

**The power of one qubit in quantum simulation algorithms** Polla, S.

#### Citation

Polla, S. (2024, February 22). *The power of one qubit in quantum simulation algorithms. Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/3719849

| Version:         | Publisher's Version                                                                                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| License:         | <u>Licence agreement concerning inclusion of doctoral</u><br><u>thesis in the Institutional Repository of the University</u><br><u>of Leiden</u> |
| Downloaded from: | https://hdl.handle.net/1887/3719849                                                                                                              |

**Note:** To cite this publication please use the final published version (if applicable).

# The power of one qubit in quantum simulation algorithms

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl volgens besluit van het college voor promoties te verdedigen op donderdag 22 februari 2024 klokke 15:00 uur

 $\operatorname{door}$ 

### Stefano Polla

geboren te Bergamo, Italië in 1994

| Promotor:          | Prof. dr. C. W. J. Beenakker                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Co-promotor:       | Dr. T. E. O'Brien                                                                                                                               |
| Promotiecommissie: | Prof. Dr. J. Aarts<br>Dr. A. Roggero (Università di Trento)<br>Prof. Dr. K. E. Schalm<br>Prof. Dr. B. M. Terhal (Technische Universiteit Delft) |
|                    | Prof. Dr. L. Visscher (Vrije Universiteit Amsterdam)                                                                                            |
|                    |                                                                                                                                                 |

Casimir PhD series, Delft-Leiden 2023-42 ISBN 978-90-8593-587-2 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

On the cover: an artistic representation of quantum computing emerging as a new technology, inspired by the rising cities painted by the futurist movement. — by Jeanne M. Viet [Miss J Art] To those who brightened my hardest days

| 1 | Inti | oduct  | ion                                                                                                                                              | 1  |
|---|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 1.1  | Prefac | ce                                                                                                                                               | 1  |
|   | 1.2  | Proces | ssing quantum information                                                                                                                        | 2  |
|   |      | 1.2.1  | Classical input-output                                                                                                                           | 3  |
|   |      | 1.2.2  | Noise, error correction and mitigation                                                                                                           | 4  |
|   | 1.3  | Targe  | ts of quantum simulation                                                                                                                         | 6  |
|   |      | 1.3.1  | Hamiltonian dynamics                                                                                                                             | 8  |
|   |      | 1.3.2  | State preparation                                                                                                                                | 9  |
|   |      | 1.3.3  | Energy measurements                                                                                                                              | 11 |
|   |      | 1.3.4  | The ground state energy problem                                                                                                                  | 12 |
|   | 1.4  | Algori | ithms for quantum simulation                                                                                                                     | 13 |
|   |      | 1.4.1  | Classical algorithms                                                                                                                             | 13 |
|   |      | 1.4.2  | Hamiltonian simulation algorithms                                                                                                                | 15 |
|   |      | 1.4.3  | Adiabatic state preparation                                                                                                                      | 16 |
|   |      | 1.4.4  | The variational quantum eigensolver                                                                                                              | 18 |
|   |      | 1.4.5  | Quantum phase estimation algorithms                                                                                                              | 19 |
|   | 1.5  | Molec  | ular simulation on a quantum computer                                                                                                            | 22 |
|   |      | 1.5.1  | The pipeline for electronic structure on a quantum                                                                                               |    |
|   |      |        | computer                                                                                                                                         | 23 |
|   |      | 1.5.2  | The journey towards useful quantum advantage in                                                                                                  |    |
|   |      |        | $chemistry \ldots \ldots$ | 29 |
|   | 1.6  | Outlir | ne of this thesis                                                                                                                                | 31 |

| <b>2</b> | Qua            | antum                                             | digital cooling                                                                                 | 35 |  |
|----------|----------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|----|--|
|          | 2.1            | Introd                                            | luction                                                                                         | 35 |  |
|          | 2.2            | Coolir                                            | ng a system with a single fridge qubit                                                          | 37 |  |
|          | 2.3            | De-ex                                             | citing a single transition: the 1+1 model                                                       | 38 |  |
|          |                | 2.3.1                                             | Elementary approaches to digital cooling: strong                                                |    |  |
|          |                |                                                   | and weak coupling                                                                               | 39 |  |
|          |                | 2.3.2                                             | Common symmetries and the coupling alternation                                                  |    |  |
|          |                |                                                   | $\mathrm{method}  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  $     | 42 |  |
|          | 2.4            | Scalab                                            | ble QDC protocols                                                                               | 44 |  |
|          |                | 2.4.1                                             | The BangBang protocol                                                                           | 44 |  |
|          |                | 2.4.2                                             | The LogSweep protocol                                                                           | 47 |  |
|          | 2.5            | Concl                                             | usion                                                                                           | 54 |  |
|          | App            | endices                                           | 3                                                                                               | 56 |  |
|          | 2.A            | Proof                                             | of Eq. $(2.10)$                                                                                 | 56 |  |
|          | $2.\mathrm{B}$ | Asym                                              | ptotic reheating and cooling probabilities for QDC                                              |    |  |
|          |                | protoc                                            | cols                                                                                            | 57 |  |
|          | $2.\mathrm{C}$ | Optin                                             | nizing energy spacing in LogSweep protocol                                                      | 61 |  |
|          | $2.\mathrm{D}$ | Coolir                                            | ng rate for LogSweep protocol in a large system                                                 | 61 |  |
|          | $2.\mathrm{E}$ | Effect                                            | of banding on QDC protocols                                                                     | 63 |  |
|          | $2.\mathrm{F}$ | Detail                                            | s on numerical methods                                                                          | 64 |  |
| 3        | Err            | Error mitigation via verified phase estimation 67 |                                                                                                 |    |  |
|          | 3.1            | Introduction                                      |                                                                                                 |    |  |
|          | 3.2            | Pedag                                             | Pedagogical example of verification protocol for expectation                                    |    |  |
|          |                | value estimation                                  |                                                                                                 |    |  |
|          | 3.3            | 3 Schemes for verified phase estimation           |                                                                                                 |    |  |
|          |                | 3.3.1                                             | Review of single-control quantum phase estimation                                               | 73 |  |
|          |                | 3.3.2                                             | Verifying a phase estimation experiment                                                         | 76 |  |
|          |                | 3.3.3                                             | Why verification mitigates errors                                                               | 78 |  |
|          |                | 3.3.4                                             | Verified control-free phase-estimation                                                          | 83 |  |
|          | 3.4            | Verifie                                           | ed expectation value estimation                                                                 | 85 |  |
|          |                | 3.4.1                                             | Fast-forwarded and parallelized Hamiltonian decom-                                              |    |  |
|          |                |                                                   | $positions \ldots \ldots$ | 88 |  |
|          |                | 3.4.2                                             | Comparison to other methods of error mitigation .                                               | 89 |  |
|          | 3.5            | Nume                                              | rical Experiments                                                                               | 92 |  |
|          |                | 3.5.1                                             | Givens rotation circuits for free-fermion Hamiltonians                                          | 93 |  |
|          |                | 3.5.2                                             | The variational Hamiltonian ansatz for the transverse-                                          |    |  |
|          |                |                                                   | field Ising model                                                                               | 97 |  |
|          |                | 3.5.3                                             | Fermionic swap networks for electronic structure                                                |    |  |
|          |                |                                                   | Hamiltonians                                                                                    | 98 |  |
|          |                |                                                   |                                                                                                 |    |  |

|   | 3.6            | Conclusion                                                     | 103  |
|---|----------------|----------------------------------------------------------------|------|
|   | App            | endices                                                        | 105  |
|   | 3.A            | Error analysis                                                 | 105  |
|   | 3.B            | Effect of parallelizing QPE                                    | 110  |
|   | $3.\mathrm{C}$ | Compensation for spurious eigenvalues due to sampling noise    | e113 |
|   | 3.D            | Demonstration of immunity to control noise in single-control   |      |
|   |                | VPE                                                            | 115  |
|   | $3.\mathrm{E}$ | Use of a variational outer loop to mitigate constant unitary   |      |
|   |                | noise                                                          | 115  |
|   | $3.\mathrm{F}$ | Term-wise comparison of VPE performance                        | 118  |
|   | $3.\mathrm{G}$ | Comparison to symmetry verification                            | 119  |
| 4 | Ont            | imining the information outpacted by a single subit            |      |
| 4 | Opt            | similaring the information extracted by a single qubit         | 191  |
|   | 1 1            | Introduction                                                   | 121  |
|   | 4.1            | Single-cubit measurements                                      | 121  |
|   | 4.2            | 4.2.1 The Hadamard test                                        | 122  |
|   |                | 4.2.1 File indianary test                                      | 125  |
|   |                | 4.2.3 Ancilla-free echo verification                           | 126  |
|   |                | 4.2.4 Variance of a binary POVM                                | 127  |
|   | 4.3            | Operator decompositions                                        | 128  |
|   |                | 4.3.1 Adaptive shot allocation                                 | 129  |
|   |                | 4.3.2 The decomposition hierarchy                              | 129  |
|   |                | 4.3.3 Optimizing reflection decompositions                     | 131  |
|   |                | 4.3.4 Implementing the optimal decomposition                   | 132  |
|   | 4.4            | Numerical experiments                                          | 133  |
|   | 4.5            | Conclusion                                                     | 135  |
|   | 4.A            | Echo verification estimators                                   | 136  |
|   | $4.\mathrm{B}$ | Parallelizing echo verification                                | 137  |
|   | $4.\mathrm{C}$ | Proof of decomposition optimality hierarchy                    | 139  |
|   |                | 4.C.1 Proof of Lemma 1, and corollaries                        | 139  |
|   |                | 4.C.2 Proof of Lemma 2                                         | 141  |
|   |                | 4.C.3 Proof of Lemma 3                                         | 142  |
|   |                | 4.C.4 Examples of reflection decompositions                    | 142  |
|   |                | 4.C.5 Proof of Lemma 4                                         | 144  |
|   | 4.D            | Implementation of the $\Xi$ decomposition via quantum signal   |      |
|   |                | processing                                                     | 148  |
|   | $4.\mathrm{E}$ | The generalized parameter-shift kernel decomposition of a      |      |
|   |                | diagonal operator with ladder spectrum                         | 150  |
|   | $4.\mathrm{F}$ | Details on numerical simulations and further numerical results | 5151 |

| 5 | Virt           | tual mitigation of coherent non-adiabatic transitions                |     |
|---|----------------|----------------------------------------------------------------------|-----|
|   | by e           | echo verification                                                    | 155 |
|   | 5.1            | Introduction                                                         | 155 |
|   | 5.2            | The adiabatic algorithm and purification-based error miti-           |     |
|   |                | gation                                                               | 158 |
|   | 5.3            | Mitigating coherent errors in adiabatic state preparation .          | 159 |
|   | 5.4            | Implementation and cost of the dephasing                             | 161 |
|   | 5.5            | Comparison with standard adiabatic algorithm.                        | 162 |
|   | 5.6            | Discussion and practical considerations.                             | 163 |
|   | 5.A            | Dephasing operation on a degenerate spectrum                         | 165 |
|   | $5.\mathrm{B}$ | Evaluation of AEV estimator with approximate dephasing               | 165 |
|   | $5.\mathrm{C}$ | Dephasing time for a smooth probability distribution                 | 171 |
| 6 | Ah             | ybrid quantum algorithm to detect conical intersections              | 175 |
|   | 6.1            | Introduction                                                         | 175 |
|   | 6.2            | Background                                                           | 177 |
|   |                | 6.2.1 Conical intersections                                          | 177 |
|   |                | 6.2.2 Berry phases in real Hamiltonians                              | 179 |
|   |                | 6.2.3 Measuring Berry phase with a variational wavefunction          | 180 |
|   | 6.3            | Methods                                                              | 180 |
|   |                | 6.3.1 Fixing the gauge with a real ansatz                            | 181 |
|   |                | 6.3.2 Avoiding full optimization via Newton-Raphson steps            | 182 |
|   |                | 6.3.3 Regularization and backtracking                                | 183 |
|   |                | 6.3.4 Measuring the final overlap                                    | 185 |
|   |                | 6.3.5 Overview of the algorithm                                      | 186 |
|   | 6.4            | Error analysis and bounding                                          | 188 |
|   |                | 6.4.1 Bounding the NR error                                          | 189 |
|   |                | 6.4.2 Bounding the sampling noise                                    | 190 |
|   |                | $6.4.3 Scaling of the total cost \ldots \ldots \ldots \ldots \ldots$ | 191 |
|   | 6.5            | Adapting to an orbital-optimized PQC ansatz                          | 191 |
|   |                | 6.5.1 An OO-PQC ansatz with geometric continuity                     | 192 |
|   |                | 6.5.2 Measuring boundary terms with the OO-PQC ansatz                | 193 |
|   |                | 6.5.3 Newton-Raphson updates of the OO-PQC ansatz .                  | 194 |
|   | 6.6            | Numerical results                                                    | 195 |
|   |                | 6.6.1 Numerical simulation details                                   | 196 |
|   |                | 6.6.2 Minimal model with an degeneracy-free ansatz                   | 196 |
|   |                | 6.6.3 Sampling noise                                                 | 198 |
|   |                | 6.6.4 Larger basis and active space                                  | 199 |
|   | 6.7            | Conclusion and outlook                                               | 201 |
|   |                | 6.7.1 Paths towards improving convergence                            | 202 |
|   |                | 6.7.2 Potential applications                                         | 204 |

| $6.7.3  \text{Outlook}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $ | 205         |  |
|------------------------------------------------------------------------------------------|-------------|--|
| Appendices                                                                               |             |  |
| 6.A Bounding overlaps by change in ansatz parameters                                     | 206         |  |
| 6.B Bounding the norm of energy derivatives                                              | 208         |  |
| 6.C Analytical orbital gradient and Hessian                                              | 209         |  |
| 6.D Bounding the cumulative error due to Newton-Raphson                                  |             |  |
| updates                                                                                  | 212         |  |
| 6.E Bounding the sampling cost                                                           | 216         |  |
| Bibliography                                                                             |             |  |
| Acknowledgments                                                                          | <b>243</b>  |  |
| Samenvatting                                                                             |             |  |
| Summary                                                                                  | <b>25</b> 1 |  |
| Sinossi                                                                                  | <b>255</b>  |  |
| Curriculum Vitæ                                                                          | 259         |  |
| List of publications                                                                     |             |  |