
The power of one qubit in quantum simulation algorithms
Polla, S.

Citation
Polla, S. (2024, February 22). The power of one qubit in quantum simulation
algorithms. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/3719849
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3719849
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3719849


CHAPTER 1

Introduction

1.1 Preface
Quantum theory, the mathematical framework that governs the behavior
of elementary physical systems, stands as a cornerstone of modern science.
While its first principles allow modeling complex systems like molecules
and materials, managing the complexity and predicting emergent behaviors
demands additional tools [1]. Analytical approximations played a key role
in early successes of nuclear, atomic, and solid-state physics; together with
computational simulation techniques they now drive the fields of quantum
chemistry and material science. Since the 1980s quantum computers have
been proposed as an additional tool, promising access to simulations
impossible for classical methods [2]. Recent years saw the realization of
the first programmable quantum devices that can outperform classical
computers in benchmark tasks [3–7], but lack practical applications yet.
The next quantum computing milestone is demonstrating the ability to
solve genuinely useful problems beyond the capabilities of other tools.
Achieving this requires hardware enhancements, but also research on
pertinent target problems, and the development of quantum algorithms that
exploit the hardware to solve the problem. The study of complex quantum
systems offer a variety of challenging problems, supported by heuristic
insight from physics: a valuable resource in the effective development of
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quantum algorithms.
This thesis collects the proposals of quantum algorithms developed in this

context, tackling some known hurdles in simulating complex systems with
near-term quantum devices. The studied techniques focus on questions
like the preparation of ground states of natural systems, the extraction of
information about observables from quantum states, and and the resilience
of quantum simulations to noise. A red line connecting the proposed
algorithms is the focus on the support which a single qubit – the smallest
unit of quantum information – can provide in implementing a variety of
tasks in quantum simulation.
The remainder of this chapter is structured as follows: Section 1.2

provides an overview of key concepts in quantum information processing,
discussing the advantages and limitations of quantum devices. Section 1.3
introduces quantum simulation by examining the computational problems
naturally defined by a Hamiltonian description of a quantum system.
Section 1.4 offers a high-level description of some significant quantum
simulation algorithms relevant to this thesis. Section 1.5 delves deeper
into a specific quantum simulation target, namely, the study of molecular
systems. Finally, in Section 1.6, we present an overview of the chapters
that constitute the main body of this work.

1.2 Processing quantum information
A state is a specific configuration that a physical system can assume at
some point in time. In classical physics, states are described by variables
taking defined values, such as the position x and velocity ẋ of a cannonball
in Newtonian mechanics, or the ON/OFF state of a transistor in digital
electronics. Conversely, the state of a quantum system can consist of a
superposition of multiple, distinguishable states. In Dirac notation [8]

|ψ〉 = αA |A〉+ αB |B〉+ . . . , |αA|2 + |αB |2 + . . . = 1, (1.1)

where {A,B, . . .} are a set of states that can be distinguished determinis-
tically by a sufficiently precise measurement, each representing a different
set of values of the classical variables that characterize the system. The
state of a quantum switch will then have the form αON |ON〉+αOFF |OFF〉,
while the description of a quantum particle will need one value of αx for
each possible position x.
Consider a system which can assume N distinguishable states. A de-

terministic description of a classical state of such a system just needs to
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identify one out of the N possible states; this information can be encoded
in log2(N) bits of memory. A full description of a quantum state for
the same system will require N − 1 complex amplitudes, each stored to
precision εC in m = 2 log2(ε−1

C ) bits of classical memory. For a composite
system, made up of n elements, the number of total distinguishable states
scales exponentially, i.e. N = O(2n). A classical state of such system can
be described in O(n) bits, but a full representation of the quantum ampli-
tudes requires O(m2n) bits of classical memory. This exponential scaling
quickly makes unfeasible to fully represent quantum states of complex
systems.

In contrast to a classical computer, a quantum device can natively store
and process quantum states of the form Eq. (1.1). Typical quantum devices
are constructed by assembling a number of two-level systems – elements
with two distinguishable states labeled |0〉 and |1〉. Combining n two-level
systems allows to store a quantum superposition of 2n distinguishable
states, or n qubits (a quantum analogue for bits) of quantum information.
Each two-level system stores a qubit of quantum information; each addi-
tional qubit doubles the dimension of the Hilbert space of states available
to the quantum device.

1.2.1 Classical input-output
While quantum theory introduces one significant extension to the concept of
information by allowing for superposition storage, this comes with a notable
limitation. Contrary to a classical state, a single copy of an arbitrary
quantum state cannot be fully characterized by observation. The conversion
of quantum information to classical information implies a loss, typically
associated with the randomness of a measurement’s outcome. Holevo’s
theorem [9] quantifies this, stating the amount of classical information
extracted from a n-qubit quantum state is bounded by n bits. As a
corollary, it is impossible to copy an arbitrary state of a quantum device
(no-cloning), unlike for classical information which can always be observed
and transcribed.

A quantum algorithm needs to ensure that, at the end of the computation,
the quantum state of the device encodes the relevant information in a way
that makes its extraction easy. The whole n qubit Hilbert space can be
used to perform computation, but the output should be encoded in O(n)
bits of classical information. The final measurement performed on the state
needs to be designed such that it can extract the necessary information
from the state as efficiently as possible. In Chapter 4, we explore this
optimization of measurements for the expectation value of observables,
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under a further restriction on the amount of classical information that can
be extracted from the device.

Similarly, the input to any quantum computation – the list of instructions
– should be given in terms of classical information. A common framework
to describe this list of instructions is the quantum circuit model. There,
operations on the quantum memory are described as gates involving a
small number of qubits at a time. Gates are typically unitary operations,
although in some cases it is convenient to consider quantum channels to
model noisy gates or non-unitary gates such as reset (a key element in the
algorithm presented in Chapter 2). The computation is then realized by
applying a sequence of gates (a circuit) to a fiducial initial state.
Another model of computation relevant to this thesis is that employed

by analog quantum simulators. These quantum devices can natively im-
plement the time evolution generated by a Hamiltonian H(θ), function of
parameters θ that can eventually be changed during the computation The
Hamiltonians acts on the whole system at once, but it can be described in
terms of classical information as explained in Section 1.3. In contrast to
the circuit model, here the computation is described by stating the Hamil-
tonian throughout the computation time. Quantum simulators allowing for
general enough Hamiltonian are universal [10]. In fact, gate-based quan-
tum computers are practically realized as specialized simulators, where
each gate is generated by a pre-calibrated time-dependent Hamiltonian.
The term analog quantum simulators tends to be reserved for devices that
can implement a limited set of Hamiltonians, modeling analogously the
evolution of some quantum system of interest.

1.2.2 Noise, error correction and mitigation
All physical processes, including computation, suffer from a certain amount
of noise due to unpredictable perturbations. Classical computers can deal
with noise by storing information redundantly, both at the hardware
level (e.g. using macroscopic bistable systems) and by backing up data.
Redundancy-based error correction cannot be trivially applied in quantum
computation, as quantum information cannot be copied (no-cloning) and
compared throughout the computation. This leads to an accumulation of
noise over the computation, leading to degradation of quantum information
and, ultimately, a success probability that decays exponentially with the
space-time volume of the computation. [11, 12]

Quantum error correction codes aim to protect quantum information by
encoding it in a subspace of logical states, living in a much larger space of
physical states of the device. The logical subspace is engineered to ensure
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that physical noise processes scattering one logical state to the other are
exceedingly rare. For example, in topological codes [13], information is
encoded non-locally in terms of correlations between a large number of
two-level systems (a.k.a. physical qubits). A perturbation can only convert
one logical state into the other by acting on many two-level systems in a
globally-correlated fashion. The probability of such process occurring due
to natural noise is exponentially small in the number of physical qubits.
Non-logical states can be led back to logical states by following the geodesic
defined by error probability, effectively correcting the most-probable errors.

Quantum computation can be made completely fault-tolerant by ensur-
ing information is stored in a large enough logical subspace throughout the
computation (including initialization, gate operations and measurements).
The implementation of a large scale fault tolerant quantum computer is the
only known way towards many key applications of quantum computers, in-
cluding breaking cryptosystems using Shor’s algorithm [14] and performing
challenging chemistry simulations of industrial importance [15]. However,
such a computer requires an underlying physical device of very large scale
(millions of qubits) and with sufficiently small physical error rates, far out
of reach of today’s technologies. Large amounts of resources are being
invested towards the goal of fault-tolerant quantum computing, and the
last two years saw the first small scale proof-of-concept demonstration of
successful error correction [16] and fault tolerant operation of a quantum
device [17]. While defining the timeline to full-scale fault tolerant quantum
computing is not yet possible, even the most optimistic estimates accepted
by the community measure in the order of decades.

Another approach, more adapted to today’s noisy intermediate-scale
quantum (NISQ, [18]) devices, consists in keeping computations short to
prevent accumulated noise to reach a disruptive level. Short computa-
tions are obviously limited in capabilities, but have been demonstrated
to outperform classical devices on benchmark tasks [3–7]. The NISQ
paradigm can be summarized as prepare, sample, repeat, and it focuses
on performing many short-time quantum computations (called circuit
runs or shots), used as subroutines by a classical algorithm. This results
in a hybrid quantum-classical computation, where the usefulness of the
quantum subroutine is typically heuristic. An archetypal category of NISQ
algorithms are variational quantum algorithms, such as the variational
quantum eigensolver [19] described in Section 1.4.4 and considered in many
chapters of this thesis.
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1.3 Targets of quantum simulation

The term quantum simulation, in its most general sense, refers to the use of
a quantum device to study a physical phenomenon through a representative
model. Phenomena happening within an isolated quantum system can
be modeled through the Hamiltonian picture. The Hamiltonian H is a
Hermitian linear operator on the Hilbert space of states, which defines its
dynamics (i.e. how its state changes in time) through the time-dependent
Schrödinger equation

− i ∂
∂t
|ψ(t)〉 = H |ψ(t)〉 . (1.2)

If the system is influenced by a classical environment, the Hamiltonian
could depend on external parameters, possibly changing in time. In the
case of more complex interactions with the environment, describing the
dynamics of the system will require a more complex equation (such as the
Liouville equation, or a Schrödinger equation for a larger model including
the environment). Nevertheless, weak interactions with the environment
can often be studied through linear response theory, with Hamiltonian
eigenstates and dynamics playing a key role.
A system’s Hamiltonian naturally defines a set of natural targets for

quantum simulation: the synthesis of its dynamics (Section 1.3.1), the
preparation of thermal states and eigenstates (Section 1.3.2), and the
measurement of the system’s energy (Section 1.3.3). In this section, we
formalize these primitive target as problems with classical input-output
relations (where one of the inputs is always the Hamiltonian). We define
the size of each problem as the number qubits n defining the model’s
Hilbert space. We require all inputs and outputs to have an efficient
classical description, i.e. be representable in O(poly(n)) bits. When we
require quantum inputs such as a state |ψ〉 or an observable O, we assume
that they are given in terms of an efficient procedure that prepares |ψ〉 or
samples O. All problems are formulated such that output is an estimate
of a defined quantity, accurate to precision ε > 0 with high probability.
These problems are summarized in table 1.1.

A generic Hamiltonian cannot be described efficiently, as the definition
of a Hermitian operator on an n-qubit Hilbert space H requires 22n−1

complex parameters. Natural Hamiltonians aren’t however fully generic,
as they inherit locality from the underlying physics. In local systems, the
Hamiltonian can be described as a sum of local interaction terms hj , each
of which only acts non-trivially on a small Hilbert subspace Hj and as the
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Problem Input Target Output
Dynamics |ψ〉, O, t U(t) Õ : |Õ− 〈ψ(t)|O|ψ(t)〉 | < ε

Gibbs O, T ρT ∝ e−
H
T Õ : |Õ − Tr{OρT }| < ε

Eigenstate O, j |Ej〉 Õ : |Õ − 〈Ej |O|Ej〉 | < ε

Expectation |ψ〉 Expval 〈H〉 Ẽ : |Ẽ − 〈ψ|H|ψ〉 | < ε

Eigenvalue
sampling |ψ〉 Projective

meas. of H
Ẽ : |Ẽ − Ej | < ε,

with prob. pj = | 〈Ej |ψ〉 |2

Eigenvalue
estimation j Ej Ẽ : |Ẽ − Ej | < ε

Table 1.1: Summary of some primitive problems in quantum simulation.
The input of an efficient representation of H and of the required accuracy
ε is implicit for every problem.

1 on the complementary subspace H \Hj1:

H =
J∼poly(n)∑

j

hj ; hj := [hj ]Hj ⊗ 1H\Hj . (1.3)

This description is efficient as long as the number of terms in the sum scales
polynomially J ∼ O(poly(n)) and the dimension of each local Hilbert space
is constant dim[Hj ] ∼ O(1).
The two most common models of locality are illustrated in Fig. 1.1. A

geometrically local system is composed of subsystem arranged in space,
for example in a lattice. Each element can only couple to its geometric
neighbors. As the number of neighbors of each subsystem is bounded by a
constant, the number of couplings we need to describe the Hamiltonian can
only scale linearly in the size of the system. Sometimes it is convenient to
think of subsystems as particles, which can be geometrically delocalized and
can interact with all other particles; in these cases, interactions typically
involve no more than k-particles at a time. This defines an a k-local model,
the number of possible interactions scales as nk (thus still polynomial).
Note that geometric locality is more stringent than k-locality. In both

1This description is only rigorous for local commuting systems (qudits). The action of
a local fermionic Hamiltonian on the Hilbert space is more complex, as fermionic
operators acting on different locations need anticommute. However, the number of
terms that can appear in a fermionic local Hamiltonian remains the same.
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Figure 1.1: Visualization of the Hamiltonian Eq. (1.3) in a 2-dimensional
lattice model (geometric locality) and a two-body interacting particle
model (k-locality).

cases, the Hilbert space on which each interaction acts Hj is composed of
up to a constant number k of subsystems, thus each hj can be defined with
O(2k) parameters (constant in n). Other equivalently efficient descriptions
of sparse Hamiltonians exist; we focus on local models as they mostly
cover the natural systems of interest.

1.3.1 Hamiltonian dynamics
Reproducing the effect of time evolution of a state is the essence of
simulation, in the stricter sense of the term. We refer to this problem
to as Hamiltonian simulation or dynamical simulation. The inputs of
the problem, along with H and ε, are the initial state |ψ(0)〉 := |ψ〉, the
observable O, and the evolution time t. The goal is producing an estimate
Õ of the the expectation value of O on the state |ψ(t)〉 solution of the
time-dependent Schrödinger equation (1.2), up to the required accuracy
accuracy |Õ − 〈ψ(t)|O|ψ(t)〉 | < ε.

Solving Hamiltonian simulation boils down to synthesizing the propaga-
tor U(t), the unitary operator that sends |ψ〉 to |ψ(t)〉. More generally, the
propagator solves the operator-Schrödinger equation, −i∂tU(t) = H(t)U(t).
A quantum algorithm for Hamiltonian simulation needs to define a proce-
dure to construct an approximation of U(t), starting from the description
of the Hamiltonian. In the case of a time-independent Hamiltonian the
target operator is U(t) = e−iHt, which is not a sparse operator (unlike its
generator H).

An example use case of Hamiltonian dynamics is studying the evolution
of a known equilibrium state after an external field quenches (i.e. suddenly
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changes) the system’s Hamiltonian. The synthesis of the evolution operator
U(t) is also an key subroutine in many other simulation algorithms, such
as simulated thermalization (a version of which is studied in Chapter 2),
eigenvalue sampling (Section 1.4.5), quantum-assisted Hamiltonian learning
and many others. Furthermore, any efficient quantum computation can
be encoded in a Hamiltonian simulation problem [2, 20] – in complexity
theory terms, Hamiltonian simulation is BQP-complete.

The first proposal for a procedure to approximately synthesize U(t) on
a universal quantum computer was put forward by Lloyd in 1996 [21],
and it is based on Suzuki-Trotter product formulas [22, 23]. Through this
procedure Lloyd showed that a universal quantum computer can solve
the Hamiltonian dynamics problem for any k-local Hamiltonian efficiently.
The last years saw many proposals of improved algorithms for Hamiltonian
simulation, most of which lead to a significant reduction of the asymptotic
costs. Finally, analog quantum simulators can implement natively the
dynamics generated by some restricted class of Hamiltonian. We expand
on these in Section 1.4.2.

1.3.2 State preparation
Thermal state preparation

A physical system weakly interacting with an environment tends to thermal-
ize, that is to reach an equilibrium state ensemble with a fixed temperature.
Analogously to the classical case, a quantum thermal ensemble distribu-
tion mirrors the Gibbs measure, with the probability of a state decaying
exponentially with the state’s energy divided by the temperature. As the
energy is described by the Hamiltonian H, the density matrix for the Gibbs
state at temperature T is defined by

ρT := 1
Z(T )e

−HT , (1.4)

where Z(T ) := Tr
[
e−H/T

]
is the partition function which normalizes the

density matrix. As most systems in Nature are found in a thermal equilib-
rium state, studying the properties of thermal states has intrinsic interest.
Characterizing thermal state properties as a function of temperature and
other external parameters can lead to the identification of transitions
between phases of matter, whose study is of special importance to material
science.
The inputs to the problem of thermal state preparation, along with H

and ε, are the observable O and the temperature T . The goal is producing
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an estimate Õ of the the expectation value of O on the Gibbs state, up to
the required accuracy accuracy |Õ − Tr[ρTO]| < ε. To solve this problem,
one can attempt to prepare an approximation of the Gibbs ensemble ρT
on the quantum device.
Thermal state preparation algorithms include methods that simulate

thermalization, by coupling the model system with a model bath. The algo-
rithm we introduce in Chapter 2 fits in this class, although we specifically
explore its application to ground state preparation. Other algorithms for
thermal state simulation include a quantum version of metropolis sampling
[24], variational approaches [25, 26], and filtering-based techniques [27].

Eigenstate preparation

The eigenstates of the Hamiltonian represent the equilibrium pure states of
an isolated system, left invariant by time evolution. Each eigenstate |Ej〉
has a well-defined energy Ej , matching an eigenvalue of the Hamiltonian
and satisfying the time-independent Schrödinger equation

H |Ej〉 = Ej |Ej〉 . (1.5)

We assume an ordering of the eigenvalues Ej < Ej−1 without loss of
generality.
The lowest-energy eigenstate denoted |E0〉 or the ground state, holds

particular significance, as it represent the zero-temperature limit of the
thermal state Eq. (1.4). When the lowest excitation energy, also known as
the "ground-state gap" of a system (∆GS = E1 −E0), significantly exceeds
the temperature of the environment T , thermal states closely resembling the
ground state naturally emerge. For instance, this is the case for electrons
within a molecule or semiconductor, where typical excitation energies are
on the order of 1eV (equivalent to 104K, two orders of magnitude higher
than room temperature). Simulating the electronic ground state in these
systems allows for the prediction of molecular and material properties in
their natural state. Moreover, low-lying excited eigenstates are relevant to
the study of spectroscopic properties. Further insights into the quantum
simulation of molecular ground states are provided in Section 1.5.1.

The inputs to the problem of eigenstate preparation, along with H and ε,
are the observable O and the eigenvalue index j. The goal is to produce an
estimate Õ of the the expectation value of O on the j-th eigenstate, up to
the required accuracy accuracy |Õ− 〈Ej |O|Ej〉 | < ε. Solving this problem
requires the quantum simulation to aim at preparing an approximation of
the eigenstate |Ej〉.
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Many algorithms for eigenstate preparation have been proposed, each
employing very diverse techniques and heuristics, due to the intrinsic
difficulty of the problem. The variational quantum eigensolver (Sec. 1.4.4)
and adiabatic state preparation (Sec. 1.4.3) are important heuristic tech-
niques for eigenstate preparation, discussed in more detail in the next
section. Projective variants of quantum phase estimation (Sec. 1.4.5) can
also be used for heralded preparation of eigenstates. Other ground state
preparation techniques include among others simulated thermalization (a
variant of which is studied in Chapter 2), and various flavors of quantum
imaginary time evolution [28, 29].

1.3.3 Energy measurements
The Hamiltonian H serves as an observable representing the system’s
energy. In the preceding sections, we assumed the presence of an observ-
able O as input, along with an efficient method for its sampling. This
section addresses the challenge of implementing procedures to measure
the Hamiltonian observable, starting from its efficient classical description.
There are two distinct tasks, both referred to as energy measurement:
expectation value estimation and eigenvalue sampling.

Expectation value estimation

Expectation value estimation involves an input state |ψ〉, along with the
description of H and the target precision ε. The objective is to provide
an estimate Ẽ of the expected energy of |ψ〉 to the required precision
|Ẽ− 〈ψ|H|ψ〉 | < ε. Expectation value estimation is a key subroutine in the
variational quantum eigensolver (discussed in Section 1.4.4). Additionally,
the same technique can be applied to estimate the expectation value of
observables other than the system Hamiltonian.

The most basic algorithm to estimate 〈ψ|H|ψ〉 for H defined in Eq. (1.3)
relies on the linearity of the expectation value:

〈ψ|H|ψ〉 =
J∑
j

〈ψ|hj |ψ〉 . (1.6)

Given that hj acts non-trivially on a subsystem of constant size, we
can implement a quantum operation to sample it in constant time. In
Chapter 4 we perform a thorough study of expectation value estimation
under a restricted model of quantum computation, with applications in
error-mitigated NISQ computing and metrology.
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Eigenvalue sampling

The task of implementing projective measurement of H (up to target
accuracy ε) on an input state |ψ〉 is more complex. The aim of eigenvalue
sampling algorithm is to produce an estimate Ẽ of an eigenvalue Ej ,
sampled from the probability distribution described by the Born rule
pj = | 〈Ej |ψ〉 |2, up to the required accuracy |Ẽ − Ej | < ε. Note that this
task entails two objectives: sampling from the probability distribution pj
and estimating the eigenvalue Ej , which is not known in advance based
on the description (1.3) of the Hamiltonian. The entanglement-based
quantum phase estimation algorithm, utilizing Hamiltonian dynamics
simulation as a subroutine, can be used to implement this measurement
efficiently (see Section 1.4.5).

1.3.4 The ground state energy problem
The eigenvalue estimation problem revolves around the estimation of a
specific eigenvalue Ej of H, with j being the sole input to the problem
in addition to H and ε. Frequently, this problem is specifically addresses
the ground state, where it is known as the ground state energy problem
or sometimes simply the ground state problem. Solving the ground state
energy problem involves a combination of ground state preparation and
energy measurement algorithms. A good approximation of the ground state
energy can be achieved either by measuring 〈H〉 on a well-approximated
|E0〉, or by repeatedly sampling eigenvalues of H from an input state that
demonstrates a substantial fidelity | 〈E0|ψ〉 |2 with the ground state.
The ground state energy itself plays a pivotal role in the simulation of

chemistry and material science, as exemplified in Section 1.5.1. Further-
more, any quantum computation that can be efficiently verified can be
mapped into a ground state problem using Kitaev’s history-state Hamilto-
nian construction [13, 30]; in complexity theory terms, the ground state
problem is QMA-complete. The history state construction has been itera-
tively improved upon in literature, allowing for the encoding of any QMA
problem into Hamiltonians that describe systems as straightforward as
one-dimensional chains of nearest-neighbor-interacting subsystems, each
with Hilbert subspace of constant size N = 12 [31]. Given that the quan-
tum phase estimation algorithm implements eigenvalue sampling efficiently,
the task of preparing a state |ψ〉 with a good fidelity to the ground state
[i.e. | 〈ψ|E0〉 |2 & 1/poly(n)] must also be QMA-hard. Nevertheless, the
statement on the complexity of ground state preparation is only true for
worst-case. History state Hamiltonians have very specific forms, signifi-

12



1.4 Algorithms for quantum simulation

1

cantly different from most natural system’s Hamiltonians; for the latter,
heuristic ground state preparation are more likely to succeed.

1.4 Algorithms for quantum simulation
In this section, we introduce some of several prominent algorithms designed
to address the quantum simulation problems presented in the previous
section. Since a primary objective of quantum algorithm research is to
identify problems and methodologies that enable quantum devices to
exhibit an advantage over classical numerical approaches, we will start
by providing a concise conceptual introduction to prominent classical
techniques used to solve quantum simulation problems. Subsequently,
we will provide an overview of three fundamental quantum algorithms
(or, more precisely, classes thereof), each of particular significance to the
context of this thesis.

1.4.1 Classical algorithms
All the problems discussed in the preceding section can be framed in terms
of classical input-output relationships, making them amenable to both
classical and quantum algorithms. However, all the problems we described
implicitly involve the storage and manipulation of states of the simulated
quantum system. While quantum algorithms inherently handle this task,
classical simulation algorithms must work with highly compressed state
representations to maintain memory and time efficiency. Any compression
of the quantum state introduces approximations, and tends to be accurate
and efficient only in specific cases. Here, we highlight some successful
classical algorithms used to address the ground state problem, emphasizing
their primary assumptions.
Mean-field methods represent the state as a tensor product of linearly-

many local subsystem states. By neglecting entanglement between different
parts of the system, these methods offer an efficient yet rough representation
suitable for approximating ground states in weakly-interacting systems.
Even in such cases, mean-field methods often require to be aided by
perturbation theory to achieve quantitative results. An example of a
popular mean-field method is the Hartree-Fock self-consistent field
method, frequently employed for Fermionic particle systems like molecular
and material models. It is often used as a starting point for other methods,
including ground state quantum simulations (see Section 1.5.1 for an
example).
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Similarly, tensor-network methods address ground state problems
for local Hamiltonians by constraining the level of entanglement between
local subsystems. This is accomplished by compressing the 2n amplitudes
of the state vector into a set of small tensors, along with a set of rules
for contracting their indices structured to replicate the locality of the
system. Tensor network techniques are particularly well-suited to treating
geometrically local systems (see Fig. 1.1) when entanglement between
distant parts of the system is small. One-dimensional tensor networks,
also known as matrix product states, excel in describing ground states of
gapped one-dimensional systems. Extending tensor network methods to
higher-dimensional systems is more challenging due to the computational
complexity of arbitrary index contractions. However, heuristic tensor
network methods continue to improve, providing some of the most accu-
rate results for correlated condensed matter systems [32] and chemistry
applications [33, 34].
In the realm of Fermionic models of natural systems, density func-

tional theory (DFT) offers a set of highly efficient algorithms for study-
ing ground states. DFT achieves compression by storing only the local
density of particles, a classical variable whose information content scales
linearly with the system’s size. The Hohenberg-Kohn theorems establish
that such a description suffices to fully characterize a ground state for
a two-body Fermionic Hamiltonian [35, 36]. Nevertheless, the computa-
tional complexity of exactly retrieving the energy from this compressed
representation remains exponential. To simplify this computation, various
mathematically and/or empirically motivated approximations have been
developed, resulting in a diverse range of approximate functionals. Thanks
to the compact nature of the compressed representation and the relatively
straightforward computation of these approximate functionals, DFT proves
to be exceptionally computationally efficient. Consequently, it stands out
as the most practical method for handling exceedingly large systems. The
accuracy of DFT outcomes is limited to systems where particle correlations
remain relatively weak, rendering it particularly suitable for addressing
many practical problems in fields such as organic chemistry.
Quantum Monte Carlo (QMC) encompasses a broad array of classi-

cal techniques that apply stochastic, or Monte Carlo, methods to quantum
simulation problems. QMC methods typically circumvent the need to store
an accurate representation of the ground state by recasting the ground
state problem as a high-dimensional integral involving simple wave func-
tions and operators. The complexity of solving this integral is managed
through an approximate solution based on stochastic integration, facil-
itated by cleverly designed importance sampling. A poor choice in the
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definition of the integral or of the importance sampling step can lead to a
divergence in the variance of the result,thus requiring exponential sampling
time to achieve the target accuracy. While this divergence often occurs in
Fermionic systems due to the so-called sign problem [37, 38], techniques
based on heuristic constraints enable QMC to obtain competitive results
for complex problems in condensed matter physics and chemistry.

1.4.2 Hamiltonian simulation algorithms
The first approach to efficiently synthesize an evolution operator U(t) on
a quantum device, addressing the Hamiltonian simulation problem (see
Section 1.3.1), was proposed by Lloyd in 1996 [21]. This technique, often
referred to as Trotterization, adapts expansion methods for exponentials of
operators developed by Trotter [22] and Suzuki [23]. The central concept re-
volved around recognizing that, for small time increments δt, the linearized
evolution operator generated by the Hamiltonian H(t) (decomposed as in
Eq. (1.3)) can be approximated as

U(t, δt) = e−iH(t)δt =
∏
j∈[J]

e−ihj(t)δt +O(δt2). (1.7)

The second order error in δt is due to the non-commuting terms [hj , hj′ ] 6= 0.
Since each e−ihjδt only acts non-trivially on a constant-size subsystem
Hj , it can typically implemented in constant or linear time on a quantum
device. To achieve the desired U(t) =

∏t/δt
τ=1 U(τδt, δt), the short-time

evolution operator is synthesized with the desired accuracy and applied t
δt

times.
The approximation error in Trotterization can be controlled in vari-

ous ways. This includes reducing δt, modifying the approximation (1.7)
increasing the order of the remainder, or randomizing the sequence of
the local operators eihjδt using a technique known as quantum stochastic
drift protocol (qDRIFT) [39]. While analytical bounds for the Trotter
approximation error are less favorable than for more advanced methods,
they can sometimes be tightened by leveraging the Hamiltonian’s locality
through Lieb-Robinson bounds [40–42]. Extensions of these methods that
aim to counteract the approximation using locality provide highly efficient
techniques for simulating geometrically local Hamiltonians.

Trotter-like methods represent the simplest algorithms for Hamiltonian
simulation, and to date they are the only ones experimentally tested on
quantum devices. In some of these experiments, the approximation error
is embraced and included in the models as a periodic drive potential,
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resulting in so-called Floquet models.
Over the past decade, various techniques have been developed that

take a fundamentally different approach than Trotter expansion to syn-
thesize U(t). These methods are typically based on the concept of block
encodings of a sub-unitary operator H/λ (with λ ≥ ‖H‖), constructed
by expressing H as a linear combination of unitary operators (LCU)
[43–45]. The evolution U(t) is then synthesized by transforming the
block-encoded operator through techniques derived from quantum walk
theory [43] and nuclear magnetic resonance control. These techniques are
known as qubitization [46], quantum signal processing [47], and the
quantum singular value transform [48].

All the techniques mentioned above are designed for universal quantum
computers and can be applied to simulate any physical model given a
fault-tolerant quantum device of sufficiently large scale. In contrast,
analog quantum simulators natively implement the evolution according
to a restricted class of Hamiltonians, defined by the underlying physical
implementation and the experimental control on the device. Due to
these limitations, each quantum simulator can only address a subset of
simulation problems, with its capabilities heavily dependent on its specific
implementation.

1.4.3 Adiabatic state preparation
The adiabatic algorithm [49] is an early technique for eigenstate prepara-
tion (see Section 1.3.2), grounded in the adiabatic theorem introduced by
Born and Fock in 1928 [50]. According to this theorem, a system evolving
under a time-dependent Hamiltonian H(t) will remain in its instantaneous
eigenstate |Ej(t)〉 if the Hamiltonian changes gradually enough (i.e., adi-
abatically) and there is a persistent energy gap between Ej(t) and its
neighboring eigenvalues Ej+1(t), Ej−1(t). For simplicity, hereon we focus
on ground states, considering only the ground state gap ∆ = E1 − E0.

The adiabatic theorem can be harnessed by constructing a time-dependent
Hamiltonian

H(t) =
(

1− t

tmax

)
Hinit + t

tmax
Htarget, (1.8)

Here, Htarget represents the Hamiltonian whose ground state |Etarget
0 〉 we

aim to prepare, while Hinit is a Hamiltonian whose ground state |Einit
0 〉

is known and easy to prepare. After initializing the quantum device in
the state |E0(0)〉 = |Einit

0 〉, we can simulate the evolution dictated by
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Figure 1.2: Example of nonadiabatic transitions. The plot shows the
low-energy spectrum of an adiabatic algorithm Hamiltonian H(t) [see
Eq. (1.8)], for the same Ising chain model used in the simulations of
Chapter 5. We plot the fidelity | 〈Ej(t)|ψ(t)〉 | of the adiabatic state |ψ〉 (t)
with the instantaneous eigenstates |Ej(t)〉 (both in color and line size)
throughout the progress of the quasi-adiabatic evolution. Note how around
the gap closing at t

tmax
≈ 0.5 the fidelity with the instantaneous ground

state is reduced in favor of the first excited state.

H(t), ensuring Tmax is adequately large to ensure the Hamiltonian changes
adiabatically. If the system remains in the instantaneous eigenstate |E0(t)〉,
we will have successfully prepared the target ground state at time t = tmax.

This form of the adiabatic theorem holds exactly in the infinite tmax
limit, which is clearly unpractical. Finite rates of change in H(t) result
in nonadiabatic transitions, representing a transfer of some amplitude
between instantaneous eigenstates, as depicted in Figure 1.2. The rate
of transition depends on the rate of change of the Hamiltonian ‖ ddtH(t)‖
(faster changes lead to larger transitions) and on the ground state gap
∆(t) = E1(t) − E0(t). The nonadiabatic transitions are stronger when
the gap ∆(t) is small. While it is possible to enhance adiabatic algorithm
outcomes by employing a schedule that adjusts the rate of change in H(t)
based on the gap, determining the gap a priori is challenging.
Rigorous bounds on the final state’s approximation quality, dependent

on the schedule and gap, have been established in a series of adiabatic
theorems [51–53]. A popular version of the adiabatic theorem states that a
time proportional to [mint ∆(t)]−2 is required to prepare the target ground
state with fidelity 1− ε.
The adiabatic algorithm is particularly suitable for analog quantum
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simulators, which can natively implement dynamics generated by H(t).
On a universal quantum computer, implementing the adiabatic algorithm
would entail simulating a time-dependent Hamiltonian, utilizing one of the
algorithms discussed in the previous section and thus incurring additional
computational overhead.

1.4.4 The variational quantum eigensolver
The variational quantum eigensolver (VQE) is a ground state preparation
algorithm (see Section 1.3.2) tailored to the capabilities of NISQ devices,
originally introduced in 2014 [19].
The VQE, illustrated in Fig. 1.3, is based on the interplay between a

quantum device (or quantum processing unit, QPU) and a classical com-
puter. The quantum device is used to run a subroutine that involves two
main steps: 1. Preparation a parametrized ansatz state |ψ(θ)〉; and 2. Esti-
mation of the Hamiltonian expectation value E(θ) = 〈ψ(θ)|H|ψ(θ)〉 (as in
Sec. 1.3.3). The ansatz state is generated through a set of parametrized op-
erations on the quantum device, forming what is known as a parametrized
quantum circuit (PQC). This subroutine is used by a classical algorithms,
running an outer optimization loop with the objective of minimizing E(θ).
Notably, since no state possesses lower energy than the ground state |E0〉,
the result of the VQE is variationally bounded, meaning minθ E(θ) ≥ E0.

An essential factor for the VQE’s effectiveness is the design of the PQC
preparing the ansatz state |ψ(θ)〉. The set of ansatz states cannot cover
the entire Hilbert space, since a classical variable θ containing the same
amount of information as the amplitudes characterizing the quantum
state (which grows exponentially with the system size) would defeat the
purpose of employing a quantum device. Instead, the choice of the PQC is
guided by various heuristics. These can include extensions of perturbation
theory (e.g., unitary coupled cluster [19]), constructions inspired by the
problem’s Hamiltonian (e.g., variational Hamiltonian ansatz [54], quantum
alternating operator ansatz [55, 56]), or its symmetries (e.g., quantum-
number preserving fabrics [57]). Adaptive ansätze have also been proposed,
where the PQC is generated dynamically at runtime [58]. Given the
importance of keeping the PQC compact, ansätze optimized for a specific
hardware architecture are common in current proof-of-concept experiments
[59].
While VQE provides an invaluable testing platform for quantum algo-

rithm in the NISQ era, its potential to achieve practical quantum advantage
is a topic of debate. Even with strong heuristics in the ansatz construction,
low-dimensional ansatz manifolds may not accurately represent complex
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Figure 1.3: Block scheme of the variational quantum eigensolver. The
subroutine run on the quantum device (labeled QPU) prepares an ansatz
state |ψ(θ)〉 through a quantum circuit whose gates are parameterized by
the elements θj of θ. The expected energy E(θ) of |ψ(θ)〉 is measured by
sampling on many repetitions of the circuit, and minimized by a classical
outer loop.

correlated systems; certifying the quality of the result is also compli-
cated. Minimizing the cost function E(θ) is difficult due to the complex,
multimodal nature of the optimization landscape, occasional vanishing
gradients, and added challenges from hardware and sampling noise. Even
when VQE has the potential to prepare the ground state of a system of
interest, obtaining a high.accuracy estimate of the final energy estimate
necessitates a substantial number of shots. This cost is further increased
by the necessary application of error mitigation techniques.

1.4.5 Quantum phase estimation algorithms

The problem of quantum phase estimation is closely related to that of
eigenvalue sampling described in Section 1.3.3. The objective of phase
estimation is to sample eigenvalues ϕj of a unitary operator U with
probabilities proportional to the fidelity pj = | 〈ϕj |ψ〉 |2 with an input
state |ψ〉. When considering U = e−iHt, the sampled unit eigenvalues
ϕj can be mapped to corresponding eigenvalues of the generator H as
Ej = arg(ϕj)/t, provided that t is chosen appropriately to ensure the
argument function is single-valued (typically t < π‖H‖).

To gain insight into the relationship between the dynamics generated by
H and the measurement of the observable H, we can draw parallels to an
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early model of measurements introduced by Von Neumann [60]2. In this
model, a pointer representing the measurement apparatus is coupled to
the system, with the aim to map the quantity we want to measure onto the
pointer’s state. This is represented in the left panel of Fig. 1.4. The pointer
is described by a single continuous variable q, with generalized eigenstates
|x〉P, initially in the state |0〉P. The displacement operator D(α) = e−iαp

generated by the conjugate momentum p can be used to encode a number
α on the pointer’s state D(α) |0〉P = |α〉P. Correspondingly, the coupling
the pointer and the system through the generator p⊗H yields

e−ip⊗H t |0〉P ⊗ |ψ〉 =
∑
j

|Ej〉P ⊗ |Ej〉 〈Ej |ψ〉 (1.9)

Tracing out the original system leaves the pointer in the ensemble state
pj |Ej〉〈Ej |P, yielding the desired result of eigenvalue sampling.
The classic quantum phase estimation algorithm (QPEA), introduced

by Kitaev in 1995 [61], can be described as a Von Neumann measurement
model with a digital pointer. The variable representing the pointer’s posi-
tion q is discretized and encoded in a binary register of m qubits, initialized
to the all-zero state |0〉Pm−1

... |0〉P0
. A quantum Fourier transform (QFT)

[62] is applied to the pointer register, transforming its basis to represent
a discrete counterpart of the conjugate momentum p Subsequently, each
qubit Pk in the pointer register is employed to control 2k iterations of the
operator U = e−iH t, specifically using the operation |1〉〈Pk|U2k + |0〉〈Pk|1.
This effectively implements the discrete analog of the evolution e−ip⊗H t.
Finally, an inverse QFT returns the pointer register to representing the
pointer’s position. The resulting state encodes an approximation of Ej ,
with precision depending on the size of the pointer register m and with
probability proportional to the input state fidelity. A block diagram of
the circuit for QPEA is shown in the top-right panel of Figure 1.4.
An extremely reduced version of the QPEA circuit can be created by

modeling the pointer with a single qubit. The QFT on a single qubit
coincides with a Hadamard gate, and the output of each run of the circuit is
binary (0 or 1), hence the common name for this circuit is the Hadamard
Test (HT). The HT circuit is represented in the bottom-right panel of
Figure 1.4. The Hadamard test is explored in depth as a model of a
generalized measurement with binary output in Chapter 4. Although a
single run of the HT is not particularly informative, the expectation value of

2The connection between Von Neumann measurement model and quantum phase
estimation introduced in these pages was inspired by a presentation given by Seth
Lloyd during his Lorentz professorship in Leiden, in 2019.
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Figure 1.4: (Left) Von Neumann measurement of the system energy
Hsystem using a continuous-variable pointer. (Top right) Entanglement-
based quantum phase estimation algorithm, employing the quantum
Fourier transform (QFT). The binary-encoded result is read out on the
pointer qubits, marked in red. (c) Single-control quantum phase estima-
tion. The Hadamard test circuit it used to measure a signal function g(t).
Processing the signal with a fast Fourier transform (FFT) or a similar
method yields a spectral density function.

the results (interpreted as −1 and +1 instead of 0 and 1) matches 〈ψ|U |ψ〉,
with U being the controlled operator. Measuring this for the evolution
operator U(t) = e−iH t at different times t allows us to reconstruct a signal
function g(t) := 〈ψ|e−iHt|ψ〉. The frequencies of the Fourier components
of g(t), which can be extracted using various signal processing techniques,
approximate the eigenvalues Ej , and their amplitudes approximate pj .
While this result is fundamentally different from eigenvalue sampling, both
methods can be applied to the eigenvalue estimation problem described in
Section 1.3.4. The algorithms based on this idea are commonly referred to
as single-control QPEAs, and due to the shorter and simpler circuits
they required they are more suited to the NISQ regime. In Chapter 3, we
introduce an error mitigation technique specially tailored to single-control
QPEAs.
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1.5 Molecular simulation on a quantum
computer

A quantum description of molecules – objects emerging from the inter-
action between atomic nuclei and electrons – stands as one of the early
successes of quantum mechanics [63]. The theoretical study of molecules
is one of the fields that most benefited from the development of classical
computational simulation. Computational chemistry, a mature discipline,
employs a diverse range of methods with applications spanning from fun-
damental research to industrial process development. Established classical
techniques such as density functional theory, mean field and perturbation
theory methods (described in Section 1.4.1) allow for efficient simulation of
many large and complex molecules, particularly in organic chemistry. This
empowers chemists to make predictions regarding molecular properties,
geometries, reaction pathways and rates. Importantly, this bypasses the
costly and sometimes unfeasible task of physically isolating or synthesizing
the target molecule in the laboratory. Predictions from computational sim-
ulations can guide experiments, and provide valuable insight for chemical
engineers, biochemists and other scientists in the development of industrial
processes or the advancement of our understanding of the natural world.

Nonetheless, there are questions within the realm of quantum chemistry
that pose challenges for classical techniques. These typically pertain
the study of the electronic structure of strongly correlated molecules. In
such systems, strong interactions disrupt perturbative assumptions, and
electrons become entangled in complex ways that cannot be adequately
described by the approximate models commonly used in computational
simulations (like those described in Section 1.4.1). Quantum simulation
holds the promise of providing a novel and distinct tool to tackle the
unresolved questions in correlated quantum chemistry. The ability to
precisely represent strongly-correlated quantum states renders quantum
devices particularly attractive in this context.
While quantum hardware has not yet reached a point where it can

support practical computations, ongoing research in quantum simulation
is bringing the prospect of useful quantum advantage closer. This compre-
hensive research endeavor encompasses many stages: the identification of
open problems that pose challenges to classical methods, the development
of techniques to simplify and adapt these problems to quantum methods,
the improvement of quantum algorithms tailored to address these specific
challenges, and the establishment of benchmarks to test the algorithms
and certify the results. The domain of computational quantum chemistry
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offers a multitude of open questions with evident implications for both
research and commercial applications.

1.5.1 The pipeline for electronic structure on a
quantum computer

In this section, we introduce a key problem in quantum chemistry: the
identification of the electronic structure ground state. Various quantum
simulation methods aiming to address this have been proposed and explored
at length. We show that this problem forms the basis for computing
chemical reaction rates, probing molecular properties, and conducting
molecular dynamics simulation. Following this, we outline the widely
employed second-quantization approach, which simplifies the molecular
model and facilitates its mapping onto a quantum device. The resulting
quantum simulation problem can be addressed using some of the quantum
algorithms introduces in Section 1.4.

The electronic structure ground state problem

A molecule is a system composed of electrons (here labeled as e) and
atomic nuclei (labeled as N). The Hamiltonian of such a system can be
decomposed in kinetic and electrostatic interaction terms3,

H = TN + Te︸ ︷︷ ︸
Kinetic energy

+ UNN + Uee + UeN︸ ︷︷ ︸
Coulomb electrostatic energy

. (1.10)

The dynamics of these two groups of particles can be treated separately,
following the approximation introduced by Born and Oppenheimer in 1927
[63], which is founded in large mass difference between nuclei and electrons.
Initially, the heavier and slower nuclei are treated as immobile charges
fixed at coordinates R. Their dynamics can be reintroduced later, either
classically (treating R as a classical variable) or semiclassically (quantizing
R but neglecting its correlations with the electronic state). An electronic
structure Hamiltonian can then be expressed as a function of R

He(R) = UNN(R) + UeN(R) + Te + Uee. (1.11)

3This molecular structure Hamiltonian neglects relativistic effects (including spin-
orbit) and nuclear spins, which is often a reasonable approximation. In areas
of theoretical chemistry where these effects are significant, the treatment can be
adjusted accordingly.

23



1 Introduction

1

The first term UNN(R) is a nuclear repulsion constant which does not
influence electronic dynamics, like the nuclear kinetic term TN which we
removed by fixing the nuclear positions. The term UeN(R) now represents
the potential experienced by electrons due to nuclear charges. The remain-
ing operators Te and Uee, are independent of R and represent the kinetic
energy of electrons and the electrostatic repulsion between electron pairs,
respectively.

Solving the ground state problem for the electronic structure Hamiltonian
Eq. (1.11) yields the energy E0(R) as a function of nuclear coordinates.
The energy required to excite electrons to higher eigenstates is typically on
the order of an electronvolt, which is two orders of magnitude larger than
both the ambient temperature and the typical nuclear kinetic energy. This
difference justifies the approximation of considering only electronic ground
states, as well as the Born-Oppenheimer approximation. The local minima
of E0(R) define the equilibrium geometries for the molecule. The shape
of the potential around the equilibrium points defines the vibrational and
rotational spectra of the molecule. More generally, nuclear motion can be
reintroduced as governed by the potential E0(R), assuming that electrons
follow their instantaneous ground state adiabatically. The R-derivatives
of E0(R) represent the forces acting on nuclei, which can be used in
molecular dynamics simulations. Additionally, other molecular properties,
such as polarizability, can be predicted based on the representation of the
electronic structure ground state.

One relevant target of electronic structure calculations is the prediction
of reaction rates. A chemical reaction can be viewed as a trajectory in
nuclear coordinate space, starting from a stable state RR, with the nuclei
arranged as reactant sub-molecules, and ending at another stable state RP
representing the products. Along this reaction path connecting RR → RP,
a saddle pointRT signifies a transition state: the highest energy point along
the path. The activation energy of the reaction ∆EA = E0(RT)−E0(RR)
is a key factor in determining the reaction rate constant k4. Both the
(empirical) Arrhenius equation and the (first-principle) Erying equation,
reveal that k depends on the activation energy exponentially, k ∝ e−Ea .
Therefore, resolving the activation energy to high precision is essential.

4Complex reactions may occur along multiple pathways, each consisting of several
steps between metastable states. The overall reaction rate can be computed by
applying the concepts described here to each individual step of the reaction and
combining the results.
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Discretization

Addressing the challenge just described amounts to solving the ground
state problem, described in Section 1.3.4, for the electronic structure
Hamiltonian Eq. (1.11). Tackling this with quantum simulation first
requires to translate this Hamiltonian into the form of an operator acting
on the state space space of a quantum device. A common approach,
assuming a second-quantized treatment of the problem, encompasses three
steps: 1. discretization of the single-particle state space, 2. mean-field
calculation, leading to the selection of single-particle orbitals relevant to
correlations, and 3. mapping fermionic operators to qubit operators.

The first step,widely used in computational chemistry, involves discretiz-
ing space using a set of 2Mao single-particle wavefunctions called atomic
orbitals5 χµ(x, σ) ∈ C, with x ∈ R3 representing the electron’s position
and σ ∈ Z2 its spin. Atomic orbitals are chosen to approximate the low-
energy mean-field eigenstates for individual atoms, and to be numerically
integrable; they need not be orthogonal to each other. Various methods
exist for selecting atomic orbitals, and the resulting collections of orbitals
are referred to as a basis set. By combining a large number of atomic
orbitals from different atoms, more complex single-particle wavefunctions
known as molecular orbitals φp can be constructed:

φp(x, σ) =
∑

µ∈[2Mao]

Cµpχµ(x, σ). (1.12)

The combination of atomic orbitals to form molecular orbitals is illustrated
in Fig. 1.5 (left and center). Molecular orbitals are typically chosen to be
orthonormal.

An anti-symmetrized product of orthogonal molecular orbitals defines a
many-electron state known as Slater determinant

Φ
(
x1, σ1; ...;xNe , σNe

)
=

∑
π∈PNe

sgn(π)
Ne⊗
p=0

φp(xπ(p), σπ(p)), (1.13)

where Ne is the number of electrons in the state and Pm is the set of
permutations of size m. The state depends on the molecular orbital coeffi-

5The orbitals we define here are often called spin-orbitals, as their definition includes
the spinor component of the wavefunction. It is common to further factorize spatial
orbitals and spinors. We avoid this for the sake of synthesis, but we add a factor
2 in the number of spin-orbitals to maintains the compatibility with the common
definition of M as the number of spatial orbitals.
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Figure 1.5: Left: artistic representation of the first few atomic orbitals
and their energy levels. Center: atomic orbitals from two atoms combine
to construct molecular orbitals. For the sake of clarity, we represent only a
few of the first molecular orbitals generated by combining atomic orbitals
from two atoms. Right: mean-field energy of each molecular orbital. One
possible complete active space subdivision of orbitals is shown.

cients Cpµ through φp. A Slater determinant represents an uncorrelated
many-body state, where each electron is not entangled to the others. Its
energy can be computed efficiently in terms of integrals involving the
atomic orbitals, the Coulomb operator 1

x1−x2
, the kinetic operator ∇2

x

and the nuclear positions and charges.

Reduction and second quantization

The Hartree-Fock self-consistent-field method (HF-SCF) efficiently opti-
mizes the coefficients Cµp to construct the minimal-energy Slater deter-
minant ΦHF and a set of orthogonal molecular orbitals φHFp , ordered by
their mean field energy εHFp ≤ εHFp−1. To introduce correlations on top
of the mean field state ΦHF, one can consider superpositions of Slater
determinants generated by transferring some of the electrons from occupied
molecular orbitals (indexed by p < Ne) to unoccupied molecular orbitals
(q ≥ Ne). Transferring an electron between orbitals p→ q always results in
a positive change in mean-field energy ∆HF

p→q = εHFq − εHFp , but considering
superpositions between such states can yield a lower, beyond-mean-field
energy. However, when ∆HF

p→q is large, the large increase in mean-field
energy contrasts the gain from adding the excited Slater determinant to the
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superposition. Therefore, when constructing the superposition of Slater
determinants, we can limit to considering orbitals with energies within a
selected window around Fermi energy εF := εHFNe

. The molecular orbitals
are thus divided in three sets: a core set of fully-occupied low-energy
orbitals for p < 2MC, an set of active orbitals 2MC ≤ p < 2MC + 2MA
used to describe correlations among NA = Ne − 2MC electrons, and the
remaining space of high-energy virtual orbitals which are discarded in the
calculation of correlations. This subdivision is illustrated in Figure 1.5.
Calculations that prescribe this subdivision are called complete active
space methods, and denoted by the abbreviation CAS(NA,MA).

The electronic structure Hamiltonian Eq. (1.11) can be constrained to
the active space, accounting for the effect of frozen electrons in mean-field
terms. The resulting Hamiltonian can be divided into terms that act on
zero, one single, or pairs of electrons in the active space:

HA =
constant︷ ︸︸ ︷

UNN + UNC + UCC + TC +TA + UCA + UNA︸ ︷︷ ︸
one active electron

+
two active electrons︷︸︸︷

UAA . (1.14)

In turn, this can be written in terms of second-quantized fermionic opera-
tors acting on a single electron (c†pcq) and pairs of electrons (c†pc†qcrcs)

HA = const. +
∑

p,q∈[2MA]

gpqc
†
pcqc

†
rcs +

∑
p,q,r,s∈[2MA]

hpqrsc
†
pc
†
qcrcs. (1.15)

The coefficients gpq and hpqrs are obtained through integrals of the atomic
orbitals with the kinetic and Coulomb operators and are known as one-
electron and two-electron integrals, respectively. The number of Slater
determinants that can be obtained by distributing NA electrons over 2MA
orbitals is the binomial coefficient (2MA)!

Ne!(2MA−Ne)! , which grows exponentially
in the size of the active space. The description of the Hamiltonian, instead,
only requires the O(M4

A) integrals.
Describing electronic structure accurately is most challenging in systems

that necessitate large active spaces. The appropriate active space size is
determined by chemical intuition, often guided by approximate classical
simulations. The size of the molecule is not a reliable predictor of the re-
quired active space size; many large organic molecules are not particularly
challenging because the electrons predominantly occupy bonding orbitals,
well described by mean-field theory. There, transferring electrons to empty
orbitals has a large energy cost and thus correlations remain small. Meth-
ods like density functional theory predict the ground state energy of such
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systems efficiently and accurately. An example of a challenging problem
is given by molecules containing transition metals; these provide many
atomic open-shell orbitals, which lead to a number of complex molecular
orbitals with similar energies which need to be considered in the active
space construction. One such case is nitrogenase, an enzyme crucial for
converting atmospheric nitrogen into ammonia, containing iron and molyb-
denum atoms embedded in an organic matrix (FeMo cofactor). A deeper
understanding of this enzyme could potentially lead to improvements in in-
dustrial process of ammonia synthesis (critical, among others, for fertilizer
production), currently achieved through the costly Haber-Bosch process.

Mapping to a quantum computer

The Slater determinants defined over active molecular orbitals constitute a
set of orthogonal states. These can be mapped onto the states of a quantum
device, serving as a basis to represent more general correlated states.
Similarly, the Fermionic creation and annihilation operators c†p, cp that
construct the Hamiltonian Eq. (1.15) need to be mapped onto operators on
the device’s Hilbert space. The Jordan-Wigner transformation, a common
mapping between fermionic systems and qubit system, prescribes assigning
one qubit to each molecular spin-orbital. An occupied spin-orbital is
represented by the state |1〉 of the corresponding qubit, while an empty
orbital corresponds to |0〉. The mapping of fermionic operators is defined
as

c†p =
p−1⊗
j=0

σzj ⊗ σ+
j ; cp =

p−1⊗
j=0

σzj ⊗ σ−j , (1.16)

where σzj is the Pauli Z operator on the j-th qubit and σ±j = 1
2 (σxj ± iσ

y
j )

are the raising/lowering operators. This mapping of fermionic operators
ensures the correct anti-commutation relations, but sacrifices locality.

Solution by quantum simulation

With a model of the electronic structure problem represented in terms
of states and operators on a quantum device, we can now explore the
use of quantum simulation algorithms to solve it. If the goal is to solve
the ground state problem on a NISQ device, one viable approach is to
employ the Variational Quantum Eigensolver (VQE), as described in
Section 1.4.4. Several VQE ansätze tailored to chemistry problems have
been developed [64, 65], with the original proposal of the VQE being
motivated by implementing a unitary version of the coupled-cluster ansatz
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[19]. Various optimizations have been proposed for estimating expectation
values (see Section 1.3.3) of a Hamiltonian of the form Eq. (1.15) [66–68].
An effective and practical method consists in measuring the one- and
two-electron reduced density matrices of the input state |ψ〉, respectively

Dq
p = 〈ψ|c†pcq|ψ〉 and Drs

pq = 〈ψ|c†pc†qcrcs|ψ〉 . (1.17)

In practice, current quantum devices can only handle very small toy
models of molecules using VQE. The largest VQE simulation for electronic
structure with the final expectation value estimation step performed on
a quantum computer utilized an active space of only 10 orbitals (with a
further approximation simplifying the spin degree of freedom), and it relied
heavily on error mitigation techniques [69], including the one introduced
in Chapter 3.
Proposals for fault-tolerant quantum simulation of chemistry typically

focus on the application of the quantum phase estimation algorithm (see
Section 1.4.5) [70]. Using QPEA to solve the ground state problem requires
a Hamiltonian simulation subroutine and a technique for preparing a state
with a significant overlap with the ground state. Recent years have seen
the proposal of numerous optimized Hamiltonian simulation algorithms
for electronic structure, many of which employ qubitization and LCU
techniques (see Section 1.4.2). These methods primarily concentrate on
constructing efficient compressions of the highly structured information
contained in the one- and two-electron integrals, making them more suitable
for uploading onto quantum computers [71–74]. Preparing a state with a
good overlap with the ground state remains a challenging problem. It has
been suggested that this step could potentially hinder the achievement of
exponential quantum advantages in simulating electronic structure ground
states [75]. Since most molecules naturally approach their electronic
ground state through processes like thermalization and adiabatic evolution
along a reaction coordinate, we expect heuristic methods can be used
to efficiently emulate these phenomena. Dissipative algorithms, such as
the one proposed in Chapter 2, or adiabatic state preparation, could be
optimized to approximate molecular ground states effectively.

1.5.2 The journey towards useful quantum advantage
in chemistry

The example presented in the previous section illustrates the multitude
of decisions involved in defining a pipeline for studying a physical phe-
nomenon using quantum simulation. These decisions impact the level of
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approximation, precision of results, and the practicality of the method.
Research in simulation can address any step of the pipeline, from the very
choice of the problem to study to the final algorithmic result.
Extensive research has been conducted on the problem of electronic

structure ground states in quantum simulation, with efforts focused on
optimizing molecule modeling, mapping, and various quantum algorithms –
in the previous section, we only presented the most common approach. An
important body of research today includes the estimation of the costs of
running quantum simulation algorithms on prospective quantum computer,
especially for fault-tolerant approaches. For instance, in [74], it was esti-
mated that a fault-tolerant quantum computer could execute the Quantum
Phase Estimation Algorithm (QPEA) for a model of the nitrogenase FeMo
cofactor, with a precision sufficient for estimating reaction rates, in four
days using approximately 4 million physical qubits (assuming reasonable
but as yet unachieved physical error rates).

To attain useful quantum advantage, it is essential to identify problems
that are easy to solve through quantum simulation but challenging for
classical methods. The ground state problem for molecules containing
transition metals is hard for classical methods, due to the large size
of the active space in which correlations need to be accounted for non-
perturbatively. However, classical approximate methods for electronic
structure ground state continue evolving, with some of them being able
to approximate more and more complex correlations [75], making the
remaining challenging cases even more demanding for quantum solutions.

Another set of problems challenging for classical simulation is provided
by photochemistry, where low-lying excited electronic eigenstates play a
significant role in reactions initiated by light rather than thermal energy.
Describing excited states on a quantum computer is not significantly
more complex than describing ground states, while classical simulation
algorithms often exploit ground-state-specific properties. Photochemical
reactions also involve the conversion of light energy into phonons, which can
lead to the breakdown of the Born-Oppenheimer approximation, especially
near electronic structure spectrum degeneracy points known as conical
intersections (detailed in Chapter 6). The numerical study of chemistry
beyond the Born-Oppenheimer approximation is very limited due to the
complex correlations between electrons and nuclei, and the difficulty of
discretizing space in the absence of clear atomic orbitals. A concurrent
simulation of electrons and nuclei could be in principle achieved through
first-quantized quantum simulation methods [76]. The size of the quantum
computers required to implement these methods is beyond the foreseeable
future, but in the long term such quantum computers could be achieved.
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Another example of shift in the problem focus includes the recent pro-
posal of using Hamiltonian learning to reconstruct NMR spectra [77, 78].
This problem also pertains the field of computational quantum chemistry,
but it completely bypasses the electronic structure Hamiltonian, focusing
on the interactions between nuclear spins instead. Finally, quantum algo-
rithms could be used to assist known classical methods in innovative ways.
Finally, quantum algorithms can complement existing classical methods
in innovative ways, as seen in the quantum computing quantum Monte
Carlo (QC-QMC) proposal. There, sampling on a variational quantum
state provides information about correlations in the electronic structure
wavefunction, while high-precision energy calculations are performed clas-
sically.

1.6 Outline of this thesis
This thesis introduces a number of quantum algorithms tailored to the
simulation of physical systems. Chapter 2 introduces a category of al-
gorithms aiming to prepare ground states of natural systems through
simulated cooling. Chapter 3 presents a novel error mitigation approach,
echo verification, and investigates its application in single-control phase
estimation algorithms. The two following chapters explore applications of
echo verification in different contexts: Chapter 4 develops techniques for
estimating expectation values within the measurement model induced by
echo verification; Chapter 5 applies echo verification to mitigate the effect
of non-adiabatic transitions in the adiabatic algorithm. Finally, Chapter 5
explores the challenge of detecting conical intersections in molecular models
– an under-explored problem in quantum chemistry, well-suited to quantum
simulation – and proposes a resilient quantum algorithm to solve it.

Chapter 2: Quantum Digital Cooling

In chapter 2, we explore the idea of simulating cooling by coupling the
system to a single-qubit “fridge”. This auxiliary qubit is reset periodically to
its low-energy state, allowing to extract energy and entropy from the system.
The use of a single-qubit fridge differs from the natural thermalization
process, where systems cool by releasing energy into extensive, cold, and
ergodic baths. While simulating such baths is theoretically possible, it
comes with a significant computational burden. Our investigation of single-
qubit fridges leads us to introduce a category of algorithms designed for
preparing the ground states of simulated Hamiltonians, which we name
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quantum digital cooling. We establish two approaches to quantum digital
cooling: a efficient strong-coupling approach which coarsely approximates
the ground state, and a more expensive approach that can achieve arbitrary
accurate approximations. We then assess the performance of both methods
through numerical benchmarks.

Chapter 3: Error mitigation via verified phase estimation

Chapter 3 introduces a novel error mitigation technique that leverages the
quantum information remaining in the device’s state following a Hadamard-
test-based measurement. This method involves checking if, after the
measurement, the system state can be projected back onto the input
state. This verification step has a high probability of failure in the
presence of errors, enabling the rejection of erroneous results, and it does
not introduce any bias to the measurement outcome when errors are
absent. Our technique finds successful application within the framework
of the single-control quantum phase estimation algorithm (introduced in
Section 1.4.5), leading to the development of the verified phase estimation
(VPE) algorithm. We demonstrate the application of VPE to both phase
estimation and expectation value estimation problems for various models,
showing improvements of several orders of magnitude over unmitigated
estimation at near-term error rates.

Additionally, this chapter introduces a variant of VPE, known as control-
free VPE, which eliminates the need for a control qubit. This simplifies
the control circuitry significantly, bringing near-term implementations of
our technique within reach.

In further literature, this error mitigation technique gained recognition
under the name of echo verification [69, 79], a terms that draws parallel
with the Loschmidt echo [80]. Control-free VPE has also been tested exper-
imentally in a superconducting quantum processor, realizing simulations
of systems of up to 10 qubits, and thus leading to the implementation of
the largest variational algorithm for a correlated chemistry system to date
[69].

Chapter 4: Optimizing the information extracted by a
single-qubit measurement

In chapter 4, we study expectation value estimation (see Section 1.3.3) in
a restricted model of quantum computation, where we are only allowed
to extract a single bit of information per each n-qubit quantum state
preparation. This restriction is motivated by echo verification, where all
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but one qubit are used in the verification step to detect errors. We indeed
show that, in echo-verification-like schemes, extracting more than one bit
of information is counterproductive towards estimating expectation values.

Within this restricted model, we optimize expectation value estimation
by decomposing the target observable into a sum of bitwise-measurable
terms. We construct optimal decompositions analytically, and we propose
a set of rules to improve on a given decomposition which can sometimes
be applied even in presence of experimental constraints. We find the
optimal decomposition of a fast-forwardable operator, and show a numerical
improvement over a simple Pauli decomposition by a factor n0.7.

Chapter 5: Virtual mitigation of coherent non-adiabatic
transitions by echo verification

In chapter 5, we develop an extension of echo verification tailored to
applications to the adiabatic state preparation algorithm (see Section 1.4.3).
This technique, which we call adiabatic echo verification, mitigates both
coherent and incoherent errors arising, respectively, from non-adiabatic
transitions and hardware noise. This is an unconventional application of
error mitigation, which is typically applied to hardware errors only. Even
in the absence of hardware noise, the estimator bias of the observable is
reduced when compared to standard adiabatic preparation, achieving up
to a quadratic improvement.
Our method is based on two quasi-adiabatic evolutions with mirrored

schedules implementing the echo. These are interleaved by a dephasing step
by random-time evolution, and by the Hadamard-test-based measurement.
The dephasing promotes coherent errors from non-adiabatic transitions
into incoherent errors, making them amenable to verification. Our method
requires positive-time dynamics only, making it more suitable to application
in analog quantum simulators.

Chapter 6: A hybrid quantum algorithm to detect conical
intersections

In chapter 6, we tackle a problem of interest in photochemistry: the detec-
tion of conical intersections in molecular models. The chapter introduces
a quantum simulation algorithm tailored to the NISQ era to solve this
problem.

Conical intersections are significant points in the geometry of a molecule,
where the electronic potential energy surfaces cross in a topologically
protected manner. Close to a conical intersection the Born-Oppenheimer
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approximation breaks down, with crucial implications for chemical pro-
cesses like photoisomerization and non-radiative relaxation. One prominent
example is their role in the vision process, where a conical intersection
facilitates the isomerization of retinal after absorbing a photon, which in
turn triggers a cascade of chemical signal that result in the perception of
light.
Conical intersections are characterized by a non-zero Berry phase, a

topological invariant defined on a closed path in atomic coordinate space.
The berry phase assumes the value of π when the path encircles the
intersection manifold, and 0 otherwise. The algorithm we propose tracks
the approximate ground stare along the chosen path, using a parametrized
quantum circuit ansatz updated by a fixed number of Newton-Raphson
steps. At the end of the algorithm, a Hadamard test is used to measure
a single bit of information, which determines whether the Berry phase
is π or 0. Since the final result is discrete, our procedure succeeds even
for a cumulative error bounded by a constant; this allows us to bound
(analytically) the total sampling cost and to readily verify the success of the
procedure. The application of our algorithm is demonstrated numerically
on a small toy model of the formaldimine molecule (H2C––NH).
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