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CHAPTER 3

Error mitigation via verified phase estimation

3.1 Introduction
Error mitigation is likely essential for near-term quantum computations to
realize valuable applications. State-of-the-art technology in superconduct-
ing qubits has recently pushed quantum computers beyond the capability
of their classical counterparts [3] and enabled intermediate scale demon-
strations of quantum algorithms for optimization [103, 104], quantum
chemistry [59, 103, 105], and machine learning [106], with tens of qubits
and hundreds of quantum gates. However, these experiments clearly re-
veal a noise barrier that needs to be overcome if such applications will
ever scale to the classically intractable regime. In the long-term, a path
towards this goal is known through quantum error correction [107–109].
Yet, the requirements to successfully error correct large-scale quantum
applications [14, 71, 73, 110, 111] are still a few orders of magnitude above
the current state-of-the-art, and will likely require many years to achieve.
In the meantime, quantum applications research has focused on finding
the elusive beyond-classical NISQ (noisy, intermediate-scale quantum)
application [18], with the hope to accelerate the path to practical quantum
computing. However without the resources to correct errors, one must
develop strategies to mitigate the aforementioned noise barrier. Other-
wise, the output of NISQ devices will be corrupted beyond usefulness for
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algorithms significantly more complex than those already attempted.
Much of the attention in the NISQ era has been directed towards

variational algorithms, with applications in optimization [55], chemistry
and materials science [82], and machine learning [112, 113]. These shift
much of the complexity of the algorithm to a classical outer loop involving
many circuit repetitions, leaving the quantum computer with the task only
of preparing quantum states and estimating expectation values of operators
on said states. However, preparation circuits need to have significant depth
to avoid being classically simulated [114]. Errors accumulated over this
circuit quickly distort the prepared state to one different than was targeted.
This has meant that most quantum experiments to date have had difficulty
achieving standard accuracy benchmarks prior to applying error mitigation
techniques [59, 103, 103, 105, 115]. However, accuracy improvements of
orders of magnitude have been achieved with error mitigation in these
experiments, suggesting there may yet be hope for NISQ.
The zoo of error mitigation techniques is large and varied. One may

first attempt to design algorithms that are naturally noise-robust. For
example, the optimization procedure in a variational algorithm makes
the algorithm robust against control errors (e.g. over- or under-rotations
when gates are applied) [82]. Also, subspace expansions of the variational
quantum eigensolver (VQE) in materials science and chemistry correct
errors that keep one within the desired subspace considered [116] or more
generally through by approximate symmetry projection [117]. Given
the ability to artificially introduce additional noise into a device, one
can extrapolate from multiple experiments at different noise levels to
a hypothetical noiseless experiment [118], which has shown promising
results on real devices [119]. One may alternatively probabilistically
compile circuits by inserting additional gates to average out or cancel out
noise, given sufficient knowledge of the error model of the device [118,
120]. When classically post-processing partial state tomography data
from an experiment, one may attempt to regularize the obtained results
using reduced density matrix constraints [121]. Finally, one may mitigate
errors that take a state outside of a symmetry-conserving subspace of a
quantum problem, either by direct post-selection, or artificial projection of
the estimated density matrix in post-processing, producing a ‘symmetry-
verified’ state [29, 66, 117, 122]. Recent efforts have extended this protocol
by introducing symmetries into problems to increase the range of errors
that may be detected [123], which is analogous to the way quantum error
correcting codes introduce engineered symmetries.

Ideally, we would prefer to go beyond verifying that a system’s state re-
mains within a target subspace and instead directly verify that the system’s
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state is the one we desire. This would result in reaching the information
theoretic optimal limit of post-selected error mitigation in which one could
completely mitigate the effect of all errors by repeating the experiment a
number of times scaling inversely with the circuit fidelity (equivalent to
the ability to perfectly detect errors). The fact that the circuit fidelity is
expected to decrease exponentially in the gate complexity indicates that
eventually we will still need error-correction; however, moving closer to
this limit is certain to enable more powerful NISQ experiments.

In this work we develop a method for error mitigation of quantum phase
estimation experiments, by verifying that the system returns to its initial
state after the phase estimation step. We show that the set of experiments
that pass this condition contain all the necessary information to perform
quantum phase estimation. This yields a powerful error mitigation tech-
nique, as in most cases errors will not return the system to this initial state.
Our techniques apply to variants of phase estimation which might involve
post-processing on a single control qubit [124, 125], or when performing
recently-developed control-free variants [27, 126]. We further develop it
into a simple scheme for verified expectation value estimation by dividing
a target Hamiltonian into a sum of fast-forwardable terms. This yields a
simple, low-cost scheme for the measurement of expectation values, which
may be immediately incorporated into the quantum step of a variational
quantum algorithm. We study the mitigation power of this protocol in
numerical simulations of small-scale experiments of free-fermion, transverse
Ising, and electronic structure Hamiltonians. Verification is observed to
mitigate all single (and even all double) errors throughout many of these
simulations, as evidenced by a clear second (or third)-order sensitivity in
our results to the underlying gate error rate. We observe in the best-case
scenario case an up to 10, 000-fold suppression of error at physical error
rates; this is not achieved for all systems studied, but verification is found
to improve experimental error in all simulations performed. We find the
error mitigation power to be highly system-, circuit-, and noise model-
dependent. Finally, we study the measurement cost of this protocol in
the presence of sampling noise, finding that it is comparable to standard
partial state tomography techniques for energy estimation.

The outline of this paper is as follows. In Sec. 3.2, we give a pedagogical
example of how one might verify the estimation of expectation values of
an arbitrary Hamiltonian, by writing it as a sum of Pauli operators and
performing (fast-forwarded) verified phase estimation on each individual
term. In Sec. 3.3 we then derive the theory behind verified phase estimation
itself, outline how it can mitigate errors, give algorithms for performing
verified phase estimation with a single control qubit, or with access to a
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reference state, and study the increased sampling noise cost. In Sec. 3.4,
we extend these ideas to give algorithms for verified expectation value
estimation, and derive the conditions under which one may perform verified
estimation of multiple expectation values in parallel (i.e. using the same
system register). In Sec. 3.5, we then implement these ideas, studying the
mitigation power of verified expectation value estimation in a variety of
systems and implementations developed earlier in the text ounder various
noise models, and testing the convergence of the protocol under sampling
noise.

3.2 Pedagogical example of verification
protocol for expectation value estimation

In this section we outline a simple implementation of verified expectation
value estimation of a target operator H on a state |ψ〉, as a practical
example of the more complicated methods to be found later in the text. The
idea behind all verification protocols is to prepare |ψ〉 = Up|0〉, indirectly
estimate 〈H〉 via phase estimation, and then verify that we remain in |ψ〉 by
uncomputing |0〉 = U†p |ψ〉 and measuring in the computational basis. If |ψ〉
is not an eigenstate of H, the system may by shifted away from this state by
the QPE unitary — i.e. even in the absence of error we do not expect the
system to always pass verification. However, as we will show later in this
work, the data required for phase estimation is contained entirely within
the set of experiments that pass verification; we may effectively ignore any
experiments that fail. This in turn allows us to ignore any errors that knock
the system away from |ψ〉, making this a potent error mitigation scheme.
We have constructed various implementations of this idea, which we will
expand on in Sec. 3.3 and Sec. 3.4, and compare in Sec. 3.5. However,
the most general protocols require relatively complicated circuits and
classical post-processing. For clarity of exposition, in this section we focus
on stepping through a simple protocol for the verification of expectation
values, which avoids complex signal processing and circuity requirements.
The protocol we describe will work for arbitrary H and |ψ〉, and may often
be a desirable choice for a real experiment. However, depending on the
choice of H and |ψ〉 and the noise model, other protocols described later
in the text may be more optimal in terms of their mitigation power.
A process diagram for a simplified verified phase estimation protocol

is given in Fig. 3.1. To begin, we write H as a sum of fast-forwardable

70



3.2 Pedagogical example of verification protocol for expectation value
estimation

3

Figure 3.1: Process diagram of the protocol for verified estimation of the
expectation value of a Hamiltonian on a state |ψ〉 = Up|~0〉. Blue denotes
circuits to be executed or data to be extracted from a quantum computer,
red denotes signal details to be estimated via classical post-processing.
The protocol proceeds as follows: (top-left) a complex Hamiltonian H
is split into a number of fast-forwardable summands Hs. The spectral
function g(t) of |Ψ〉 under time evolution of each piece is obtained (bottom-
left) via verified, fast-forwarded phase estimation. In this example, a
control qubit is used to extract the phase function via phase kickback.
The resulting data is a weighted sum of oscillations with frequencies equal
to the eigenvalues E(s)

j of the corresponding factor (bottom middle). This
may be decomposed in a variety of classical post processing techniques
to obtain estimations of the expectation values 〈Hs〉 depending on the
type of Hs chosen (bottom-right). Regardless of the method used, the
expectation values must be normalized to obey Eq. 3.29, the last step in
the verification process. As the expectation value is linear, the verified
estimates of 〈Hs〉 obtained may be immediately summed together to give
a verified estimate for 〈H〉 (top-right).

terms Hs (multiplied by coefficients hs)

H =
Ns∑
s=1

hsHs. (3.1)

Here, by fast-forwardable, we mean that each Hs is chosen such that time
evolution eiHst may be implemented on a quantum register with the same
number of gates for each value of t. Although fast-forwarding is forbidden
for arbitrary H [97], decomposition of any sparse, row-computable H into
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a linear combination of polynomially many fast-forwardable Hamiltonians
is always possible [127]. For example, the N -qubit Pauli operators Pi ∈
PN = {1, X, Y, Z}⊗N form a basis for the set of all N -qubit operators and
are themselves fast-forwardable; we take this decomposition for our simple
example.
We then implement verified phase estimation (with a single control

qubit) to estimate the expectation values 〈ψ|Hs|ψ〉. This involves evolving
the system by Hs conditional on a control qubit. (Circuits to implement
this are well-known, see e.g. Ref. [128].) The conditional evolution encodes
a phase function on the the control qubit. That is, if we write Xc and Yc
for the X and Y Pauli operators on this control qubit, we have following
the conditional evolution that

〈Xc〉+ i〈Yc〉 = A0e
it +A1e

−it =: g(t). (3.2)

Here, A0 and A1 are the squared amplitudes of |ψ〉 in the eigenbasis of Hs

(which has known eigenvalues ±1). The expectation value 〈Xc〉 may be
estimated by measuring the control qubit M times in the x-basis, counting
the number of times mx,0 or mx,1 a 0 or 1 was seen, and approximating

〈Xc〉 ≈
mx,0 −mx,1

M
. (3.3)

(A similar procedure may be performed for Y .) To verify this estimate,
we uncompute the preparation of the system, and count the number m(v)

x,0

(m(v)
x,1) of measurements of 0 (1) on the control qubit when the uncomputed

state on the system is returned to the initial |0〉 state. We then replace
our estimation by

〈Xc〉 ≈
m

(v)
x,0 −m

(v)
x,1

M
. (3.4)

(Note that we only replace the numerator, and not the denominator, of
Eq. 3.3, which makes this not strictly post-selection — see Sec. 3.3.2 for
more details.) The expectation value 〈Hs〉 is encoded within the phase
function g(t), and must be inferred from these estimates above. In our
example protocol, this requires inferring the amplitudes A0 and A1 (as
the eigenvalues ±1 are already known). These may be simply estimated
by a two-parameter fit of Eq. 3.2 to the extracted values of g(t).

As we show later in the text, in the absence of error Eq. 3.3 and Eq. 3.4
yield the same result (in the large M limit). Errors tend to scatter the
system into a state that fails verification. The primary effect this has on
the estimator in Eq. 3.4 is to re-scale g(t) → pneg(t) (where pne is the

72



3.3 Schemes for verified phase estimation

3

probability of no error occurring). However, the converse is not true; states
may fail verification due to the relative dephasing betwen the |0〉 and |1〉
eigenstates of Hs, and we cannot infer the value of pne from a single point
g(t). Instead, we can infer the value of pne from the normalization of
the starting state |ψ〉. As our circuit is fast-forwarded, under reasonable
noise assumptions pne is independent of t, and this propagates immediately
through the fit of Eq. 3.2: A0, A1 → pneA0 =: Ã0, pneA1 =: Ã1. The
normalization of |ψ〉 requires A0 +A1 = 1, and we may correct for this by
estimating

〈Hs〉 = Ã0 − Ã1

Ã0 + Ã1
. (3.5)

Finally, as expectation values are linear, after repeating this procedure for
all Hs in Eq. 3.1, we may sum the result;

〈H〉 =
∑
s

hs〈Hs〉. (3.6)

Note that each Hs will have different values of A0, A1, and g(t) (we
have avoided explicitly labeling the above for simplicity). In practice,
the number of samples for estimation of each 〈Hs〉 should be varied to
minimize the error in the final estimation of 〈H〉 (i.e. importance sampling
on the hs coefficients).

3.3 Schemes for verified phase estimation

3.3.1 Review of single-control quantum phase
estimation

Quantum phase estimation (QPE) refers to a family of protocols to learn
eigenphases eiφj of a unitary operator U . Equivalently, quantum phase
estimation may be used to learn eigenvalues Ej of a Hermitian operator
H, as each such operator generates a unitary via exponentiation: U =
eiHt [62]. (Such estimation requires limiting the size of t to prevent
aliasing - eiEjt = eiE

′
jt if Ejt = E′jt + 2nπ, which makes estimation

ambiguous.) The eigenvalues of H and the eigenphases of U are related
by the same exponentiation and correspond to the same eigenstates |Ej〉
— if H|Ej〉 = Ej |Ej〉, U |Ej〉 = eiφj |Ej〉, and φj = Ejt.

In the single-control variant of QPE, the phases φj are learnt by im-
printing them on a control qubit — a process known as phase kickback.
Any unitary U may be implemented as a (perhaps approximate) quantum
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circuit on a quantum ‘system’ register, but quantum mechanics tells us
that eiφ|ψ〉 ≡ |ψ〉 for all pure states |ψ〉 and numbers φ ∈ R. This implies
that if the system register were prepared in the pure state |Ej〉 and U
applied, we would not be able to infer the phase φj from the resulting
state eiφj |Ej〉 ≡ |Ej〉. However, a relative phase φ between two states,
1√
2 (|ψ1〉+ eiφ|ψ2〉), is a physical observable that may be detected. Such

detection may be achieved by acting the unitary U conditional on the
control qubit being in the state |1〉 (and doing nothing when the control
qubit is in the state |0〉). This is commonly written as the ‘controlled’
unitary C − U . When C − U acts on a system register prepared in an
eigenstate |Ej〉 and a control qubit prepared in the state (|0〉+ |1〉)/

√
2,

the global state evolves to

C− U 1√
2

(|0〉+ |1〉) |Ej〉 = 1√
2

(|0〉+ eiφj |1〉)|Ej〉. (3.7)

We see that the eigenphase eiφj from the system register is kicked back
onto the control qubit, while the system register itself remains unchanged.
We may estimate this eigenphase eiφj by repeatedly performing the QPE
protocol, measuring the control qubit in theX or the Y basis, and recording
the number of single-shot readouts of 1 and 0. In the Hamiltonian case,
from this estimate one may immediately infer 1

itArg(eiφj ) = Ej mod 2πt.
The error in the estimation of Ej decreases with t; asymptotically optimal
protocols need to balance this against the ambiguity modulo 2πt by
repeating the estimation at multiple values of t [129–131]. In terms of
estimating the eigenphases eiφj of a unitary U , this optimization requires
repeating the above procedure for C− Uk at varying points k.

Often, one does not prepare an eigenstate |Ej〉, but instead prepares a
starting state

|ψs〉 =
∑
j

aj |Ej〉. (3.8)

Applying C−Uk to such a state no longer leaves it unchanged, but instead
entangles it with the control qubit. This produces the combined state (on
the system+control register)

|Ψ(k)〉 = C− Uk 1√
2

(|0〉+ |1〉) |ψs〉 (3.9)

=
∑
j

aj√
2

(|0〉+ eikφj |1〉)|Ej〉. (3.10)
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When one has instead performed controlled time evolution (via the unitary
C− eiHt), one may instead write

|Ψ(t)〉 = C− eiHt 1√
2

(|0〉+ |1〉) |ψs〉 (3.11)

=
∑
j

aj
1√
2

(|0〉+ eiEjt|1〉)|Ej〉. (3.12)

The sum over j in the above equation looks problematic, but it turns out
that the eigenphases φj (or eigenvalues Ej) remain encoded on the control
qubit, in a sum weighted by the norm square Aj := |aj |2 of the initial
amplitudes aj . To be precise, one may trace over the system register to
obtain the reduced density matrix of the control qubit

ρc(t) = Tracesys
[
|Ψ(t)〉〈Ψ(t)|

]
(3.13)

= 1
2

(
1 g(t)

g∗(t) 1

)
, (3.14)

with g(t) the phase function of |ψs〉 under H

g(t) =
∑
j

Aje
iEjt. (3.15)

Estimates of g(t) may be obtained as an expectation value

g(t) = 2 Tracec
[
ρc(t)|0〉〈1|

]
(3.16)

= Tracec
[
ρc(t)X

]
+ iTracec

[
ρc(t)Y

]
, (3.17)

of the Pauli operators X and Y . Measuring these expectation values
requires rotating the control qubit into the x- or y-basis, reading it out, and
averaging the output over many repetitions (or shots) of the experiment.

For a unitary operator U one may obtain an equivalent phase function

g(k) =
∑
j

Aje
ikφj , (3.18)
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by estimating

g(k) = 2 Tracec
[
ρc(k)|0〉〈1|

]
(3.19)

= Tracec
[
ρc(k)X

]
+ iTracec

[
ρc(k)Y

]
, (3.20)

ρc(k) = Tracesys
[
|Ψ(k)〉〈Ψ(k)|

]
, (3.21)

with |Ψ(k)〉 defined in Eq. 3.10. The tomography to extract these expecta-
tion values is the same as described in the previous paragraph.
Information about the eigenvalues Ej and amplitudes Aj = |aj |2 may

be inferred classically from estimates of g(t) at multiple values of t. When
these are estimated sufficiently well, the expectation value of the Hamilto-
nian may be calculated

〈H〉 =
∑
j

AjEj . (3.22)

Inference of the amplitudes Aj from g(t) to error ε takes asymptotically
time Ω(ε−2) on a quantum device, even when the eigenvalues Ej are already
known 1. By propagating variances, this implies equivalent convergence in
the estimation of expectation values via Eq. 3.22. One need not resolve
all 2N eigenvalues of an N -qubit operator in order to evaluate Eq. 3.22.
Time-series analysis methods [125] or integral methods [132] produce a
coarse-grained approximation to the spectrum that may be averaged over to
obtain expectation values with similar convergence rates. Alternatively, for
simple operators with highly-degenerate spectrum (e.g. Pauli operators),
curve fitting will be sufficient to extract the required data (as described in
Sec. 3.2)2.

3.3.2 Verifying a phase estimation experiment
As the data from single-control quantum phase estimation is accumulated
entirely on the control qubit, one would be tempted to throw the system
register away (or rather, reset the register and begin anew). In the absence
of error correction this temptation grows larger; noise levels in near term
devices are high enough that coherent states of more than a few qubits
degrade over the course of any reasonably-sized algorithm to within a few
percent fidelity to the target state — if not less [103]. However, even when

1This may be calculated via Cramer-Rao bounds as the derivative ∂g(t)
∂Aj

is bounded

as a function of t, which is not true for the derivative ∂g(t)
∂Ej

.
2The minimum number of points on the curve that require fitting is determined by
the number of eigenvalues and amplitudes that need fitting.
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corrupted, the information contained within the system register is valuable,
as one can use this information to diagnose potential errors in the data
to be read from the control qubit. For instance, in the presence of global
symmetries of the Hamiltonian, one could imagine mitigating errors that do
not commute with this symmetry via symmetry verification [29, 122, 123].
In verifying these symmetries, we are in effect projecting the system into
a subspace of the global Hilbert space which contains the information
we desire. One could imagine constructing ever-smaller Hilbert spaces,
which trades circuit complexity for error-detection power. It turns out
that the limit of this construction is achievable: instead of measuring
one or more symmetries on the system register, we can instead verify
that it has returned to its initial state |ψs〉. (This is similar to the echo-
type measurements made in randomized benchmarking [133] or quantum
Hamiltonian learning [134].)
Assuming |ψs〉 is prepared from the computational basis state |0〉 by a

preparation unitary Up, this measurement may be achieved by applying
U†p, and reading out each qubit in the computational basis. One would
expect such a measurement to distort the phase function g(t), but this is
not so, as we may expand the trace in Eq. 3.13 to show that

Tracec
[
ρc(t)|0〉〈1|

]
= Tracec

[
〈ψs|Ψ(t)〉〈Ψ(t)|ψs〉|0〉〈1|

]
. (3.23)

Here, the left-hand side of the equation is the expectation value of ρc(t)
regardless of the state of the control register, and the right-hand side is the
(non-normalized) expectation value of ρc(t) on verified experiments only.
The lack of normalization means this is not a post-selection technique;
instead one assumes that the contribution of states which fail verification
to the final estimation of g(t) is zero. (By contrast, states that pass
verification either contribute +1 or −1 to the estimation of g(t).)

We can make a physical argument why Eq. 3.23 holds and verification
should not affect the estimation of g(t) in the absence of noise. Let us
decompose the reduced density matrix on the control qubit

ρc = ρ(v)
c + ρ(f)

c , (3.24)

into the ensemble of states ρ(v)
c that have passed verification, and those that

have failed. When the control qubit is in the |0〉 state, the system register is
not evolved, so in the absence of noise the state will pass verification every
time. This implies that a verification failure in the absence of noise projects
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the control qubit into the |1〉 state; ρ(f)
c = |1〉〈1|. As Trace[|1〉〈1|0〉〈1|] = 0,

this fraction of states on average contributes nothing to the estimate of
g(t). In other words,

Trace[ρc|0〉〈1|] = Trace[ρ(v)
c |0〉〈1|] = g(t). (3.25)

Note that post-selecting (i.e. keeping only the experimental data where
verification was passed) would instead prepare the state ρ(v)

c /Trace[ρ(v)
c ].

This will not yield the desired result, as

Trace[ρ(v)
c (X + iY )]

Trace[ρ(v)
c ]

= g(t)
1 + |g(t)|2 (3.26)

which is not equal to g(t) unless |ψs〉 is an eigenstate of eiHt (in which
case ρ(v)

c = ρc). (Moreover, this rescaling can be up to a factor 2 in the
absence of noise, and the spectrum of this new function is significantly
different to the original.) To give some intuition, one can imagine phase
estimation on a mixed state in two steps: performing phase estimation
on individual states to generate a set of signal functions eiEjt, and then
summing and returning the weighted result g(t). The set of states that
fail verification, ρ(f), captures the relative dephasing between these states,
which cannot be ignored when attempting to recover this result. Instead,
an explicit protocol for the measurement of a single g(t) within verified
single-control phase estimation takes the form of Algorithm 3.1. We
consider the increased sampling cost in the presence of error in Sec. 3.3.3.

3.3.3 Why verification mitigates errors
The mitigation power from verification is based on the relative size of the
Hilbert spaces in which the states which have passed verification and states
which have failed verification, ρ = ρ(v) + ρ(f), live. If we define the Hilbert
spaces in which the two ensembles live H(v) and H(f) respectively, we have
dim[H(v)] = 2, while dim[H(f)] = 2N+1 − 2. An error that occurs during
the circuit is then likely to scatter the system into the set of rejected
states. As an extreme example, the probability that a completely random
error (i.e. an error that scatters all states to a random state) at any point
in the circuit will yield a state in H(v) can be immediately calculated
to be 2/(2N+1 − 2) ∼ 2−N . This includes errors during preparation of
|ψs〉 by the unitary Up and the inversion of U†p to perform the verification
itself. As we are not post-selecting on the verification output g(t) is still
affected by this shift, but the distortion may be accounted for in classical
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Algorithm 3.1: Single-control VPE
Input: Circuits to implement Up, U

†
p and controlled time evolution

eiHt.
Number of repetitions M of measurement in the x and y
basis.

Output: An estimate of g(t) with variance O( 1
M ) in both the real

and imaginary part.

1 Prepare classical initial variables gx = 0, gy = 0;
2 Prepare the system register in a starting state |ψs〉 = Up|0〉 and the

control qubit in the state 1√
2 (|0〉+ |1〉);

3 Simulate time evolution eiHt conditional on the control qubit;
4 Apply the inverse circuit U†p to the system register;
5 Rotate the control qubit into the X or Y basis and measure it to

obtain a number m ∈ [0, 1];
6 If all qubits in the system register read 0, increment the relevant

variable gx or gy by (−1)m;
7 Repeat steps 2-6 M times in the X basis and M times in the Y

basis, and estimate g(t) by gx

M + i g
y

M

post-processing. In this simple noise model the effect of noise is then to
replace the estimate of g(t) by

gerr(t) = pne(t)g(t) +O(2−Nperr(t)), (3.27)

where pne(t) and perr(t) are the probabilities of no error or some error
occurring, respectively. (In App. 3.A we derive the specific requirements
for this to be the case.) Assuming that errors occur at a constant rate as
a function of the circuit depth, and all scatter the system outside H(v),
for fast-forwardable Hamiltonians pne(t) = pne, and

gerr(t) = pneg(t) =
∑
j

(pneAj)eiEjt. (3.28)

This can be seen as a uniform damping of each squared amplitude Aj to
A′j = pneAj . Such damping may be corrected for classically as we know
|ψs〉 is normalized ∑

j

Aj = 1, (3.29)
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and so we may estimate

Aj =
A′j∑
j A
′
j

. (3.30)

Depending on the classical signal processing method used, one may not
obtain estimates of all A′j and Ej , but may instead directly calculate∑
j A
′
jEj and

∑
j A
′
j . For example, one could use gerr(0) =

∑
j A
′
j as such

a reference point. For non-fast-forwardable Hamiltonian, assuming again
that errors occur at a constant rate throughout the circuit and that all
scatter the system outside H(v), we have

gerr(t) = e−t/τerrg(t) =
∑
j

Aje
i(Ej+i/τerr)t. (3.31)

This can be seen to be an imaginary shift to the eigenvalues Ej → Ej+iτerr.
It can be corrected for in signal processing of the phase function by taking
only the real parts of the Ej eigenvalues.

The above analysis is not necessarily true for simulation of an arbitrary
Hamiltonian under a realistic noise model. In particular, if the instanta-
neous state during simulation is a near-eigenstate of the error model, then
the correction in Eq. 3.27 may be as large as O(1) instead of O(2−N ). In
App. 3.A we study this in more detail, and specify the conditions under
which errors will distort the results of verified phase estimation.

Sampling costs

The error mitigation from verification comes at the cost of increasing the
number of samples require to estimate g(t). Assuming all errors fall outside
the verified subspace, estimating g(t) to precision ε requires estimating
gerr(t) to precision pneε. To obtain gx in Alg. 3.1 (and equivalently for gy)
we average over a set of M experimnetal outputs that may take the values
{−1, 0, 1}. Let us define the ith experimental output gxi , and we have

P (gxi = ±1) = 1
2pne(1± gx), (3.32)

P (gxi = 0) = 1− pne. (3.33)

Our estimate of the noisy gerr(t) is then given by

Re[gerr(t)] = P (gxi = 1)− P (gxi = −1). (3.34)
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As each experiment is IID, the variance on our estimates of these proba-
bilities is

Var[P (gxi = ±1)] = 1
M

1
2pne(1± gx)

×
(

1− 1
2pne(1± gx)

)
, (3.35)

Cov[P (gxi = 1),P (gxi = −1)] (3.36)

= − 1
4M p2

ne
(
1− [gx]2

)
. (3.37)

Propagating variances obtains

Var [Re [gerr(t)]] = 1
M
pne −

1
M
p2

ne[gx]2. (3.38)

We may then bound the requirements to estimate gerr(t) to variance ε−2p−2
ne

by
M ≥ ε−2p−1

ne . (3.39)

This is exactly what one would expect from an actual post-selection
technique (i.e. where Mpne samples were used to estimate g(t)). We
remind the reader that pne here is the probability of no error occurring
over the entire circuit. As one should expect for an error mitigation
technique, this in turn grows exponentially with the size of the circuit
required to implement eiHt or Up. In a simple model, if the error per qubit
per moment is p (i.e. assuming qubit decay is more dominant than gate
noise in the model), an N -qubit circuit of depth d would have

pne = (1− p)Nd, (3.40)

and thus the number of shots required to estimate (the real or imaginary
part) of g(t) would scale as

M ∼ (1− p)−Ndε−2. (3.41)

This is not to be ignored; verification requires at least doubling the size of
the circuit, which if pne = 0.01 (as has been reported [3] and mitigated
successfully [103] in previous experiments) will increase the measurement
count by a factor of 100. Some of the methods presented in this work
involve increasing the circuit depth by factors of up to 14, which will be
impractical for large experiments without further circuit optimization.

81



3 Error mitigation via verified phase estimation

3

Control noise

An important realistic error to consider in QPE is error on the control
qubit. This keeps the system within the verified subspace, and so is not
captured by the above analysis. However the effect of many common
error channels may still be mitigated by verification. For example, let us
assume that the circuit decomposition of C− U involves the control qubit
performing only single-qubit gates and controlled operations on the rest of
the circuit (which is typically the case). In this case, one may show that
the effect of a depolarizing channel of strength λ

Rdepol[ρ] = (1− 3λ
4 )ρ+ λ

4 (XρX + Y ρY + ZρZ), (3.42)

acting on the control qubit at any point in the circuit, sends the final state
of the system to

(1− λ)ρne + λρerr, (3.43)

where ρne is the state in the absence of error, and

Trace[〈ψs|ρerr|ψs〉|0〉〈1|] = 0. (3.44)

In this case, the (noisy) estimate of g(t) is sent to (1− λ)g(t), and expec-
tation values and eigenvalues may be recovered via the same analysis as
in Sec. 3.3.3. However, the above analysis will not hold for a more general
noise model, and schemes such as randomized compiling [135] may be
required to unbias the estimate of g(t). An example of this biasing effect
is if an amplitude-damping channel

Rampdamp[ρ] =(1− λ)ρ+ λ

2 (Z + I)ρ(Z + I)

+ λ

2 (X + iY )ρ(X − iY ), (3.45)

is present on the control qubit between the final measurement pre-rotation
and readout in the computational basis. Left unchecked, this will shift the
estimate of g(t) to

gerr(t) = (1− λ)g(t) + λ. (3.46)

In addition to damping the true signal g(t), this additive signal presents as
a 0-energy eigenvalue in the spectrum of g(t). This will not be accounted
for by naive renormalization of 〈H〉 as outlined in Alg. 3.3; the estimation
protocol will instead estimate (1− λ)〈H〉. Though this could be corrected
in post-processing, we suggest that a more stable mitigation is to flip the
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|0〉 and |1〉 states on the control qubit for 50% of experiments. This may
be compiled into the final pre-rotation, and does not increase the total
sampling cost of the experiment (only half as many samples need to be
taken at each pre-rotation setting for the same accuracy). We observe
similar biases on bitflip noise channels which tend to decay the real and
imaginary parts of g(t) asymmetrically. This may be compensated for in
turn by compiling a π

4 Z-rotation on the intial control qubit state, and
uncompiling it in the final prerotation. (One can see that this commutes
with all gates in the circuit). For the noise models studied numerically
in this text we have found either one or both of the above compilation
schemes sufficient to mitigate control error. More complicated noise models
may required more complicated compilation schemes; extending the above
will be an interesting task for future work. In particular, the above analysis
does not apply to correlated two-qubit noise during operations between
the control qubit and the rest of the system.

3.3.4 Verified control-free phase-estimation
As was recently demonstrated in Ref. [27], the control qubit may be removed
from a QPE experiment if we have the ability to prepare an alternative
reference eigenstate |ψr〉 of the Hamiltonian H (with 〈ψs|ψr〉 = 0). For
example, in the electronic structure problem in quantum chemistry the
number-conserving Hamiltonian has the vacuum as a potential reference
state. (A similar situation was considered in Ref. [136] for the purposes of
random gap estimation, but estimating single eigenvalues Ej from this class
of experiments is somewhat awkward.) This was also recently considered
as an extension to the well-known robust QPE scheme [137], requiring both
|ψr〉 and |ψs〉 to be eigenstates of the system [126]. Note that |ψr〉 need
not necessarily be a zero-energy eigenstate of H, though the corresponding
eigenenergy Er should be known to high accuracy. In this case, one need
prepare the correlated state 1√

2 (|ψs〉+ |ψr〉), and perform uncontrolled time
evolution, and finally measure the off-diagonal element |ψs〉〈ψr|. This is
shown in the circuit (Fig. 3.2). Evaluating the circuit provides an estimate
of

Trace
[
U(|ψr〉+ |ψs〉)(〈ψr|+ 〈ψs|)U†|ψr〉〈ψs|

]
= e−iErtg(t), (3.47)

and the additional phase may be subtracted in post-processing.
The protocol for verified control-free phase estimation does not differ
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Figure 3.2: Quantum circuit for control-free verified phase estimation. The
preparation unitary Up is defined in Eq. 3.48. The first gate in the circuit
is a Hadamard gate (Roman H) on the top-most qubit (labeled the target
qubit in text), which should not be confused with the Hamiltonian H.

significantly from the single-control case. Besides the loss of the control
qubit and removal of control from the time evolution circuit, we also now
require our preparation circuit to prepare the starting state 1√

2 (|ψs〉+ |ψr〉).
We assume that this is achieved by first applying a Hadamard gate to a
single target qubit in the system register, placing the system in the state
1√
2 (|0〉+ |~1T〉). (Here we use the notation |~1T〉 for the basis state where the

target qubit is in the |1〉 state and all other qubits are in |0〉.) Then, the
desired preparation may be achieved by a preparation unitary Up which
performs the mapping

Up|0〉 7→ |ψr〉, Up|~1T〉 7→ |ψs〉. (3.48)

(We use the same notation as for the single-control unitary on purpose,
as under the association |0〉|ψs〉 ↔ |ψr〉 and |1〉 ↔ |ψs〉 one may see the
two are equivalent.) With this definition, estimation of |ψr〉〈ψs| may be
achieved by inverting Up, as

|ψr〉〈ψs| = Up|0〉〈~1T|U†p . (3.49)

In particular, after inversion, the reduced density matrix of the target
qubit contains the desired phase function g(t), and the verification consists
of checking whether all other qubits are measured into 0. The resulting
control-free protocol is fully written out in Algorithm 3.2. The analysis
of Sec. 3.3.3 is identical for the control-free case, with the absence of the
issue of control noise, as is the analysis of Sec. 3.3.3. However, we note
that at the beginning and the end of any experiment, single-qubit noise on
the target qubit behaves similarly to control qubit noise. This necessitates
averaging over multiple initial and final rotations of the target qubit to
prevent bias in the estimation of g(t).

The above analysis implies that the algorithms studied in Ref. [27, 136]
should be amenable to verification immediately as well. It also provides
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Algorithm 3.2: Control-free VPE
Input: Circuits to prepare a superposition of |ψs〉 and |ψr〉, invert

the preparation, and implement time evolution eiHt.
Number of repetitions M and M of measurement in the x
and y basis.
The reference eigenstate energy Er

Output: An estimate of g(t) (Eq. 3.47) with variance O( 1
M ) in

both the real and imaginary part.

1 Prepare classical initial variables gx = 0, gy = 0 ;
2 Prepare the system register in a starting state

1√
2 (|ψs〉+ |ψr〉) = Up

1√
2 (|0〉+ |~1T〉) ;

3 Apply the unitary Uk, (or equivalently simulate time evolution eiHt)
;

4 Apply the inverse circuit U†p to the system register ;
5 Rotate the target qubit into the X or Y basis and measure it to

obtain a number m ∈ 0, 1 ;
6 Measure all other qubits, and if they all read out 0, increment the

relevant variable gx or gy by (−1)m ;
7 Repeat steps 2-6 M times in the X basis and M times in the Y

basis, and estimate g(t) by eiErt( g
x

M + i g
y

M ).

some additional explanation for the error-robustness observed in the robust
phase estimation of Ref. [126].

3.4 Verified expectation value estimation
In many circumstances, one wishes not to know the eigenvalues of a
Hermitian operator H, but instead its expectation value 〈H〉 under a
specified state |Ψ〉. For instance, in a variational quantum eigensolver [82],
one prepares a state |Ψ(~θ)〉 = U(~θ)|0〉 dependent on a set of classical input
parameters ~θ, then measures the expectation value E(~θ) = 〈Ψ(~θ)|H|Ψ(~θ)〉.
This is then optimized over ~θ in a classical outer loop, with the optimized
state |Ψ(~θopt)〉 hopefully a good approximation of the true ground state
|E0〉. In quantum variational algorithms it is typical that 〈Ψ(~θ)|H|Ψ(~θ)〉
is estimated by means of partial state tomography [66, 67, 138]. However,
noise in the preparation unitary U(~θ) causes an errant state ρerr(~θ) 6=
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Algorithm 3.3: Verified expectation value estimation
Input: (Noisy) circuits to implement Up, U†p and controlled time

evolution eiHt.
A set of t values.
Number of repetitions M of measurement in the x and y
basis (that can be t-dependent).
A method for classical signal processing (e.g. a curve fitting
algorithm).

Output: An estimate of 〈H〉.

1 Estimate gerr(t) for all given points t using Alg. 3.1 to the chosen
precision;

2 Obtain estimates for individual Ej and A′j values via classical signal
processing;

3 Estimate 〈H〉 as

〈H〉 =
∑
j A
′
jEj∑

j A
′
j

. (3.51)

|Ψ(~θ)〉〈Ψ(~θ)| to be prepared and tomographed, propagating the preparation
error directly to a final estimation error. The noise analysis in Sec. 3.3.3
extends to both the preparation and mitigation unitaries, so if verified
phase estimation is used to provide estimates of eigenvalues and amplitudes,
one may reconstruct

〈Ψ(~θ)|H|Ψ(~θ)〉 =
∑
j

|aj |2Ej , (3.50)

and inherit the mitigation power of the verification protocol. This has the
added advantage that control errors in the preparation circuit (which, being
a repeated error, are not mitigated against) are able to be compensated for
during the outer optimization loop of the VQE, as is well-known [82, 103].
Quantum phase estimation has previously been suggested as an alternative
to partial state tomography for expectation value estimation, both to
improve the rate of estimation [139], and to provide a witness for the
presence of eigenstates of the Hamiltonian [140]. The verification protocols
described in this work should be applicable to these methods as well. A
general algorithm for verified expectation value estimation takes the form
of Algorithm 3.3
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One might worry that the sum in Eq. 3.50 is over an exponentially large
number of eigenstates |Ej〉. However one need not resolve all eigenvalues
Ej in order to accurately estimate the expectation value 〈Ψ(~θ)|H|Ψ(~θ)〉;
if eigenvalues within δ of each other are binned, the resulting expectation
value will be accurate to within δ. We may formalize this by considering
the spectral function gS of |ψs〉 under H,

gS(E) =
∑
j

Ajδ(E − Ej). (3.52)

This can be seen to be the Fourier transform of the phase function g(t)
[strictly, g(t) is the inverse Fourier transform of gS(E/2π)], and a coarse-
grained approximation may be obtained via time-series methods [125] or
integral methods [132] with rigorous bounds on each. Numerically, we
find signal processing methods such as Prony’s method [124] also perform
acceptably (see Sec. 3.5.4). For fast-forwardable Hamiltonians (such as
Pauli operators), one often already knows the target eigenvalues of the
problem. Furthermore, the eigenspectrum of these Hamiltonians is often
highly degenerate, making simple curve fitting a practical (and attractive)
alternative.

Instead of analysing the phase function at many points as described
above, one may expand

Im[g(t)] =
∑
j

|aj |2 sin(Ejt) (3.53)

= t
∑
j

|aj |2Ej + 1
3 t

3
∑
j

|aj |2E3
j +O(t5) (3.54)

1
t
Im[g(t)] = 〈Ψ(~θ)|H|Ψ(~θ)〉+O(t2), (3.55)

and simply estimate Im(g(t)) for short times t. This is similar to the manner
in which eigenphases are estimated in the WAVES protocol [140] (sans
verification). In this case, the normalisation of the resulting amplitudes
(Eq. 3.30) must be achieved by the condition that g(0) =

∑
j Aj , yielding

〈H〉 = Im[gerr(t)]
t|gerr(0)| +O(t2). (3.56)
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3.4.1 Fast-forwarded and parallelized Hamiltonian
decompositions

As expectation values are linear, we may estimate 〈H〉 by splitting it into
multiple terms, estimating the expectation values of each term individually,
and re-summing;

H =
∑
s

Hs → 〈H〉 =
∑
s

〈Hs〉. (3.57)

If individual Hs may be simulated at lower circuit depth, this can reduce
the accumulation of unmitigated errors, at the cost of requiring more
simulation. This ability becomes especially useful if one chooses the Hs to
be fast-forwardable. Here, we define a fast-forwardable Hamiltonian Hs as
one for which a circuit implementation of eiHst has constant depth in t. The
circuit depth required to simulate eiHt for arbitrary H is bounded below
as O(t) [97], but for certain operators this may be improved on [141]. For
example, as the Pauli operators {1, X, Y, Z}⊗N are both fast-forwardable
and form a basis for the set of N -qubit Hermitian operators, a set of Hs

terms may be taken from these to decompose an arbitrary Hamiltonian.
As another example, given an instance of the electronic structure problem,
one may attempt a low-rank factorization of the interaction operator into
a sum of O(N) diagonalizable (and thus fast-forwardable) terms [142].

In order to speed up estimation of expectation values of multiple terms
Hs in a decomposed Hamiltonian H =

∑
sHs, it may be possible perform

the verified phase estimation step of each Hs in parallel. For example, we
can perform time evolution of L multiple summands, each controlled by a
different control qubit, in between the preparation and verification steps of
a single instance. In the absence of verification, such parallelization will not
affect the outcome of quantum phase estimation of any individual Hs, so
long as all terms estimated in parallel commute. This follows immediately
from the fact that the time evolution for one such term does not evolve
the system between eigenspaces of another. This is complicated by the
addition of verification, as the additional circuitry means that the system
may evolve away from |ψs〉 despite a specific control qubit being in |0〉. In
App. 3.B, we show that this gives rise to a set of spurious signals in the
estimated phase function g(s)(t):

g(s)
q (t) =

∑
v,j,j′

B
(s)
j,j′e

iF
(s)
v,j,j′

t
. (3.58)
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Here, the ghost eigenvalues are

F
(s)
v,j,j′ = E

(s)
j +

∑
s′ 6=s

vs′
(
E

(s)
j − E

(s′)
j′

)
, (3.59)

where E(s′)
j are the true eigenvalues of the Hamiltonians Hs′ , and v is

a L-bit vector written in binary (i.e. vs ∈ 0, 1). The corresponding,
v-independent amplitudes are

Bj,j′ = 1
2LAjAj

′ . (3.60)

Although this is a far more complicated signal than the standard phase
function g(t), we calculate in App. 3.B that it yields the same expectation
value; i.e. ∑

v,j,j′

Bj,j′F
(s)
v,j,j′ = 〈Hs〉. (3.61)

This implies that verified parallel phase estimation may proceed in much
the same way as the series protocol.

3.4.2 Comparison to other methods of error mitigation
Error mitigation techniques differ vastly, both in their cost to implement
and their effectiveness against different forms of noise. This implies that
care needs to be taken in a real experiment to choose the best mitigation
technique (or combination of mitigation techniques) for the job. Though a
comparison between multiple techniques in a realistic setting lies outside
the scope of this work, we give some predictions here on how VPE might
compare in performance to other mitigation techniques, and whether it
might be possible to compare to different techniques. We can classify all
error mitigation techniques that the authors know of into the following
broad categories
• Circuit design —many forms of noise may be mitigated by careful design

of a circuit to e.g. minimize crosstalk between simultaneous gates [103],
cancel out Z over- or under-rotation (e.g. via echo pulses [143]), or
optimize a circuit variationally to cancel out control parameter drift
on a long timescale [82, 144]. (Whether or not this counts as error
mitigation or calibration of the underlying quantum device is left to the
reader to decide.) Depending on the source of noise these techniques
may significantly reduce or even nullify its effect, which may be far more
effective than VPE. On the other hand, noise sources such as T1 error
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Figure 3.3: Mitigation of a 4-qubit Givens rotation circuit via verified
phase estimation. (left) Error in estimation of random states in a free-
fermion system (Eq. 3.63) under a uniform depolarizing channel. (right)
Error in the same estimation, but this time under an amplitude and phase
damping model. In both plots, the RMS error (crosses) is calculated over
50 different estimations for each error rate using either standard partial
state tomography (red) or using verified control-free phase estimation.
Individual data points (dashes) are additionally shown. For reference,
dashed lines showing linear (red), quadratic (black), and cubic (blue)
dependence on the gate error rate are plotted.

cannot be easily calibrated away (due to the associated photon loss); in
these situations (where VPE performs quite well) these methods will
have little effect. VPE is clearly compatible with any such techniques,
as these consist of adjustments to the implementation of a given circuit
rather than an algorithmic overhead.

• Post-selection or verification techniques — this class of techniques uses
knowledge of the problem to restrict the state of the quantum device to
within a small region of the N -qubit Hilbert space, often by leveraging
symmetries of the Hamiltonian of the problem to be solved. VPE itself
falls into this category, alongside symmetry verification [29, 67], and
quantum subspace expansion techniques [116, 117]. The performance of
these techniques is dependent on their ability to catch errors outside the
allowed Hilbert space, so as the dimension of the Hilbert space for VPE
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is only 2, we expect it to have greater mitigation power in general than
these other techniques. (This can be observed in App. 3.G, where VPE
shows an asymptotic improvement over symmetry verification in a small
numerical simulation.) However, as the circuit depth of VPE is typically
far longer than that of other post-selection or verification techniques
(which can be achieved in some cases without any additional circuitry),
the requirements on the number of measurements to overcome sampling
noise will be significantly worse. As these techniques overlap in their
effect on the quantum state, it is not particularly possible to combine
them; instead one should choose the best trade-off between mitigation
power and number of measurements.

• Error extrapolation techniques — assuming that one can artificially
introduce noise into a system, these techniques rely on parameterizing
the output f of a quantum circuit as a function of a ‘noise parame-
ter’ f = f(λ), fitting a functional form, and extrapolating to λ = 0.
The noise parameter can either be adjusted experimentally (e.g. by
adjusting the wait time or detuning of an underlying gate) [118, 120]
or algorithmically (e.g. by inverting noisy gates [145]). The mitigation
power of such a technique depends on how well the noise can be tuned
as a function of this single parameter, and how well one can pin down
a functional form for f(λ). This is not easily comparable to VPE,
as the physical source of the mitigation is qualitatively significantly
different. We expect that the relative performance will depend on the
experiment and the hardware itself. In theory these methods could be
combined with VPE (either by extrapolating the phase function or the
VPE result). However, it is unclear whether the output of VPE will be
more challenging to fit, reducing the effectiveness of the extrapolation.

• Result extrapolation techniques — instead of fitting the output f of a
quantum circuit to an artificial noise term, one can consider comparing
the output of similar quantum circuits tailored to efficient classical
simulation. This technique has been demonstrated experimentally in
Refs. [103, 146], and proposed within a VQE setting (by tuning the
parameters to points where the solution is known) [147]. In some sense
VPE can be considered to be similar to these methods, with the |ψs〉|0〉
or |ψr〉 states providing an entangled reference state for the target
evolution. However, this relationship is not completely clear, as VPE
strictly relies on the coherence between the two states. Understanding
this similarity is a clear avenue for future research. Regardless, VPE
should be able to be combined with at least some of these techniques
to provide yet more mitigation power.

91



3 Error mitigation via verified phase estimation

3

• Probabilistic cancellation techniques — given knowledge of the true
process maps of the gates being performed on a quantum device, one can
in principle construct families of quantum circuits that when combined,
yield a target noiseless result [118, 120]. However, these methods
require much additional characterization of the device, which is a
problem in systems with large amounts of drift. In principle given
sufficient knowledge of the noise this method works perfectly, but at a
greatly increased measurement cost, making it difficult to make a fair
comparison in a theoretical setting. Testing this method against VPE
in a real experiment would be an interesting target for future research.

• Purification techniques — as the output of a quantum algorithm is often
ideally pure, these techniques attempt to reduce errors by mapping a
noisy impure state to a purer one. This may be achieved e.g. for free
fermion states via McWeeny purification [103], or for more general states
via virtual distillation [148]. For more complex states the McWeeny
process cannot be used, but it has proven remarkably effective when
available. Virtual distillation and VPE appear to be remarkably similar
in their increased measurement cost and their mitigation performance,
as well as their circuit structure. Understanding this similarity and
comparing the two in more detail is a clear avenue for future research.

3.5 Numerical Experiments
To investigate the mitigation capability of verified phase estimation, we
first use it for expectation value estimation. To prepare states, we take
different variational ansatze with randomly-drawn parameters. We com-
pare the performance of verified and unverified circuits across multiple
target Hamiltonians, noise strengths and noise models, to attempt to iden-
tify trends in the method. All simulations were executed using the Cirq
quantum software development framework [102] and simulators therein.
Hamiltonians and complex circuits were further generated using code from
the OpenFermion [117] libraries. Except for when mentioned, the Cirq
noise models were chosen to be a constant error rate per qubit per moment,
where a moment is a period of the circuit where gates occur. Equivalently,
this can be thought of as an error rate per qubit per gate, but including
error on idling gates as well. The noise models considered are not as com-
plex as those typically observed in experiment (which are typically highly
non-uniform, and can include crosstalk and non-Markovianity alongside
other effects), but we expect our results should provide a suggestion of the
mitigation power of this method in a real quantum device.

92



3.5 Numerical Experiments

3

3.5.1 Givens rotation circuits for free-fermion
Hamiltonians

We first test the mitigation ability of the verification protocol on an instance
of a “Givens rotation circuit” of the form developed for implementing
rotations of single-particle fermionic basis functions in [149]. This circuit
takes the form

U(~θ) = exp

i∑
j,l

~θj,lc
†
jcl

 , (3.62)

where c†j and cj are the creation and annihilation operators for a fermion
on site j, and θj,l = θl,j . Such a circuit is classically simulatable, but it
is a critical piece of infrastructure in quantum computing applications
for quantum chemistry [66, 71, 73, 103, 142]. It is also low depth: it
may be decomposed exactly by a sequence of matchgates [150], with
optimal compilation in a circuit depth of exactly N . When acting on a
N -qubit register prepared in the state

∏Nf−1
n=0 Xn|0〉, this may prepare an

arbitrary ground state of a free-fermion Hamiltonian with Nf particles by
an appropriate choice of ~θ. In this work, we take a simple free-fermion
Hamiltonian as an example - namely a one-dimensional chain:

H = −t
∑
j

c†jcj+1 + h.c. (3.63)

Such a Hamiltonian may be diagonalized,

H = V †
∑
α

εαc
†
αcαV, (3.64)

where V here takes the same form as in Eq. 3.62. This decomposition
allows immediately for the fast-forwarding of time evolution, as

eiHt = V †eit
∑

α
εαc
†
αcαV (3.65)

= V †
∏
α

eitεαc
†
αcαV. (3.66)

As the Givens rotation circuits conserve particle number, the vacuum
|0〉 may be used as a reference state for control-free verified estimation. A
superposition of this reference state and starting state U(~θ)

∏Nf
n=1Xn|0〉
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Figure 3.4: Mitigation of a 4-qubit VHA circuit via verified phase estima-
tion. (left) Error in estimation of the energy of random states generated
by the quantum approximate optimization ansatz in the critical phase
of the transverse-field Ising model (Eq. 3.70) under a uniform depolariz-
ing channel. (right) Error in the same estimation, but this time under
an amplitude and phase damping model. In both plots, the RMS error
(crosses) is calculated over 50 different estimations for each error rate
(with randomly-chosen ansatz parameters) using either standard partial
state tomography (red) or using verified control-free phase estimation.
Individual data points (dashes) are additionally shown. For reference,
dashed lines showing linear (red) dependence on the gate error rate are
plotted.

may be prepared by acting the Givens rotation circuit on the GHZ state

|GHZNf 〉 = 1√
2

|0〉+
Nf∏
n=1

Xn|0〉

 , (3.67)

which may itself be prepared by e.g. a chain of CNOT gates:

|GHZNf 〉 =
1∏

j=Nf−1
CNOTj−1,jH0|0〉. (3.68)
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Figure 3.5: Error in estimating the ground state energy of a 4-site
transverse-field Ising model (Eq. 3.70) by variational optimization of a
VHA ansatz. The resulting expectation values are measured either by
verified single-control phase estimation (black) or taken directly from the
simulated state state (red). We plot the median (crosses) of the absolute
energy error over 10 optimization attempts, each starting from a different
initial point. Individual errors are plotted behind (faint dashes). Guide
lines showing a linear dependence are additionally plotted (red dashed
lines).

Note here the backwards product that runs left-to-right (i.e. the CNOT
gate between qubit 1 and qubit 0 is executed first). Following the definitions
in Sec. 3.3.4 for verified control-free phase estimation, we can write the
complete preparation unitary as

Up = U(~θ)
1∏

j=Nf−1
CNOTj−1,j . (3.69)

Then, as the product of two Givens rotation circuits is itself a Givens
rotation circuit [149], we may compile V U(~θ) = U(~θ′) and implement this
in a single Givens rotation circuit.

The complete VPE circuit for this circuit consists of the GHZ preparation,
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a single Givens rotation, a set of single-qubit z-rotations, uncomputing the
Givens rotation, uncomputing the GHZ preparation, and measurement
in the X or Y basis. The resulting circuit for verified phase estimation
is more than twice the length of the circuit required for the unmitigated
VQE. We assume here that the VQE tomography does not require any
additional overhead, and directly estimate the expectation value from the
simulated density matrix. For verified phase estimation, we extract the
phase function from the simulated density matrix, and then process it to
estimate expectation values using Prony’s method. In order to not bias
the final readout (which can lead to significant error in estimation), we
average the rotation into the X and Y -bases over both +π/2 and −π/2
rotations 3.3.3. To simplify the analysis here, we do not include additional
sampling noise. In Fig. 3.3, we plot the RMS error for two error models
over a range of noise models and strengths. For each noise model and
at each strength we sample 50 random choices for the initial parameters
~θ (and set t = 1 in Eq. 3.63). In the presence of a uniform single-qubit
depolarizing channel (Fig. 3.3, left), we see that the verified error displays
a clear ε ∼ p2 trend (where ε is the error in the final estimation, and p
is the error per qubit per moment). This implies that the effect of all
single errors in this noise model are suppressed by the error mitigation (or
fortuitously cancel), but that pairs of errors near to each other in time
may affect results. Under the effect of an amplitude and phase damping
channel (Fig. 3.3, right), the suppression is even starker; we see a clear
ε ∼ p3 trend till the error drops to below 10−5, providing up to four
orders of magnitude gain in precision. Below 10−5 the error plateaus.
This is due to numerical stability issues with Prony’s method, and not a
fundamental limit of the procedure 3. This level of estimation error only
becomes relevant after > 1010p−2

err individual shots have been taken (with
perr the probability of an error over the entire circuit). As such, we expect
this to not be relevant for most experiments. The lower error rate makes
some sense: amplitude damping errors can only ever reduce the number
of excitations in the circuit, and so by themselves can never return to a
state with non-zero overlap with |ψs〉. However, the precise mode for the
leading contribution to the error rate is still somewhat unclear.

3Proof of this can be found in e.g. Fig. 3.9, where phase fitting obtained a ∼ 100-fold
reduction in this noise floor, which is typical for all simulations performed thus far.
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3.5.2 The variational Hamiltonian ansatz for the
transverse-field Ising model

We next attempt the verification of a completely different model and
ansatz. The transverse-field Ising model (TFIM) is a well-known spin
system, with Hamiltonian

H = Jz
∑
j

Zj + Jx
∑
j

XjXj+1, (3.70)

where we take the sum j+1 modulo N (i.e. periodic boundary conditions).
In one dimension, this model has a critical phase when Jz = Jx, making
this a simple model to study interesting quantum phenomena. Exact
ground states of this model may be found by the variational Hamiltonian
ansatz (VHA) [54] for any values of Jx and Jz [151]. The VHA consists
of alternating the Ising model and transverse field terms p times, with at
each layer p the amount of time to be treated as a free variable:

U(~θ) =
∏
p

e
iθp,Z

∑
j
Zje

iθp,X
∑

j
XjXj+1 . (3.71)

(Note that for this given model the VHA is equivalent to the quantum
alternating operator ansatz of Ref. [55].) The TFIM does not have any
simple eigenstates, and nor does the VHA, so simple methods of control-free
verified phase estimation are not available. Instead, we attempt single-
control verified phase estimation. To lower the error incurred during the
circuit, we perform VPE in series for every term in Eq. 3.70. Unfortunately,
verification works significantly less well in this setting, as is shown in
Fig. 3.4. For both noise models considered, we see a clear ε ∼ p trend
with ε the energy error in the final result, and p the error per qubit per
moment. This suggests that errors that map the noiseless state into one
with nontrivial overlap with the verified density matrix are dominant in
this circuit. Regardless, we note that verification does provide an ∼ 8-
fold improvement in error rate over the unmitigated circuit, despite the
verification circuit requiring one additional qubit and being three times
as long. This result is lessened in the presence of amplitude and phase
damping noise, till the point where the mitigation only improves estimation
by a factor of 2.
Variational optimization is well-known to mitigate certain types of

coherent noise (e.g. coherent parameter drift) [82, 144]; it also appears
to provide some mitigation of incoherent noise when in combination with
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verified phase estimation. In Fig. 3.5, we perform a variational outer
loop over the circuit studied in Fig. 3.4. Although the ε ∼ p behaviour
appears to roughly remain in the latter half of the optimization, the gain
from error mitigation improves from 2− 8x to around 50x, a significant
improvement. We note that the optimization is no longer variationally
bound - below about 10−2 error per qubit per moment, the results are
scattered relatively evenly on either side of the true value. By contrast, in
the absence of sampling noise partial state tomography results will always
be variationally bound. We suspect this result may be due to the fact
that slightly different circuits need to be run to measure different terms,
yielding an ’effective state’ that lies slightly outside the positive cone of
allowed physical quantum states. Though this effect does not appear to
be particularly severe in this case, further study may be needed to see it
does not become an issue in larger experiments.

3.5.3 Fermionic swap networks for electronic structure
Hamiltonians

As a final system for simulation, we move to studying the ability to verify
molecular hydrogen on four qubits using a fermionic swap network. This
ansatz was first studied in [149]; it consists of a network of two-qubit
fermionic simulation gates, which take the form

Ufsim(θ, φ) =


1 0 0 0
0 cos(θ) i sin(θ) 0
0 i sin(θ) cos(θ) 0
0 0 0 eiφ

 . (3.72)

The parameters θ and φ are then left free to be optimized during the
circuit. Molecular hydrogen is a simple example of the full electronic
structure Hamiltonian, which takes the form

H =
∑
i,j

ti,jc
†
i cj +

∑
i,j,k,l

Vi,j,k,lc
†
i c
†
jckcl. (3.73)

Solving this Hamiltonian for mid-to-large system sizes (∼ 60+ qubits) with
strong interactions is a key target application for quantum computers [64,
71, 73].

We study three different methods for verified expectation value estima-
tion of the electronic structure Hamiltonian. Following a transformation
from fermionic to qubit operators, Eq. 3.73 we first consider a decomposi-
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tion over single Pauli operators for single-control VPE, as was performed
for the transverse-field Ising model in Sec. 3.5.2. However, in order to
perform control-free VPE on these terms, we require a reference state.
Individual fermionic terms in Eq. 3.73 are number-conserving, so the
fermionic vacuum is a good reference state for these, but this is not the
case for individual Pauli terms. To circumvent this problem, we split
Eq. 3.73 into fermionic terms (summed with their Hermitian conjugate),
and decompose these into Pauli operators. (One can check that the result-
ing Pauli operators commute, and so their time evolution may be easily
fast-forwarded.) The VPE circuits in both of the above methods are 3− 4
times the depth of the original VQE.
Alternatively, by performing a low-rank factorization of the Coulomb

operator, we may write H in the form [142]

H =
∑
i,j

t′i,jc
†
i cj +

∑
l

U†l

[∑
α

E(l)
α c†αcα

]2

Ul (3.74)

= H(0) +
∑
l

H(l), (3.75)

Where the Ul are single-particle basis changes that may be implemented
via Givens rotation circuits. Each such term in this factorization is fast-
forwardable. H(0) is a free-fermion Hamiltonian and may be simulated via
the methods discussed earlier in this section. The interacting factors H(l)

may also be diagonalized by diagonalizing the single-particle t(l)i,j matrices.
One finds

eiU
†
l
H(l)Ult = U†l

∏
αβ

EitEαEβc
†
αcαc

†
β
cβUl, (3.76)

which may be easily implemented on superconducting hardware, as eitEαEβc
†
αcαc

†
β
cβ

is realised by a C-Phase gate. All of the above Hamiltonians, as well as
the fermionic swap network itself, conserve particle number, and so we
may again use the vacuum as a reference state for verified control-free
quantum phase estimation. We do not consider the single-control version
for comparison in this case. The resulting circuit is over ten times as long
as the VQE itself, as we are unable to compile the final basis rotation into
the ansatz.

The mitigation power of VPE differs vastly between the different choices
of decomposition used, and the different noise models chosen. In Fig. 3.6,
we plot the effect of mitigating depolarizing, and amplitude and phase
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Figure 3.6: Mitigation of a 4-qubit fermionic swap network via verified
phase estimation. (Continues on following page)
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Figure 3.6: (continued) Three different VPE protocols are explored — a
low-rank factorization (top row — a1, a2), a control-free number-conserving
Pauli decomposition (middle row — b1, b2), and a single-control Pauli
decomposition (bottom row — c1, c2). Details of all decompositions are
given in the text. The low-rank factorization was studied for the H2
Hamiltonian at the equilibrium bond distance with a swap network of
depth 4, while the other two models were studied at a bond distance of 2
Angstrom with a swap network of depth 6. All protocols are tested under
depolarizing (left column) and amplitude and phase damping (right column)
noise models. In all plots, the median error (crosses) is calculated over 50
different estimations for each error rate using either standard partial state
tomography (red) or using verified control-free phase estimation. Individual
data points (dashes) are additionally shown. For reference, dashed lines
showing linear (red), quadratic (black) and cubic (blue) dependence on
the gate error rate are plotted.

damping channels, using the three decompositions described above. We see
that control-free [Fig. 3.6(a1-b2)] VPE typically outperforms single-control
VPE [Fig. 3.6(c1,c2)], despite the single-control VPE circuits being in all
cases smaller (due to the lack of coherent state preparation). Under a depo-
larizing noise model, both control-free VPE implementations [Fig. 3.6(a1,
b1)] demonstrate a second-order sensitivity to the physical qubit error
rate, consistent with the previous results in Fig. 3.3. In this case, the Pauli
decomposition clearly outperforms the low-rank factorization, which we
attribute to the large reduction (∼ 2−3×) in total circuit depth. However,
although the low-rank factorization repeats the third-order sensitivity to
amplitude and phase damping seen in Fig. 3.3 [Fig. 3.6(a2)], this is not
observed in the Pauli decomposition case [Fig. 3.6(b2)]. We investigate
this further in App. 3.F, and find that this first-order error can be traced
back to the verified estimation of a single term — the two-body interaction
term. We attribute this to the fact that the time evolution circuit for
this term breaks number conservation (which is not the case for any other
term in the sum), which makes it more susceptible to amplitude damping
noise. Understanding this feature in detail, and determining whether
better circuit optimizations exist, are clear targets for future research. In
any case, all three implementations of VPE studied show at least an order
of magnitude improvement compared to partial state tomography, and in
some cases up to three orders of magnitude improvement, demonstrating
the power of this technique.
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3.5.4 Sampling costs

In a realistic experiment, direct estimation of any expectation value requires
repeatedly re-preparing the target state and measuring in an appropriate
basis to accumulate statistics on the probability of seeing a given 0 or 1
measurement. In verified phase estimation, this repetition must be per-
formed instead on the control qubit (for single-control) or target qubit (for
control-free) to accumulate the phase function. Re-preparation is necessary
between subsequent measurements, as such a measurement collapses the
global wavefunction, erasing the information about the probability to
be estimated. This implies that each repetition carries substantial cost,
and the rate of convergence of error estimation is a critical bottleneck in
any variational algorithm. Although one might expect quantum phase
estimation to speed up this estimation (which has been proposed previ-
ously [139]), this is only the case when one is estimating eigenvalues of the
target Hamiltonian in a specific QPE instance. We wish to divide up our
Hamiltonian for fast-forwarding purposes, and in most cases the resulting
terms will not be simultaneously diagonalizable, so no set of mutual eigen-
states will exist; instead, the results of Sec. 3.3.3 will hold. Furthermore,
as our expectation value estimation requires to sum over multiple different
amplitudes, we should not expect this to improve over the cost of partial
state tomography (which requires non-commuting terms to be measured
on separate preparations of the state). The error in expectation value
estimation will further depend on the type of classical post-processing
used.
In Fig. 3.7, we compare the convergence of two types of classical post-

processing to that of standard partial state tomography. We perform
this simulation on the 4-spin VHA-TFIM system studied in Fig. 3.4
and Fig. 3.5, on a representative point in the spectrum (the error-free
variational minimum). We do not perform any measurement grouping
or parallelization strategies for either method, and instead report our
results as a function of the number of measurements per Pauli operator.
The first method (green) assumes knowledge about the eigenvalues of
the fast-forwarded Hamiltonians, in which case one need only fit the
amplitudes, while the second (blue) first estimates the eigenvalues using
Prony’s method before fitting the amplitudes to the resulting signal. (We
compensate for the presence of spurious phases in Prony’s method by a
slight adjustment described in App. 3.C.) All methods of estimation are
seen to converge at a rate ε ∼M−1/2, where ε is the estimation error and
M is the number of samples taken.
We see that using the prior knowledge of the phases gives a significant

102



3.6 Conclusion

3

advantage in convergence, with the resulting error rate being almost an
order of magnitude worse when using Prony’s method. This advantage
persists in the presence of a depolarizing channel (1% error rate), although
the convergence of all methods flattens as they approach the sampling-
noise-free estimation value. We note that both classical post-processing
methods converge to the same result here, as expected. It is unclear
whether the good overlap between the unverified circuit and the phase
fitting method is due to them both achieving a lower bound for convergence
or just coincidence. Further investigation here would be a good target for
future work. The addition of noise makes convergence more costly. This
increase can be bounded below by removing the fraction of experiments
where at least one error has occurred (as we are at best effectively removing
these results). Confirming this trend would also be a good target for future
work.

3.6 Conclusion
In this work, we presented a new method for error mitigation, based
on verification of the system register in a single-control quantum phase
estimation routine. We further extended this method to a scheme for
verification of control-free quantum phase estimation. By writing a complex
Hamiltonian as a sum of fast-forwardable parts and using this technique to
estimate the expectation value of each part, this becomes a powerful error
mitigation tool for near-term experiments such as variational algorithms.
Errors that take the system away from the small verified subspace do
not affect the mitigated QPE results (at the cost of requiring additional
repetitions of the circuit). We performed numerical studies of this error
mitigation capability of the verification protocol on three different systems,
finding the suppression of all single depolarizing errors when a Givens
rotation circuit or a fermionic swap network prepare random states of
a small fermionic system. The suppression is further magnified in the
presence of amplitude and phase damping, resulting in a gain of up to four
orders of magnitude in accuracy. For a simulation of the transverse-field
Ising model the error suppression is less pronounced. However, we find
that variational optimization improves the error mitigation to a gain in
accuracy of about 50-fold. We further demonstrated that the combination
of variational optimization and verification mitigates against constant
control error (which is not naturally mitigated by the verification itself).
However, we found that the choice of post-processing technique in the
classical post-processing may affect the estimation error by a factor of 10
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Figure 3.7: Convergence of the estimation of a single point in a 4-site
transverse-field Ising model with the number of samples taken, using
verified phase estimation processed either with Prony’s method (blue) or
by fitting known phases to the phase function (green), or standard partial
state tomography (red) on individual Pauli terms. (Left) convergence in the
absence of error. (Right) convergence in the presence of 1% depolarizing
error per qubit per moment. In each subfigure we plot the median energy
error (crosses and lines) over 200 simulations, which are plotted themselves
behind (faint dashes).

in the presence of sampling noise.
Though verified phase estimation as presented already appears to be

one of the most powerful error mitigation techniques available to NISQ-era
quantum computing, further avenues for optimization exist. The wide
range of possible options for verification, how to divide the Hamiltonian,
and classical post-processing method all provide metaparameters which
we have not yet determined how to optimize for any specific problem.
Furthermore, circuits which quickly scramble errors would appear to make
verification more reliable. Whether this observation can be used for mean-
ingful optimization is a clear target for future work. Similarly, as errors
need to have the instantaneous state as a near-eigenstate to not fail veri-
fication, the errors that verified phase estimation is most-susceptible to
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must commute, and could potentially be corrected with a classical error
correcting code. As these codes require much less overhead than full-blown
QEC, this may be a practical method to ensure universal suppression of
single-qubit errors. Future work could also investigate whether verified
phase estimation may be combined efficiently with other error mitigation
techniques. More generally, it would be timely to benchmark the zoo
of error mitigation techniques against one another, and determine which
combination of techniques works best in a range of situations.

3.A Error analysis
Let us formalize the ideas outlined in Sec. III.C of the main text by
considering how the verified and unverified Hilbert spaces H(v) and H(f),
and the verified and unverified ensembles ρ(v) and ρ(f) within them, evolve
over the course of a noisy quantum circuit. (We remind the reader here
that ρ(v) and ρ(f) are not normalized, hence our use of the word ’ensemble’
rather than ’state’.) We will then attempt to provide some mechanisms
for the observed scaling laws in Sec. V of the main text. At the end of the
VPE circuit, the verified Hilbert space H(f) is spanned by the two verified
basis states. In single-control VPE, these are |0〉|0〉 and |1〉|0〉, while in
control-free VPE these are |0〉 and |~1T〉. Let us label these |0v〉 and |1v〉
respectively, and then we may define the verified Hilbert space as

H(v) = Span{|0v〉, |1v〉}, (3.77)

and the verified ensemble as

ρ(v)(t) = Pvρ(t)Pv, Pv = |0v〉〈0v|+ |1v〉〈1v|. (3.78)

The system state ρ here is the state at the end of the VPE circuit, let
us now consider how the system evolves to get here. This evolution is not
a function of the simulated time t, as we may use entirely different circuits
to estimate the phase function g(t) and g(t′). Instead, we must frame the
evolution of the state on the quantum device over the course of the VPE
circuit in terms of the device time τ . That is, let us fix t, and assume
that the circuit that implements U = eiHt is split into a set of discrete
moments U(τ) (with the last moment occuring at time τmax),

U =
τmax∏
τ=0

U(τ), (3.79)
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where each moment consists of a set of gates acting in parallel

U(τ) =
∏
i

U(τ)i. (3.80)

This is how circuits are represented in the cirq quantum programming
framework [102], and is a good way of approximating the behaviour of a
real quantum circuit.

To best understand how noise and verification work together, we must
move to the interaction picture, or rather a rotating reference frame. In the
Schr odinger picture, the system begins entirely within H(v), as in all cases
it is initialized in |0v〉 = |0〉 and immediately rotated to 1√

2 (|0v〉+ |1v〉). It
then evolves out of H(v) as we prepare, evolve, and un-prepare the system,
even in the absence of error. However, for us it is more helpful to consider
the states that will be rotated into H(v) at the end of the circuit. This
may be achieved by re-defining the verified basis states in the reference
frame

|0v〉 →

(∏
τ ′>τ

U(τ ′)
)−1

|0v〉 (3.81)

|1v〉 →

(∏
τ ′>τ

U(τ ′)
)−1

|1v〉. (3.82)

(This a slightly non-standard choice of reference frame, as we are shifting
backwards in time from the final state, rather than forwards in time from
the initial state, but it makes our error analysis far easier.) In the absence
of error, this is the Heisenberg picture: our system remains in the state

ρ = |ρ〉〈ρ| (3.83)

|ρ〉 = 1√
2
|0v〉+ g(t)√

2
|1v〉+

√
1− |g(t)|2

2 |ρ(f)〉, (3.84)

throughout the entire circuit. Here |ρ(f)〉 is the fraction of the state that
will eventually fail verification —

ρ(f) = |ρ(f)〉〈ρ(f)|. (3.85)

(Recall here that |ρ(f)〉 6= 0 even in the absence of noise, but this fraction of
the state does not contribute to the phase function — 〈ρ(f)|Xc+iYc|ρ(f)〉 =
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0.) We may project our system at any device time τ into the verified
Hilbert space via Eq. 3.78, but with the basis states in their rotating
reference frame (Eq. 3.81 and Eq. 3.82).

Noise may be added to the above by treating it as a perturbation and
switching to the interaction picture. Without loss of generality, we may
say the effect of noise is to shift the unitary U(τ) at each moment

U(τ)→ RU(τ)(1− pτ + pτEτ ), (3.86)

where RU is the process map associated with a unitary U

RU [ρ] = U†ρU, (3.87)

Eτ is the process map associated with errors during the moment τ , and
pτ is the probability of any such errors occurring. In the interaction
picture, the action of the circuit has been shifted into our basis states, and
U(τ) = 1. So, we may write our final state in the presence of error as

ρ(err) = 1
N

{
ρ+

∑
τ0<τ

p′τ0
Eτ0 [ρ]

+
∑

τ1<τ0<τ

p′τ0
p′τ1

Eτ0 [Eτ1 [ρ]] + . . .

}
, (3.88)

where N is a normalization coefficient

N =
∏
τ

1
1− pτ

, (3.89)

and p′τ are the rescaled probabilities

p′τ = pτ
1− pτ

. (3.90)

If desired, one can recognise this also as a discrete form of the well-known
time-ordered integrals in quantum mechanics — a time-ordered sum

ρ(err) = 1
N
T exp

(∑
τ

p′τEτ

)
[ρ], (3.91)

where T is the time-ordering operator. Our projection onto the verified
subspace is linear, so we may consider it on each of the individual terms
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in the sum. Assuming p′(τ) is small for all τ , the first-order corrections to
ρ(v) occur from errors Eτ during a single timestep. These corrections take
the form

Pvp
′
τEτ [ρ]Pv = p′τ

(
p0,τ

1
2g

(err)
τ (t)

1
2g

(err)†
τ (t) p1,τ

)
, (3.92)

where

p0,τ = 〈0v|Eτ [ρ]|0v〉 (3.93)
p1,τ = 〈1v|Eτ [ρ]|1v〉 (3.94)

g(err)
τ (t) = 〈1v|Eτ [ρ]|0v〉 (3.95)

The off-diagonal element in this matrix gives the contribution to the phase
function g(t)

g(t)→ 1
N
g(t) + 1

N
∑
τ

p′τg
(err)
τ (t). (3.96)

One may generalize this to higher-order terms. For example, the second-
order contribution to the error takes the form

1
N

∑
τ0<τ1

p′τ0
p′τ1
〈1v|Eτ1 [Eτ0 [ρ]]|0v〉 (3.97)

The mitigation power from verification requires two conditions: that the
dependence of the normalization N on the simulated time t is simple, and
that the off-diagonal error contributions (Eq. 3.95) are small. We expect
both conditions to often be the case. The positivity of Eτ [ρ] implies that

g(err)
τ + p0,τ +

2N−2∑
n=1
〈ρ(f)
n |Eτ [ρ]|0v〉 ≤ 1, (3.98)

where |ρ(f)〉 is an appropriately chosen basis for H(f). On average all terms
are equally-weighted, so g(err)

τ ∼ 2−N . As such, negligible g(err)
τ should be

the norm rather than the exception; we need reason to expect that the error
channel Eτ will not scatter us out of the verified subspace. If g(err)

τ = 0,
the effect of Eτ on g(t) occurs via the damping by N , which itself may
depend on t. However, N depends only on the rate at which errors occur,
and is oblivious to their specific form. If a Hamiltonian is fast-forwardable,
eiHt may be implemented in time constant in t. Then assuming a constant
error rate per moment of the circuit, our phase function is dampened by a
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constant amount,
gerr(t) = 1

N
g(t), (3.99)

which may be corrected for by renormalization (Eq.30 of the main text). If a
Hamiltonian is not fast-fowardable, eiHt must take real time τmax(t) = O(t)
to simulate to constant error. Assuming this is the case, and that we have
a constant error rate per moment of the circuit, the damping from each
possible error Eτ is multiplicative, and our estimation takes the form

gerr(t) = e−t/T1g(t). (3.100)

Here, T1 is defined as the (simulated) time t over which enough errors E
have accumulated that

1
N (τ) (E) = e−1. (3.101)

This constant damping may be considered an imaginary shift to the eigen-
values Ej ; Ej → Ej + 1

T1
. It may be removed by classical postprocessing

techniques [124, 130, 137]. However, the shrinking of the signal increases
the sampling requirements to estimate g(t) exponentially in t.
Although random error channels are exponentially suppressed by veri-

fication (following Eq. 3.98), realistic error models are biased, and may
apply undesired phases to gerr

τ (t) instead of setting it to 0. The density
matrix in Eq. 3.92 is not normalized, but it must be positive, which implies

|g(err)
τ |2 < p0,τp1,τ

p0,τ + p1,τ
. (3.102)

This means that errors must either fail to scatter both |0v〉 and |1v〉, or
rotate between these states and the failed state |ρ(f)〉. When control-free
methods are used, |0v〉 is separated from |1v〉 and |ρ(f)〉 by highly non-local
excitations, which are non-physical error channels. However, when single-
control methods are used, |0v〉 is coupled to |1v〉 and |ρ(f)〉 by control
qubit errors. These control qubit errors deform the Bloch sphere defined
by |0v〉 = |0〉|0〉 and

g(t)|1v〉+
√

1− |g(t)|2|ρ(f)〉 = |0〉|~1〉. (3.103)

When this deformation is asymmetric around the z-axis, or a rotation,
g(t) may be quickly corrupted4. However, symmetric noise (such as a

4We have observed this for instance due to T1 decay on the control qubit between
final rotation and readout. However, we can correct for this easily by measuring in
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depolarizing channel, or T1 or T2 channels during the bulk of the circuit)
can be seen to simply dampen g(t) in an identical manner to N . That
is, the dampening will depend only on the rate at which these errors
occur. Such dampening will be cancelled by renormalization, as observed
in Fig. 3.9.
Errors that do not rotate between |0v〉 and |1v〉, but still contribute

non-trivially to g(err)
τ (t) to first order must have both |0v〉 and |1v〉 as

approximate eigenstates of the error channel. This suggests a reason why
control-free VPE is more noise-robust to noise than single-control VPE:
the starting and reference states are very different when looked at locally,
which makes it less likely that a single local error will have both states
as near-eigenstates. It also suggests a reason why we might expect the
suppression of errors to only second-order: if the same error occurs in
subsequent moments (in a local frame), and the basis states |0v〉 = |0v(τ)〉
have not evolved significantly between these moments, the second error
will almost (but not completely) cancel out the first, driving the system
back into the verified subspace in an uncorrectable manner. This implies
that a circuit which more quickly scrambles the basis states |0v〉 and |1v〉
between moments should be less susceptible to error than one where the
states evolve slowly. Understanding the dynamics of these noisy circuits
in more detail is a clear target for future work.

3.B Effect of parallelizing QPE

In this appendix we investigate the phase function obtained during the
parallel estimation of multiple commuting Hamiltonians, and demonstrate
that the resulting expectation values from this estimation are not affected
by the parallelization and verification process combined. Let us consider
the case where we have two commuting Hamiltonians H0, H1. In this
case, we may write a simultaneous eigenbasis |Ej〉 for both Hamiltonians
— Hb|Ej〉 = E

(b)
j |Ej〉. Let |ψs〉 =

∑
j aj |Ej〉, and we may calculate the

controlled-time-evolved global state |Ψ(t)〉 to be∑
j

aj(|0〉+ eiE
(0)
j
t|1〉)(|0〉+ eiE

(1)
j
t|1〉)|Ej〉. (3.104)

the opposite basis 50% of the time
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Tracing out control qubit 1 obtains the following reduced density matrix
for the system + control qubit 0∑

j,j′

aja
∗
j′

[
1 + e

i
(
E

(1)
j
−E(1)

j′

)]

×
[(
|0〉+ eiE

(0)
j
t|1〉
)
|Ej〉〈Ej′ |

(
〈0|+ e

−iE(0)
j′
t〈1
)
|
]
. (3.105)

The issue here then comes from this additional factor
[
1 + e

i
(
E

(1)
j
−E(1)

j′

)]
at the front. Note that (as we should expect) this goes away upon tracing
out the system register, as the trace over |Ej〉〈E′j | yields (dropping all
additional terms in the above expression).∑

l

〈El|Ej〉〈Ej′ |El〉 = δj,j′ (3.106)

However, post-selection implies that we take the expectation value with
regards to |ψs〉, obtaining

〈ψs|Ej〉〈Ej′ |ψs〉 = a∗jaj′ . (3.107)

The off-diagonal element of the control qubit density matrix can then be
found to be

1
2
∑
j,j′

|aj |2|aj′ |2
(

1 + e
i(E(1)

j
−E(1)

j′
)t
)
eiE

(0)
j
t (3.108)

= 1
2
∑
j

|aj |2eiE
(0)
j
t

+ 1
2
∑
j

|aj |2ei(E
(1)
j

+E(0)
j

)t
∑
j′

|aj′ |2e
−iE(1)

j′
t
. (3.109)

One can see that this is a linear combination of products of the phase
functions of H0, H1, and H0 + H1. In theory the eigenvalues E(0)

j and
amplitudes squared |aj |2 are still present in this function, and could be
extracted via classical postprocessing. However, the 1

2 coefficient implies
we need 4 times as many single-shot experiments for the estimation of
|aj |2 to the same error (compared to a standard QPE experiment for H0).
Extending this to L > 2 summands, the off-diagonal for the sth control
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qubit can be written:

1
2L
∑
j,j′

|aj |2|aj′ |2eiE
(s)
j
t
∏
s′ 6=s

(
1 + e

i(E(s′)
j
−E(s′)

j′
)t
)
, (3.110)

and we see that the signal corresponding to ‘just’ g(t) is exponentially
small. However, all is not lost. Inspecting the form of Eq. 3.110, we see
that we may expand this as a sum of 2LJ2 separate (possibly degenerate)
spurious energies F (s)

v,j,j′ , indexed by a L-bit binary integer v and the
original j and j′ indices

F
(s)
v,j,j′ = E

(s)
j +

∑
s′ 6=s

vs′(E(s′)
j − E(s′)

j′ ), (3.111)

with corresponding (v-independent) spurious amplitudes

Bj,j′ = 1
2L |aj |

2|aj′ |2. (3.112)

(Note that as stated these energies are automatically at least doubly-
degenerate as vs does not appear in the equation for F (s)

v,j,j′ .) If we then
calculate the weighted average of the F (s)

v,j,j′ (which is what we would do if
we processed the signal as if the parallelization had not occurred), we find∑

v,j,j′

Bj,j′F
(s)
v,j,j′ = 1

2L
∑
v,j,j′

|aj |2|aj′ |2E(s)
j

+ 1
2L

∑
v,j,j′

Bj,j′
∑
s′ 6=s

vs′E
(s′)
j

− 1
2L

∑
v,j,j′

Bj,j′
∑
s′ 6=s

vs′E
(s′)
j′ . (3.113)

As j and j′ are just dummy indices, and as Bj,j′ = Bj′,j , the last two
terms cancel, and as

∑
v = 2L and

∑
j′ |aj′ |2 = 1, we have∑

v,j,j′

Bj,j′F
(s)
v,j,j′ =

∑
j

|aj |2E(s)
j = 〈Hs〉. (3.114)

This implies that expectation values may be extracted via parallel verified
phase estimation, even though the signal itself may be significantly more
complex. For the case of Pauli Hs operators, the spectrum F

(s)
v,j,j′ is highly
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degenerate — it is the set of odd integers {−2L + 1,−2L + 3, . . . , 2L −
3, 2L− 1}. (This parallels the spectrum of a spin- 2L−1

2 operator, which
one might not expect following Hund’s rules for the combination of spin- 1

2
systems, which is curious.) This must be taken into account when signal
processing by amplitude-fitting, as one would otherwise miss components
of the energy. However, the overhead for this is only linear in the number
of simultaneously-estimated terms.

3.C Compensation for spurious eigenvalues
due to sampling noise

When quantum phase estimation is used to estimate eigenvalues as well as
amplitudes to sum together to give an expectation value (Eq. 53 of the
main text), finite sampling noise introduces a small bias to this estimation
that may be cancelled. This bias does not come from the QPE itself. The
sampling noise has a white spectrum which is invariant under a Fourier
transform, so classical post-processing of a noisy spectrum yields a set of
spurious eigenvalue/amplitude pairs evenly distributed around the circle.
However, in order to evaluate Eq. 53 of the main text, we have to make a
branch cut in this circle. The resulting terms then average to bias the signal
by a term ∆bias = 〈H〉 − 〈H〉 towards the center of the resulting region.
(Here, 〈H〉 is the true expectation value, and 〈H〉 that measured naively.)
For example, if we assume all eigenvalues Ej ∈ [−π, π], this biases the
signal towards zero. This bias is dependent on both the number of steps
K, and the number of samples M used in the QPE process. Numerically,
we find (Fig. 3.8):

∆bias = −〈H〉 × (K − 2) 1
2M−

1
2 . (3.115)

Inverting this obtains

〈H〉 = 〈H〉
[
1 + (K − 2) 1

2M−
1
2

]−1
, (3.116)

which is used in the estimation in Sec. V.D.
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Figure 3.8: Predicted (Eq. 3.115) vs found bias from estimating expectation
values using Prony’s method.
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3.D Demonstration of immunity to control
noise in single-control VPE

One might expect that the discrepancy between the scaling of the er-
ror mitigation power of the control-free and single-control circuits seen
throughout this work comes from accumulation of errors on the control
qubit alone. In this appendix, we show that this is not the case. In Fig. 3.9,
we see that removing all errors on the control qubit does little to reduce
the total error rate (black crosses), whilst a model with noise only on the
control qubit achieves an error limited by our use of Prony’s method for
post-processing. In App. 3.A we argue that the increased error suppression
from control-free VPE comes from the large separation between reference
and starting states. Errors will be removed by verification unless they
maintain coherence between these states, which these error models fail to
do.

3.E Use of a variational outer loop to
mitigate constant unitary noise

One of the main uses of expectation values 〈H〉 in quantum experiments is
to use them as a cost function in a variational outer loop. Optimizing the
parameters ~θ in a preparation unitary Up(~θ) to minimize the expectation
value of the prepared state |Ψ(~θ)〉 = Up(~θ)|0〉 then gives an approximation
for the true ground state of H. The variational optimization process
is itself known to be robust against certain types of error [82, 144], in
particular control errors. These occur when a signal meant to implement
a gate G(θ) either drifts or is distorted and instead implements G(θ′). As
this error is often repeated throughout an experiment, i.e. every instance
of G is miscalibrated by a similar amount, it will be repeated throughout
the experiment. Verification can only correct single errors, and as such
is not targeted for this type of noise. By contrast, the dominant source
of errors in a VQE are often the incoherent errors that verification is
designed to target. As such, verification and variational optimization
provide cumulative mitigation by targeting sources of error the other lets
through.

To demonstrate the combined mitigation effects, we use verified control-
free phase estimation of a Givens rotation circuit in the inner loop of a
variational quantum eigensolver. In order to prevent oversimplifying the
problem, we add a next-nearest-neighbour coupling and on-site potential
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Figure 3.9: Mitigation of the same 4-qubit VHA circuit as in Fig. 4 of the
main text, but with either depolarizing noise on only the system register
(black) or only on the control qubit (blue). This is compared with the
error in estimation using partial state tomography instead of VPE (red).
For each dataset, the RMS error (crosses) is plotted over 50 different
estimations for each error rate (with randomly-chosen ansatz parameters),
and individual data points are plotted as dashes behind. For reference,
dashed lines showing linear (red) dependence on the gate error rate are
plotted.

to the Hamiltonian in Eq. 66 of the main text, yielding

H = H1 +H2 (3.117)

H1 = −t1
N∑
j=1

c†jcj+1 + h.c. (3.118)

H2 = −t2

 N∑
j=1

c†jcj+1 + h.c.+
N∑
j=1

c†jcj

 , (3.119)

and estimate expectation values for H1 and H2 separately. Here, we again

116



3.E Use of a variational outer loop to mitigate constant unitary noise

3

Figure 3.10: Error in estimating the ground state energy of a free-fermion
system (Eq. 66 of the main text) of 4 fermions (on four qubits), using
control-free verified phase estimation and a VQE. Noise model is a mixture
of amplitude and phase damping and constant two-qubit control error
(details in text). Median absolute errors for both verified estimation (black
crosses) and standard partial state tomography (red crosses) are calculated
over 10 different optimization attempts. Individual simulations are plotted
behind (faint dashes) Each optimization started from a different parameter
set and had different control rates set. Linear (red dashed) and cubic (blue
dashed) lines are shown as guides.

take periodic boundary conditions for a N = 4-site system (i.e. all sums
in indices are taken modulo 4), and fix t1 = 1, t2 = 0.5. This ensures that
the ground state of the system is neither a ground state of H1 or H2 (in
which case the compiled variational ansatz and basis rotation would cancel
to become an identity circuit). For a simple model combining control
error and incoherent noise, we fix p, draw a random offset xi ∈ [− p

π ,
p
π ] for

each two-qubit ISWAP gate, and decompose the variational circuit into
ISWAP1/2 gates. (Though not terribly well-known, the ISWAP1/2 gate is a
good native hardware gate for superconducting qubits, and decompositions
of other gates into ISWAP1/2 gates are known [3].) Then, throughout
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the circuit, we implement ISWAP1/2+xi gates in place of ISWAP1/2 gate.
We additionally add amplitude and phase damping noise at a rate p

2 . In
Fig. 3.10, we plot the result following optimization via the COBYLA
algorithm implemented in scipy [152], in the absence of sampling noise.
We see that the verification circuit is insensitive to the incoherent noise
as expected, and behaves similarly to the effect of amplitude and phase
damping alone (Fig. 3(right) of the main text).

3.F Term-wise comparison of VPE
performance

To attempt to further understand the ability of VPE to mitigate errors,
in this appendix we consider the effect of estimating different types of
terms on the same preparation circuit. We consider the fermionic swap
network used in Sec.V.C of the main text to prepare states for a H2
Hamiltonian. When this was split into number-conserving Pauli operator
sums (Fig.6(2a-2b) of the main text), different circuits had to be used to
estimate individual terms. In Fig. 3.11, we show the result of estimating
the expectation values of two of the individual terms used in the control-
free Pauli operator decomposition under an amplitude-damping noise
model (Fig.6(2b) of the main text). (Recall that this figure demonstrated
first-order sensitivity to this error model, whilst the low-rank factorization
demonstrated a third-order sensitivity to the same model.) We see that
the Hs = Z0Z1 term (left plot) shows the cubic dependence on error rate
observed in previous amplitude-damping experiments, whilst the two-body
scattering term (right plot)

Hs = X0Y1Y2X3 + Y0X1X2Y3 −X0X1Y2Y3 − Y0Y1X2X3, (3.120)

does not. This two-body scattering term is the only term contributing to
the first-order decay of the VPE estimation observed in Fig.6(b2) of the
main text — all other terms in the decomposition display similar decay to
Fig. 3.11(left). This indicates that the errors to which we are first-order
sensitive occur during the circuit implementation of eiHst, and not the state
preparation. The circuit implementing eiHst for the two-body scattering
term is the only such circuit that does not conserve number throughout.
(Instead, this evolution is achieved in two steps: a basis transform of
XY, Y X → IZ, ZI on pairs of qubits, ZZ rotations between the pairs
and uncomputing, and then a basis transform of XX,Y Y → IZ, ZI on
pairs of qubits, ZZ rotations between the pairs, and uncomputing again.)
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Finding decompositions of these circuits more amenable to VPE is a clear
target for future work.

Figure 3.11: Expectation value estimation of two individual Hs terms
from the control-free number-conserving Pauli operator decomposition of
the H2 Hamiltonian studied in Fig.6 of the main text on states prepared
by a fermionic swap network. The two terms here comprise part of the
sum (Eq.6 of the main text) for the expectation value of Fig.6(2b) of the
main text — but are studied here without pre-factors (i.e. ‖Hs‖ = 1).
Each figure is labeled with the studied term, and guide-lines (dashed red
and blue) are given to show observed scaling laws. Data presented is
the median (crosses) over 50 individual data points (faint dashes) of the
absolute error in estimation using VPE (black) and standard partial state
tomography (red).

3.G Comparison to symmetry verification
In this section we present a comparison of verified phase estimation and
symmetry verification on a depolarizing noise model, using the experiment
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in Fig.6(b1) of the main text. In order to improve performance, we choose
to verify on the number operator

∑
i Zi, instead of the parity

∏
i Zi. To

perform symmetry verification we take the quantum state prepared by the
circuit, and directly project this into the number-conserving space. (In
a real experiment simultaneous readout of the number operator and all
terms is possible [103], but requires a slight addition of circuitry, which
would increase the final error slightly.) In Fig. 3.12, we observe that while
symmetry verification reduces error by around an order of magnitude, it
does not provide the same asymptotic improvement as VPE. We also note
that VPE improves over symmetry verification at all error rates, despite
having circuit over 3 times as deep. This is to be expected; as phase (Zi)
errors commute with the number operator, these cannot be detected by
symmetry verification and so contribute at first order to the final error
rate.

Figure 3.12: Comparison between verified phase estimation and symmetry
verification. Both techniques are compared on the estimation of the
expectation value of the electronic structure Hamiltonian for H2 under a
depolarizing noise model. Verified and unverified results are from the same
simulated experiment as Fig.6(b1) of the main text. Although symmetry
verification improves the energy error by around a factor 10, it still exhibits
first-order scaling, as it cannot correct for phase (Z) errors during the
experiment.
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