum variance at fixed M implies minimum cost at fixed ε.]

Var∗X [〈O〉] = 1
M

[∑
x

cx

√
1− 〈Re(Ux)〉2

]2

≥ Var[O]
M

. (4.52)

This bound is implied by Eq. (4.9) and Eq. (4.12), with the choice of
optimal shot allocation Eq. (4.14). It physical interpretation is rooted
in the following observation: a Von Neumann measurement of O is the
lowest-variance unbiased estimator of 〈O〉 when given access to a single
state preparation. Thus, given M independent experiments each with a
single state preparation, the mean of Von Neumann measurements is the
lowest-variance unbiased estimator.
We first consider the set S1 of all eigenstates of O. For any |φ〉 ∈ S1,

the value of the bound in Eq. (4.52) becomes Var[O] = 0. The bound is
thus saturated only if we choose all reflection operators Re(Ux) diagonal
in any eigenvector basis of O, i.e. [Ux, O] = 0 and Ux |φ〉 = ± |φ〉 for any
|φ〉 ∈ S1. For any decomposition of this form, we can write all Ux in terms
of the eigenspace projectors of O:

Ux =
J−1∑
j=0

ξx,jΠj , ξx,j ∈ {±1}, (4.53)

where Πj is the projector on the (eventually degenerate) λj-eigenspace of
O, J is the number of distinct eigenvalues {λj} of O, and without loss of
generality we assume λj > λj−1. The coefficients will then have to satisfy
the relation λj =

∑
x cxξx,j .

We define the Ξ-decomposition based on Eq. (4.53), by choosing ξx,j =
−1 if j < x, and +1 otherwise. The resulting decomposition is presented in
Lemma 4, Eq. (4.18). The operators Ξx are reflections by definition, and
it is easy to check that the decomposition satisfied the necessary condition
Eq. (4.51). Note that c0 = (λ0 + λj)/2 defines the optimal identity shift
(producing the center of O) and the cx = (λx − λx−1)/2 complete the
decomposition.
We now prove that the Ξ-decomposition is optimal on the set S2 of

states with support on two eigenstates of O,

S2 =
{
α |λm〉+ β |λn〉√

α2 + β2
: |λm〉 , |λn〉 ∈ S1

}
. (4.54)
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On a general state |ψ〉 with eigenspace occupations aj = 〈ψ|Πj |ψ〉, the
estimator based on the Ξ-decomposition has variance

Var∗Ξ[〈O〉] = 1
M

J−1∑
j

δλj
2

√
4(
∑
i<j

ai)(
∑
i≥j

ai)

2

. (4.55)

For a state |φ〉 ∈ S2, only two occupations are nonzero am, an 6= 0 (we
assume w.l.g. m < n), thus the term under square root is reduced to
4aman if m < j ≤ n and 0 otherwise. The resulting variance

Var∗Ξ[〈φ|O |φ〉] = 1
M

[
λn − λm

2
√

4aman
]2

(4.56)

= 1
M
anam(λn − λm) = Var[〈O〉]

thus saturating the bound Eq. (4.12).
We now prove that the only optimal decomposition on S2 is the Ξ-

decomposition (or equivalent up to relabeling and trivial subdecomposi-
tions). First of all, S1 ⊂ S2, so the terms of the decomposition need to be
of the form of Eq. (4.53). Consider a family of states √am |λm〉+

√
an |λn〉

for any n > m, with only two nonzero eigenstate occupations am + an = 1.
On such a state,

Var∗X [O] = 1
M

[∑
x

cx

√
1− [amξx,m + anξx,n]2

]2

= aman
M

[∑
x

2cx
1− ξx,mξx,n

2

]2

. (4.57)

The bound Eq. (4.52) is then saturated when[∑
x

2cx
1− ξx,mξx,n

2

]2

= λn − λm, (4.58)

where we simplified out the free parameter aman
M . This can be rewritten as∑

x

cxξx,n(ξx,n − ξx,m) =
∑
x

cx(ξx,n − ξx,m) (4.59)

using the condition on the decomposition coefficients λj =
∑
x cxξx,j . This
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implies that, if ξx,n = −1 then (ξx,m − ξx,n) = 0 (recall that cx > 0), i.e.
ξx,m = −1. Thus the only Ux that can appear in this decomposition, are of
the same form as the operators in the Ξ decomposition (ξj,m = −1, ξj,n =
+1 for m < j ≤ n), and thus X is either Ξ or a trivial sub-decomposition
of it.
We now show that the Ξ-decomposition does not saturate the bound

Eq. (4.52) for a state |ψ〉 with three non-zero occupations, am, an, ap 6= 0
(m < n < p). On this state we can write

Var∗Ξ[〈O〉] = 1
M

[
(λn − λm)

√
am(an + ap) (4.60)

+ (λp − λn)
√
ap(am + an)

]2
. (4.61)

Subtracting from this Var[〈O〉], expanding and then collecting terms we
get

Var∗Ξ[〈O〉]−Var[〈O〉] =
= [(λn − λp)(λn − λm)] · (4.62)

·
[
amap −

√
amap(am + an)(ap + an)

]
> 0,

as both the terms in square brackets are strictly smaller than zero. This
(along with the uniqueness of Ξ as the optimal estimator on S2) implies
that no HT-based estimator can saturate the bound Eq. (4.52) for arbitrary
states.
In fact, the bound can only be saturated on states in S2: on these

states the Von Neumann measurement has only two possible outcomes
(λm and λn) with nonzero probability. The adaptive shot allocation scheme
then ensures (for a large enough M) that most of the measurements we
take (Ξx with m ≤ x < n) reproduce the statistics of the Von Neumann
measurement, with the single bit we sample in every experiment always dis-
tinguishing between λm and λn. On any state |ψ〉 ∈ S2, the Von Neumann
measurement has three or more outcomes with non-zero probability, and
we cannot repoduce its statistics by sampling a single qubit per experiment.
This, along with the uniqueness of Ξ, implies that no decomposition can
satisfy the sufficient condition for optimality on a superset S ⊃ S2. The
numerical results presented in this paper quantify the increase in variance
with respect to the bound, along with confirming the Ξ-decomposition
outperforms other decompositions on all states.
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4.D Implementation of the Ξ decomposition
via quantum signal processing

Verifiable samping of QSP polynomials — To measure the operators in
the Ξ decomposition Eq. (4.20), we implement a Hadamard test (or EV)
on trigonometric polynomials of (H − µx)t generated by the quantum
signal processing. We tune the QSP coefficients such that the polynomials
approximate the sign function in a suitable range. In this section we
display and analyse this technique.
The full circuit we use to achieve this is:
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In fact, the bound can only be saturated on states in S2:
on these states the von Neumann measurement has only
two possible outcomes (λm and λn) with nonzero probabil-
ity. The adaptive shot allocation scheme then ensures (for a
large enough M) that most of the measurements we take ("x
with m ! x < n) reproduce the statistics of the von Neumann
measurement, with the single bit we sample in every experi-
ment always distinguishing between λm and λn. On any state
|ψ〉 ∈ S2, the von Neumann measurement has three or more
outcomes with nonzero probability, and we cannot repoduce
its statistics by sampling a single qubit per experiment. This,
along with the uniqueness of ", implies that no decomposition
can satisfy the sufficient condition for optimality on a superset
S ⊃ S2. The numerical results presented in this paper quantify
the increase in variance with respect to the bound, along with

confirming the " decomposition outperforms other decompo-
sitions on all states.

APPENDIX D: IMPLEMENTATION OF THE !

DECOMPOSITION VIA QUANTUM
SIGNAL PROCESSING

Verifiable sampling of QSP polynomials. To measure the
operators in the " decomposition (20), we implement a
Hadamard test (or EV) on trigonometric polynomials of (H −
µx )t generated by the quantum signal processing. We tune the
QSP coefficients such that the polynomials approximate the
sign function in a suitable range. In this Appendix we display
and analyze this technique.

The full circuit we use to achieve this is

|0 HT H • • • • H

|0 QSP RX(φr)

e−iZ⊗(O−µx)t

RX(φR) RY (π) (verify)

|ψ S / (verify) .

repeat for r = 0, ..., R − 1

The first control qubit (labeled HT) takes care of the
Hadamard test. The second ancilla (labeled QSP) manages the
quantum signal processing subroutine, extended through the
sign-controlled evolution e−iZ⊗(O−µx )t to implement a quan-
tum signal processing (QSP) on the operator e(O−µx )t . We
now describe how the measurement scheme works, and how
to select the φ parameters to approximate a measurement of
sgn[(O − µx )t] in the interval [−π ,π ].

First, we analyze the QSP routine. Let us assume |ψ〉 to
be an eigenstate of (O − µx )t with eigenvalue ω ∈ (−π ,π ),
and only consider the effect of the controlled gates (removing
the HT qubit). Then, we can reduce the circuit to an effective
single qubit gate on the QSP qubit, with action

Qφ (ω) = e−i Y
2 πe−i X

2 φR

[
R∏

r=1

e−i Z
2 2ωe−i X

2 φR−r

]

=
(

Sφ (ω) · · ·
· · · · · ·

)
(D1)

which is a block encoding of Sφ (ω), a degree-R trigonometric
polynomial of ω. For the sake of simplicity we inserted the
final gate e−i Y

2
π
2 = −iY , shifting the polynomial of interest S

from the block 〈1|Q|0〉 to 〈0|Q|0〉. We ensure Sφ (ω) is real
and odd by constraining

φr = −φR−r ⇒ S(ω) = −S(−ω) ∈ R. (D2)

Reintroducing the system register, i.e., taking a general |ψ〉S,
can be done by linearity taking Q(ω) (→ Q[(O − µx )t] and
recovering the circuit above.

The result of the verified Hadamard test (or EV) is obtained
by measuring on the output state of the circuit the expec-
tation value of ZHT (or ZHT ⊗ |0〉〈0|QSP ⊗ |ψ〉〈ψ |S). (In the

absence of noise these two expectation values are equal. In
the presence of noise, an additional measurement at t = 0 can
be taken to mitigate errors. For more details on the technique
we refer the reader to the original work on EV [12].)

Approximating the sign function. To approximate the op-
erators (20) that make up the " decomposition, we need to
choose the QSP parameter φ such that Sφ(ω) in Eq. (D1)
approximates sgn[ω]. The polynomial Sφ(ω) is odd, real,
and 2π periodic, thus having nodes Sφ(0) = Sφ(±π ) = 0. To
account for the approximation error in the neighborhood of
these nodes, we introduce a resolution parameter δ " 0, and
request the approximation to be effective only in the [δ,π − δ]
interval. Choosing δ > 0 implies accepting a larger error in
approximating the sign function close to zero. For exam-
ple, we know the eigenvalues of (O − µx )t closest to zero
have absolute value δλx

2 t , and we can use this knowledge to
choose δ.

We define a loss function to characterize the quality of the
approximation: the average error

Lδ (φ) = 1
π − 2δ

∫ π+δ

δ

dω[sgn(ω) − Im[Sφ(ω)]]. (D3)

To choose the optimal parameters φ, we minimize this loss
under the constraints (D2). Although an analytical approach to
this problem is possible building on the techniques described
in [18], we take the numerical route to this approximation
(which is efficient, scalable, and easy to implement). The
integral is thus substituted with a sum on a grid with a number
of points much larger than the degree of the trigonometric
polynomial. We plot in Fig. 2 the minimized cost function,
as a function of the approximation’s order R and of the
resolution parameter δ. We find that the loss always decays

012403-11

The first control qubit (labeled HT) takes care of the Hadamard test.
The second ancilla (labeled QSP) manages the quantum signal processing
subroutine, extended through the sign-controlled evolution e−iZ⊗(O−µx)t

to implements a quantum signal processing (QSP) on the operator e(O−µx)t.
We now describe how the measurement scheme works, and how to select
the φ parameters to approximate a measurement of sgn[(O − µx)t] in the
interval [−π, π].

First, we analyze the QSP routine. Let us assume |ψ〉 to be an eigenstate
of (O − µx)t with eigenvalue ω ∈ (−π, π), and only consider the effect of
the controlled gates (removing the HT qubit). Then, we can reduce the
cicuit to an effective single-qubit gate on the QSP qubit, with action

Qφ(ω) = e−i
Y
2 πe−i

X
2 φR

[
R∏
r=1

e−i
Z
2 2ωe−i

X
2 φR−r

]

=
(
Sφ(ω) ·
· ·

)
(4.63)

which is a block encoding of Sφ(ω), a degree-R trigonometric polynomial
of ω. For the sake of simplicity we inserted the final gate e−iY2 π

2 = −iY ,
shifting the polynomial of interest S from the block 〈1|Q |0〉 to 〈0|Q |0〉.
We ensure Sφ(ω) is real and odd by constraining

φr = −φR−r =⇒ S(ω) = −S(−ω) ∈ R. (4.64)
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Re-introducing the system register, i.e. taking a general |ψ〉S, can be
done by linearity taking Q(ω) 7→ Q[(O − µx)t] and recovering the circuit
above.

The result of the verified Hadamard test (or EV) is obtained by mea-
suring on the output state of the circuit the expectation value of ZHT (or
ZHT ⊗ |0〉〈0|QSP ⊗ |ψ〉〈ψ|S). (In the absence of noise these two expectation
values are equal. In the presence of noise, an additional measurement at
t = 0 can be taken to mitigate errors. For more details on the technique
we refer the reader to the original work on EV [156].)

Approximating the sign function — To approximate the operators
Eq. (4.20) that make up the Ξ decomposition, we need to choose the
QSP parameter φ such that Sφ(ω) in Eq. (4.63) approximates sgn[ω].
The polynomial Sφ(ω) is odd, real, and 2π-periodic – thus having nodes
Sφ(0) = Sφ(±π) = 0. To account for the approximation error in the
neighborhood of these nodes, we introduce a resolution parameter δ ≥ 0,
and request the approximation to be effective only in the [δ, π− δ] interval.
Choosing δ > 0 implies accepting a larger error in approximating the sign
function close to zero. For example, we know the eigenvalues of (O − µx)t
closest to zero have absolute value δλx

2 t, we can use this knowledge to
choose δ.

We define a loss function to characterize the quality of the approximation:
the average error

Lδ(φ) = 1
π − 2δ

∫ π+δ

δ

dω
[

sgn(ω)− Im[Sφ(ω)]
]
. (4.65)

To choose the optimal parameters φ, we minimize this loss under the
constraints (4.64). Although an analytical approach to this problem is
possible building on the techniques described in [48], we take the numeri-
cal route to this approximation (which is efficient, scalable and easy to
implement). The integral is thus substituted with a sum on a grid with
a number of points much larger than the degree of the trigonometric
polynomial. We plot in Fig 4.2 the minimized cost function, as a function
of the approximation’s order R and of the resolution parameter δ. We find
that the loss always decays exponentially with an increasing order R, with
a decay rate depending on δ.
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Figure 4.2: Loss Eq (4.65) for the optimal choice of QSP parameters
φ, as a function of the order R (number of QSP layers) and resolution
parameter δ. The dotted lines are log-lin fits for R > 10. The dependence
of the fit parameter β on the resolution δ is shown in the inset.

4.E The generalized parameter-shift kernel
decomposition of a diagonal operator
with ladder spectrum

In [159] the authors propose techniques to estimate derivatives
〈
d
dtU(t)

〉
of

a unitary U(t) = eiOt generated by O, by sampling 〈sin(Otl)〉 = 〈Re[U(tl)]〉
at a discrete set of points {tl}. This technique can be used to estimate
expectation values of O, as 〈O〉 =

〈
[−i ddteiOt]t=0

〉
, and it is clearly compat-

ible with Hadamard test or EV measurements (as it only requires sampling
〈ReU(tl)〉).
For an operator O with equispaced eigenvalues Ω, 2 Ω, ..., RΩ (com-

monly referred to as a “ladder spectrum"), the authors give a choice of
{tl} and explicit coefficients cl(t) for the linear combination

〈
d
dtU(t)

〉
=∑

l cl 〈Re[−iU(tl)]〉. Assuming Ω = 1 (which can be considered a choice
of units for the energy), the time points are chosen as {tl = 2l

2R+1π}. We
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can then define a modified version of the Dirichelet kernel,

D̃l(t) = 1
R

cos(tl)

1
2 sin(Rt) +

R−1∑
j=1

sin(jt)

 , (4.66)

which satisfies D̃l(tl′) = δll′ . This is a linear combination of the R basis
functions {sin(jt)}j=1,...,R, like 〈sin(Ot)〉. Thus, as the equality

〈sin(Ot)〉 =
R∑
l=1
〈sin(Otl)〉 D̃l(t) (4.67)

holds for all {tl}l=1,...,R, it must to hold for all t. We can then differentiate
the kernel rather than the expectation value itself. Evaluating [ ∂∂tD̃l(t)]t=0
and combining the equations above we obtain

〈O〉 =
R∑
l=1

(−1)l−1

2R sin2( 1
2 tl)
〈sin(Otl)〉 (4.68)

=
R∑
l=1

cl 〈Re[−iU(tl)]〉 . (4.69)

This matches the form of decompositions Eq. (4.10). We call thi the gen-
eralized parameter shift kernel (GPSK) decomposition. Under the optimal
shot allocation choice [Eq. (4.14)], the shot-variance of the estimator based
on this decomposition is

M Var∗GPSK =

 R∑
l=1

√
1− 〈sin(Otl)〉2

|2R sin2( 1
2 tl)|

2

(4.70)

4.F Details on numerical simulations and
further numerical results

We measure the variances on random states generated by hardware-efficient
ansatzes using PennyLane [171]. For each value of N , 100 random set of
parameters (and therefore 100 random states) are generated and measured
for all decompositions. For each decomposition X, we first use 105 shots
(allocated proportionally to the weight of each term) to obtain a rough
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Figure 4.3: Comparison study of variances of different decompositions on
random states generated by a hardware-efficient ansatz (see text for de-
tails). Different colours correspond to different decompositions [Eq.(4.10)]
of the target operator O (see text for the description of all decomposi-
tions). Dashed lines are exponential fits (a exp(mN + b)) to the data (the
parameter m is given in legend).

estimate of the expectation value of each term 〈Re(Ux)〉 for x ∈ X. These
values are plugged in Eq. (4.14) to get an estimate of the optimal shot
allocation ratios rx = mx

Mx
. The variance of each term Var∗[〈Re(Ux)〉] is

obtained by Eq. (4.8) (or by sampling in the case of the QSP-approximation
decomposition ‘SGN’). With these we compute the final shot-variance
MX Var∗X [〈O〉] =

∑
x∈X r

−1
x Var∗[〈Re(Ux)〉. Finally, we average the values

of MX Var∗X [〈O〉] obtained for each random state. This average is the
quantity reported in Fig. 4.1, Fig. 4.3 and Fig. 4.4.

The terms Ξx are constructed as per Eq. (4.18) using the known eigen-
vectors of O, and projectively measured on the prepared state (as these
are reflection operators, Hadamard test samples match projective measure-
ment samples). The terms in the Pauli decomposition are also directly
measured on the prepared state. The GPSK-decomposition is constructed
as described in 4.E and measured through a Hadamard test. The Von
Neumann variance Var[O] is computed analytically.

The QSP approximation of Ξ (denoted SGN from the sign term approx-
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Figure 4.4: Comparison study of variances of different decompositions on
random states generated by a hardware-efficient ansatz (see text for details).
Different colours correspond to different decompositions [Eq.(4.10)] of the
target operator O (see text for the description of all decompositions).
Dashed lines are exponential-power-law fits (exp

(
aN2 + bN + c

)
) to the

data (the dominant scaling parameter a is given in the legend).

imation) is implemented as described in Appendix 4.D for R = 20 and
δ = 0. For fair comparison with the other methods, echo verification is
not used. The comparison between the Ξ and SGN decomposition shows
how the approximation increased the final variance. (The approximation
also introduces a bias, see Appendix 4.D.
All the simulations assume Hadamard-test-based measurement in an

ideal circuit simulation: no circuit-level noise is considered and EV is not
implemented.

We additionally report scaling results for the shot-variances of two other
observables, O =

∑
j jZj and O =

∑
j 2jZJ . The overall scaling of all

decompositions matches the scaling of the operator norm ‖O‖. Similarly
to the case of Fig. 4.1, the Ξ decomposition performs best, the SGN
approximation has a relatively small effect on the shot-variance, and the
Pauli decomposition shows the worst scaling.
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