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CHAPTER 1

Introduction

1.1 Preface
Quantum theory, the mathematical framework that governs the behavior
of elementary physical systems, stands as a cornerstone of modern science.
While its first principles allow modeling complex systems like molecules
and materials, managing the complexity and predicting emergent behaviors
demands additional tools [1]. Analytical approximations played a key role
in early successes of nuclear, atomic, and solid-state physics; together with
computational simulation techniques they now drive the fields of quantum
chemistry and material science. Since the 1980s quantum computers have
been proposed as an additional tool, promising access to simulations
impossible for classical methods [2]. Recent years saw the realization of
the first programmable quantum devices that can outperform classical
computers in benchmark tasks [3–7], but lack practical applications yet.
The next quantum computing milestone is demonstrating the ability to
solve genuinely useful problems beyond the capabilities of other tools.
Achieving this requires hardware enhancements, but also research on
pertinent target problems, and the development of quantum algorithms that
exploit the hardware to solve the problem. The study of complex quantum
systems offer a variety of challenging problems, supported by heuristic
insight from physics: a valuable resource in the effective development of
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quantum algorithms.
This thesis collects the proposals of quantum algorithms developed in this

context, tackling some known hurdles in simulating complex systems with
near-term quantum devices. The studied techniques focus on questions
like the preparation of ground states of natural systems, the extraction of
information about observables from quantum states, and and the resilience
of quantum simulations to noise. A red line connecting the proposed
algorithms is the focus on the support which a single qubit – the smallest
unit of quantum information – can provide in implementing a variety of
tasks in quantum simulation.
The remainder of this chapter is structured as follows: Section 1.2

provides an overview of key concepts in quantum information processing,
discussing the advantages and limitations of quantum devices. Section 1.3
introduces quantum simulation by examining the computational problems
naturally defined by a Hamiltonian description of a quantum system.
Section 1.4 offers a high-level description of some significant quantum
simulation algorithms relevant to this thesis. Section 1.5 delves deeper
into a specific quantum simulation target, namely, the study of molecular
systems. Finally, in Section 1.6, we present an overview of the chapters
that constitute the main body of this work.

1.2 Processing quantum information
A state is a specific configuration that a physical system can assume at
some point in time. In classical physics, states are described by variables
taking defined values, such as the position x and velocity ẋ of a cannonball
in Newtonian mechanics, or the ON/OFF state of a transistor in digital
electronics. Conversely, the state of a quantum system can consist of a
superposition of multiple, distinguishable states. In Dirac notation [8]

|ψ〉 = αA |A〉+ αB |B〉+ . . . , |αA|2 + |αB |2 + . . . = 1, (1.1)

where {A,B, . . .} are a set of states that can be distinguished determinis-
tically by a sufficiently precise measurement, each representing a different
set of values of the classical variables that characterize the system. The
state of a quantum switch will then have the form αON |ON〉+αOFF |OFF〉,
while the description of a quantum particle will need one value of αx for
each possible position x.
Consider a system which can assume N distinguishable states. A de-

terministic description of a classical state of such a system just needs to
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identify one out of the N possible states; this information can be encoded
in log2(N) bits of memory. A full description of a quantum state for
the same system will require N − 1 complex amplitudes, each stored to
precision εC in m = 2 log2(ε−1

C ) bits of classical memory. For a composite
system, made up of n elements, the number of total distinguishable states
scales exponentially, i.e. N = O(2n). A classical state of such system can
be described in O(n) bits, but a full representation of the quantum ampli-
tudes requires O(m2n) bits of classical memory. This exponential scaling
quickly makes unfeasible to fully represent quantum states of complex
systems.

In contrast to a classical computer, a quantum device can natively store
and process quantum states of the form Eq. (1.1). Typical quantum devices
are constructed by assembling a number of two-level systems – elements
with two distinguishable states labeled |0〉 and |1〉. Combining n two-level
systems allows to store a quantum superposition of 2n distinguishable
states, or n qubits (a quantum analogue for bits) of quantum information.
Each two-level system stores a qubit of quantum information; each addi-
tional qubit doubles the dimension of the Hilbert space of states available
to the quantum device.

1.2.1 Classical input-output
While quantum theory introduces one significant extension to the concept of
information by allowing for superposition storage, this comes with a notable
limitation. Contrary to a classical state, a single copy of an arbitrary
quantum state cannot be fully characterized by observation. The conversion
of quantum information to classical information implies a loss, typically
associated with the randomness of a measurement’s outcome. Holevo’s
theorem [9] quantifies this, stating the amount of classical information
extracted from a n-qubit quantum state is bounded by n bits. As a
corollary, it is impossible to copy an arbitrary state of a quantum device
(no-cloning), unlike for classical information which can always be observed
and transcribed.

A quantum algorithm needs to ensure that, at the end of the computation,
the quantum state of the device encodes the relevant information in a way
that makes its extraction easy. The whole n qubit Hilbert space can be
used to perform computation, but the output should be encoded in O(n)
bits of classical information. The final measurement performed on the state
needs to be designed such that it can extract the necessary information
from the state as efficiently as possible. In Chapter 4, we explore this
optimization of measurements for the expectation value of observables,
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under a further restriction on the amount of classical information that can
be extracted from the device.

Similarly, the input to any quantum computation – the list of instructions
– should be given in terms of classical information. A common framework
to describe this list of instructions is the quantum circuit model. There,
operations on the quantum memory are described as gates involving a
small number of qubits at a time. Gates are typically unitary operations,
although in some cases it is convenient to consider quantum channels to
model noisy gates or non-unitary gates such as reset (a key element in the
algorithm presented in Chapter 2). The computation is then realized by
applying a sequence of gates (a circuit) to a fiducial initial state.
Another model of computation relevant to this thesis is that employed

by analog quantum simulators. These quantum devices can natively im-
plement the time evolution generated by a Hamiltonian H(θ), function of
parameters θ that can eventually be changed during the computation The
Hamiltonians acts on the whole system at once, but it can be described in
terms of classical information as explained in Section 1.3. In contrast to
the circuit model, here the computation is described by stating the Hamil-
tonian throughout the computation time. Quantum simulators allowing for
general enough Hamiltonian are universal [10]. In fact, gate-based quan-
tum computers are practically realized as specialized simulators, where
each gate is generated by a pre-calibrated time-dependent Hamiltonian.
The term analog quantum simulators tends to be reserved for devices that
can implement a limited set of Hamiltonians, modeling analogously the
evolution of some quantum system of interest.

1.2.2 Noise, error correction and mitigation
All physical processes, including computation, suffer from a certain amount
of noise due to unpredictable perturbations. Classical computers can deal
with noise by storing information redundantly, both at the hardware
level (e.g. using macroscopic bistable systems) and by backing up data.
Redundancy-based error correction cannot be trivially applied in quantum
computation, as quantum information cannot be copied (no-cloning) and
compared throughout the computation. This leads to an accumulation of
noise over the computation, leading to degradation of quantum information
and, ultimately, a success probability that decays exponentially with the
space-time volume of the computation. [11, 12]

Quantum error correction codes aim to protect quantum information by
encoding it in a subspace of logical states, living in a much larger space of
physical states of the device. The logical subspace is engineered to ensure
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that physical noise processes scattering one logical state to the other are
exceedingly rare. For example, in topological codes [13], information is
encoded non-locally in terms of correlations between a large number of
two-level systems (a.k.a. physical qubits). A perturbation can only convert
one logical state into the other by acting on many two-level systems in a
globally-correlated fashion. The probability of such process occurring due
to natural noise is exponentially small in the number of physical qubits.
Non-logical states can be led back to logical states by following the geodesic
defined by error probability, effectively correcting the most-probable errors.

Quantum computation can be made completely fault-tolerant by ensur-
ing information is stored in a large enough logical subspace throughout the
computation (including initialization, gate operations and measurements).
The implementation of a large scale fault tolerant quantum computer is the
only known way towards many key applications of quantum computers, in-
cluding breaking cryptosystems using Shor’s algorithm [14] and performing
challenging chemistry simulations of industrial importance [15]. However,
such a computer requires an underlying physical device of very large scale
(millions of qubits) and with sufficiently small physical error rates, far out
of reach of today’s technologies. Large amounts of resources are being
invested towards the goal of fault-tolerant quantum computing, and the
last two years saw the first small scale proof-of-concept demonstration of
successful error correction [16] and fault tolerant operation of a quantum
device [17]. While defining the timeline to full-scale fault tolerant quantum
computing is not yet possible, even the most optimistic estimates accepted
by the community measure in the order of decades.

Another approach, more adapted to today’s noisy intermediate-scale
quantum (NISQ, [18]) devices, consists in keeping computations short to
prevent accumulated noise to reach a disruptive level. Short computa-
tions are obviously limited in capabilities, but have been demonstrated
to outperform classical devices on benchmark tasks [3–7]. The NISQ
paradigm can be summarized as prepare, sample, repeat, and it focuses
on performing many short-time quantum computations (called circuit
runs or shots), used as subroutines by a classical algorithm. This results
in a hybrid quantum-classical computation, where the usefulness of the
quantum subroutine is typically heuristic. An archetypal category of NISQ
algorithms are variational quantum algorithms, such as the variational
quantum eigensolver [19] described in Section 1.4.4 and considered in many
chapters of this thesis.
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1.3 Targets of quantum simulation

The term quantum simulation, in its most general sense, refers to the use of
a quantum device to study a physical phenomenon through a representative
model. Phenomena happening within an isolated quantum system can
be modeled through the Hamiltonian picture. The Hamiltonian H is a
Hermitian linear operator on the Hilbert space of states, which defines its
dynamics (i.e. how its state changes in time) through the time-dependent
Schrödinger equation

− i ∂
∂t
|ψ(t)〉 = H |ψ(t)〉 . (1.2)

If the system is influenced by a classical environment, the Hamiltonian
could depend on external parameters, possibly changing in time. In the
case of more complex interactions with the environment, describing the
dynamics of the system will require a more complex equation (such as the
Liouville equation, or a Schrödinger equation for a larger model including
the environment). Nevertheless, weak interactions with the environment
can often be studied through linear response theory, with Hamiltonian
eigenstates and dynamics playing a key role.
A system’s Hamiltonian naturally defines a set of natural targets for

quantum simulation: the synthesis of its dynamics (Section 1.3.1), the
preparation of thermal states and eigenstates (Section 1.3.2), and the
measurement of the system’s energy (Section 1.3.3). In this section, we
formalize these primitive target as problems with classical input-output
relations (where one of the inputs is always the Hamiltonian). We define
the size of each problem as the number qubits n defining the model’s
Hilbert space. We require all inputs and outputs to have an efficient
classical description, i.e. be representable in O(poly(n)) bits. When we
require quantum inputs such as a state |ψ〉 or an observable O, we assume
that they are given in terms of an efficient procedure that prepares |ψ〉 or
samples O. All problems are formulated such that output is an estimate
of a defined quantity, accurate to precision ε > 0 with high probability.
These problems are summarized in table 1.1.

A generic Hamiltonian cannot be described efficiently, as the definition
of a Hermitian operator on an n-qubit Hilbert space H requires 22n−1

complex parameters. Natural Hamiltonians aren’t however fully generic,
as they inherit locality from the underlying physics. In local systems, the
Hamiltonian can be described as a sum of local interaction terms hj , each
of which only acts non-trivially on a small Hilbert subspace Hj and as the
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Problem Input Target Output
Dynamics |ψ〉, O, t U(t) Õ : |Õ− 〈ψ(t)|O|ψ(t)〉 | < ε

Gibbs O, T ρT ∝ e−
H
T Õ : |Õ − Tr{OρT }| < ε

Eigenstate O, j |Ej〉 Õ : |Õ − 〈Ej |O|Ej〉 | < ε

Expectation |ψ〉 Expval 〈H〉 Ẽ : |Ẽ − 〈ψ|H|ψ〉 | < ε

Eigenvalue
sampling |ψ〉 Projective

meas. of H
Ẽ : |Ẽ − Ej | < ε,

with prob. pj = | 〈Ej |ψ〉 |2

Eigenvalue
estimation j Ej Ẽ : |Ẽ − Ej | < ε

Table 1.1: Summary of some primitive problems in quantum simulation.
The input of an efficient representation of H and of the required accuracy
ε is implicit for every problem.

1 on the complementary subspace H \Hj1:

H =
J∼poly(n)∑

j

hj ; hj := [hj ]Hj ⊗ 1H\Hj . (1.3)

This description is efficient as long as the number of terms in the sum scales
polynomially J ∼ O(poly(n)) and the dimension of each local Hilbert space
is constant dim[Hj ] ∼ O(1).
The two most common models of locality are illustrated in Fig. 1.1. A

geometrically local system is composed of subsystem arranged in space,
for example in a lattice. Each element can only couple to its geometric
neighbors. As the number of neighbors of each subsystem is bounded by a
constant, the number of couplings we need to describe the Hamiltonian can
only scale linearly in the size of the system. Sometimes it is convenient to
think of subsystems as particles, which can be geometrically delocalized and
can interact with all other particles; in these cases, interactions typically
involve no more than k-particles at a time. This defines an a k-local model,
the number of possible interactions scales as nk (thus still polynomial).
Note that geometric locality is more stringent than k-locality. In both

1This description is only rigorous for local commuting systems (qudits). The action of
a local fermionic Hamiltonian on the Hilbert space is more complex, as fermionic
operators acting on different locations need anticommute. However, the number of
terms that can appear in a fermionic local Hamiltonian remains the same.
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Figure 1.1: Visualization of the Hamiltonian Eq. (1.3) in a 2-dimensional
lattice model (geometric locality) and a two-body interacting particle
model (k-locality).

cases, the Hilbert space on which each interaction acts Hj is composed of
up to a constant number k of subsystems, thus each hj can be defined with
O(2k) parameters (constant in n). Other equivalently efficient descriptions
of sparse Hamiltonians exist; we focus on local models as they mostly
cover the natural systems of interest.

1.3.1 Hamiltonian dynamics
Reproducing the effect of time evolution of a state is the essence of
simulation, in the stricter sense of the term. We refer to this problem
to as Hamiltonian simulation or dynamical simulation. The inputs of
the problem, along with H and ε, are the initial state |ψ(0)〉 := |ψ〉, the
observable O, and the evolution time t. The goal is producing an estimate
Õ of the the expectation value of O on the state |ψ(t)〉 solution of the
time-dependent Schrödinger equation (1.2), up to the required accuracy
accuracy |Õ − 〈ψ(t)|O|ψ(t)〉 | < ε.

Solving Hamiltonian simulation boils down to synthesizing the propaga-
tor U(t), the unitary operator that sends |ψ〉 to |ψ(t)〉. More generally, the
propagator solves the operator-Schrödinger equation, −i∂tU(t) = H(t)U(t).
A quantum algorithm for Hamiltonian simulation needs to define a proce-
dure to construct an approximation of U(t), starting from the description
of the Hamiltonian. In the case of a time-independent Hamiltonian the
target operator is U(t) = e−iHt, which is not a sparse operator (unlike its
generator H).

An example use case of Hamiltonian dynamics is studying the evolution
of a known equilibrium state after an external field quenches (i.e. suddenly
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changes) the system’s Hamiltonian. The synthesis of the evolution operator
U(t) is also an key subroutine in many other simulation algorithms, such
as simulated thermalization (a version of which is studied in Chapter 2),
eigenvalue sampling (Section 1.4.5), quantum-assisted Hamiltonian learning
and many others. Furthermore, any efficient quantum computation can
be encoded in a Hamiltonian simulation problem [2, 20] – in complexity
theory terms, Hamiltonian simulation is BQP-complete.

The first proposal for a procedure to approximately synthesize U(t) on
a universal quantum computer was put forward by Lloyd in 1996 [21],
and it is based on Suzuki-Trotter product formulas [22, 23]. Through this
procedure Lloyd showed that a universal quantum computer can solve
the Hamiltonian dynamics problem for any k-local Hamiltonian efficiently.
The last years saw many proposals of improved algorithms for Hamiltonian
simulation, most of which lead to a significant reduction of the asymptotic
costs. Finally, analog quantum simulators can implement natively the
dynamics generated by some restricted class of Hamiltonian. We expand
on these in Section 1.4.2.

1.3.2 State preparation
Thermal state preparation

A physical system weakly interacting with an environment tends to thermal-
ize, that is to reach an equilibrium state ensemble with a fixed temperature.
Analogously to the classical case, a quantum thermal ensemble distribu-
tion mirrors the Gibbs measure, with the probability of a state decaying
exponentially with the state’s energy divided by the temperature. As the
energy is described by the Hamiltonian H, the density matrix for the Gibbs
state at temperature T is defined by

ρT := 1
Z(T )e

−HT , (1.4)

where Z(T ) := Tr
[
e−H/T

]
is the partition function which normalizes the

density matrix. As most systems in Nature are found in a thermal equilib-
rium state, studying the properties of thermal states has intrinsic interest.
Characterizing thermal state properties as a function of temperature and
other external parameters can lead to the identification of transitions
between phases of matter, whose study is of special importance to material
science.
The inputs to the problem of thermal state preparation, along with H

and ε, are the observable O and the temperature T . The goal is producing
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an estimate Õ of the the expectation value of O on the Gibbs state, up to
the required accuracy accuracy |Õ − Tr[ρTO]| < ε. To solve this problem,
one can attempt to prepare an approximation of the Gibbs ensemble ρT
on the quantum device.
Thermal state preparation algorithms include methods that simulate

thermalization, by coupling the model system with a model bath. The algo-
rithm we introduce in Chapter 2 fits in this class, although we specifically
explore its application to ground state preparation. Other algorithms for
thermal state simulation include a quantum version of metropolis sampling
[24], variational approaches [25, 26], and filtering-based techniques [27].

Eigenstate preparation

The eigenstates of the Hamiltonian represent the equilibrium pure states of
an isolated system, left invariant by time evolution. Each eigenstate |Ej〉
has a well-defined energy Ej , matching an eigenvalue of the Hamiltonian
and satisfying the time-independent Schrödinger equation

H |Ej〉 = Ej |Ej〉 . (1.5)

We assume an ordering of the eigenvalues Ej < Ej−1 without loss of
generality.
The lowest-energy eigenstate denoted |E0〉 or the ground state, holds

particular significance, as it represent the zero-temperature limit of the
thermal state Eq. (1.4). When the lowest excitation energy, also known as
the "ground-state gap" of a system (∆GS = E1 −E0), significantly exceeds
the temperature of the environment T , thermal states closely resembling the
ground state naturally emerge. For instance, this is the case for electrons
within a molecule or semiconductor, where typical excitation energies are
on the order of 1eV (equivalent to 104K, two orders of magnitude higher
than room temperature). Simulating the electronic ground state in these
systems allows for the prediction of molecular and material properties in
their natural state. Moreover, low-lying excited eigenstates are relevant to
the study of spectroscopic properties. Further insights into the quantum
simulation of molecular ground states are provided in Section 1.5.1.

The inputs to the problem of eigenstate preparation, along with H and ε,
are the observable O and the eigenvalue index j. The goal is to produce an
estimate Õ of the the expectation value of O on the j-th eigenstate, up to
the required accuracy accuracy |Õ− 〈Ej |O|Ej〉 | < ε. Solving this problem
requires the quantum simulation to aim at preparing an approximation of
the eigenstate |Ej〉.
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Many algorithms for eigenstate preparation have been proposed, each
employing very diverse techniques and heuristics, due to the intrinsic
difficulty of the problem. The variational quantum eigensolver (Sec. 1.4.4)
and adiabatic state preparation (Sec. 1.4.3) are important heuristic tech-
niques for eigenstate preparation, discussed in more detail in the next
section. Projective variants of quantum phase estimation (Sec. 1.4.5) can
also be used for heralded preparation of eigenstates. Other ground state
preparation techniques include among others simulated thermalization (a
variant of which is studied in Chapter 2), and various flavors of quantum
imaginary time evolution [28, 29].

1.3.3 Energy measurements
The Hamiltonian H serves as an observable representing the system’s
energy. In the preceding sections, we assumed the presence of an observ-
able O as input, along with an efficient method for its sampling. This
section addresses the challenge of implementing procedures to measure
the Hamiltonian observable, starting from its efficient classical description.
There are two distinct tasks, both referred to as energy measurement:
expectation value estimation and eigenvalue sampling.

Expectation value estimation

Expectation value estimation involves an input state |ψ〉, along with the
description of H and the target precision ε. The objective is to provide
an estimate Ẽ of the expected energy of |ψ〉 to the required precision
|Ẽ− 〈ψ|H|ψ〉 | < ε. Expectation value estimation is a key subroutine in the
variational quantum eigensolver (discussed in Section 1.4.4). Additionally,
the same technique can be applied to estimate the expectation value of
observables other than the system Hamiltonian.

The most basic algorithm to estimate 〈ψ|H|ψ〉 for H defined in Eq. (1.3)
relies on the linearity of the expectation value:

〈ψ|H|ψ〉 =
J∑
j

〈ψ|hj |ψ〉 . (1.6)

Given that hj acts non-trivially on a subsystem of constant size, we
can implement a quantum operation to sample it in constant time. In
Chapter 4 we perform a thorough study of expectation value estimation
under a restricted model of quantum computation, with applications in
error-mitigated NISQ computing and metrology.

11



1 Introduction

1

Eigenvalue sampling

The task of implementing projective measurement of H (up to target
accuracy ε) on an input state |ψ〉 is more complex. The aim of eigenvalue
sampling algorithm is to produce an estimate Ẽ of an eigenvalue Ej ,
sampled from the probability distribution described by the Born rule
pj = | 〈Ej |ψ〉 |2, up to the required accuracy |Ẽ − Ej | < ε. Note that this
task entails two objectives: sampling from the probability distribution pj
and estimating the eigenvalue Ej , which is not known in advance based
on the description (1.3) of the Hamiltonian. The entanglement-based
quantum phase estimation algorithm, utilizing Hamiltonian dynamics
simulation as a subroutine, can be used to implement this measurement
efficiently (see Section 1.4.5).

1.3.4 The ground state energy problem
The eigenvalue estimation problem revolves around the estimation of a
specific eigenvalue Ej of H, with j being the sole input to the problem
in addition to H and ε. Frequently, this problem is specifically addresses
the ground state, where it is known as the ground state energy problem
or sometimes simply the ground state problem. Solving the ground state
energy problem involves a combination of ground state preparation and
energy measurement algorithms. A good approximation of the ground state
energy can be achieved either by measuring 〈H〉 on a well-approximated
|E0〉, or by repeatedly sampling eigenvalues of H from an input state that
demonstrates a substantial fidelity | 〈E0|ψ〉 |2 with the ground state.
The ground state energy itself plays a pivotal role in the simulation of

chemistry and material science, as exemplified in Section 1.5.1. Further-
more, any quantum computation that can be efficiently verified can be
mapped into a ground state problem using Kitaev’s history-state Hamilto-
nian construction [13, 30]; in complexity theory terms, the ground state
problem is QMA-complete. The history state construction has been itera-
tively improved upon in literature, allowing for the encoding of any QMA
problem into Hamiltonians that describe systems as straightforward as
one-dimensional chains of nearest-neighbor-interacting subsystems, each
with Hilbert subspace of constant size N = 12 [31]. Given that the quan-
tum phase estimation algorithm implements eigenvalue sampling efficiently,
the task of preparing a state |ψ〉 with a good fidelity to the ground state
[i.e. | 〈ψ|E0〉 |2 & 1/poly(n)] must also be QMA-hard. Nevertheless, the
statement on the complexity of ground state preparation is only true for
worst-case. History state Hamiltonians have very specific forms, signifi-
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cantly different from most natural system’s Hamiltonians; for the latter,
heuristic ground state preparation are more likely to succeed.

1.4 Algorithms for quantum simulation
In this section, we introduce some of several prominent algorithms designed
to address the quantum simulation problems presented in the previous
section. Since a primary objective of quantum algorithm research is to
identify problems and methodologies that enable quantum devices to
exhibit an advantage over classical numerical approaches, we will start
by providing a concise conceptual introduction to prominent classical
techniques used to solve quantum simulation problems. Subsequently,
we will provide an overview of three fundamental quantum algorithms
(or, more precisely, classes thereof), each of particular significance to the
context of this thesis.

1.4.1 Classical algorithms
All the problems discussed in the preceding section can be framed in terms
of classical input-output relationships, making them amenable to both
classical and quantum algorithms. However, all the problems we described
implicitly involve the storage and manipulation of states of the simulated
quantum system. While quantum algorithms inherently handle this task,
classical simulation algorithms must work with highly compressed state
representations to maintain memory and time efficiency. Any compression
of the quantum state introduces approximations, and tends to be accurate
and efficient only in specific cases. Here, we highlight some successful
classical algorithms used to address the ground state problem, emphasizing
their primary assumptions.
Mean-field methods represent the state as a tensor product of linearly-

many local subsystem states. By neglecting entanglement between different
parts of the system, these methods offer an efficient yet rough representation
suitable for approximating ground states in weakly-interacting systems.
Even in such cases, mean-field methods often require to be aided by
perturbation theory to achieve quantitative results. An example of a
popular mean-field method is the Hartree-Fock self-consistent field
method, frequently employed for Fermionic particle systems like molecular
and material models. It is often used as a starting point for other methods,
including ground state quantum simulations (see Section 1.5.1 for an
example).
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Similarly, tensor-network methods address ground state problems
for local Hamiltonians by constraining the level of entanglement between
local subsystems. This is accomplished by compressing the 2n amplitudes
of the state vector into a set of small tensors, along with a set of rules
for contracting their indices structured to replicate the locality of the
system. Tensor network techniques are particularly well-suited to treating
geometrically local systems (see Fig. 1.1) when entanglement between
distant parts of the system is small. One-dimensional tensor networks,
also known as matrix product states, excel in describing ground states of
gapped one-dimensional systems. Extending tensor network methods to
higher-dimensional systems is more challenging due to the computational
complexity of arbitrary index contractions. However, heuristic tensor
network methods continue to improve, providing some of the most accu-
rate results for correlated condensed matter systems [32] and chemistry
applications [33, 34].
In the realm of Fermionic models of natural systems, density func-

tional theory (DFT) offers a set of highly efficient algorithms for study-
ing ground states. DFT achieves compression by storing only the local
density of particles, a classical variable whose information content scales
linearly with the system’s size. The Hohenberg-Kohn theorems establish
that such a description suffices to fully characterize a ground state for
a two-body Fermionic Hamiltonian [35, 36]. Nevertheless, the computa-
tional complexity of exactly retrieving the energy from this compressed
representation remains exponential. To simplify this computation, various
mathematically and/or empirically motivated approximations have been
developed, resulting in a diverse range of approximate functionals. Thanks
to the compact nature of the compressed representation and the relatively
straightforward computation of these approximate functionals, DFT proves
to be exceptionally computationally efficient. Consequently, it stands out
as the most practical method for handling exceedingly large systems. The
accuracy of DFT outcomes is limited to systems where particle correlations
remain relatively weak, rendering it particularly suitable for addressing
many practical problems in fields such as organic chemistry.
Quantum Monte Carlo (QMC) encompasses a broad array of classi-

cal techniques that apply stochastic, or Monte Carlo, methods to quantum
simulation problems. QMC methods typically circumvent the need to store
an accurate representation of the ground state by recasting the ground
state problem as a high-dimensional integral involving simple wave func-
tions and operators. The complexity of solving this integral is managed
through an approximate solution based on stochastic integration, facil-
itated by cleverly designed importance sampling. A poor choice in the
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definition of the integral or of the importance sampling step can lead to a
divergence in the variance of the result,thus requiring exponential sampling
time to achieve the target accuracy. While this divergence often occurs in
Fermionic systems due to the so-called sign problem [37, 38], techniques
based on heuristic constraints enable QMC to obtain competitive results
for complex problems in condensed matter physics and chemistry.

1.4.2 Hamiltonian simulation algorithms
The first approach to efficiently synthesize an evolution operator U(t) on
a quantum device, addressing the Hamiltonian simulation problem (see
Section 1.3.1), was proposed by Lloyd in 1996 [21]. This technique, often
referred to as Trotterization, adapts expansion methods for exponentials of
operators developed by Trotter [22] and Suzuki [23]. The central concept re-
volved around recognizing that, for small time increments δt, the linearized
evolution operator generated by the Hamiltonian H(t) (decomposed as in
Eq. (1.3)) can be approximated as

U(t, δt) = e−iH(t)δt =
∏
j∈[J]

e−ihj(t)δt +O(δt2). (1.7)

The second order error in δt is due to the non-commuting terms [hj , hj′ ] 6= 0.
Since each e−ihjδt only acts non-trivially on a constant-size subsystem
Hj , it can typically implemented in constant or linear time on a quantum
device. To achieve the desired U(t) =

∏t/δt
τ=1 U(τδt, δt), the short-time

evolution operator is synthesized with the desired accuracy and applied t
δt

times.
The approximation error in Trotterization can be controlled in vari-

ous ways. This includes reducing δt, modifying the approximation (1.7)
increasing the order of the remainder, or randomizing the sequence of
the local operators eihjδt using a technique known as quantum stochastic
drift protocol (qDRIFT) [39]. While analytical bounds for the Trotter
approximation error are less favorable than for more advanced methods,
they can sometimes be tightened by leveraging the Hamiltonian’s locality
through Lieb-Robinson bounds [40–42]. Extensions of these methods that
aim to counteract the approximation using locality provide highly efficient
techniques for simulating geometrically local Hamiltonians.

Trotter-like methods represent the simplest algorithms for Hamiltonian
simulation, and to date they are the only ones experimentally tested on
quantum devices. In some of these experiments, the approximation error
is embraced and included in the models as a periodic drive potential,

15



1 Introduction

1

resulting in so-called Floquet models.
Over the past decade, various techniques have been developed that

take a fundamentally different approach than Trotter expansion to syn-
thesize U(t). These methods are typically based on the concept of block
encodings of a sub-unitary operator H/λ (with λ ≥ ‖H‖), constructed
by expressing H as a linear combination of unitary operators (LCU)
[43–45]. The evolution U(t) is then synthesized by transforming the
block-encoded operator through techniques derived from quantum walk
theory [43] and nuclear magnetic resonance control. These techniques are
known as qubitization [46], quantum signal processing [47], and the
quantum singular value transform [48].

All the techniques mentioned above are designed for universal quantum
computers and can be applied to simulate any physical model given a
fault-tolerant quantum device of sufficiently large scale. In contrast,
analog quantum simulators natively implement the evolution according
to a restricted class of Hamiltonians, defined by the underlying physical
implementation and the experimental control on the device. Due to
these limitations, each quantum simulator can only address a subset of
simulation problems, with its capabilities heavily dependent on its specific
implementation.

1.4.3 Adiabatic state preparation
The adiabatic algorithm [49] is an early technique for eigenstate prepara-
tion (see Section 1.3.2), grounded in the adiabatic theorem introduced by
Born and Fock in 1928 [50]. According to this theorem, a system evolving
under a time-dependent Hamiltonian H(t) will remain in its instantaneous
eigenstate |Ej(t)〉 if the Hamiltonian changes gradually enough (i.e., adi-
abatically) and there is a persistent energy gap between Ej(t) and its
neighboring eigenvalues Ej+1(t), Ej−1(t). For simplicity, hereon we focus
on ground states, considering only the ground state gap ∆ = E1 − E0.

The adiabatic theorem can be harnessed by constructing a time-dependent
Hamiltonian

H(t) =
(

1− t

tmax

)
Hinit + t

tmax
Htarget, (1.8)

Here, Htarget represents the Hamiltonian whose ground state |Etarget
0 〉 we

aim to prepare, while Hinit is a Hamiltonian whose ground state |Einit
0 〉

is known and easy to prepare. After initializing the quantum device in
the state |E0(0)〉 = |Einit

0 〉, we can simulate the evolution dictated by
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Figure 1.2: Example of nonadiabatic transitions. The plot shows the
low-energy spectrum of an adiabatic algorithm Hamiltonian H(t) [see
Eq. (1.8)], for the same Ising chain model used in the simulations of
Chapter 5. We plot the fidelity | 〈Ej(t)|ψ(t)〉 | of the adiabatic state |ψ〉 (t)
with the instantaneous eigenstates |Ej(t)〉 (both in color and line size)
throughout the progress of the quasi-adiabatic evolution. Note how around
the gap closing at t

tmax
≈ 0.5 the fidelity with the instantaneous ground

state is reduced in favor of the first excited state.

H(t), ensuring Tmax is adequately large to ensure the Hamiltonian changes
adiabatically. If the system remains in the instantaneous eigenstate |E0(t)〉,
we will have successfully prepared the target ground state at time t = tmax.

This form of the adiabatic theorem holds exactly in the infinite tmax
limit, which is clearly unpractical. Finite rates of change in H(t) result
in nonadiabatic transitions, representing a transfer of some amplitude
between instantaneous eigenstates, as depicted in Figure 1.2. The rate
of transition depends on the rate of change of the Hamiltonian ‖ ddtH(t)‖
(faster changes lead to larger transitions) and on the ground state gap
∆(t) = E1(t) − E0(t). The nonadiabatic transitions are stronger when
the gap ∆(t) is small. While it is possible to enhance adiabatic algorithm
outcomes by employing a schedule that adjusts the rate of change in H(t)
based on the gap, determining the gap a priori is challenging.
Rigorous bounds on the final state’s approximation quality, dependent

on the schedule and gap, have been established in a series of adiabatic
theorems [51–53]. A popular version of the adiabatic theorem states that a
time proportional to [mint ∆(t)]−2 is required to prepare the target ground
state with fidelity 1− ε.
The adiabatic algorithm is particularly suitable for analog quantum
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simulators, which can natively implement dynamics generated by H(t).
On a universal quantum computer, implementing the adiabatic algorithm
would entail simulating a time-dependent Hamiltonian, utilizing one of the
algorithms discussed in the previous section and thus incurring additional
computational overhead.

1.4.4 The variational quantum eigensolver
The variational quantum eigensolver (VQE) is a ground state preparation
algorithm (see Section 1.3.2) tailored to the capabilities of NISQ devices,
originally introduced in 2014 [19].
The VQE, illustrated in Fig. 1.3, is based on the interplay between a

quantum device (or quantum processing unit, QPU) and a classical com-
puter. The quantum device is used to run a subroutine that involves two
main steps: 1. Preparation a parametrized ansatz state |ψ(θ)〉; and 2. Esti-
mation of the Hamiltonian expectation value E(θ) = 〈ψ(θ)|H|ψ(θ)〉 (as in
Sec. 1.3.3). The ansatz state is generated through a set of parametrized op-
erations on the quantum device, forming what is known as a parametrized
quantum circuit (PQC). This subroutine is used by a classical algorithms,
running an outer optimization loop with the objective of minimizing E(θ).
Notably, since no state possesses lower energy than the ground state |E0〉,
the result of the VQE is variationally bounded, meaning minθ E(θ) ≥ E0.

An essential factor for the VQE’s effectiveness is the design of the PQC
preparing the ansatz state |ψ(θ)〉. The set of ansatz states cannot cover
the entire Hilbert space, since a classical variable θ containing the same
amount of information as the amplitudes characterizing the quantum
state (which grows exponentially with the system size) would defeat the
purpose of employing a quantum device. Instead, the choice of the PQC is
guided by various heuristics. These can include extensions of perturbation
theory (e.g., unitary coupled cluster [19]), constructions inspired by the
problem’s Hamiltonian (e.g., variational Hamiltonian ansatz [54], quantum
alternating operator ansatz [55, 56]), or its symmetries (e.g., quantum-
number preserving fabrics [57]). Adaptive ansätze have also been proposed,
where the PQC is generated dynamically at runtime [58]. Given the
importance of keeping the PQC compact, ansätze optimized for a specific
hardware architecture are common in current proof-of-concept experiments
[59].
While VQE provides an invaluable testing platform for quantum algo-

rithm in the NISQ era, its potential to achieve practical quantum advantage
is a topic of debate. Even with strong heuristics in the ansatz construction,
low-dimensional ansatz manifolds may not accurately represent complex
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Figure 1.3: Block scheme of the variational quantum eigensolver. The
subroutine run on the quantum device (labeled QPU) prepares an ansatz
state |ψ(θ)〉 through a quantum circuit whose gates are parameterized by
the elements θj of θ. The expected energy E(θ) of |ψ(θ)〉 is measured by
sampling on many repetitions of the circuit, and minimized by a classical
outer loop.

correlated systems; certifying the quality of the result is also compli-
cated. Minimizing the cost function E(θ) is difficult due to the complex,
multimodal nature of the optimization landscape, occasional vanishing
gradients, and added challenges from hardware and sampling noise. Even
when VQE has the potential to prepare the ground state of a system of
interest, obtaining a high.accuracy estimate of the final energy estimate
necessitates a substantial number of shots. This cost is further increased
by the necessary application of error mitigation techniques.

1.4.5 Quantum phase estimation algorithms

The problem of quantum phase estimation is closely related to that of
eigenvalue sampling described in Section 1.3.3. The objective of phase
estimation is to sample eigenvalues ϕj of a unitary operator U with
probabilities proportional to the fidelity pj = | 〈ϕj |ψ〉 |2 with an input
state |ψ〉. When considering U = e−iHt, the sampled unit eigenvalues
ϕj can be mapped to corresponding eigenvalues of the generator H as
Ej = arg(ϕj)/t, provided that t is chosen appropriately to ensure the
argument function is single-valued (typically t < π‖H‖).

To gain insight into the relationship between the dynamics generated by
H and the measurement of the observable H, we can draw parallels to an
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early model of measurements introduced by Von Neumann [60]2. In this
model, a pointer representing the measurement apparatus is coupled to
the system, with the aim to map the quantity we want to measure onto the
pointer’s state. This is represented in the left panel of Fig. 1.4. The pointer
is described by a single continuous variable q, with generalized eigenstates
|x〉P, initially in the state |0〉P. The displacement operator D(α) = e−iαp

generated by the conjugate momentum p can be used to encode a number
α on the pointer’s state D(α) |0〉P = |α〉P. Correspondingly, the coupling
the pointer and the system through the generator p⊗H yields

e−ip⊗H t |0〉P ⊗ |ψ〉 =
∑
j

|Ej〉P ⊗ |Ej〉 〈Ej |ψ〉 (1.9)

Tracing out the original system leaves the pointer in the ensemble state
pj |Ej〉〈Ej |P, yielding the desired result of eigenvalue sampling.
The classic quantum phase estimation algorithm (QPEA), introduced

by Kitaev in 1995 [61], can be described as a Von Neumann measurement
model with a digital pointer. The variable representing the pointer’s posi-
tion q is discretized and encoded in a binary register of m qubits, initialized
to the all-zero state |0〉Pm−1

... |0〉P0
. A quantum Fourier transform (QFT)

[62] is applied to the pointer register, transforming its basis to represent
a discrete counterpart of the conjugate momentum p Subsequently, each
qubit Pk in the pointer register is employed to control 2k iterations of the
operator U = e−iH t, specifically using the operation |1〉〈Pk|U2k + |0〉〈Pk|1.
This effectively implements the discrete analog of the evolution e−ip⊗H t.
Finally, an inverse QFT returns the pointer register to representing the
pointer’s position. The resulting state encodes an approximation of Ej ,
with precision depending on the size of the pointer register m and with
probability proportional to the input state fidelity. A block diagram of
the circuit for QPEA is shown in the top-right panel of Figure 1.4.
An extremely reduced version of the QPEA circuit can be created by

modeling the pointer with a single qubit. The QFT on a single qubit
coincides with a Hadamard gate, and the output of each run of the circuit is
binary (0 or 1), hence the common name for this circuit is the Hadamard
Test (HT). The HT circuit is represented in the bottom-right panel of
Figure 1.4. The Hadamard test is explored in depth as a model of a
generalized measurement with binary output in Chapter 4. Although a
single run of the HT is not particularly informative, the expectation value of

2The connection between Von Neumann measurement model and quantum phase
estimation introduced in these pages was inspired by a presentation given by Seth
Lloyd during his Lorentz professorship in Leiden, in 2019.
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Figure 1.4: (Left) Von Neumann measurement of the system energy
Hsystem using a continuous-variable pointer. (Top right) Entanglement-
based quantum phase estimation algorithm, employing the quantum
Fourier transform (QFT). The binary-encoded result is read out on the
pointer qubits, marked in red. (c) Single-control quantum phase estima-
tion. The Hadamard test circuit it used to measure a signal function g(t).
Processing the signal with a fast Fourier transform (FFT) or a similar
method yields a spectral density function.

the results (interpreted as −1 and +1 instead of 0 and 1) matches 〈ψ|U |ψ〉,
with U being the controlled operator. Measuring this for the evolution
operator U(t) = e−iH t at different times t allows us to reconstruct a signal
function g(t) := 〈ψ|e−iHt|ψ〉. The frequencies of the Fourier components
of g(t), which can be extracted using various signal processing techniques,
approximate the eigenvalues Ej , and their amplitudes approximate pj .
While this result is fundamentally different from eigenvalue sampling, both
methods can be applied to the eigenvalue estimation problem described in
Section 1.3.4. The algorithms based on this idea are commonly referred to
as single-control QPEAs, and due to the shorter and simpler circuits
they required they are more suited to the NISQ regime. In Chapter 3, we
introduce an error mitigation technique specially tailored to single-control
QPEAs.
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1.5 Molecular simulation on a quantum
computer

A quantum description of molecules – objects emerging from the inter-
action between atomic nuclei and electrons – stands as one of the early
successes of quantum mechanics [63]. The theoretical study of molecules
is one of the fields that most benefited from the development of classical
computational simulation. Computational chemistry, a mature discipline,
employs a diverse range of methods with applications spanning from fun-
damental research to industrial process development. Established classical
techniques such as density functional theory, mean field and perturbation
theory methods (described in Section 1.4.1) allow for efficient simulation of
many large and complex molecules, particularly in organic chemistry. This
empowers chemists to make predictions regarding molecular properties,
geometries, reaction pathways and rates. Importantly, this bypasses the
costly and sometimes unfeasible task of physically isolating or synthesizing
the target molecule in the laboratory. Predictions from computational sim-
ulations can guide experiments, and provide valuable insight for chemical
engineers, biochemists and other scientists in the development of industrial
processes or the advancement of our understanding of the natural world.

Nonetheless, there are questions within the realm of quantum chemistry
that pose challenges for classical techniques. These typically pertain
the study of the electronic structure of strongly correlated molecules. In
such systems, strong interactions disrupt perturbative assumptions, and
electrons become entangled in complex ways that cannot be adequately
described by the approximate models commonly used in computational
simulations (like those described in Section 1.4.1). Quantum simulation
holds the promise of providing a novel and distinct tool to tackle the
unresolved questions in correlated quantum chemistry. The ability to
precisely represent strongly-correlated quantum states renders quantum
devices particularly attractive in this context.
While quantum hardware has not yet reached a point where it can

support practical computations, ongoing research in quantum simulation
is bringing the prospect of useful quantum advantage closer. This compre-
hensive research endeavor encompasses many stages: the identification of
open problems that pose challenges to classical methods, the development
of techniques to simplify and adapt these problems to quantum methods,
the improvement of quantum algorithms tailored to address these specific
challenges, and the establishment of benchmarks to test the algorithms
and certify the results. The domain of computational quantum chemistry
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offers a multitude of open questions with evident implications for both
research and commercial applications.

1.5.1 The pipeline for electronic structure on a
quantum computer

In this section, we introduce a key problem in quantum chemistry: the
identification of the electronic structure ground state. Various quantum
simulation methods aiming to address this have been proposed and explored
at length. We show that this problem forms the basis for computing
chemical reaction rates, probing molecular properties, and conducting
molecular dynamics simulation. Following this, we outline the widely
employed second-quantization approach, which simplifies the molecular
model and facilitates its mapping onto a quantum device. The resulting
quantum simulation problem can be addressed using some of the quantum
algorithms introduces in Section 1.4.

The electronic structure ground state problem

A molecule is a system composed of electrons (here labeled as e) and
atomic nuclei (labeled as N). The Hamiltonian of such a system can be
decomposed in kinetic and electrostatic interaction terms3,

H = TN + Te︸ ︷︷ ︸
Kinetic energy

+ UNN + Uee + UeN︸ ︷︷ ︸
Coulomb electrostatic energy

. (1.10)

The dynamics of these two groups of particles can be treated separately,
following the approximation introduced by Born and Oppenheimer in 1927
[63], which is founded in large mass difference between nuclei and electrons.
Initially, the heavier and slower nuclei are treated as immobile charges
fixed at coordinates R. Their dynamics can be reintroduced later, either
classically (treating R as a classical variable) or semiclassically (quantizing
R but neglecting its correlations with the electronic state). An electronic
structure Hamiltonian can then be expressed as a function of R

He(R) = UNN(R) + UeN(R) + Te + Uee. (1.11)

3This molecular structure Hamiltonian neglects relativistic effects (including spin-
orbit) and nuclear spins, which is often a reasonable approximation. In areas
of theoretical chemistry where these effects are significant, the treatment can be
adjusted accordingly.
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The first term UNN(R) is a nuclear repulsion constant which does not
influence electronic dynamics, like the nuclear kinetic term TN which we
removed by fixing the nuclear positions. The term UeN(R) now represents
the potential experienced by electrons due to nuclear charges. The remain-
ing operators Te and Uee, are independent of R and represent the kinetic
energy of electrons and the electrostatic repulsion between electron pairs,
respectively.

Solving the ground state problem for the electronic structure Hamiltonian
Eq. (1.11) yields the energy E0(R) as a function of nuclear coordinates.
The energy required to excite electrons to higher eigenstates is typically on
the order of an electronvolt, which is two orders of magnitude larger than
both the ambient temperature and the typical nuclear kinetic energy. This
difference justifies the approximation of considering only electronic ground
states, as well as the Born-Oppenheimer approximation. The local minima
of E0(R) define the equilibrium geometries for the molecule. The shape
of the potential around the equilibrium points defines the vibrational and
rotational spectra of the molecule. More generally, nuclear motion can be
reintroduced as governed by the potential E0(R), assuming that electrons
follow their instantaneous ground state adiabatically. The R-derivatives
of E0(R) represent the forces acting on nuclei, which can be used in
molecular dynamics simulations. Additionally, other molecular properties,
such as polarizability, can be predicted based on the representation of the
electronic structure ground state.

One relevant target of electronic structure calculations is the prediction
of reaction rates. A chemical reaction can be viewed as a trajectory in
nuclear coordinate space, starting from a stable state RR, with the nuclei
arranged as reactant sub-molecules, and ending at another stable state RP
representing the products. Along this reaction path connecting RR → RP,
a saddle pointRT signifies a transition state: the highest energy point along
the path. The activation energy of the reaction ∆EA = E0(RT)−E0(RR)
is a key factor in determining the reaction rate constant k4. Both the
(empirical) Arrhenius equation and the (first-principle) Erying equation,
reveal that k depends on the activation energy exponentially, k ∝ e−Ea .
Therefore, resolving the activation energy to high precision is essential.

4Complex reactions may occur along multiple pathways, each consisting of several
steps between metastable states. The overall reaction rate can be computed by
applying the concepts described here to each individual step of the reaction and
combining the results.
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Discretization

Addressing the challenge just described amounts to solving the ground
state problem, described in Section 1.3.4, for the electronic structure
Hamiltonian Eq. (1.11). Tackling this with quantum simulation first
requires to translate this Hamiltonian into the form of an operator acting
on the state space space of a quantum device. A common approach,
assuming a second-quantized treatment of the problem, encompasses three
steps: 1. discretization of the single-particle state space, 2. mean-field
calculation, leading to the selection of single-particle orbitals relevant to
correlations, and 3. mapping fermionic operators to qubit operators.

The first step,widely used in computational chemistry, involves discretiz-
ing space using a set of 2Mao single-particle wavefunctions called atomic
orbitals5 χµ(x, σ) ∈ C, with x ∈ R3 representing the electron’s position
and σ ∈ Z2 its spin. Atomic orbitals are chosen to approximate the low-
energy mean-field eigenstates for individual atoms, and to be numerically
integrable; they need not be orthogonal to each other. Various methods
exist for selecting atomic orbitals, and the resulting collections of orbitals
are referred to as a basis set. By combining a large number of atomic
orbitals from different atoms, more complex single-particle wavefunctions
known as molecular orbitals φp can be constructed:

φp(x, σ) =
∑

µ∈[2Mao]

Cµpχµ(x, σ). (1.12)

The combination of atomic orbitals to form molecular orbitals is illustrated
in Fig. 1.5 (left and center). Molecular orbitals are typically chosen to be
orthonormal.

An anti-symmetrized product of orthogonal molecular orbitals defines a
many-electron state known as Slater determinant

Φ
(
x1, σ1; ...;xNe , σNe

)
=

∑
π∈PNe

sgn(π)
Ne⊗
p=0

φp(xπ(p), σπ(p)), (1.13)

where Ne is the number of electrons in the state and Pm is the set of
permutations of size m. The state depends on the molecular orbital coeffi-

5The orbitals we define here are often called spin-orbitals, as their definition includes
the spinor component of the wavefunction. It is common to further factorize spatial
orbitals and spinors. We avoid this for the sake of synthesis, but we add a factor
2 in the number of spin-orbitals to maintains the compatibility with the common
definition of M as the number of spatial orbitals.
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Figure 1.5: Left: artistic representation of the first few atomic orbitals
and their energy levels. Center: atomic orbitals from two atoms combine
to construct molecular orbitals. For the sake of clarity, we represent only a
few of the first molecular orbitals generated by combining atomic orbitals
from two atoms. Right: mean-field energy of each molecular orbital. One
possible complete active space subdivision of orbitals is shown.

cients Cpµ through φp. A Slater determinant represents an uncorrelated
many-body state, where each electron is not entangled to the others. Its
energy can be computed efficiently in terms of integrals involving the
atomic orbitals, the Coulomb operator 1

x1−x2
, the kinetic operator ∇2

x

and the nuclear positions and charges.

Reduction and second quantization

The Hartree-Fock self-consistent-field method (HF-SCF) efficiently opti-
mizes the coefficients Cµp to construct the minimal-energy Slater deter-
minant ΦHF and a set of orthogonal molecular orbitals φHFp , ordered by
their mean field energy εHFp ≤ εHFp−1. To introduce correlations on top
of the mean field state ΦHF, one can consider superpositions of Slater
determinants generated by transferring some of the electrons from occupied
molecular orbitals (indexed by p < Ne) to unoccupied molecular orbitals
(q ≥ Ne). Transferring an electron between orbitals p→ q always results in
a positive change in mean-field energy ∆HF

p→q = εHFq − εHFp , but considering
superpositions between such states can yield a lower, beyond-mean-field
energy. However, when ∆HF

p→q is large, the large increase in mean-field
energy contrasts the gain from adding the excited Slater determinant to the
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superposition. Therefore, when constructing the superposition of Slater
determinants, we can limit to considering orbitals with energies within a
selected window around Fermi energy εF := εHFNe

. The molecular orbitals
are thus divided in three sets: a core set of fully-occupied low-energy
orbitals for p < 2MC, an set of active orbitals 2MC ≤ p < 2MC + 2MA
used to describe correlations among NA = Ne − 2MC electrons, and the
remaining space of high-energy virtual orbitals which are discarded in the
calculation of correlations. This subdivision is illustrated in Figure 1.5.
Calculations that prescribe this subdivision are called complete active
space methods, and denoted by the abbreviation CAS(NA,MA).

The electronic structure Hamiltonian Eq. (1.11) can be constrained to
the active space, accounting for the effect of frozen electrons in mean-field
terms. The resulting Hamiltonian can be divided into terms that act on
zero, one single, or pairs of electrons in the active space:

HA =
constant︷ ︸︸ ︷

UNN + UNC + UCC + TC +TA + UCA + UNA︸ ︷︷ ︸
one active electron

+
two active electrons︷︸︸︷

UAA . (1.14)

In turn, this can be written in terms of second-quantized fermionic opera-
tors acting on a single electron (c†pcq) and pairs of electrons (c†pc†qcrcs)

HA = const. +
∑

p,q∈[2MA]

gpqc
†
pcqc

†
rcs +

∑
p,q,r,s∈[2MA]

hpqrsc
†
pc
†
qcrcs. (1.15)

The coefficients gpq and hpqrs are obtained through integrals of the atomic
orbitals with the kinetic and Coulomb operators and are known as one-
electron and two-electron integrals, respectively. The number of Slater
determinants that can be obtained by distributing NA electrons over 2MA
orbitals is the binomial coefficient (2MA)!

Ne!(2MA−Ne)! , which grows exponentially
in the size of the active space. The description of the Hamiltonian, instead,
only requires the O(M4

A) integrals.
Describing electronic structure accurately is most challenging in systems

that necessitate large active spaces. The appropriate active space size is
determined by chemical intuition, often guided by approximate classical
simulations. The size of the molecule is not a reliable predictor of the re-
quired active space size; many large organic molecules are not particularly
challenging because the electrons predominantly occupy bonding orbitals,
well described by mean-field theory. There, transferring electrons to empty
orbitals has a large energy cost and thus correlations remain small. Meth-
ods like density functional theory predict the ground state energy of such
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systems efficiently and accurately. An example of a challenging problem
is given by molecules containing transition metals; these provide many
atomic open-shell orbitals, which lead to a number of complex molecular
orbitals with similar energies which need to be considered in the active
space construction. One such case is nitrogenase, an enzyme crucial for
converting atmospheric nitrogen into ammonia, containing iron and molyb-
denum atoms embedded in an organic matrix (FeMo cofactor). A deeper
understanding of this enzyme could potentially lead to improvements in in-
dustrial process of ammonia synthesis (critical, among others, for fertilizer
production), currently achieved through the costly Haber-Bosch process.

Mapping to a quantum computer

The Slater determinants defined over active molecular orbitals constitute a
set of orthogonal states. These can be mapped onto the states of a quantum
device, serving as a basis to represent more general correlated states.
Similarly, the Fermionic creation and annihilation operators c†p, cp that
construct the Hamiltonian Eq. (1.15) need to be mapped onto operators on
the device’s Hilbert space. The Jordan-Wigner transformation, a common
mapping between fermionic systems and qubit system, prescribes assigning
one qubit to each molecular spin-orbital. An occupied spin-orbital is
represented by the state |1〉 of the corresponding qubit, while an empty
orbital corresponds to |0〉. The mapping of fermionic operators is defined
as

c†p =
p−1⊗
j=0

σzj ⊗ σ+
j ; cp =

p−1⊗
j=0

σzj ⊗ σ−j , (1.16)

where σzj is the Pauli Z operator on the j-th qubit and σ±j = 1
2 (σxj ± iσ

y
j )

are the raising/lowering operators. This mapping of fermionic operators
ensures the correct anti-commutation relations, but sacrifices locality.

Solution by quantum simulation

With a model of the electronic structure problem represented in terms
of states and operators on a quantum device, we can now explore the
use of quantum simulation algorithms to solve it. If the goal is to solve
the ground state problem on a NISQ device, one viable approach is to
employ the Variational Quantum Eigensolver (VQE), as described in
Section 1.4.4. Several VQE ansätze tailored to chemistry problems have
been developed [64, 65], with the original proposal of the VQE being
motivated by implementing a unitary version of the coupled-cluster ansatz
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[19]. Various optimizations have been proposed for estimating expectation
values (see Section 1.3.3) of a Hamiltonian of the form Eq. (1.15) [66–68].
An effective and practical method consists in measuring the one- and
two-electron reduced density matrices of the input state |ψ〉, respectively

Dq
p = 〈ψ|c†pcq|ψ〉 and Drs

pq = 〈ψ|c†pc†qcrcs|ψ〉 . (1.17)

In practice, current quantum devices can only handle very small toy
models of molecules using VQE. The largest VQE simulation for electronic
structure with the final expectation value estimation step performed on
a quantum computer utilized an active space of only 10 orbitals (with a
further approximation simplifying the spin degree of freedom), and it relied
heavily on error mitigation techniques [69], including the one introduced
in Chapter 3.
Proposals for fault-tolerant quantum simulation of chemistry typically

focus on the application of the quantum phase estimation algorithm (see
Section 1.4.5) [70]. Using QPEA to solve the ground state problem requires
a Hamiltonian simulation subroutine and a technique for preparing a state
with a significant overlap with the ground state. Recent years have seen
the proposal of numerous optimized Hamiltonian simulation algorithms
for electronic structure, many of which employ qubitization and LCU
techniques (see Section 1.4.2). These methods primarily concentrate on
constructing efficient compressions of the highly structured information
contained in the one- and two-electron integrals, making them more suitable
for uploading onto quantum computers [71–74]. Preparing a state with a
good overlap with the ground state remains a challenging problem. It has
been suggested that this step could potentially hinder the achievement of
exponential quantum advantages in simulating electronic structure ground
states [75]. Since most molecules naturally approach their electronic
ground state through processes like thermalization and adiabatic evolution
along a reaction coordinate, we expect heuristic methods can be used
to efficiently emulate these phenomena. Dissipative algorithms, such as
the one proposed in Chapter 2, or adiabatic state preparation, could be
optimized to approximate molecular ground states effectively.

1.5.2 The journey towards useful quantum advantage
in chemistry

The example presented in the previous section illustrates the multitude
of decisions involved in defining a pipeline for studying a physical phe-
nomenon using quantum simulation. These decisions impact the level of
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approximation, precision of results, and the practicality of the method.
Research in simulation can address any step of the pipeline, from the very
choice of the problem to study to the final algorithmic result.
Extensive research has been conducted on the problem of electronic

structure ground states in quantum simulation, with efforts focused on
optimizing molecule modeling, mapping, and various quantum algorithms –
in the previous section, we only presented the most common approach. An
important body of research today includes the estimation of the costs of
running quantum simulation algorithms on prospective quantum computer,
especially for fault-tolerant approaches. For instance, in [74], it was esti-
mated that a fault-tolerant quantum computer could execute the Quantum
Phase Estimation Algorithm (QPEA) for a model of the nitrogenase FeMo
cofactor, with a precision sufficient for estimating reaction rates, in four
days using approximately 4 million physical qubits (assuming reasonable
but as yet unachieved physical error rates).

To attain useful quantum advantage, it is essential to identify problems
that are easy to solve through quantum simulation but challenging for
classical methods. The ground state problem for molecules containing
transition metals is hard for classical methods, due to the large size
of the active space in which correlations need to be accounted for non-
perturbatively. However, classical approximate methods for electronic
structure ground state continue evolving, with some of them being able
to approximate more and more complex correlations [75], making the
remaining challenging cases even more demanding for quantum solutions.

Another set of problems challenging for classical simulation is provided
by photochemistry, where low-lying excited electronic eigenstates play a
significant role in reactions initiated by light rather than thermal energy.
Describing excited states on a quantum computer is not significantly
more complex than describing ground states, while classical simulation
algorithms often exploit ground-state-specific properties. Photochemical
reactions also involve the conversion of light energy into phonons, which can
lead to the breakdown of the Born-Oppenheimer approximation, especially
near electronic structure spectrum degeneracy points known as conical
intersections (detailed in Chapter 6). The numerical study of chemistry
beyond the Born-Oppenheimer approximation is very limited due to the
complex correlations between electrons and nuclei, and the difficulty of
discretizing space in the absence of clear atomic orbitals. A concurrent
simulation of electrons and nuclei could be in principle achieved through
first-quantized quantum simulation methods [76]. The size of the quantum
computers required to implement these methods is beyond the foreseeable
future, but in the long term such quantum computers could be achieved.
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Another example of shift in the problem focus includes the recent pro-
posal of using Hamiltonian learning to reconstruct NMR spectra [77, 78].
This problem also pertains the field of computational quantum chemistry,
but it completely bypasses the electronic structure Hamiltonian, focusing
on the interactions between nuclear spins instead. Finally, quantum algo-
rithms could be used to assist known classical methods in innovative ways.
Finally, quantum algorithms can complement existing classical methods
in innovative ways, as seen in the quantum computing quantum Monte
Carlo (QC-QMC) proposal. There, sampling on a variational quantum
state provides information about correlations in the electronic structure
wavefunction, while high-precision energy calculations are performed clas-
sically.

1.6 Outline of this thesis
This thesis introduces a number of quantum algorithms tailored to the
simulation of physical systems. Chapter 2 introduces a category of al-
gorithms aiming to prepare ground states of natural systems through
simulated cooling. Chapter 3 presents a novel error mitigation approach,
echo verification, and investigates its application in single-control phase
estimation algorithms. The two following chapters explore applications of
echo verification in different contexts: Chapter 4 develops techniques for
estimating expectation values within the measurement model induced by
echo verification; Chapter 5 applies echo verification to mitigate the effect
of non-adiabatic transitions in the adiabatic algorithm. Finally, Chapter 5
explores the challenge of detecting conical intersections in molecular models
– an under-explored problem in quantum chemistry, well-suited to quantum
simulation – and proposes a resilient quantum algorithm to solve it.

Chapter 2: Quantum Digital Cooling

In chapter 2, we explore the idea of simulating cooling by coupling the
system to a single-qubit “fridge”. This auxiliary qubit is reset periodically to
its low-energy state, allowing to extract energy and entropy from the system.
The use of a single-qubit fridge differs from the natural thermalization
process, where systems cool by releasing energy into extensive, cold, and
ergodic baths. While simulating such baths is theoretically possible, it
comes with a significant computational burden. Our investigation of single-
qubit fridges leads us to introduce a category of algorithms designed for
preparing the ground states of simulated Hamiltonians, which we name
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quantum digital cooling. We establish two approaches to quantum digital
cooling: a efficient strong-coupling approach which coarsely approximates
the ground state, and a more expensive approach that can achieve arbitrary
accurate approximations. We then assess the performance of both methods
through numerical benchmarks.

Chapter 3: Error mitigation via verified phase estimation

Chapter 3 introduces a novel error mitigation technique that leverages the
quantum information remaining in the device’s state following a Hadamard-
test-based measurement. This method involves checking if, after the
measurement, the system state can be projected back onto the input
state. This verification step has a high probability of failure in the
presence of errors, enabling the rejection of erroneous results, and it does
not introduce any bias to the measurement outcome when errors are
absent. Our technique finds successful application within the framework
of the single-control quantum phase estimation algorithm (introduced in
Section 1.4.5), leading to the development of the verified phase estimation
(VPE) algorithm. We demonstrate the application of VPE to both phase
estimation and expectation value estimation problems for various models,
showing improvements of several orders of magnitude over unmitigated
estimation at near-term error rates.

Additionally, this chapter introduces a variant of VPE, known as control-
free VPE, which eliminates the need for a control qubit. This simplifies
the control circuitry significantly, bringing near-term implementations of
our technique within reach.

In further literature, this error mitigation technique gained recognition
under the name of echo verification [69, 79], a terms that draws parallel
with the Loschmidt echo [80]. Control-free VPE has also been tested exper-
imentally in a superconducting quantum processor, realizing simulations
of systems of up to 10 qubits, and thus leading to the implementation of
the largest variational algorithm for a correlated chemistry system to date
[69].

Chapter 4: Optimizing the information extracted by a
single-qubit measurement

In chapter 4, we study expectation value estimation (see Section 1.3.3) in
a restricted model of quantum computation, where we are only allowed
to extract a single bit of information per each n-qubit quantum state
preparation. This restriction is motivated by echo verification, where all
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but one qubit are used in the verification step to detect errors. We indeed
show that, in echo-verification-like schemes, extracting more than one bit
of information is counterproductive towards estimating expectation values.

Within this restricted model, we optimize expectation value estimation
by decomposing the target observable into a sum of bitwise-measurable
terms. We construct optimal decompositions analytically, and we propose
a set of rules to improve on a given decomposition which can sometimes
be applied even in presence of experimental constraints. We find the
optimal decomposition of a fast-forwardable operator, and show a numerical
improvement over a simple Pauli decomposition by a factor n0.7.

Chapter 5: Virtual mitigation of coherent non-adiabatic
transitions by echo verification

In chapter 5, we develop an extension of echo verification tailored to
applications to the adiabatic state preparation algorithm (see Section 1.4.3).
This technique, which we call adiabatic echo verification, mitigates both
coherent and incoherent errors arising, respectively, from non-adiabatic
transitions and hardware noise. This is an unconventional application of
error mitigation, which is typically applied to hardware errors only. Even
in the absence of hardware noise, the estimator bias of the observable is
reduced when compared to standard adiabatic preparation, achieving up
to a quadratic improvement.
Our method is based on two quasi-adiabatic evolutions with mirrored

schedules implementing the echo. These are interleaved by a dephasing step
by random-time evolution, and by the Hadamard-test-based measurement.
The dephasing promotes coherent errors from non-adiabatic transitions
into incoherent errors, making them amenable to verification. Our method
requires positive-time dynamics only, making it more suitable to application
in analog quantum simulators.

Chapter 6: A hybrid quantum algorithm to detect conical
intersections

In chapter 6, we tackle a problem of interest in photochemistry: the detec-
tion of conical intersections in molecular models. The chapter introduces
a quantum simulation algorithm tailored to the NISQ era to solve this
problem.

Conical intersections are significant points in the geometry of a molecule,
where the electronic potential energy surfaces cross in a topologically
protected manner. Close to a conical intersection the Born-Oppenheimer
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approximation breaks down, with crucial implications for chemical pro-
cesses like photoisomerization and non-radiative relaxation. One prominent
example is their role in the vision process, where a conical intersection
facilitates the isomerization of retinal after absorbing a photon, which in
turn triggers a cascade of chemical signal that result in the perception of
light.
Conical intersections are characterized by a non-zero Berry phase, a

topological invariant defined on a closed path in atomic coordinate space.
The berry phase assumes the value of π when the path encircles the
intersection manifold, and 0 otherwise. The algorithm we propose tracks
the approximate ground stare along the chosen path, using a parametrized
quantum circuit ansatz updated by a fixed number of Newton-Raphson
steps. At the end of the algorithm, a Hadamard test is used to measure
a single bit of information, which determines whether the Berry phase
is π or 0. Since the final result is discrete, our procedure succeeds even
for a cumulative error bounded by a constant; this allows us to bound
(analytically) the total sampling cost and to readily verify the success of the
procedure. The application of our algorithm is demonstrated numerically
on a small toy model of the formaldimine molecule (H2C––NH).
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CHAPTER 2

Quantum digital cooling

2.1 Introduction
Ground state preparation is an essential algorithm in the quantum com-
puting toolbox. Any polynomial-time quantum algorithm can be mapped
to the problem of estimating the ground state energy of an artificial Hamil-
tonian given an approximation to its ground state [81], and without such
additional input this problem is known to be QMA-hard for even 2-local
Hamiltonians [30]. Digital quantum simulation of problems in materials
science and chemistry, one of the ‘killer apps’ of a quantum computer, is
most often concerned with properties of ground states of the simulated
systems [15, 21], and many problems in optimization may be mapped
to ground state finding problems [49, 55]. This has led to a wide range
of schemes for digital ground state approximation, via adiabatic evolu-
tion [49], variational methods [19, 55, 82], phase estimation [83], amplitude
amplification [84–86] and approximate imaginary time evolution and other
Hamiltonian function techniques [28, 87–89]. However, these algorithms
suffer from large computational costs or approximation errors, making
designing better schemes an active area of interest.

In nature, ground states are achieved by coupling to a large cold reservoir,
which takes energy from the system in keeping with the second law of
thermodynamics. Simulating an entire bath would require an impractically
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large quantum register, however it has long been suggested that this
may be mimicked by coupling to a single qubit which may be reset to
its ground state with sufficient frequency [21]. This idea has been since
studied in digital quantum computing for the initialization of quantum
devices [90, 91] and as an inspiration of an algorithm based on resonant
transitions and postselection [92]. This idea was also explored in analog
simulation settings, for the preparation of physical [93] and artificial [94, 95]
ground states. However, cooling an artificial system in the digital quantum
setting provides a set of unique challenges — the system being studied
may be completely different from the physical quantum hardware, and
the digitized Hamiltonian may be only an approximation to the target
of interest. Furthermore, the periodic non-unitary reset may break the
unitary evolution in short time-scale chunks which do not conserve energy,
implying that one may artificially reheat the system without clever protocol
design. This is of critical importance in near-term devices, where limited
coherence times compete against the desire for slower cooling cycles.

In this chapter, we detail how one may prepare ground states of an
artificial Hamiltonian on a digital quantum computer via quantum digital
cooling (QDC). We first present an analytic study of the cooling of a
two-level system, from which two different approaches may be outlined to
de-excite to the ground state whilst preventing reheating. We investigate
the behaviour of both methods in the digitized setting, and find they
continue to be robust. The protocols deriving from these two principles are
tested in the one-qubit black-box Hamiltonian setting, where the energy
gap and matrix elements are unknown. We extend these protocols to N -
qubit systems, and investigate their ability to cool small-scale simulations
of the transverse-field Ising model numerically. Our LogSweep protocol,
based on the weak-coupling approach, is demonstrated to converge to the
ground state of all three phases of the transverse-field Ising model. It
further shows a relative energy error constant in the system size at a fixed
protocol length for the weakly-coupled and critical phases of this model,
which corresponds to a requirement to simulate time evolution for O(N2)
and O(N3) Trotter steps respectively. By contrast, the stong-coupling
BangBang protocol shows the ability to prepare low-cost ground-state
approximations of the same model in the paramagnetic and ferromagnetic
regime, but seems to perform much worse close to the critical point, where
the system spectrum shows a less-ordered structure. The small number
of calls to the system evolution operator needed to realize this protocol
makes it attractive for near term application.
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2.2 Cooling a system with a single fridge
qubit

In nature, gapped physical systems cool down to a state with high overlap
to the ground state when interacting with a bath that is cold and large,
under the condition of ergodicity. By cold, we mean that temperature TB of
the bath is small compared to the ground state gap ∆S of the system to be
cooled: kBTB � ∆S (with kB Boltzmann’s constant). By large, we mean
that the bath has a sufficiently large Hilbert space that the above condition
is unchanged by the addition of the energy from the system. By ergodic,
we mean the system must not have symmetries that prevent excitations to
be transferred from the system to the bath, or that reduce the effective
size of the accessible bath Hilbert space. Given a system with Hamiltonian
HS and eigenstates HS|Ej〉 = Ej |Ej〉, energy conservation implies that
the bath must have states at energies Ej − E0 to allow de-excitation
of the eigenstates Ej . This is typically achieved by considering a bath
with a continuous or near-continuous low-energy spectrum [Fig. 2.1(a)].
However, the bath need not cool all states immediately to the ground state.
Instead, a bath typically absorbs single quanta of energy ε = Ei −Ef that
correspond to local excitations of the system |Ei〉 → |Ef 〉, at a rate given
by Fermi’s golden rule:

dPi→f

dt
= 2

~

∫ ∞
0

dε |〈Ef , ε|HC|Ei, 0〉|2 ρB(ε)

× lim
t→∞

sin[(Ei − Ef − ε) t]
Ei − Ef − ε

(2.1)

= 2π
~
|〈Ef , ε|HC|Ei, 0〉|2 ρB(Ei − Ef ), (2.2)

where HC is the coupling between the system and the bath, and ρB is the
density of states of the bath1. This requires the bath to be large enough
to prevent re-excitation of these states as the system continues cooling. In
other words, the bath must have a large Hilbert space compared to the
one of the system. This ensures that, at equilibrium, most of the entropy
is distributed in the bath.

To represent such a large bath with an auxiliary register on a quantum
device in order to cool a system register would be impractically costly. We
propose approximating the presence of a much larger bath B with a single

1In the rest of this chapter we drop ~ factors, assuming a choice of units for which
~ = 1.
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auxiliary qubit F [Fig. 2.1(b)], with bath Hamiltonian HB → HF = ε ZF/2.
This can be considered a simplified form of a collisional model [96] that
does not allow for non-Markovian effects (that would be, in our case,
unwanted). The coupling between the bath and the system takes the
form HC = γXF ⊗ VS/2, where γ is the coupling strength, and VS a
coupling term that acts on the system alone. A key advantage of the
digital approach is that we are free to choose VS as desired to optimize the
cooling protocols. The Hamiltonian of the entire system and bath then
takes the form

H = HS +HF +HC. (2.3)

This has the immediate problem that the bath can only absorb a single
quantum of energy ε; howvever, we may circumvent this by periodically
resetting the auxiliary qubit to |0〉. The non-unitary reset effectively
extracts energy and entropy from the auxiliary qubit to a much larger
external bath (i.e. the experimenter’s environment). For this reason, we call
this auxiliary qubit a fridge qubit (hence F). The non-unitarity introduced
in the process is necessary to dissipate entropy, allowing to prepare the
ground state from an arbitrary starting state. As the time between resets
is finite, the t→∞ limit in Eq. (2.1) is no longer justified and energy is
no longer conserved. This is both a blessing and a curse — we need not
precisely guess the energy gap ∆ = Ei −Ef of the transition that we need
to de-excite, but we run the risk of reheating the system at each cooling
round. Minimizing re-heating while maximizing the range of targeted
de-excitations is key to the successful design of QDC protocols. In a
realistic experiment, qubit re-heating would be effectively increased by
reset infidelity on the auxiliary qubit, making the protocol less effective.

2.3 De-exciting a single transition: the 1+1
model

In order to design some basic protocols for QDC, we turn to a toy ‘1+1’
model. We take a single-qubit system with Hamiltonian HS = ∆ZS/2, and
couple it to a single fridge qubit with coupling term VS = XS. Although
this model is simple, it can represent a pair of levels being targetted for
cooling in a larger quantum system. We will make use of this interpretation
when extending these cooling protocols in section 2.4.
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Figure 2.1: The de-excitation of the system transition |E1〉S → |E0〉S me-
diated by: (a) a continuous-spectrum natural bath B, where an excitation
|ε〉B at energy ε is produced, and (b) a single-qubit digital fridge F, which
can be excited if ε = ∆.

2.3.1 Elementary approaches to digital cooling: strong
and weak coupling

Let us first assume ∆ is known, in which case resonant cooling (ε = ∆) is
the most effective choice of ε. With this fixed, the transition probabilities
after time t may be calculated exactly to be

P1→0 = sin2
(γ

2 t
)
, P0→1 = γ2 sin2(tΩ)

4Ω2 , (2.4)

where Ω =
√
γ2/4 + ε2. We wish to maximise the cooling probability

P1→0 while minimizing the reheating probability P0→1 by optimizing the
remaining free parameters: the coupling strength γ and the cooling time t.
To maximize the cooling rate P1→0 = 1, we must set

t = πγ−1. (2.5)

We assume this constraint throughout this chapter. Note that this choice
is beyond the perturbative regime γt� 1, for which the Fermi golden rule
Eq. (2.1) is formulated.
To minimize reheating, we can then choose either of two very different

approaches, based on strong or weak coupling. The weak-coupling approach
is based on the observation that the off-resonant transition probability
P0→1 is bounded by γ2/4Ω2. As such, we may suppress reheating to
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an arbitrary level by choosing sufficiently small γ. The time-cost for
Hamiltonian simulation of eiHt scales at best linearly in t [97], so this
implies one may obtain the ground state with failure probability p in time
O(p−1), regardless of the initial state of the qubit. The strong-coupling
approach consists of tuning γ so that Ωt = π, which is achieved when

γ = 2√
3
ε. (2.6)

This fixes the reheating exactly to 0, guaranteeing the qubit to be in the
ground state in the shortest possible time, but at the cost of requiring
fine-tuning.

Unlike in analog quantum simulation, digital devices cannot exactly
implement the dynamics of the Hamiltonian in Eq. (2.3), and must ap-
proximate it digitally instead. A common approach to such digitization is
that of the Suzuki-Trotter expansion [22, 23], which we now explore for
the two cooling paradigms. We apply the (second-order) expansion of the
coupled system-bath evolution with Trotter number M ,

e−i(HS+HF+HC) t ∼
[
e−iHC

t
2M e−i(HS+HF) t

M e−iHC
t

2M

]M
. (2.7)

Note that, when we later approach larger systems, we will practically realize
e−iHSt/M as a single second-order Trotter step, effectively implementing a
second-order Trotter simulation of the coupled Hamiltonian HS +HF +HC
with trotter numberM . If we restrict to the subspace containing the states
involved in the cooling transition |10〉SF → |01〉SF, at resonant cooling we
have HS +HF ∝ 1 (specifically, in this model |01〉 and |10〉 generate a zero-
eigenvalue subspace of HS +HF). Thus, the Trotterized evolution behaves
exactly like the continuous one with regards to the cooling transition. We
study reheating probabilities as a function of t for different values of M
in the weak-coupling regime. We observe (Fig. 2.2) that the digitized
evolution approximates well the behavior of the continuum limit whenever
tΩ/π /M (i.e. for the first M Rabi oscillations with pulse Ω). For longer
times tΩπ ' M , the second-order Trotter approximation fails, leading
to reheating rates far larger than in the continuum limit. This allows us
to define a practical choice of M to avoid reheating due to the Trotter
approximation – we require

M �
√

1 + ε2/γ2, (2.8)

which sets the working point t = πγ−1 before the M/2 Rabi oscillation.
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Figure 2.2: Effects of Trotterization on cooling and reheating probabilities
as a function of the coupling time t, for different numbers of Trotter steps
M per cooling cycle. Vertical dotted lines indicate the M -th reheating
oscillation, at which point the Trotter approximation fails.

In the strong-coupling case tΩ/π =
√

3, which implies that a single step
is sufficient to satisfy the condition above. Indeed, digitized cooling with
probability 1 and no reheating can be realized by a bang-bang approach
(inspired by similar approach in variational methods [98, 99]). This con-
sists in defining the evolution as in Eq. (2.7) with M = 1, while adjusting
the coupling strength to γ = 2ε. With this choice, the digitized evolu-
tion implements resonant Ramsey interference on the cooling transition
|10〉SF → |01〉SF and anti-resonant Ramsey interference on the reheating
transition |00〉SF → |11〉SF.

A key difference between the two approaches to digital cooling is in
their behavior off-resonance, i.e. when the energy gap is mis-targeted or
not precisely known. For the bang-bang approach, detuning reduces the
cooling efficiency while symmetrically boosting reheating [Fig. 2.3(a)].
The wide resonance peak around zero detuning makes this approach
ideal to quickly cool transitions which energy is known up to a small
error. In the weak-coupling approach the resonance peak becomes sharper
and the reheating gets more suppressed as the coupling is made smaller
[Fig. 2.3(b)], approaching the energy conservation limit. Detuning makes
cooling inefficient, but thanks to the low reheating probability this weak-
coupling cooling can be iterated with different values of ε to try to match
the transition energy, without destroying the cooling effect.
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Figure 2.3: Effect of fridge-system detuning δ = ∆ − ε on the cooling
(dashed lines) and reheating (solid lines) probabilities for (a) the bang-
bang cooling approach, and (b) the weak-coupling cooling approach, where
colors indicate different couping strengths.

2.3.2 Common symmetries and the coupling
alternation method

In large systems of interest, we do not know the Hamiltonian’s eigenstates,
making it more challenging to couple between them. This is required for
cooling, as can be seen by the direct dependence of the cooling rate dPi→f

dt
on the overlap |〈Ef , ε|HC|Ei, 0〉|2 in Eq. 2.2. This overlap dependence will
prohibit cooling if the system Hamiltonian HS and the coupling operator
VS share a common symmetry S (i.e. [S,HS] = [S, VS] = 0). When this
is the case, the Hamiltonian may be simultaneously diagonalized with
HS, and a state with some overlap to any eigenspace of S that does not
contain the ground state cannot be cooled to the ground state by coupling
with VS. Note that this is a strictly stronger condition than just requiring
[HS, VS] 6= 0. A simple solution is to alternate over a set of couplings
{V iS} as we cool. Then, a symmetry S of H would need to commute with
each V iS in order to guarantee that a state starting with overlap in a high-
energy eigenspace will remain there. Sets of coupling terms {V iS} on N
qubits need only be size O(N) to break commutation with all non-trivial
operators (for example, the set of all single-qubit Pauli operators), so
although symmetries need to be taken into account, they will not destroy
the feasibility of QDC protocols.
This issue may be demonstrated on the protoype 1 + 1 qubit model

by considering the system Hamiltonian HS = h~n · ~σ, where ~n is a 3-
dimensional unit vector (so HS points in a random direction on the Bloch
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Figure 2.4: Probabilities P1→0 of transitioning from |1〉 to |0〉 after three
iterations of the weak-coupling (t ε = 10) cooling procedure, with coupling
potentials V iS = X,X,X (left), V iS = X,Y,X (center), V iS = X,Y, Z
(right), on a system qubit with Hamiltonian HS = h~n · ~σ and known
energy splitting h. The orientation of the unit vector ~n is represented on
spherical surfaces. The average, standard deviation and minimum of P1→0
are shown above each panel.

sphere), 2h is a fixed energy splitting, and σ is the vector of Pauli-matrices.
For a fixed coupling operator VS, there is a risk that [HS, VS] ≈ 0. When
this is the case, the off-diagonal elements of VS in the system eigenbasis
are zero, preventing cooling. We may prevent this by alternating between
different coupling terms during the cooling protocol, such that no non-
trivial Hamiltonian can commute with all such coupling terms. This may
be achieved for the 1 + 1 model by iterating over V iS ∈ {XS, YS, ZS}, or
alternatively over V iS ∈ {XS, ZS}. The effectiveness of this scheme is
studied in Fig. 2.4 for resonant coupling. We see the probability P1→0 of
successful cooling of the weak coupling approach (t ε = 10) increased to
min(P1→0) = 97% for all choices of ~n when iterating over V iS = XS, YS, ZS,
and above 95% when iterating V iS = XS, ZS, XS, compared to the possibility
for complete cooling failure [min(P1→0) = 0] when V iS is held constant.
Similar results ar observed for off-resonant coupling.
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2.4 Scalable QDC protocols
We now look to use the insight obtained for cooling in the 1+1 toy
model to develop QDC schemes for larger systems. The sub-additivity
of entropy places a rough lower bound on the number of cooling steps
required to cool an N -qubit system. This limits the entropy ∆SS that
the system can transfer to the fridge qubit before the non-unitary reset
to ∆SS ≥ −∆SB ≥ −1 bit. If we demand the ability to cool an arbitrary
state, a QDC protocol must also be able to cool the maximally-mixed
state, which has entropy SS = N . We then require N repetitions of an
optimal coupling-and-reset step to reach the pure ground state (which
has entropy SS = 0). This can be obtained in the simple example of
cooling N non-interacting qubits with known energies, by simply repeating
the protocols of the 1 + 1 model. However, this cannot be generalised to
arbitrary strongly-correlated systems, as cooling is complicated by irregular
and unknown energy gaps and coupling terms between eigenstates. This
is to be expected, as preparing ground states of arbitrary Hamiltonians
is a known QMA-hard problem [30]. However, as cooling is a physically-
motivated process, we hope QDC to be able to achieve polynomial scalings
for systems of physical interest, i.e. models of systems that are found in
low-temperature equilibrium states in nature. We focus for the rest of this
chapter on exploring this thesis.
In the rest of this text, we introduce two scalable QDC protocols for

N -qubit systems: the strong-coupling-based BangBang protocol and the
weak-coupling-based LogSweep protocol. These extend and generalize the
two approaches we established for the 1+1 toy model of section 2.3.1. Each
protocol iterates over a sequence of cooling steps, each of which consists of
coupling the fridge qubit to part of the system for a short time evolution,
and then resetting the fridge qubit to its ground state. The protocols
differ in the choice of coupling strengths γi, coupling terms V iS and fridge
energies εi at each i-th cooling step. [The coupling time for each cooling
step is fixed by Eq. (2.5)].

2.4.1 The BangBang protocol
We now develop a protocol to extend the strong-coupling approach (Eq. 2.6)
to a larger system. This motiviation is in line with recently proposed
bang-bang approaches to adiabatic state preparation [98, 99], which are
known to outperform initial theoretical expectations stemming from a
naive Trotter error estimate. We are thus optimistic that this ’BangBang’
protocol may provide a low-cost, near-term method for QDC. However,
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such a protocol needs to associate each fridge-system coupling with a single
fridge energy, that should match the transitions that this coupling triggers.
An appropriate choice of fridge energy can be estimated via a perturbation
theory approximation. To derive this approximation, we note that the rate
of a transition between eigenstates |Ei〉 → |Ej〉 depends on the matrix
element of the coupling VS :

V(ij) := 〈Ei|VS |Ej〉 = 〈Ei| [HS, VS ] |Ej〉
Ei − Ej

. (2.9)

If VS is local and bounded, [HS, VS ] is as well, so the matrix element V(ij)
will be bounded proportionally to (Ei − Ej)−1. The matrix element is
additionally bounded by ‖V ‖; this second bound becomes dominant when
Ei − Ej/‖V ‖ falls below the maximum off-diagonal element of [H,V ] in
any basis, which we define with the notation ‖[H,V ]‖⊥:

‖O‖⊥ = max
〈φ|ψ〉=0

|〈φ|O |ψ〉| = max
|Φ〉,|Ψ〉

〈Φ|O |Φ〉 − 〈Ψ|O |Ψ〉
2 , (2.10)

where O is Hermitian and the maxima are taken over all possible states
|ψ〉 , |φ〉 and |Ψ〉 , |Φ〉. A simple proof is given in Appendix 2.A. We use
this energy scale to set the fridge energy:

εi = ‖[V iS , HS]‖⊥ (2.11)

for any coupling potential V iS . This way, the maximum-energy transitions
accessible by VS are on resonance, while smaller energy ones (which are
less important for cooling) still have a higher probability of cooling than of
reheating [see Fig. 2.3(a)]. This defines the BangBang protocol: we iterate
over coupling to each qubit, with εi fixed by Eq. (2.11). As this protocol
does not attempt to suppress reheating, we choose a single coupling
VS = Yn for the n-th qubit, instead of iterating over VS = Xn, Yn, Zn (as
was suggested in Sec. 2.3.2). In general, the best choice of VS will depend
on the system that we want to cool, and the couplings should be picked to
enable as many transitions as possible. We repeat the coupling to each
qubit R times, resulting in a total of RN cooling steps. Each cooling step
contains two first-order Trotter steps simulating e−iHCt/2 (of depth d(1)

HC
),

a single second-order Trotter step for e−iHSt (of depth d(2)
HS

), and a reset
gate, resulting in a total circuit depth

dBangBang = RN(2d(1)
HC

+ d
(2)
HS

+ 1). (2.12)
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Figure 2.5: Change in energy expectation value for the application of
a single cooling step to the maximally mixed state of a N = 8 qubit
transverse field Ising chain Eq. (2.13), depending on the fridge energy ε.
The coupling potential is VS = Y3, the Pauli Y on the third qubit. The
relation B2 + J2 = 1 fixes the energy scale.

To test the BangBang protocol, we study the cooling of a N -qubit
transverse-field Ising chain

HS =
N∑
i=0

BXi +
N−1∑
i=0

JZiZi+1, (2.13)

where B represents the transverse magnetic field Zeeman splitting and J
is the Ising coupling strength. The relative coupling strength J/B dictates
whether the system is in the paramagnetic (J/B � 1), ferromagnetic
(J/B � 1), or critical (J/B ∼ 1) phases. This ability to simply tune
between three phases of matter with significantly different physical prop-
erties make the TFIM a good benchmark model to investigate the ability
of different QDC schemes in various scenarios.

We first demonstrate that our choice for the fridge energy Eq. (2.11)
is appropriate. In Fig. 2.5, we plot the effect of a single cooling step on
the maximally-mixed state. We observe that cooling is maximized for
fridge energies around the point defined by Eq. (2.11), for all phases of
the TFIM. We find this behaviour to hold for all other (local) choices of
coupling potential VS tested in our work, as predicted.

We next turn to the ability of the BangBang protocol to prepare an
approximation ρ of the ground state, starting from a maximally-mixed
(i.e. infinite temperature) initial state. We benchmark by the final state
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with two figures of merit: the ground state fidelity

F = Tr
[
|E0〉〈E0| ρ

]
, (2.14)

and the energy relative to the ground state energy Tr[HSρ]/|EGS|. This
last property is local in local system, and represents an energy density in
TFIM. To verify convergence, we compare cooling results to a reheating
limit, obtained by running the protocol with the ground state as initial
state. We observe that all TFIM phases converge after R ≈ N repetitions
(with the weakly-coupled phase system converging already at the first
repetition). In Fig. 2.6 we plot the energy density of the cooled state, as
well as the reheating limit, as a function of the number of sites in the system.
This shows that convergence is indeed achieved for R = N independently
on the system phase and size, and that the final energy density stays
approximately constant, without showing any other trend. The BangBang
protocol achieves a final energy density close to 90% and 95% of ‖HS‖⊥ for
the ferromagnetic and paramagnetic regime respectively, while performing
significantly worse in the critical regime. This is to be expected, as in this
regime the spectrum is no longer banded, and excitation energies are not
as uniform as in the paramagnetic or ferromagnetic regimes. Following
Eq. (2.12), the protocol’s circuit depth is 7NR for a gate-set containing
single- and double-qubit rotations (and the reset gate). Given the low cost
of the protocol, we suggest that this is of particular interest for near-term
experiments, and may be further refined by other cooling protocols, or
methods such as quantum phase estimation, in the long term.

2.4.2 The LogSweep protocol
Refrigeration at weak-coupling suppresses reheating, but only allows for the
cooling of transitions within a narrow energy band [as shown in Fig. 2.3(a)].
We may take advantage of this in a larger system, where a wide range of
energy gaps are present, by sweeping the fridge energy εk from high to
low as we iterate over cooling steps. (As low-energy transitions are more
susceptible to re-heating than high-energy transitions, this will in general
be more efficient than sweeping from low to high.)
To construct a full protocol, we further need to fix the set of fridge

energies εk and linewidths δk = t−1
k = π γk that we plan to use for each

cooling step. We will be guided by two principles. First, the target band
of fridge energies (Emin, Emax) should be tightly covered by the cooling
lines εk ± δk. Second, the reheating should be suppressed to a certain
degree throughout the protocol. As by Eq. (2.4) the reheating suppression
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Figure 2.6: Performance of the BangBang protocol as a function of the
system size N for the three different phases of the transverse-field Ising
model (detailed in legend). The coupling potentials are V iS = Yi. Dots
correspond to result when the protocol is applied to the maximally-mixed
state, shaded regions corresponds to result when protocol is applied to
the true ground state (which gives a bound on protocol re-heating). Data
generated by Trotterized wave-function simulations of the protocol, and
random sampling of the initial mixed state and of nonunitary operations
(details in App. 2.F). All points are run with 200 samples, and average
results are plotted with the sampling error.

depends on γk/εk, we fix this value to a small constant throughout the
protocol (i.e. we choose γk ∝ εk). Thus we define the LogSweep protocol,
where the fridge energy εk is sweeped over (Emin, Emax) in a logarithmic
gradation. Specifically, given the gradation number K, we index each
cooling step k = 1, . . . ,K, and we define

εk = E
k−1
K−1
min E

1− k−1
K−1

max , (2.15)

and choose δk to fix εk+1+δk+1/ζ = εk−δk/ζ, with ζ a constant (potentially
dependent on K). In App. 2.B, we prove that such a scheme will cool a
single transition in the range (Emin, Emax) with probability 1 as K →∞,
and in App. 2.C we demonstrate that the logarithmic gradation is optimal
for such a scheme for a choice of ζ(K) ∼ log(K). To make sure all
system excitations have a chance of being dissipated, we further iterate
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the couplings VS over a set of local couplings {V iS} throughout the system:
for the considered spin systems we choose {V iS} ≡ {Xn, Yn, Zn} for each
qubit n (see Sec.2.3.2), for a total of 3NK cooling steps. The number of
Trotter steps Mk for each cooling step k is chosen to prevent re-heating.
This follows Eq. 2.8, but as transition energies between system eigenstates
may be as large as the Hamiltonian spread 2‖HS‖⊥, we set

Mk = 2

√
1 + 2‖HS‖2⊥

γ2
k

. (2.16)

The choice of the fridge energy range [Emin, Emax] will generally depend
on heuristics on the system. Emax should be greater or equal than the
largest energy of the transitions that we are able to de-excite with the
chosen couplings VS (for local Hamiltonians we can estimate this with the
techniques described in 2.4.1). For ground state cooling, Emin should be
close to the system ground state gap ∆GS, as no transition with an energy
lower than ∆GS can lead from an excited state to the ground state.

We first test the LogSweep protocol as applied to the 1+1 model defined
in Sec. 2.3.1, with the system gap ∆ now taking an unknown value between
Emin and Emax (Fig. 2.7). At each step k = 1, . . . ,K we want to maximise
cooling of transitions ∆ ∼ εk, while minimizing reheating of previously-
cooled transitions ∆ ∼ εk′ , k′ < k. As demonstrated by the black dashed
curve in Fig. 2.7, when Emax/Emin = 5 this can be achieved well with
only K ≈ Emax/Emin steps. Note that, to maintain a constant relative
linewidth (and thus constant maximum reheating per step), we should
scale K ∼ Emax/Emin. This implies K → ∞ as Emin → 0, in line with
the third law of thermodynamics.

In a larger system, the situation is more complex than in the model
above. Instead of a single transition from the excited state |E1〉 → |E0〉
which occurs with unit probability when ε = ∆ = E1 − E0, our system
may transition to one of many eigenstates |Ej〉, to each with a transition
probability Ai,j (assuming a initial state |Ei〉). As there are many possible
target states, the maximum transition probability might be very small
(maxj Ai,j � 1). If we restrict to a single transition |Ei〉 → |Ej〉 with the
above reduced cooling rate, one may show that the LogSweep protocol
still cools that transition with unit probability as K →∞, albeit at a rate
that scales exponentially in Ai,j . Luckily, we do not need to ensure any
specific transition occurs, instead we may cool sequentially

|Ei〉 → |Ej0〉 → |Ej1〉 → . . .→ |E0〉 , (2.17)
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Figure 2.7: Choices of energies εk and linewidths δk (bars at the top of the
graph showing εk±δk) for a K = 4 LogSweep protocol applied to the model
introduced in section 2.3.1 with an unknown ∆ ∈ (Emin = 1, Emax = 5).
Colored lines show cooling (dashed) and reheating (solid lines) probabilities
for each j-th step alone, the dashed black line shows the cooling probability
after sequential application of the 4 steps.

with a growing number of possible cooling paths as the system grows and
the transition probabilities spread over more eigenstates. A good choice of
the fridge energy interval [Emin, Emax] and of the coupling potentials {V iS}
allows all eigenstates to be connected to the ground state by sequences
of transitions |Ejl〉 → |Ejl+1〉 that have unit probability of being de-
excited for K →∞. However, a single transition probability approaches
1 only over the entire LogSweep protocol. In particular, if the transition
|Ejl〉 → |Ejl+1〉 during step k∗ of the protocol corresponds to an energy
loss Ejl −Ejl+1 � εk∗ , this transition will be off-resonance for the entire
remaining duration of the protocol (as εk < εk∗ for k > k∗), making it
unlikely to occur. This can cause convergence issues especially when cooling
systems with banded spectra. For such systems , as we set Emin ≈ ∆GS
as detailed above, there may be a point k∗ in the protocol after which εk
will become smaller than the average interband gap, but never as small as
the spread of a single band. After this point, states at the bottom of a
band might transition to states in the lower band, but states at the top
of each band never have any resonant transitions to lower energy states,
thus becoming absorbing states. This effect is clearly shown in Fig. 2.8,
representing the LogSweep-cooled states of the transverse-field Ising model
in different regimes. We start with the maximally-mixed state, and plot
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the resultant distribution over the eigenstate energies. In the banded
regimes (side panels), we observe that the distribution of energies in any
given band is tilted towards the higher-energy states in that band (i.e.
the aforementioned absorbing states), by some orders of magnitude. This
dead-ends ultimately hinder sequential cooling, and prevent the LogSweep
cooling from converging to the same state independently on the initial state.
The effect worsens as K is increased, as transition linewidths δk become
smaller making off-resonant transitions less and less probable. This issue
can be fixed in practice by using an initial state with fewer high-energy
excitation (e.g. a classical approximation of a low-energy state). We solve
the issue in principle, by constructing an iterative LogSweep protocols,
where the LogSweep cooling is repeated with growing K. The early, lower-
cost iterations cool the highest energy excitations, while the larger K
iterations grant vanishing reheating, and probabilities approaching unity
for the cooling transitions allowed by symmetries. Thus, adding iterations
with larger and larger K, will make the whole protocol converge to the
system ground state (unless symmetries forbid all paths from some states
to the ground state). Note that this adjustment is not required for systems
with a continuous spectra (i.e. critical systems), as in such a system there
will be on-resonance transitions for any state with an energy Emin or more
above the ground state.

We now investigate the performance of the (iterative) LogSweep protocol
on different phases of the transverse-field Ising model. In Fig. 2.9, we
plot the ground state infidelity of the prepared state ρ [1 − F with F
as in Eq. (2.14)], as a function of K. The protocol consists in K − 1
sweeps of a LogSweep QDC protocol, each sweep having gradation number
gl = 2, . . . ,K. The Hamiltonian simulation is performed by second-
order Trotter approximation. We investigate the protocol effect on two
initial states ρ0: the maximally-mixed state ρ0 = 1/2n to check for
cooling capabilities (dots), and the ground state ρ0 = |E0〉 〈E0| (crosses)
to show the lower bound originated by reheating. We observe polynomial
convergence to the ground state in all three phases of the model, attaining
an infidelity of ε = 1−F in approximately K ∼ O(ε−1/β) energy gradation
steps for β ≈ 0.4 - 0.8. Additionally, we verify that the protocol converges
to the reheating limit for the critical and strongly-coupled regimes. In the
weakly-coupled regime instead, although the cooling is far more efficient
because of the local nature of the system excitations, the reheating bound
is not saturated. We attribute this to the very small linewidths {δk},
consequence of the well-defined transition energies, together with the
strong banding of the system spectrum.

The number of Trotter steps for a single iteration of the LogSweep pro-
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Figure 2.8: Effect of banding on single LogSweep iterations. A maximally
mixed state in the three different phases of the 7-qubit TFIM spin chain is
evolved by the LogSweep protocol for three different values of K. We plot
the distribution of the result here over the system’s eigenstates (indexed
by energy), at three different values of K. We see that while the critical
system demonstrates an approximate thermal or exponential distribution,
the weak and strongly-coupled systems demonstrate an inversion in the
population of the system within each band, which increases with K. Data
generated by continuous-evolution density-matrix simulation (details in
App. 2.F).

tocol with gradation number gl on a system of N spins with Hamiltonian
HS scales as O

(
‖HS‖⊥∆−1

GSNg
2
l log(gl)−1

)
. Thus, the iterative implemen-

tation required to deal with the banded cases needs a total number of
Trotter steps

Mtot ∼ O
(
‖HS‖⊥∆−1

GSNK
3 log(K)−1

)
(2.18)

The gate complexity required to attain an error (infidelity) ε for the models
studied scales thus as O(ε−3) - O(ε−8).

We next investigate the scaling of the LogSweep protocol as a function
of the system size. In Fig. 2.10 we plot the relative error in the ground
state energy as a function of the system size for a single (not iterated)
LogSweep with gradation number K = 5. We see a constant error in
the ground state energy as a function of the system size for the weakly-
coupled and critical systems. Thus, here we expect no need to scale K
with N for the protocol to be accurate. Let us also note that the gap
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Figure 2.9: Convergence of the LogSweep protocol to the ground state
as a function of the gradation number K, starting from the maximally
mixed state (dots) and the ground state (crosses), for three phases of
the transverse-field Ising model (detailed in legend). Data was generated
by deterministic density-matrix simulations of the iterative LogSweep
protocol, with second-order Trotter Hamiltonian simulation (details in
App. 2.F).

in these two cases shrinks as ∆GS/‖H‖ ∼ N−1 and ∆GS/‖H‖ ∼ N−2

respectively. Using the above arguments and the estimate (2.18), one can
find how the circuit length (in terms of time evolution steps), required to
obtain a constant energy error, scales with N . We obtain O(N2) for the
weakly-coupled and O(N3) for the critical case. From this analysis, we
expect that the QDC protocol may be asymptotically competitive with
methods such as adiabatic state preparation, whose runtime naively scales
as O(1/∆2

GS) [15, 49]. In the strongly-correlated phase, we do not see such
positive results; the energy error increases with the system size, though
the relative error remains beneath 10% for up to 14 spins. This may be
explained by the relative growth of the extension of excitations within the
strongly correlated phase, while cooling is performed with local couplings.
Due to the error in the simulation, we are unable to reliably extract an
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Figure 2.10: Performance of the LogSweep protocol as a function of the
system size for the three different phases of the transverse-field Ising model
(detailed in legend), with fixed K = 5. Dots correspond to result when
protocol is applied to the maximally-mixed state, shaded region corre-
sponds to result when protocol is applied to the true ground state (which
gives a bound on protocol re-heating). Data generated by Trotterized
wave-function simulations of the protocol, and random sampling of the
initial mixed state and of nonunitary operations (details in App. 2.F). All
points are run with 100 samples, and average results are plotted with the
sampling error.

estimate of the computational cost in the same way as for the critical and
weakly-coupled systems. Future work may explore whether this error may
be improved on by adjusting the form of the coupling terms {V iS} based
on heuristics on the considered system.

2.5 Conclusion
In this chapter, we investigated how cooling can be simulated on a digital
quantum computer, and demonstrated that this can be exploited for
the design of scalable algorithms for preparing ground states of N -qubit
systems. We identified how one can meet many of the fundamental
challenges that the digital approach to cooling raises and use the leverage
offered exclusively by digital quantum hardware, namely the freedom of
choice in the coupling strength and fridge energy. We laid out a general
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approach of simulating a cold bath with a single auxiliary qubit, which is
iteratively coupled to various locations in the system and reset periodically
to extract entropy and energy. We studied how to digitize the system-
fridge coupling simulation without causing additional reheating, and how
to avoid symmetries which produce non-ergodic behavior that hinders
cooling. By tuning coupling parameters beyond the perturbative regime
described by Fermi’s golden rule, efficient cooling of targeted transitions
can be realized. Following these principles we proposed two protocols for
preparing approximate ground states of N -qubit systems — the BangBang
protocol and the LogSweep protocol. We studied numerically how these
protocols perform on the three phases of the 1D transverse-field Ising
model. We found that the BangBang protocol quickly cools the system
near to the ground state in the paramagnetic and in the ferromagnetic
regime, but has difficulty in the critical regime. The LogSweep protocol is
observed to cool all three phases to the ground state at a polynomial cost in
the overlap error. In the weakly-coupled and critical phases, the LogSweep
protocol further demonstrates a constant energy error as a function of the
system size (for fixed gradation number), making it a competitive state
preparation method.
Thanks to the low number of steps required, we believe the BangBang

protocol has the potential of finding a near-term application, specially if in-
tegrated with projective or variational methods to improve its performance.
The requirement of precise Hamiltonian simulation and multiple cooling
steps makes the LogSweep algorithm in its current form unsuitable for
near-term implementation. Nevertheless, the scaling arguments discussed
at the end of section 2.4.2 show that our algorithm can be competitive with
other non-NISQ methods such as projective quantum phase estimation
(QPE) and adiabatic state preparation. QPE in its standard form requires
multiple auxiliary qubits and an initial state with a finite ground state
overlap, while as our has no requirement on the initial state. Adiabatic
state preparation requires an integrable Hamiltonian which can be adia-
batically connected to the required Hamiltonian, and requires time scaling
as O(1/∆2

min) [15, 49] where ∆min < ∆GS is the minimum gap along the
adiabatic path.
The introduction of quantum digital cooling opens future research di-

rections related to the characterization of proposed protocols, their opti-
mization, and their extension beyond ground state preparation. A study
of the effect of noise on currently proposed QDC protocols, and the op-
timization of such protocols for noise resilience, are in order to establish
their applicability on near-term devices. Applying QDC to more com-
plex physical systems, in areas such as quantum spin liquids, many-body
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localization and quantum chemistry, would bring new challenges to the
protocol construction. A thorough study of the role in the cooling process
played by the symmetries and locality of coupling could lead to the de-
sign of more optimized protocols. Furthermore, various extensions to the
QDC protocols we proposed can be suggested. In a parallelized version
of QDC, the use of multiple fridge qubits coupled to various locations in
the system might allow to trade space complexity for time complexity.
A variationally-optimized QDC protocol might be devised, that can effi-
ciently prepare a state in the ground state manifold of some Hamiltonian
starting from an arbitrary initial state — differently from the variational
quantum eigensolver [19] which requires the preparation of a fiducial state
at every iteration. The principles of QDC might inspire a new class of
efficient non-unitary quantum algorithms, where non-unitary operations
are mediated by a single auxiliary qubit, with possible application e.g. in
the simulation of open quantum system dynamics.

One application of particular future interest for QDC protocols is in the
preparation of Gibbs thermal states, which are useful e.g. for semi-definite
programming [100]. This seems especially promising given the near-thermal
distribution in Fig. 2.8 of the critical system under the evolution of the
LogSweep scheme. However, it is as of yet unclear how to overcome the
finite width of the distribution, and how well these protocols behave in the
banded case (or for more general systems). Adjustment of the LogSweep
protocol to produce robust thermal state preparation schemes is an obvious
target for future research.

2.A Proof of Eq. (2.10)

To prove Eq. (2.10) we first show that

|〈φ|O |ψ〉| ≤ max
|Φ〉,|Ψ〉

〈Φ|O |Φ〉 − 〈Ψ|O |Ψ〉
2 , (2.19)

for all |ψ〉 , |φ〉 : 〈ψ|φ〉 = 0. We can assume without loss of generality
〈φ|O |ψ〉 is real and nonnegative (if it’s not, we can multiply one state by
an irrelevant global phase), and drop the absolute value. As 〈ψ|φ〉 = 0 we

56



2.B Asymptotic reheating and cooling probabilities for QDC protocols

2

can define the states |±〉 = |φ〉±|ψ〉√
2 we can then write

〈φ|O |ψ〉 =1
2(〈φ|O |ψ〉+ 〈ψ|O |φ〉)

= 〈+|O |+〉 − 〈−|O |−〉2

immediately proving Eq. (2.19). The opposite inequality is proven by
noticing that the |Ψ〉 and |Φ〉 that maximize the right of Eq. (2.10) have to
be eigenvalues (by the variational principle). With these, we can redefine
the states |±〉 = |Φ〉±|Ψ〉√

2 which are also granted to be orthogonal, thus

〈Φ|O |Φ〉 − 〈Ψ|O |Ψ〉
2 = Re[〈+|O |−〉]

≤| 〈+|O |−〉 |
≤ max
〈φ|ψ〉=0

|〈φ|O |ψ〉|

which combined with Eq. (2.19) proves Eq. (2.10).

2.B Asymptotic reheating and cooling
probabilities for QDC protocols

Let us consider a two-state subsystem of a larger Hilbert space with a gap
energy E, evolving under a QDC protocol on the kth step via a coupling
term that does not mix the {|01〉, |10〉} and {|00〉, |11〉} subspaces (where
the second index denotes the fridge). Under this assumption, the evolution
of the system within this space is a Markov process. Following the main
text, let the fridge energy on the kth step be εk, the coupling strength be
γk, and the time evolved for in the cooling protocol tk. Additionally, let
the spacing of the fridge energies to be

(εk − εk+1) = ζ(δk + δk+1) = α

2 (γk + γk+1),

for someK-dependent α = α(K) = 2
πζ(K) . We may calculate the transition

matrix for the Markov process, p(k)(E) (defined by p(k)
a,b(E) = P (|a〉 → |b〉)
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2

in a single cooling step) as

p(k)(E) =

 1− sin2(Ωktk/2) γ
2
k

Ω2
k

sin2(ωktk/2) γ
2
k

ω2
k

sin2(Ωktk/2) γ
2
k

Ω2
k

1− sin2(ωktk/2) γ
2
k

ω2
k

 , (2.20)

where

ωk =
√

(E − εk)2 + γ2
k (2.21)

Ωk =
√

(E + εk)2 + γ2
k. (2.22)

Assuming no additional cooling or heating to the rest of the system during
the protocol, the transition matrix for the k0 → k1 block takes the form

Pk0,k1(E) =
k1∏
k=k0

p(k)(E), (2.23)

and the transition matrix for the entire process may be written P (E) =
P1,K(E).

Exact analytic evaluation of this expression in the large K limit is quite
difficult. Instead, we aim for a conservative estimate, bounding the final
cooling probability pc = [P (E)]01 from below. For this, given the energy
E, we first lower bound the ‘initial’ cooling around the resonant step kc,
i.e. such kc that |εkc − E| is minimal. Then we give an upper bound
on reheating during the following protocol steps k = kc, ..K. Given the
estimated cooling probability p(kc)

c and reheating probability p(kc;K)
rh , we

can obtain a lower bound for pc:

pc > (1− p(kc;K)
rh )p(kc)

c (2.24)

The value of p(kc)
c can be conservatively estimated from the formula:

1− p(kc)
c <

K∏
k=1

(1− sin2(ωktk/2) γ
2
k

ω2
k

) (2.25)

<
∏

k,
|E−εk|
γk

<1

((E − εk)2/γ2
k), (2.26)

where the second line follows from the inequality sin
(
π
√

1+x2

2

)
/(1 + x2) ≥
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min(0, 1−x2) applied to each term in the product. In the perfect resonance
scenario, |E − εkc | = 0 and the cooling probability is exactly 1. The worst
case scenario is when E is right between the two neighbouring εk’s, thus
|E − εkc | = α

2 γk. In this case, we can calculate the logarithm of (2.26) in
the leading order of K−1, α:

2
k(+)
c∑

k=k(−)
c

log
∣∣∣∣εk − Eγk

∣∣∣∣ = 2
∫ ε(+)

ε(−)
log
∣∣∣∣ε− Eγ(ε)

∣∣∣∣ dεdkdε (2.27)

= 2
α

∫ ε(+)

ε(−)
log
∣∣∣∣ε− Eγ(ε)

∣∣∣∣ dε

γ(ε) . (2.28)

Here, we used the fact that γα defines energy spacing (and so dε
dk =

αγ(ε)), and introduced summation limits k(±)
c , ε(±) as the points where

ε−E
γ = ±1. As this implies scaling ε(±) = E +O(γ), (2.28) should scale as

O(1/α). The calculation can be completed for the LogSweep gradation
εk, γk, which implies ε′k ∝ γ(ε) ∝ ε. In particular, if x = ε−E

γ then
dx = Edε

εγ = dε
γ (1 +O(1/K)), and we have:

2
α

∫ ε(+)

ε(−)
log
∣∣∣∣ε− Eγ(ε)

∣∣∣∣ dε

γ(ε) = 4
α

∫ 1

0
log x dx = − 4

α
. (2.29)

Substituting into Eq. 2.26, we find the initial cooling probability bounded
by

p(kc)
c & 1− exp(−4/α(K)). (2.30)

The reheating accumulated between steps kc and K, p(kc;K)
rh , can be

upper bounded as:

p
(kc;K)
rh ≤ 1−

K∏
k=kc

(
1− sin2(Ωktk/2) γ

2
k

Ω2
k

)
(2.31)
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The product in Eq. (2.31) can be further estimated as:

K∏
k=kc

(
1− sin2(Ωktk/2) γ

2
k

Ω2
k

)
≥

K∏
k=kc

(
1− γ2

k

Ω2
k

)
(2.32)

≥
K∏

k=kc

(
1− γ2

k

(E + εk)2

)
(2.33)

' exp
(
−

K∑
k=kc

γ2
k

(E + εk)2

)
, (2.34)

where in the last line we assumed that γk � E + εk for all k. As we
are most concerned about the large K asymptotics of the total cooling
probability, let us now analyze how the expression (2.34) behaves in this
limit. Since γ2

k scales as O(1/K2) and we have K terms in the sum, we
generally expect O(1/K) scaling for the sum. Such scaling would imply a
rapidly vanishing reheating for a large-K protocol. In the specific case of
the LogSweep protocol, to the leading order in 1/K one indeed obtains:

p
(kc;K)
rh .

K∑
k=kc

γ2
k

(E + εk)2 ≈
1

α(K)

∫ E

Emin

γ(ε)
(E + ε)2 dε (2.35)

≈
log Emax

Emin

α2(K)K (1
2 −

E

E + Emin
+ log

(
2E

E + Emin

)
) (2.36)

≡ R(Emin, Emax, E)
α2(K)K . (2.37)

Here, we used Eq. (2.15) and the fact that α(K)γk defines energy spac-
ing |εk+1 − εk|. Finally, combining Eqq. (2.24) - (2.37), we obtain an
asymptotic lower bound to the final cooling probability:

pc =
(

1− exp
(
− 4
α(K)

))
·
(

1− R(Emin, Emax, E)
α2(K)K

)
. (2.38)

This estimate implies pc → 1 for large K, provided that both e−4α−1(K) →
0 and 1

Kα2(K) → 0.
To ensure that the infidelity is minimized and thus α(K) is optimal,

we solve the extremum condition ∂α(e−4α−1 + R
α2K ) = 0 for α. The

solution can be expressed in terms of the product logarithm function W ,
α(K) = 4 W−1 (8K/R). For large K, at the leading order we obtain simply:
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α(K) = 4 log−1 (8K/R). The infidelity then scales down almost linearly
with K: 1− pc = log2(8K/R)

16K . This asymptotically optimal α(K) yields the
choice ζ(K) = 1

2π log(8K/R), which we use in all our simulations.

2.C Optimizing energy spacing in LogSweep
protocol

In Sec. 2.4.2, we argued that the energy spacing of the LogSweep protocol
is optimal for the protocol precision for a K-step protocol. This was based
on the reheating estimate taken from the cooling step kc only. One may
ask, if this persists when one includes the total reheating into account. In
the large K limit, we can use the estimate (2.34) for this check. Fixing
the constraint γk = |εk+1−εk|

α , we proceed by means of variational calculus:

δ

δεk

K∑
k=kc

γ2
k

(E + εk)2 = 0 (2.39)

⇒ δ

δε(k)

∫ K

kc

(ε′(k))2

(E + ε(k))2 dk = 0 (2.40)

⇒ ε′′(k) · (E + ε(k)) = (ε′(k))2. (2.41)

The solution to Eq. (2.41) that satisfies boundary conditions ε(kc) = E,
ε(K) = Emin, is as follows:

εk = (2E)
K−k
K−kc (E + Emin)

k−K
K−kc+1 − E. (2.42)

This shows that the logarithmic character of the optimal spacing persists
when we consider total reheating (cf. Eq. (2.15)). However, we cannot
directly use the embelished result (2.42) for our cooling protocol. That is
because this formula uses the targeted energy E as a reference, whereas
we are targetting a continuum of energies. Therefore, we keep using the
simpler and more practical formula Eq. (2.15) for the LogSweep protocol.

2.D Cooling rate for LogSweep protocol in a
large system

In a large system, the above analysis is complicated by the presence of
multiple transitions from every energy level. We now give a simplified
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analysis that focuses on a pair of states |Ei〉, |Ej〉, in a spirit similar
to Appendix 2.B. This means we formulate the protocol as a Markov
process equivalent to (Eq. 2.20), where the transitions to levels other
than i and j are ignored. Note that in the perturbative limit, this is
a good approximation of the actual Markov process as restricted onto
the subspace |Ei〉 , |Ej〉. Specifically, even though we ignore the indirect
transitions between i and j via other levels, this is justified at the first
order of pertubation theory. Unlike in the 1 + 1 model however, the
transitions here are imperfect. If our total coupling has strength γ (i.e.
‖HC‖ = 2Nγ), following the analysis in Sec. 2.4.1 the coupling between
states |Ei〉 and |Ej〉 will take the form γ

√
Ai,j with

√
Ai,j scaling down

as O((Ei − Ej)−2). This has the effect of scaling both the cooling and
re-heating rates by Ai,j , recasting the Markov process (Eq. 2.20) as

p
(k)
i,j =

 1−Ai,j sin2(Ωktk
2 ) γ

2
k

Ω2
k

Ai,j sin2(ωktk2 ) γ
2
k

ω2
k

Ai,j sin2(Ωktk
2 ) γ

2
k

Ω2
k

1−Ai,j sin2(ωktk2 ) γ
2
k

ω2
k

 .

As this only reduces both the heating and cooling rates, our claim that
reheating in the LogSweep protocol tends to 0 as K → ∞ still holds.
However, we need to repeat the analysis of App. 2.B to bound the cooling
rate p(kc)

c below and check that it continues to tend to 1. For the sake
of generality, we drop the i, j indices, and consider a cooling probability
restricted by a k-independent factor A.

With this adjustment, we may recast Eq.2.26 when A << 1 as

1− pkcc <
∏

k,
|E−εk|
γk

<1

[(
1− Aπ2

4

)
+ Aπ4

48
(E − εk)2

γ2
k

]
. (2.43)

Then, taking the log and converting again to an integral, we obtain

log
(
1− pkcc

)
<

1
α

∫ ε+

ε−
log
[
B +A′

(E − ε)2

γ(E)2

]
dε

γ(ε) , (2.44)

where A′ = Aπ4

48 ∼ 2A, and B = 1− Aπ2

4 < 1. Next, setting x = E−ε
γ(ε) , and

using the fact that for the LogSweep protocol γ(ε) ∼ ε, we find

log
(
1− pkcc

)
<

2
α

∫ +1

−1
log
(
B +A′x2) dx. (2.45)
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This may be evaluated by integrating by parts, giving

log
(
1− pkcc

)
< − 2

α

∫ +1

−1

x2

BA′−1 + x2 (2.46)

= −4
α

[
1−BA′−1 tan−1 (A′B−1)] (2.47)

∼ − 4
3αA

′2B−2 +O(A4). (2.48)

Using the optimal scaling α(K) = 4 log−1(K) we identified in Appendix 2.B,
this adjusts our bound in the cooling rate to

pkcc & 1−K− 1
3A
′2B−2

, (2.49)

which continues to tend to 1 as K →∞, albiet at a rate reduced propor-
tional to A.
This result requires some consideration in a large system — if our

coupling Γ from a state |Ei〉 is spread over transitions to J states |Ej〉, we
have Ai,j ∼ J−1, and the probability of any transition being cooled can
be found to be∏

j

(1− pkcc,j) ∼ e
−
∑J

j=1
1

3αA
2
j (1−A

2
j ) ∼ e− 1

3αJ . (2.50)

This implies that we require α ∼ J−1 in order to maintain a constant cool-
ing rate, which in turn may require adjustments to the optimal scaling iden-
tified in Appendix 2.B. As such adjustments are highly system-dependent,
we do not investigate them further here.

2.E Effect of banding on QDC protocols
In this appendix we demonstrate the effect of banding on single sweeps
of the LogSweep protocol. In Fig. 2.11, we plot the infidelity of a single
shot of the LogSweep protocol with gradation number K acting on the
maximally-mixed state, as a function of K (triangular markers). We see
that in the critical case, the system continues to tend to the ground state
polynomially in K. However, for the TFIM chain in the weakly- and
strongly-coupled phases, we find that the protocol fails to converge as a
function of K, due to the banding issue described above. This lack of
convergence is rectified in the series marked by dots (same data as in
Fig. 2.9) by repeating the LogSweep protocol as a function of K. We note

63



2 Quantum digital cooling

2

2 10 50

K

10−2

10−1

100

G
ro

u
n

d
sp

a
ce

in
fi

d
el

it
y

J/B = .2

iterative
cooling

J/B = 1

reheating

J/B = 5

single-shot
cooling

J/B = 0.2

J/B = 1
J/B = 5

Figure 2.11: Difference between cooling by applying the a single
LogSweep protocol with gradation number K (round markers), and it-
erating LogSweep for all gl = 2, ...,K (solid lines). The iterative and
reheating data are the same as in Fig. 2.9, the same context and simulation
techniques apply.

that the failure in the strong-coupling case is not of the same degree as
in the weak-coupling case, which we ascribe to the fact that the banding
is not as strongly pronounced in Fig. 2.8, and so the result has not yet
presented itself.

2.F Details on numerical methods
In this appendix we report the methods used to simulate QDC protocols on
many-qubit systems. The python code is packaged and available on github,
at https://github.com/aQaLeiden/QuantumDigitalCooling [101], and
makes cirq [102] to build and simulate the required quantum circuits. All
the data reported in this chapter, along with more simulations results that

64

https://github.com/aQaLeiden/QuantumDigitalCooling


2.F Details on numerical methods

2

are left out in the interest of space and clarity, can be found in the same
repository.

The simulations for the BangBang protocol energy validation Fig. 2.5, as
well as the study of LogSweep performance with increasing K (Figures 2.9
and 2.11) were performed using cirq density matrix simulator. This stores
the system’s state in a density matrix, to which are applied sparse unitaries
(representing the circuit’s unitary gates) and the eventual quantum channel
representing the reset gate. For BangBang, as prescribed by the protocol,
the unitary circuit applied before each fridge reset gate is defined by second-
order Trotter expansion of the coupled system-fridge Hamiltonian with a
single step (Trotter number M = 1). This corresponds to Eq. 2.7 where
also e−iHS is substituted by its M = 1 second-order Trotter expansion.
To push to a larger number of qubits the results on scaling of both

protocols, data for in Figures 2.6 and 2.10 were generated with cirq state
vector simulator. The non-unitary reset required by QDC protocols and
the initially-mixed state used to benchmark cooling cannot be represented
deterministically in state vector simulations. These are instead imple-
mented by random sampling. Each sample is constructed by choosing at
random an initial computational basis state (these are enough to sample
the maximally mixed state, because of the density matrix equivalence
class). For each non-unitary reset gate, the outcome is sampled probabilis-
tically. This process is repeated for 100 samples for each data point. The
mean value of the quantity of interest is plotted, together with an interval
representing the standard deviation of the mean.

In both the density matrix and the wavefunction simuations performed
with cirq, the numerical error causes the final state to be often non
normalized. In the worst cases, the deviations from unit L2 norm (for
wavefunctions) and trace norm (for density matrices) are up to few parts
per thousand and percent respectively. This is attributed to the large
number of short-time Trotter steps required to produce LogSweep data
in Fig. 2.9, which translate to sparse unitaries with small entries and a
building up of numerical error. As all operations are linear, the first-order
error can be dealt with by forcing normalization on the final state. This
technique was used for results reported in figures 2.9, 2.10 and 2.11

The numerical error of Trotterized sparse-unitary simulations still is too
large to show the final state occupations in Fig. 2.8, which range over more
than 18 orders of magnitude. For this reason, these simulations were per-
formed by constructing the continuous evolution operator e−i(HS+HF+HC)t

for each unitary evolution step. These results were validated by comparing
with the Trotterized approach the results for large occupations and the
energy expectation values (which are less sensitive to the numerical error).
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CHAPTER 3

Error mitigation via verified phase estimation

3.1 Introduction
Error mitigation is likely essential for near-term quantum computations to
realize valuable applications. State-of-the-art technology in superconduct-
ing qubits has recently pushed quantum computers beyond the capability
of their classical counterparts [3] and enabled intermediate scale demon-
strations of quantum algorithms for optimization [103, 104], quantum
chemistry [59, 103, 105], and machine learning [106], with tens of qubits
and hundreds of quantum gates. However, these experiments clearly re-
veal a noise barrier that needs to be overcome if such applications will
ever scale to the classically intractable regime. In the long-term, a path
towards this goal is known through quantum error correction [107–109].
Yet, the requirements to successfully error correct large-scale quantum
applications [14, 71, 73, 110, 111] are still a few orders of magnitude above
the current state-of-the-art, and will likely require many years to achieve.
In the meantime, quantum applications research has focused on finding
the elusive beyond-classical NISQ (noisy, intermediate-scale quantum)
application [18], with the hope to accelerate the path to practical quantum
computing. However without the resources to correct errors, one must
develop strategies to mitigate the aforementioned noise barrier. Other-
wise, the output of NISQ devices will be corrupted beyond usefulness for
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algorithms significantly more complex than those already attempted.
Much of the attention in the NISQ era has been directed towards

variational algorithms, with applications in optimization [55], chemistry
and materials science [82], and machine learning [112, 113]. These shift
much of the complexity of the algorithm to a classical outer loop involving
many circuit repetitions, leaving the quantum computer with the task only
of preparing quantum states and estimating expectation values of operators
on said states. However, preparation circuits need to have significant depth
to avoid being classically simulated [114]. Errors accumulated over this
circuit quickly distort the prepared state to one different than was targeted.
This has meant that most quantum experiments to date have had difficulty
achieving standard accuracy benchmarks prior to applying error mitigation
techniques [59, 103, 103, 105, 115]. However, accuracy improvements of
orders of magnitude have been achieved with error mitigation in these
experiments, suggesting there may yet be hope for NISQ.
The zoo of error mitigation techniques is large and varied. One may

first attempt to design algorithms that are naturally noise-robust. For
example, the optimization procedure in a variational algorithm makes
the algorithm robust against control errors (e.g. over- or under-rotations
when gates are applied) [82]. Also, subspace expansions of the variational
quantum eigensolver (VQE) in materials science and chemistry correct
errors that keep one within the desired subspace considered [116] or more
generally through by approximate symmetry projection [117]. Given
the ability to artificially introduce additional noise into a device, one
can extrapolate from multiple experiments at different noise levels to
a hypothetical noiseless experiment [118], which has shown promising
results on real devices [119]. One may alternatively probabilistically
compile circuits by inserting additional gates to average out or cancel out
noise, given sufficient knowledge of the error model of the device [118,
120]. When classically post-processing partial state tomography data
from an experiment, one may attempt to regularize the obtained results
using reduced density matrix constraints [121]. Finally, one may mitigate
errors that take a state outside of a symmetry-conserving subspace of a
quantum problem, either by direct post-selection, or artificial projection of
the estimated density matrix in post-processing, producing a ‘symmetry-
verified’ state [29, 66, 117, 122]. Recent efforts have extended this protocol
by introducing symmetries into problems to increase the range of errors
that may be detected [123], which is analogous to the way quantum error
correcting codes introduce engineered symmetries.

Ideally, we would prefer to go beyond verifying that a system’s state re-
mains within a target subspace and instead directly verify that the system’s
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state is the one we desire. This would result in reaching the information
theoretic optimal limit of post-selected error mitigation in which one could
completely mitigate the effect of all errors by repeating the experiment a
number of times scaling inversely with the circuit fidelity (equivalent to
the ability to perfectly detect errors). The fact that the circuit fidelity is
expected to decrease exponentially in the gate complexity indicates that
eventually we will still need error-correction; however, moving closer to
this limit is certain to enable more powerful NISQ experiments.

In this work we develop a method for error mitigation of quantum phase
estimation experiments, by verifying that the system returns to its initial
state after the phase estimation step. We show that the set of experiments
that pass this condition contain all the necessary information to perform
quantum phase estimation. This yields a powerful error mitigation tech-
nique, as in most cases errors will not return the system to this initial state.
Our techniques apply to variants of phase estimation which might involve
post-processing on a single control qubit [124, 125], or when performing
recently-developed control-free variants [27, 126]. We further develop it
into a simple scheme for verified expectation value estimation by dividing
a target Hamiltonian into a sum of fast-forwardable terms. This yields a
simple, low-cost scheme for the measurement of expectation values, which
may be immediately incorporated into the quantum step of a variational
quantum algorithm. We study the mitigation power of this protocol in
numerical simulations of small-scale experiments of free-fermion, transverse
Ising, and electronic structure Hamiltonians. Verification is observed to
mitigate all single (and even all double) errors throughout many of these
simulations, as evidenced by a clear second (or third)-order sensitivity in
our results to the underlying gate error rate. We observe in the best-case
scenario case an up to 10, 000-fold suppression of error at physical error
rates; this is not achieved for all systems studied, but verification is found
to improve experimental error in all simulations performed. We find the
error mitigation power to be highly system-, circuit-, and noise model-
dependent. Finally, we study the measurement cost of this protocol in
the presence of sampling noise, finding that it is comparable to standard
partial state tomography techniques for energy estimation.

The outline of this paper is as follows. In Sec. 3.2, we give a pedagogical
example of how one might verify the estimation of expectation values of
an arbitrary Hamiltonian, by writing it as a sum of Pauli operators and
performing (fast-forwarded) verified phase estimation on each individual
term. In Sec. 3.3 we then derive the theory behind verified phase estimation
itself, outline how it can mitigate errors, give algorithms for performing
verified phase estimation with a single control qubit, or with access to a
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reference state, and study the increased sampling noise cost. In Sec. 3.4,
we extend these ideas to give algorithms for verified expectation value
estimation, and derive the conditions under which one may perform verified
estimation of multiple expectation values in parallel (i.e. using the same
system register). In Sec. 3.5, we then implement these ideas, studying the
mitigation power of verified expectation value estimation in a variety of
systems and implementations developed earlier in the text ounder various
noise models, and testing the convergence of the protocol under sampling
noise.

3.2 Pedagogical example of verification
protocol for expectation value estimation

In this section we outline a simple implementation of verified expectation
value estimation of a target operator H on a state |ψ〉, as a practical
example of the more complicated methods to be found later in the text. The
idea behind all verification protocols is to prepare |ψ〉 = Up|0〉, indirectly
estimate 〈H〉 via phase estimation, and then verify that we remain in |ψ〉 by
uncomputing |0〉 = U†p |ψ〉 and measuring in the computational basis. If |ψ〉
is not an eigenstate of H, the system may by shifted away from this state by
the QPE unitary — i.e. even in the absence of error we do not expect the
system to always pass verification. However, as we will show later in this
work, the data required for phase estimation is contained entirely within
the set of experiments that pass verification; we may effectively ignore any
experiments that fail. This in turn allows us to ignore any errors that knock
the system away from |ψ〉, making this a potent error mitigation scheme.
We have constructed various implementations of this idea, which we will
expand on in Sec. 3.3 and Sec. 3.4, and compare in Sec. 3.5. However,
the most general protocols require relatively complicated circuits and
classical post-processing. For clarity of exposition, in this section we focus
on stepping through a simple protocol for the verification of expectation
values, which avoids complex signal processing and circuity requirements.
The protocol we describe will work for arbitrary H and |ψ〉, and may often
be a desirable choice for a real experiment. However, depending on the
choice of H and |ψ〉 and the noise model, other protocols described later
in the text may be more optimal in terms of their mitigation power.
A process diagram for a simplified verified phase estimation protocol

is given in Fig. 3.1. To begin, we write H as a sum of fast-forwardable
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Figure 3.1: Process diagram of the protocol for verified estimation of the
expectation value of a Hamiltonian on a state |ψ〉 = Up|~0〉. Blue denotes
circuits to be executed or data to be extracted from a quantum computer,
red denotes signal details to be estimated via classical post-processing.
The protocol proceeds as follows: (top-left) a complex Hamiltonian H
is split into a number of fast-forwardable summands Hs. The spectral
function g(t) of |Ψ〉 under time evolution of each piece is obtained (bottom-
left) via verified, fast-forwarded phase estimation. In this example, a
control qubit is used to extract the phase function via phase kickback.
The resulting data is a weighted sum of oscillations with frequencies equal
to the eigenvalues E(s)

j of the corresponding factor (bottom middle). This
may be decomposed in a variety of classical post processing techniques
to obtain estimations of the expectation values 〈Hs〉 depending on the
type of Hs chosen (bottom-right). Regardless of the method used, the
expectation values must be normalized to obey Eq. 3.29, the last step in
the verification process. As the expectation value is linear, the verified
estimates of 〈Hs〉 obtained may be immediately summed together to give
a verified estimate for 〈H〉 (top-right).

terms Hs (multiplied by coefficients hs)

H =
Ns∑
s=1

hsHs. (3.1)

Here, by fast-forwardable, we mean that each Hs is chosen such that time
evolution eiHst may be implemented on a quantum register with the same
number of gates for each value of t. Although fast-forwarding is forbidden
for arbitrary H [97], decomposition of any sparse, row-computable H into
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a linear combination of polynomially many fast-forwardable Hamiltonians
is always possible [127]. For example, the N -qubit Pauli operators Pi ∈
PN = {1, X, Y, Z}⊗N form a basis for the set of all N -qubit operators and
are themselves fast-forwardable; we take this decomposition for our simple
example.
We then implement verified phase estimation (with a single control

qubit) to estimate the expectation values 〈ψ|Hs|ψ〉. This involves evolving
the system by Hs conditional on a control qubit. (Circuits to implement
this are well-known, see e.g. Ref. [128].) The conditional evolution encodes
a phase function on the the control qubit. That is, if we write Xc and Yc
for the X and Y Pauli operators on this control qubit, we have following
the conditional evolution that

〈Xc〉+ i〈Yc〉 = A0e
it +A1e

−it =: g(t). (3.2)

Here, A0 and A1 are the squared amplitudes of |ψ〉 in the eigenbasis of Hs

(which has known eigenvalues ±1). The expectation value 〈Xc〉 may be
estimated by measuring the control qubit M times in the x-basis, counting
the number of times mx,0 or mx,1 a 0 or 1 was seen, and approximating

〈Xc〉 ≈
mx,0 −mx,1

M
. (3.3)

(A similar procedure may be performed for Y .) To verify this estimate,
we uncompute the preparation of the system, and count the number m(v)

x,0

(m(v)
x,1) of measurements of 0 (1) on the control qubit when the uncomputed

state on the system is returned to the initial |0〉 state. We then replace
our estimation by

〈Xc〉 ≈
m

(v)
x,0 −m

(v)
x,1

M
. (3.4)

(Note that we only replace the numerator, and not the denominator, of
Eq. 3.3, which makes this not strictly post-selection — see Sec. 3.3.2 for
more details.) The expectation value 〈Hs〉 is encoded within the phase
function g(t), and must be inferred from these estimates above. In our
example protocol, this requires inferring the amplitudes A0 and A1 (as
the eigenvalues ±1 are already known). These may be simply estimated
by a two-parameter fit of Eq. 3.2 to the extracted values of g(t).

As we show later in the text, in the absence of error Eq. 3.3 and Eq. 3.4
yield the same result (in the large M limit). Errors tend to scatter the
system into a state that fails verification. The primary effect this has on
the estimator in Eq. 3.4 is to re-scale g(t) → pneg(t) (where pne is the
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probability of no error occurring). However, the converse is not true; states
may fail verification due to the relative dephasing betwen the |0〉 and |1〉
eigenstates of Hs, and we cannot infer the value of pne from a single point
g(t). Instead, we can infer the value of pne from the normalization of
the starting state |ψ〉. As our circuit is fast-forwarded, under reasonable
noise assumptions pne is independent of t, and this propagates immediately
through the fit of Eq. 3.2: A0, A1 → pneA0 =: Ã0, pneA1 =: Ã1. The
normalization of |ψ〉 requires A0 +A1 = 1, and we may correct for this by
estimating

〈Hs〉 = Ã0 − Ã1

Ã0 + Ã1
. (3.5)

Finally, as expectation values are linear, after repeating this procedure for
all Hs in Eq. 3.1, we may sum the result;

〈H〉 =
∑
s

hs〈Hs〉. (3.6)

Note that each Hs will have different values of A0, A1, and g(t) (we
have avoided explicitly labeling the above for simplicity). In practice,
the number of samples for estimation of each 〈Hs〉 should be varied to
minimize the error in the final estimation of 〈H〉 (i.e. importance sampling
on the hs coefficients).

3.3 Schemes for verified phase estimation

3.3.1 Review of single-control quantum phase
estimation

Quantum phase estimation (QPE) refers to a family of protocols to learn
eigenphases eiφj of a unitary operator U . Equivalently, quantum phase
estimation may be used to learn eigenvalues Ej of a Hermitian operator
H, as each such operator generates a unitary via exponentiation: U =
eiHt [62]. (Such estimation requires limiting the size of t to prevent
aliasing - eiEjt = eiE

′
jt if Ejt = E′jt + 2nπ, which makes estimation

ambiguous.) The eigenvalues of H and the eigenphases of U are related
by the same exponentiation and correspond to the same eigenstates |Ej〉
— if H|Ej〉 = Ej |Ej〉, U |Ej〉 = eiφj |Ej〉, and φj = Ejt.

In the single-control variant of QPE, the phases φj are learnt by im-
printing them on a control qubit — a process known as phase kickback.
Any unitary U may be implemented as a (perhaps approximate) quantum
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circuit on a quantum ‘system’ register, but quantum mechanics tells us
that eiφ|ψ〉 ≡ |ψ〉 for all pure states |ψ〉 and numbers φ ∈ R. This implies
that if the system register were prepared in the pure state |Ej〉 and U
applied, we would not be able to infer the phase φj from the resulting
state eiφj |Ej〉 ≡ |Ej〉. However, a relative phase φ between two states,
1√
2 (|ψ1〉+ eiφ|ψ2〉), is a physical observable that may be detected. Such

detection may be achieved by acting the unitary U conditional on the
control qubit being in the state |1〉 (and doing nothing when the control
qubit is in the state |0〉). This is commonly written as the ‘controlled’
unitary C − U . When C − U acts on a system register prepared in an
eigenstate |Ej〉 and a control qubit prepared in the state (|0〉+ |1〉)/

√
2,

the global state evolves to

C− U 1√
2

(|0〉+ |1〉) |Ej〉 = 1√
2

(|0〉+ eiφj |1〉)|Ej〉. (3.7)

We see that the eigenphase eiφj from the system register is kicked back
onto the control qubit, while the system register itself remains unchanged.
We may estimate this eigenphase eiφj by repeatedly performing the QPE
protocol, measuring the control qubit in theX or the Y basis, and recording
the number of single-shot readouts of 1 and 0. In the Hamiltonian case,
from this estimate one may immediately infer 1

itArg(eiφj ) = Ej mod 2πt.
The error in the estimation of Ej decreases with t; asymptotically optimal
protocols need to balance this against the ambiguity modulo 2πt by
repeating the estimation at multiple values of t [129–131]. In terms of
estimating the eigenphases eiφj of a unitary U , this optimization requires
repeating the above procedure for C− Uk at varying points k.

Often, one does not prepare an eigenstate |Ej〉, but instead prepares a
starting state

|ψs〉 =
∑
j

aj |Ej〉. (3.8)

Applying C−Uk to such a state no longer leaves it unchanged, but instead
entangles it with the control qubit. This produces the combined state (on
the system+control register)

|Ψ(k)〉 = C− Uk 1√
2

(|0〉+ |1〉) |ψs〉 (3.9)

=
∑
j

aj√
2

(|0〉+ eikφj |1〉)|Ej〉. (3.10)
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When one has instead performed controlled time evolution (via the unitary
C− eiHt), one may instead write

|Ψ(t)〉 = C− eiHt 1√
2

(|0〉+ |1〉) |ψs〉 (3.11)

=
∑
j

aj
1√
2

(|0〉+ eiEjt|1〉)|Ej〉. (3.12)

The sum over j in the above equation looks problematic, but it turns out
that the eigenphases φj (or eigenvalues Ej) remain encoded on the control
qubit, in a sum weighted by the norm square Aj := |aj |2 of the initial
amplitudes aj . To be precise, one may trace over the system register to
obtain the reduced density matrix of the control qubit

ρc(t) = Tracesys
[
|Ψ(t)〉〈Ψ(t)|

]
(3.13)

= 1
2

(
1 g(t)

g∗(t) 1

)
, (3.14)

with g(t) the phase function of |ψs〉 under H

g(t) =
∑
j

Aje
iEjt. (3.15)

Estimates of g(t) may be obtained as an expectation value

g(t) = 2 Tracec
[
ρc(t)|0〉〈1|

]
(3.16)

= Tracec
[
ρc(t)X

]
+ iTracec

[
ρc(t)Y

]
, (3.17)

of the Pauli operators X and Y . Measuring these expectation values
requires rotating the control qubit into the x- or y-basis, reading it out, and
averaging the output over many repetitions (or shots) of the experiment.

For a unitary operator U one may obtain an equivalent phase function

g(k) =
∑
j

Aje
ikφj , (3.18)
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by estimating

g(k) = 2 Tracec
[
ρc(k)|0〉〈1|

]
(3.19)

= Tracec
[
ρc(k)X

]
+ iTracec

[
ρc(k)Y

]
, (3.20)

ρc(k) = Tracesys
[
|Ψ(k)〉〈Ψ(k)|

]
, (3.21)

with |Ψ(k)〉 defined in Eq. 3.10. The tomography to extract these expecta-
tion values is the same as described in the previous paragraph.
Information about the eigenvalues Ej and amplitudes Aj = |aj |2 may

be inferred classically from estimates of g(t) at multiple values of t. When
these are estimated sufficiently well, the expectation value of the Hamilto-
nian may be calculated

〈H〉 =
∑
j

AjEj . (3.22)

Inference of the amplitudes Aj from g(t) to error ε takes asymptotically
time Ω(ε−2) on a quantum device, even when the eigenvalues Ej are already
known 1. By propagating variances, this implies equivalent convergence in
the estimation of expectation values via Eq. 3.22. One need not resolve
all 2N eigenvalues of an N -qubit operator in order to evaluate Eq. 3.22.
Time-series analysis methods [125] or integral methods [132] produce a
coarse-grained approximation to the spectrum that may be averaged over to
obtain expectation values with similar convergence rates. Alternatively, for
simple operators with highly-degenerate spectrum (e.g. Pauli operators),
curve fitting will be sufficient to extract the required data (as described in
Sec. 3.2)2.

3.3.2 Verifying a phase estimation experiment
As the data from single-control quantum phase estimation is accumulated
entirely on the control qubit, one would be tempted to throw the system
register away (or rather, reset the register and begin anew). In the absence
of error correction this temptation grows larger; noise levels in near term
devices are high enough that coherent states of more than a few qubits
degrade over the course of any reasonably-sized algorithm to within a few
percent fidelity to the target state — if not less [103]. However, even when

1This may be calculated via Cramer-Rao bounds as the derivative ∂g(t)
∂Aj

is bounded

as a function of t, which is not true for the derivative ∂g(t)
∂Ej

.
2The minimum number of points on the curve that require fitting is determined by
the number of eigenvalues and amplitudes that need fitting.
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corrupted, the information contained within the system register is valuable,
as one can use this information to diagnose potential errors in the data
to be read from the control qubit. For instance, in the presence of global
symmetries of the Hamiltonian, one could imagine mitigating errors that do
not commute with this symmetry via symmetry verification [29, 122, 123].
In verifying these symmetries, we are in effect projecting the system into
a subspace of the global Hilbert space which contains the information
we desire. One could imagine constructing ever-smaller Hilbert spaces,
which trades circuit complexity for error-detection power. It turns out
that the limit of this construction is achievable: instead of measuring
one or more symmetries on the system register, we can instead verify
that it has returned to its initial state |ψs〉. (This is similar to the echo-
type measurements made in randomized benchmarking [133] or quantum
Hamiltonian learning [134].)
Assuming |ψs〉 is prepared from the computational basis state |0〉 by a

preparation unitary Up, this measurement may be achieved by applying
U†p, and reading out each qubit in the computational basis. One would
expect such a measurement to distort the phase function g(t), but this is
not so, as we may expand the trace in Eq. 3.13 to show that

Tracec
[
ρc(t)|0〉〈1|

]
= Tracec

[
〈ψs|Ψ(t)〉〈Ψ(t)|ψs〉|0〉〈1|

]
. (3.23)

Here, the left-hand side of the equation is the expectation value of ρc(t)
regardless of the state of the control register, and the right-hand side is the
(non-normalized) expectation value of ρc(t) on verified experiments only.
The lack of normalization means this is not a post-selection technique;
instead one assumes that the contribution of states which fail verification
to the final estimation of g(t) is zero. (By contrast, states that pass
verification either contribute +1 or −1 to the estimation of g(t).)

We can make a physical argument why Eq. 3.23 holds and verification
should not affect the estimation of g(t) in the absence of noise. Let us
decompose the reduced density matrix on the control qubit

ρc = ρ(v)
c + ρ(f)

c , (3.24)

into the ensemble of states ρ(v)
c that have passed verification, and those that

have failed. When the control qubit is in the |0〉 state, the system register is
not evolved, so in the absence of noise the state will pass verification every
time. This implies that a verification failure in the absence of noise projects
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the control qubit into the |1〉 state; ρ(f)
c = |1〉〈1|. As Trace[|1〉〈1|0〉〈1|] = 0,

this fraction of states on average contributes nothing to the estimate of
g(t). In other words,

Trace[ρc|0〉〈1|] = Trace[ρ(v)
c |0〉〈1|] = g(t). (3.25)

Note that post-selecting (i.e. keeping only the experimental data where
verification was passed) would instead prepare the state ρ(v)

c /Trace[ρ(v)
c ].

This will not yield the desired result, as

Trace[ρ(v)
c (X + iY )]

Trace[ρ(v)
c ]

= g(t)
1 + |g(t)|2 (3.26)

which is not equal to g(t) unless |ψs〉 is an eigenstate of eiHt (in which
case ρ(v)

c = ρc). (Moreover, this rescaling can be up to a factor 2 in the
absence of noise, and the spectrum of this new function is significantly
different to the original.) To give some intuition, one can imagine phase
estimation on a mixed state in two steps: performing phase estimation
on individual states to generate a set of signal functions eiEjt, and then
summing and returning the weighted result g(t). The set of states that
fail verification, ρ(f), captures the relative dephasing between these states,
which cannot be ignored when attempting to recover this result. Instead,
an explicit protocol for the measurement of a single g(t) within verified
single-control phase estimation takes the form of Algorithm 3.1. We
consider the increased sampling cost in the presence of error in Sec. 3.3.3.

3.3.3 Why verification mitigates errors
The mitigation power from verification is based on the relative size of the
Hilbert spaces in which the states which have passed verification and states
which have failed verification, ρ = ρ(v) + ρ(f), live. If we define the Hilbert
spaces in which the two ensembles live H(v) and H(f) respectively, we have
dim[H(v)] = 2, while dim[H(f)] = 2N+1 − 2. An error that occurs during
the circuit is then likely to scatter the system into the set of rejected
states. As an extreme example, the probability that a completely random
error (i.e. an error that scatters all states to a random state) at any point
in the circuit will yield a state in H(v) can be immediately calculated
to be 2/(2N+1 − 2) ∼ 2−N . This includes errors during preparation of
|ψs〉 by the unitary Up and the inversion of U†p to perform the verification
itself. As we are not post-selecting on the verification output g(t) is still
affected by this shift, but the distortion may be accounted for in classical
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Algorithm 3.1: Single-control VPE
Input: Circuits to implement Up, U

†
p and controlled time evolution

eiHt.
Number of repetitions M of measurement in the x and y
basis.

Output: An estimate of g(t) with variance O( 1
M ) in both the real

and imaginary part.

1 Prepare classical initial variables gx = 0, gy = 0;
2 Prepare the system register in a starting state |ψs〉 = Up|0〉 and the

control qubit in the state 1√
2 (|0〉+ |1〉);

3 Simulate time evolution eiHt conditional on the control qubit;
4 Apply the inverse circuit U†p to the system register;
5 Rotate the control qubit into the X or Y basis and measure it to

obtain a number m ∈ [0, 1];
6 If all qubits in the system register read 0, increment the relevant

variable gx or gy by (−1)m;
7 Repeat steps 2-6 M times in the X basis and M times in the Y

basis, and estimate g(t) by gx

M + i g
y

M

post-processing. In this simple noise model the effect of noise is then to
replace the estimate of g(t) by

gerr(t) = pne(t)g(t) +O(2−Nperr(t)), (3.27)

where pne(t) and perr(t) are the probabilities of no error or some error
occurring, respectively. (In App. 3.A we derive the specific requirements
for this to be the case.) Assuming that errors occur at a constant rate as
a function of the circuit depth, and all scatter the system outside H(v),
for fast-forwardable Hamiltonians pne(t) = pne, and

gerr(t) = pneg(t) =
∑
j

(pneAj)eiEjt. (3.28)

This can be seen as a uniform damping of each squared amplitude Aj to
A′j = pneAj . Such damping may be corrected for classically as we know
|ψs〉 is normalized ∑

j

Aj = 1, (3.29)
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and so we may estimate

Aj =
A′j∑
j A
′
j

. (3.30)

Depending on the classical signal processing method used, one may not
obtain estimates of all A′j and Ej , but may instead directly calculate∑
j A
′
jEj and

∑
j A
′
j . For example, one could use gerr(0) =

∑
j A
′
j as such

a reference point. For non-fast-forwardable Hamiltonian, assuming again
that errors occur at a constant rate throughout the circuit and that all
scatter the system outside H(v), we have

gerr(t) = e−t/τerrg(t) =
∑
j

Aje
i(Ej+i/τerr)t. (3.31)

This can be seen to be an imaginary shift to the eigenvalues Ej → Ej+iτerr.
It can be corrected for in signal processing of the phase function by taking
only the real parts of the Ej eigenvalues.

The above analysis is not necessarily true for simulation of an arbitrary
Hamiltonian under a realistic noise model. In particular, if the instanta-
neous state during simulation is a near-eigenstate of the error model, then
the correction in Eq. 3.27 may be as large as O(1) instead of O(2−N ). In
App. 3.A we study this in more detail, and specify the conditions under
which errors will distort the results of verified phase estimation.

Sampling costs

The error mitigation from verification comes at the cost of increasing the
number of samples require to estimate g(t). Assuming all errors fall outside
the verified subspace, estimating g(t) to precision ε requires estimating
gerr(t) to precision pneε. To obtain gx in Alg. 3.1 (and equivalently for gy)
we average over a set of M experimnetal outputs that may take the values
{−1, 0, 1}. Let us define the ith experimental output gxi , and we have

P (gxi = ±1) = 1
2pne(1± gx), (3.32)

P (gxi = 0) = 1− pne. (3.33)

Our estimate of the noisy gerr(t) is then given by

Re[gerr(t)] = P (gxi = 1)− P (gxi = −1). (3.34)
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As each experiment is IID, the variance on our estimates of these proba-
bilities is

Var[P (gxi = ±1)] = 1
M

1
2pne(1± gx)

×
(

1− 1
2pne(1± gx)

)
, (3.35)

Cov[P (gxi = 1),P (gxi = −1)] (3.36)

= − 1
4M p2

ne
(
1− [gx]2

)
. (3.37)

Propagating variances obtains

Var [Re [gerr(t)]] = 1
M
pne −

1
M
p2

ne[gx]2. (3.38)

We may then bound the requirements to estimate gerr(t) to variance ε−2p−2
ne

by
M ≥ ε−2p−1

ne . (3.39)

This is exactly what one would expect from an actual post-selection
technique (i.e. where Mpne samples were used to estimate g(t)). We
remind the reader that pne here is the probability of no error occurring
over the entire circuit. As one should expect for an error mitigation
technique, this in turn grows exponentially with the size of the circuit
required to implement eiHt or Up. In a simple model, if the error per qubit
per moment is p (i.e. assuming qubit decay is more dominant than gate
noise in the model), an N -qubit circuit of depth d would have

pne = (1− p)Nd, (3.40)

and thus the number of shots required to estimate (the real or imaginary
part) of g(t) would scale as

M ∼ (1− p)−Ndε−2. (3.41)

This is not to be ignored; verification requires at least doubling the size of
the circuit, which if pne = 0.01 (as has been reported [3] and mitigated
successfully [103] in previous experiments) will increase the measurement
count by a factor of 100. Some of the methods presented in this work
involve increasing the circuit depth by factors of up to 14, which will be
impractical for large experiments without further circuit optimization.
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Control noise

An important realistic error to consider in QPE is error on the control
qubit. This keeps the system within the verified subspace, and so is not
captured by the above analysis. However the effect of many common
error channels may still be mitigated by verification. For example, let us
assume that the circuit decomposition of C− U involves the control qubit
performing only single-qubit gates and controlled operations on the rest of
the circuit (which is typically the case). In this case, one may show that
the effect of a depolarizing channel of strength λ

Rdepol[ρ] = (1− 3λ
4 )ρ+ λ

4 (XρX + Y ρY + ZρZ), (3.42)

acting on the control qubit at any point in the circuit, sends the final state
of the system to

(1− λ)ρne + λρerr, (3.43)

where ρne is the state in the absence of error, and

Trace[〈ψs|ρerr|ψs〉|0〉〈1|] = 0. (3.44)

In this case, the (noisy) estimate of g(t) is sent to (1− λ)g(t), and expec-
tation values and eigenvalues may be recovered via the same analysis as
in Sec. 3.3.3. However, the above analysis will not hold for a more general
noise model, and schemes such as randomized compiling [135] may be
required to unbias the estimate of g(t). An example of this biasing effect
is if an amplitude-damping channel

Rampdamp[ρ] =(1− λ)ρ+ λ

2 (Z + I)ρ(Z + I)

+ λ

2 (X + iY )ρ(X − iY ), (3.45)

is present on the control qubit between the final measurement pre-rotation
and readout in the computational basis. Left unchecked, this will shift the
estimate of g(t) to

gerr(t) = (1− λ)g(t) + λ. (3.46)

In addition to damping the true signal g(t), this additive signal presents as
a 0-energy eigenvalue in the spectrum of g(t). This will not be accounted
for by naive renormalization of 〈H〉 as outlined in Alg. 3.3; the estimation
protocol will instead estimate (1− λ)〈H〉. Though this could be corrected
in post-processing, we suggest that a more stable mitigation is to flip the
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|0〉 and |1〉 states on the control qubit for 50% of experiments. This may
be compiled into the final pre-rotation, and does not increase the total
sampling cost of the experiment (only half as many samples need to be
taken at each pre-rotation setting for the same accuracy). We observe
similar biases on bitflip noise channels which tend to decay the real and
imaginary parts of g(t) asymmetrically. This may be compensated for in
turn by compiling a π

4 Z-rotation on the intial control qubit state, and
uncompiling it in the final prerotation. (One can see that this commutes
with all gates in the circuit). For the noise models studied numerically
in this text we have found either one or both of the above compilation
schemes sufficient to mitigate control error. More complicated noise models
may required more complicated compilation schemes; extending the above
will be an interesting task for future work. In particular, the above analysis
does not apply to correlated two-qubit noise during operations between
the control qubit and the rest of the system.

3.3.4 Verified control-free phase-estimation
As was recently demonstrated in Ref. [27], the control qubit may be removed
from a QPE experiment if we have the ability to prepare an alternative
reference eigenstate |ψr〉 of the Hamiltonian H (with 〈ψs|ψr〉 = 0). For
example, in the electronic structure problem in quantum chemistry the
number-conserving Hamiltonian has the vacuum as a potential reference
state. (A similar situation was considered in Ref. [136] for the purposes of
random gap estimation, but estimating single eigenvalues Ej from this class
of experiments is somewhat awkward.) This was also recently considered
as an extension to the well-known robust QPE scheme [137], requiring both
|ψr〉 and |ψs〉 to be eigenstates of the system [126]. Note that |ψr〉 need
not necessarily be a zero-energy eigenstate of H, though the corresponding
eigenenergy Er should be known to high accuracy. In this case, one need
prepare the correlated state 1√

2 (|ψs〉+ |ψr〉), and perform uncontrolled time
evolution, and finally measure the off-diagonal element |ψs〉〈ψr|. This is
shown in the circuit (Fig. 3.2). Evaluating the circuit provides an estimate
of

Trace
[
U(|ψr〉+ |ψs〉)(〈ψr|+ 〈ψs|)U†|ψr〉〈ψs|

]
= e−iErtg(t), (3.47)

and the additional phase may be subtracted in post-processing.
The protocol for verified control-free phase estimation does not differ
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Figure 3.2: Quantum circuit for control-free verified phase estimation. The
preparation unitary Up is defined in Eq. 3.48. The first gate in the circuit
is a Hadamard gate (Roman H) on the top-most qubit (labeled the target
qubit in text), which should not be confused with the Hamiltonian H.

significantly from the single-control case. Besides the loss of the control
qubit and removal of control from the time evolution circuit, we also now
require our preparation circuit to prepare the starting state 1√

2 (|ψs〉+ |ψr〉).
We assume that this is achieved by first applying a Hadamard gate to a
single target qubit in the system register, placing the system in the state
1√
2 (|0〉+ |~1T〉). (Here we use the notation |~1T〉 for the basis state where the

target qubit is in the |1〉 state and all other qubits are in |0〉.) Then, the
desired preparation may be achieved by a preparation unitary Up which
performs the mapping

Up|0〉 7→ |ψr〉, Up|~1T〉 7→ |ψs〉. (3.48)

(We use the same notation as for the single-control unitary on purpose,
as under the association |0〉|ψs〉 ↔ |ψr〉 and |1〉 ↔ |ψs〉 one may see the
two are equivalent.) With this definition, estimation of |ψr〉〈ψs| may be
achieved by inverting Up, as

|ψr〉〈ψs| = Up|0〉〈~1T|U†p . (3.49)

In particular, after inversion, the reduced density matrix of the target
qubit contains the desired phase function g(t), and the verification consists
of checking whether all other qubits are measured into 0. The resulting
control-free protocol is fully written out in Algorithm 3.2. The analysis
of Sec. 3.3.3 is identical for the control-free case, with the absence of the
issue of control noise, as is the analysis of Sec. 3.3.3. However, we note
that at the beginning and the end of any experiment, single-qubit noise on
the target qubit behaves similarly to control qubit noise. This necessitates
averaging over multiple initial and final rotations of the target qubit to
prevent bias in the estimation of g(t).

The above analysis implies that the algorithms studied in Ref. [27, 136]
should be amenable to verification immediately as well. It also provides
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Algorithm 3.2: Control-free VPE
Input: Circuits to prepare a superposition of |ψs〉 and |ψr〉, invert

the preparation, and implement time evolution eiHt.
Number of repetitions M and M of measurement in the x
and y basis.
The reference eigenstate energy Er

Output: An estimate of g(t) (Eq. 3.47) with variance O( 1
M ) in

both the real and imaginary part.

1 Prepare classical initial variables gx = 0, gy = 0 ;
2 Prepare the system register in a starting state

1√
2 (|ψs〉+ |ψr〉) = Up

1√
2 (|0〉+ |~1T〉) ;

3 Apply the unitary Uk, (or equivalently simulate time evolution eiHt)
;

4 Apply the inverse circuit U†p to the system register ;
5 Rotate the target qubit into the X or Y basis and measure it to

obtain a number m ∈ 0, 1 ;
6 Measure all other qubits, and if they all read out 0, increment the

relevant variable gx or gy by (−1)m ;
7 Repeat steps 2-6 M times in the X basis and M times in the Y

basis, and estimate g(t) by eiErt( g
x

M + i g
y

M ).

some additional explanation for the error-robustness observed in the robust
phase estimation of Ref. [126].

3.4 Verified expectation value estimation
In many circumstances, one wishes not to know the eigenvalues of a
Hermitian operator H, but instead its expectation value 〈H〉 under a
specified state |Ψ〉. For instance, in a variational quantum eigensolver [82],
one prepares a state |Ψ(~θ)〉 = U(~θ)|0〉 dependent on a set of classical input
parameters ~θ, then measures the expectation value E(~θ) = 〈Ψ(~θ)|H|Ψ(~θ)〉.
This is then optimized over ~θ in a classical outer loop, with the optimized
state |Ψ(~θopt)〉 hopefully a good approximation of the true ground state
|E0〉. In quantum variational algorithms it is typical that 〈Ψ(~θ)|H|Ψ(~θ)〉
is estimated by means of partial state tomography [66, 67, 138]. However,
noise in the preparation unitary U(~θ) causes an errant state ρerr(~θ) 6=
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Algorithm 3.3: Verified expectation value estimation
Input: (Noisy) circuits to implement Up, U†p and controlled time

evolution eiHt.
A set of t values.
Number of repetitions M of measurement in the x and y
basis (that can be t-dependent).
A method for classical signal processing (e.g. a curve fitting
algorithm).

Output: An estimate of 〈H〉.

1 Estimate gerr(t) for all given points t using Alg. 3.1 to the chosen
precision;

2 Obtain estimates for individual Ej and A′j values via classical signal
processing;

3 Estimate 〈H〉 as

〈H〉 =
∑
j A
′
jEj∑

j A
′
j

. (3.51)

|Ψ(~θ)〉〈Ψ(~θ)| to be prepared and tomographed, propagating the preparation
error directly to a final estimation error. The noise analysis in Sec. 3.3.3
extends to both the preparation and mitigation unitaries, so if verified
phase estimation is used to provide estimates of eigenvalues and amplitudes,
one may reconstruct

〈Ψ(~θ)|H|Ψ(~θ)〉 =
∑
j

|aj |2Ej , (3.50)

and inherit the mitigation power of the verification protocol. This has the
added advantage that control errors in the preparation circuit (which, being
a repeated error, are not mitigated against) are able to be compensated for
during the outer optimization loop of the VQE, as is well-known [82, 103].
Quantum phase estimation has previously been suggested as an alternative
to partial state tomography for expectation value estimation, both to
improve the rate of estimation [139], and to provide a witness for the
presence of eigenstates of the Hamiltonian [140]. The verification protocols
described in this work should be applicable to these methods as well. A
general algorithm for verified expectation value estimation takes the form
of Algorithm 3.3
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One might worry that the sum in Eq. 3.50 is over an exponentially large
number of eigenstates |Ej〉. However one need not resolve all eigenvalues
Ej in order to accurately estimate the expectation value 〈Ψ(~θ)|H|Ψ(~θ)〉;
if eigenvalues within δ of each other are binned, the resulting expectation
value will be accurate to within δ. We may formalize this by considering
the spectral function gS of |ψs〉 under H,

gS(E) =
∑
j

Ajδ(E − Ej). (3.52)

This can be seen to be the Fourier transform of the phase function g(t)
[strictly, g(t) is the inverse Fourier transform of gS(E/2π)], and a coarse-
grained approximation may be obtained via time-series methods [125] or
integral methods [132] with rigorous bounds on each. Numerically, we
find signal processing methods such as Prony’s method [124] also perform
acceptably (see Sec. 3.5.4). For fast-forwardable Hamiltonians (such as
Pauli operators), one often already knows the target eigenvalues of the
problem. Furthermore, the eigenspectrum of these Hamiltonians is often
highly degenerate, making simple curve fitting a practical (and attractive)
alternative.

Instead of analysing the phase function at many points as described
above, one may expand

Im[g(t)] =
∑
j

|aj |2 sin(Ejt) (3.53)

= t
∑
j

|aj |2Ej + 1
3 t

3
∑
j

|aj |2E3
j +O(t5) (3.54)

1
t
Im[g(t)] = 〈Ψ(~θ)|H|Ψ(~θ)〉+O(t2), (3.55)

and simply estimate Im(g(t)) for short times t. This is similar to the manner
in which eigenphases are estimated in the WAVES protocol [140] (sans
verification). In this case, the normalisation of the resulting amplitudes
(Eq. 3.30) must be achieved by the condition that g(0) =

∑
j Aj , yielding

〈H〉 = Im[gerr(t)]
t|gerr(0)| +O(t2). (3.56)
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3.4.1 Fast-forwarded and parallelized Hamiltonian
decompositions

As expectation values are linear, we may estimate 〈H〉 by splitting it into
multiple terms, estimating the expectation values of each term individually,
and re-summing;

H =
∑
s

Hs → 〈H〉 =
∑
s

〈Hs〉. (3.57)

If individual Hs may be simulated at lower circuit depth, this can reduce
the accumulation of unmitigated errors, at the cost of requiring more
simulation. This ability becomes especially useful if one chooses the Hs to
be fast-forwardable. Here, we define a fast-forwardable Hamiltonian Hs as
one for which a circuit implementation of eiHst has constant depth in t. The
circuit depth required to simulate eiHt for arbitrary H is bounded below
as O(t) [97], but for certain operators this may be improved on [141]. For
example, as the Pauli operators {1, X, Y, Z}⊗N are both fast-forwardable
and form a basis for the set of N -qubit Hermitian operators, a set of Hs

terms may be taken from these to decompose an arbitrary Hamiltonian.
As another example, given an instance of the electronic structure problem,
one may attempt a low-rank factorization of the interaction operator into
a sum of O(N) diagonalizable (and thus fast-forwardable) terms [142].

In order to speed up estimation of expectation values of multiple terms
Hs in a decomposed Hamiltonian H =

∑
sHs, it may be possible perform

the verified phase estimation step of each Hs in parallel. For example, we
can perform time evolution of L multiple summands, each controlled by a
different control qubit, in between the preparation and verification steps of
a single instance. In the absence of verification, such parallelization will not
affect the outcome of quantum phase estimation of any individual Hs, so
long as all terms estimated in parallel commute. This follows immediately
from the fact that the time evolution for one such term does not evolve
the system between eigenspaces of another. This is complicated by the
addition of verification, as the additional circuitry means that the system
may evolve away from |ψs〉 despite a specific control qubit being in |0〉. In
App. 3.B, we show that this gives rise to a set of spurious signals in the
estimated phase function g(s)(t):

g(s)
q (t) =

∑
v,j,j′

B
(s)
j,j′e

iF
(s)
v,j,j′

t
. (3.58)
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Here, the ghost eigenvalues are

F
(s)
v,j,j′ = E

(s)
j +

∑
s′ 6=s

vs′
(
E

(s)
j − E

(s′)
j′

)
, (3.59)

where E(s′)
j are the true eigenvalues of the Hamiltonians Hs′ , and v is

a L-bit vector written in binary (i.e. vs ∈ 0, 1). The corresponding,
v-independent amplitudes are

Bj,j′ = 1
2LAjAj

′ . (3.60)

Although this is a far more complicated signal than the standard phase
function g(t), we calculate in App. 3.B that it yields the same expectation
value; i.e. ∑

v,j,j′

Bj,j′F
(s)
v,j,j′ = 〈Hs〉. (3.61)

This implies that verified parallel phase estimation may proceed in much
the same way as the series protocol.

3.4.2 Comparison to other methods of error mitigation
Error mitigation techniques differ vastly, both in their cost to implement
and their effectiveness against different forms of noise. This implies that
care needs to be taken in a real experiment to choose the best mitigation
technique (or combination of mitigation techniques) for the job. Though a
comparison between multiple techniques in a realistic setting lies outside
the scope of this work, we give some predictions here on how VPE might
compare in performance to other mitigation techniques, and whether it
might be possible to compare to different techniques. We can classify all
error mitigation techniques that the authors know of into the following
broad categories
• Circuit design —many forms of noise may be mitigated by careful design

of a circuit to e.g. minimize crosstalk between simultaneous gates [103],
cancel out Z over- or under-rotation (e.g. via echo pulses [143]), or
optimize a circuit variationally to cancel out control parameter drift
on a long timescale [82, 144]. (Whether or not this counts as error
mitigation or calibration of the underlying quantum device is left to the
reader to decide.) Depending on the source of noise these techniques
may significantly reduce or even nullify its effect, which may be far more
effective than VPE. On the other hand, noise sources such as T1 error
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Figure 3.3: Mitigation of a 4-qubit Givens rotation circuit via verified
phase estimation. (left) Error in estimation of random states in a free-
fermion system (Eq. 3.63) under a uniform depolarizing channel. (right)
Error in the same estimation, but this time under an amplitude and phase
damping model. In both plots, the RMS error (crosses) is calculated over
50 different estimations for each error rate using either standard partial
state tomography (red) or using verified control-free phase estimation.
Individual data points (dashes) are additionally shown. For reference,
dashed lines showing linear (red), quadratic (black), and cubic (blue)
dependence on the gate error rate are plotted.

cannot be easily calibrated away (due to the associated photon loss); in
these situations (where VPE performs quite well) these methods will
have little effect. VPE is clearly compatible with any such techniques,
as these consist of adjustments to the implementation of a given circuit
rather than an algorithmic overhead.

• Post-selection or verification techniques — this class of techniques uses
knowledge of the problem to restrict the state of the quantum device to
within a small region of the N -qubit Hilbert space, often by leveraging
symmetries of the Hamiltonian of the problem to be solved. VPE itself
falls into this category, alongside symmetry verification [29, 67], and
quantum subspace expansion techniques [116, 117]. The performance of
these techniques is dependent on their ability to catch errors outside the
allowed Hilbert space, so as the dimension of the Hilbert space for VPE
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is only 2, we expect it to have greater mitigation power in general than
these other techniques. (This can be observed in App. 3.G, where VPE
shows an asymptotic improvement over symmetry verification in a small
numerical simulation.) However, as the circuit depth of VPE is typically
far longer than that of other post-selection or verification techniques
(which can be achieved in some cases without any additional circuitry),
the requirements on the number of measurements to overcome sampling
noise will be significantly worse. As these techniques overlap in their
effect on the quantum state, it is not particularly possible to combine
them; instead one should choose the best trade-off between mitigation
power and number of measurements.

• Error extrapolation techniques — assuming that one can artificially
introduce noise into a system, these techniques rely on parameterizing
the output f of a quantum circuit as a function of a ‘noise parame-
ter’ f = f(λ), fitting a functional form, and extrapolating to λ = 0.
The noise parameter can either be adjusted experimentally (e.g. by
adjusting the wait time or detuning of an underlying gate) [118, 120]
or algorithmically (e.g. by inverting noisy gates [145]). The mitigation
power of such a technique depends on how well the noise can be tuned
as a function of this single parameter, and how well one can pin down
a functional form for f(λ). This is not easily comparable to VPE,
as the physical source of the mitigation is qualitatively significantly
different. We expect that the relative performance will depend on the
experiment and the hardware itself. In theory these methods could be
combined with VPE (either by extrapolating the phase function or the
VPE result). However, it is unclear whether the output of VPE will be
more challenging to fit, reducing the effectiveness of the extrapolation.

• Result extrapolation techniques — instead of fitting the output f of a
quantum circuit to an artificial noise term, one can consider comparing
the output of similar quantum circuits tailored to efficient classical
simulation. This technique has been demonstrated experimentally in
Refs. [103, 146], and proposed within a VQE setting (by tuning the
parameters to points where the solution is known) [147]. In some sense
VPE can be considered to be similar to these methods, with the |ψs〉|0〉
or |ψr〉 states providing an entangled reference state for the target
evolution. However, this relationship is not completely clear, as VPE
strictly relies on the coherence between the two states. Understanding
this similarity is a clear avenue for future research. Regardless, VPE
should be able to be combined with at least some of these techniques
to provide yet more mitigation power.
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• Probabilistic cancellation techniques — given knowledge of the true
process maps of the gates being performed on a quantum device, one can
in principle construct families of quantum circuits that when combined,
yield a target noiseless result [118, 120]. However, these methods
require much additional characterization of the device, which is a
problem in systems with large amounts of drift. In principle given
sufficient knowledge of the noise this method works perfectly, but at a
greatly increased measurement cost, making it difficult to make a fair
comparison in a theoretical setting. Testing this method against VPE
in a real experiment would be an interesting target for future research.

• Purification techniques — as the output of a quantum algorithm is often
ideally pure, these techniques attempt to reduce errors by mapping a
noisy impure state to a purer one. This may be achieved e.g. for free
fermion states via McWeeny purification [103], or for more general states
via virtual distillation [148]. For more complex states the McWeeny
process cannot be used, but it has proven remarkably effective when
available. Virtual distillation and VPE appear to be remarkably similar
in their increased measurement cost and their mitigation performance,
as well as their circuit structure. Understanding this similarity and
comparing the two in more detail is a clear avenue for future research.

3.5 Numerical Experiments
To investigate the mitigation capability of verified phase estimation, we
first use it for expectation value estimation. To prepare states, we take
different variational ansatze with randomly-drawn parameters. We com-
pare the performance of verified and unverified circuits across multiple
target Hamiltonians, noise strengths and noise models, to attempt to iden-
tify trends in the method. All simulations were executed using the Cirq
quantum software development framework [102] and simulators therein.
Hamiltonians and complex circuits were further generated using code from
the OpenFermion [117] libraries. Except for when mentioned, the Cirq
noise models were chosen to be a constant error rate per qubit per moment,
where a moment is a period of the circuit where gates occur. Equivalently,
this can be thought of as an error rate per qubit per gate, but including
error on idling gates as well. The noise models considered are not as com-
plex as those typically observed in experiment (which are typically highly
non-uniform, and can include crosstalk and non-Markovianity alongside
other effects), but we expect our results should provide a suggestion of the
mitigation power of this method in a real quantum device.
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3.5.1 Givens rotation circuits for free-fermion
Hamiltonians

We first test the mitigation ability of the verification protocol on an instance
of a “Givens rotation circuit” of the form developed for implementing
rotations of single-particle fermionic basis functions in [149]. This circuit
takes the form

U(~θ) = exp

i∑
j,l

~θj,lc
†
jcl

 , (3.62)

where c†j and cj are the creation and annihilation operators for a fermion
on site j, and θj,l = θl,j . Such a circuit is classically simulatable, but it
is a critical piece of infrastructure in quantum computing applications
for quantum chemistry [66, 71, 73, 103, 142]. It is also low depth: it
may be decomposed exactly by a sequence of matchgates [150], with
optimal compilation in a circuit depth of exactly N . When acting on a
N -qubit register prepared in the state

∏Nf−1
n=0 Xn|0〉, this may prepare an

arbitrary ground state of a free-fermion Hamiltonian with Nf particles by
an appropriate choice of ~θ. In this work, we take a simple free-fermion
Hamiltonian as an example - namely a one-dimensional chain:

H = −t
∑
j

c†jcj+1 + h.c. (3.63)

Such a Hamiltonian may be diagonalized,

H = V †
∑
α

εαc
†
αcαV, (3.64)

where V here takes the same form as in Eq. 3.62. This decomposition
allows immediately for the fast-forwarding of time evolution, as

eiHt = V †eit
∑

α
εαc
†
αcαV (3.65)

= V †
∏
α

eitεαc
†
αcαV. (3.66)

As the Givens rotation circuits conserve particle number, the vacuum
|0〉 may be used as a reference state for control-free verified estimation. A
superposition of this reference state and starting state U(~θ)

∏Nf
n=1Xn|0〉
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Figure 3.4: Mitigation of a 4-qubit VHA circuit via verified phase estima-
tion. (left) Error in estimation of the energy of random states generated
by the quantum approximate optimization ansatz in the critical phase
of the transverse-field Ising model (Eq. 3.70) under a uniform depolariz-
ing channel. (right) Error in the same estimation, but this time under
an amplitude and phase damping model. In both plots, the RMS error
(crosses) is calculated over 50 different estimations for each error rate
(with randomly-chosen ansatz parameters) using either standard partial
state tomography (red) or using verified control-free phase estimation.
Individual data points (dashes) are additionally shown. For reference,
dashed lines showing linear (red) dependence on the gate error rate are
plotted.

may be prepared by acting the Givens rotation circuit on the GHZ state

|GHZNf 〉 = 1√
2

|0〉+
Nf∏
n=1

Xn|0〉

 , (3.67)

which may itself be prepared by e.g. a chain of CNOT gates:

|GHZNf 〉 =
1∏

j=Nf−1
CNOTj−1,jH0|0〉. (3.68)
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Figure 3.5: Error in estimating the ground state energy of a 4-site
transverse-field Ising model (Eq. 3.70) by variational optimization of a
VHA ansatz. The resulting expectation values are measured either by
verified single-control phase estimation (black) or taken directly from the
simulated state state (red). We plot the median (crosses) of the absolute
energy error over 10 optimization attempts, each starting from a different
initial point. Individual errors are plotted behind (faint dashes). Guide
lines showing a linear dependence are additionally plotted (red dashed
lines).

Note here the backwards product that runs left-to-right (i.e. the CNOT
gate between qubit 1 and qubit 0 is executed first). Following the definitions
in Sec. 3.3.4 for verified control-free phase estimation, we can write the
complete preparation unitary as

Up = U(~θ)
1∏

j=Nf−1
CNOTj−1,j . (3.69)

Then, as the product of two Givens rotation circuits is itself a Givens
rotation circuit [149], we may compile V U(~θ) = U(~θ′) and implement this
in a single Givens rotation circuit.

The complete VPE circuit for this circuit consists of the GHZ preparation,

95



3 Error mitigation via verified phase estimation

3

a single Givens rotation, a set of single-qubit z-rotations, uncomputing the
Givens rotation, uncomputing the GHZ preparation, and measurement
in the X or Y basis. The resulting circuit for verified phase estimation
is more than twice the length of the circuit required for the unmitigated
VQE. We assume here that the VQE tomography does not require any
additional overhead, and directly estimate the expectation value from the
simulated density matrix. For verified phase estimation, we extract the
phase function from the simulated density matrix, and then process it to
estimate expectation values using Prony’s method. In order to not bias
the final readout (which can lead to significant error in estimation), we
average the rotation into the X and Y -bases over both +π/2 and −π/2
rotations 3.3.3. To simplify the analysis here, we do not include additional
sampling noise. In Fig. 3.3, we plot the RMS error for two error models
over a range of noise models and strengths. For each noise model and
at each strength we sample 50 random choices for the initial parameters
~θ (and set t = 1 in Eq. 3.63). In the presence of a uniform single-qubit
depolarizing channel (Fig. 3.3, left), we see that the verified error displays
a clear ε ∼ p2 trend (where ε is the error in the final estimation, and p
is the error per qubit per moment). This implies that the effect of all
single errors in this noise model are suppressed by the error mitigation (or
fortuitously cancel), but that pairs of errors near to each other in time
may affect results. Under the effect of an amplitude and phase damping
channel (Fig. 3.3, right), the suppression is even starker; we see a clear
ε ∼ p3 trend till the error drops to below 10−5, providing up to four
orders of magnitude gain in precision. Below 10−5 the error plateaus.
This is due to numerical stability issues with Prony’s method, and not a
fundamental limit of the procedure 3. This level of estimation error only
becomes relevant after > 1010p−2

err individual shots have been taken (with
perr the probability of an error over the entire circuit). As such, we expect
this to not be relevant for most experiments. The lower error rate makes
some sense: amplitude damping errors can only ever reduce the number
of excitations in the circuit, and so by themselves can never return to a
state with non-zero overlap with |ψs〉. However, the precise mode for the
leading contribution to the error rate is still somewhat unclear.

3Proof of this can be found in e.g. Fig. 3.9, where phase fitting obtained a ∼ 100-fold
reduction in this noise floor, which is typical for all simulations performed thus far.
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3.5.2 The variational Hamiltonian ansatz for the
transverse-field Ising model

We next attempt the verification of a completely different model and
ansatz. The transverse-field Ising model (TFIM) is a well-known spin
system, with Hamiltonian

H = Jz
∑
j

Zj + Jx
∑
j

XjXj+1, (3.70)

where we take the sum j+1 modulo N (i.e. periodic boundary conditions).
In one dimension, this model has a critical phase when Jz = Jx, making
this a simple model to study interesting quantum phenomena. Exact
ground states of this model may be found by the variational Hamiltonian
ansatz (VHA) [54] for any values of Jx and Jz [151]. The VHA consists
of alternating the Ising model and transverse field terms p times, with at
each layer p the amount of time to be treated as a free variable:

U(~θ) =
∏
p

e
iθp,Z

∑
j
Zje

iθp,X
∑

j
XjXj+1 . (3.71)

(Note that for this given model the VHA is equivalent to the quantum
alternating operator ansatz of Ref. [55].) The TFIM does not have any
simple eigenstates, and nor does the VHA, so simple methods of control-free
verified phase estimation are not available. Instead, we attempt single-
control verified phase estimation. To lower the error incurred during the
circuit, we perform VPE in series for every term in Eq. 3.70. Unfortunately,
verification works significantly less well in this setting, as is shown in
Fig. 3.4. For both noise models considered, we see a clear ε ∼ p trend
with ε the energy error in the final result, and p the error per qubit per
moment. This suggests that errors that map the noiseless state into one
with nontrivial overlap with the verified density matrix are dominant in
this circuit. Regardless, we note that verification does provide an ∼ 8-
fold improvement in error rate over the unmitigated circuit, despite the
verification circuit requiring one additional qubit and being three times
as long. This result is lessened in the presence of amplitude and phase
damping noise, till the point where the mitigation only improves estimation
by a factor of 2.
Variational optimization is well-known to mitigate certain types of

coherent noise (e.g. coherent parameter drift) [82, 144]; it also appears
to provide some mitigation of incoherent noise when in combination with
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verified phase estimation. In Fig. 3.5, we perform a variational outer
loop over the circuit studied in Fig. 3.4. Although the ε ∼ p behaviour
appears to roughly remain in the latter half of the optimization, the gain
from error mitigation improves from 2− 8x to around 50x, a significant
improvement. We note that the optimization is no longer variationally
bound - below about 10−2 error per qubit per moment, the results are
scattered relatively evenly on either side of the true value. By contrast, in
the absence of sampling noise partial state tomography results will always
be variationally bound. We suspect this result may be due to the fact
that slightly different circuits need to be run to measure different terms,
yielding an ’effective state’ that lies slightly outside the positive cone of
allowed physical quantum states. Though this effect does not appear to
be particularly severe in this case, further study may be needed to see it
does not become an issue in larger experiments.

3.5.3 Fermionic swap networks for electronic structure
Hamiltonians

As a final system for simulation, we move to studying the ability to verify
molecular hydrogen on four qubits using a fermionic swap network. This
ansatz was first studied in [149]; it consists of a network of two-qubit
fermionic simulation gates, which take the form

Ufsim(θ, φ) =


1 0 0 0
0 cos(θ) i sin(θ) 0
0 i sin(θ) cos(θ) 0
0 0 0 eiφ

 . (3.72)

The parameters θ and φ are then left free to be optimized during the
circuit. Molecular hydrogen is a simple example of the full electronic
structure Hamiltonian, which takes the form

H =
∑
i,j

ti,jc
†
i cj +

∑
i,j,k,l

Vi,j,k,lc
†
i c
†
jckcl. (3.73)

Solving this Hamiltonian for mid-to-large system sizes (∼ 60+ qubits) with
strong interactions is a key target application for quantum computers [64,
71, 73].

We study three different methods for verified expectation value estima-
tion of the electronic structure Hamiltonian. Following a transformation
from fermionic to qubit operators, Eq. 3.73 we first consider a decomposi-
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tion over single Pauli operators for single-control VPE, as was performed
for the transverse-field Ising model in Sec. 3.5.2. However, in order to
perform control-free VPE on these terms, we require a reference state.
Individual fermionic terms in Eq. 3.73 are number-conserving, so the
fermionic vacuum is a good reference state for these, but this is not the
case for individual Pauli terms. To circumvent this problem, we split
Eq. 3.73 into fermionic terms (summed with their Hermitian conjugate),
and decompose these into Pauli operators. (One can check that the result-
ing Pauli operators commute, and so their time evolution may be easily
fast-forwarded.) The VPE circuits in both of the above methods are 3− 4
times the depth of the original VQE.
Alternatively, by performing a low-rank factorization of the Coulomb

operator, we may write H in the form [142]

H =
∑
i,j

t′i,jc
†
i cj +

∑
l

U†l

[∑
α

E(l)
α c†αcα

]2

Ul (3.74)

= H(0) +
∑
l

H(l), (3.75)

Where the Ul are single-particle basis changes that may be implemented
via Givens rotation circuits. Each such term in this factorization is fast-
forwardable. H(0) is a free-fermion Hamiltonian and may be simulated via
the methods discussed earlier in this section. The interacting factors H(l)

may also be diagonalized by diagonalizing the single-particle t(l)i,j matrices.
One finds

eiU
†
l
H(l)Ult = U†l

∏
αβ

EitEαEβc
†
αcαc

†
β
cβUl, (3.76)

which may be easily implemented on superconducting hardware, as eitEαEβc
†
αcαc

†
β
cβ

is realised by a C-Phase gate. All of the above Hamiltonians, as well as
the fermionic swap network itself, conserve particle number, and so we
may again use the vacuum as a reference state for verified control-free
quantum phase estimation. We do not consider the single-control version
for comparison in this case. The resulting circuit is over ten times as long
as the VQE itself, as we are unable to compile the final basis rotation into
the ansatz.

The mitigation power of VPE differs vastly between the different choices
of decomposition used, and the different noise models chosen. In Fig. 3.6,
we plot the effect of mitigating depolarizing, and amplitude and phase
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Figure 3.6: Mitigation of a 4-qubit fermionic swap network via verified
phase estimation. (Continues on following page)
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Figure 3.6: (continued) Three different VPE protocols are explored — a
low-rank factorization (top row — a1, a2), a control-free number-conserving
Pauli decomposition (middle row — b1, b2), and a single-control Pauli
decomposition (bottom row — c1, c2). Details of all decompositions are
given in the text. The low-rank factorization was studied for the H2
Hamiltonian at the equilibrium bond distance with a swap network of
depth 4, while the other two models were studied at a bond distance of 2
Angstrom with a swap network of depth 6. All protocols are tested under
depolarizing (left column) and amplitude and phase damping (right column)
noise models. In all plots, the median error (crosses) is calculated over 50
different estimations for each error rate using either standard partial state
tomography (red) or using verified control-free phase estimation. Individual
data points (dashes) are additionally shown. For reference, dashed lines
showing linear (red), quadratic (black) and cubic (blue) dependence on
the gate error rate are plotted.

damping channels, using the three decompositions described above. We see
that control-free [Fig. 3.6(a1-b2)] VPE typically outperforms single-control
VPE [Fig. 3.6(c1,c2)], despite the single-control VPE circuits being in all
cases smaller (due to the lack of coherent state preparation). Under a depo-
larizing noise model, both control-free VPE implementations [Fig. 3.6(a1,
b1)] demonstrate a second-order sensitivity to the physical qubit error
rate, consistent with the previous results in Fig. 3.3. In this case, the Pauli
decomposition clearly outperforms the low-rank factorization, which we
attribute to the large reduction (∼ 2−3×) in total circuit depth. However,
although the low-rank factorization repeats the third-order sensitivity to
amplitude and phase damping seen in Fig. 3.3 [Fig. 3.6(a2)], this is not
observed in the Pauli decomposition case [Fig. 3.6(b2)]. We investigate
this further in App. 3.F, and find that this first-order error can be traced
back to the verified estimation of a single term — the two-body interaction
term. We attribute this to the fact that the time evolution circuit for
this term breaks number conservation (which is not the case for any other
term in the sum), which makes it more susceptible to amplitude damping
noise. Understanding this feature in detail, and determining whether
better circuit optimizations exist, are clear targets for future research. In
any case, all three implementations of VPE studied show at least an order
of magnitude improvement compared to partial state tomography, and in
some cases up to three orders of magnitude improvement, demonstrating
the power of this technique.
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3.5.4 Sampling costs

In a realistic experiment, direct estimation of any expectation value requires
repeatedly re-preparing the target state and measuring in an appropriate
basis to accumulate statistics on the probability of seeing a given 0 or 1
measurement. In verified phase estimation, this repetition must be per-
formed instead on the control qubit (for single-control) or target qubit (for
control-free) to accumulate the phase function. Re-preparation is necessary
between subsequent measurements, as such a measurement collapses the
global wavefunction, erasing the information about the probability to
be estimated. This implies that each repetition carries substantial cost,
and the rate of convergence of error estimation is a critical bottleneck in
any variational algorithm. Although one might expect quantum phase
estimation to speed up this estimation (which has been proposed previ-
ously [139]), this is only the case when one is estimating eigenvalues of the
target Hamiltonian in a specific QPE instance. We wish to divide up our
Hamiltonian for fast-forwarding purposes, and in most cases the resulting
terms will not be simultaneously diagonalizable, so no set of mutual eigen-
states will exist; instead, the results of Sec. 3.3.3 will hold. Furthermore,
as our expectation value estimation requires to sum over multiple different
amplitudes, we should not expect this to improve over the cost of partial
state tomography (which requires non-commuting terms to be measured
on separate preparations of the state). The error in expectation value
estimation will further depend on the type of classical post-processing
used.
In Fig. 3.7, we compare the convergence of two types of classical post-

processing to that of standard partial state tomography. We perform
this simulation on the 4-spin VHA-TFIM system studied in Fig. 3.4
and Fig. 3.5, on a representative point in the spectrum (the error-free
variational minimum). We do not perform any measurement grouping
or parallelization strategies for either method, and instead report our
results as a function of the number of measurements per Pauli operator.
The first method (green) assumes knowledge about the eigenvalues of
the fast-forwarded Hamiltonians, in which case one need only fit the
amplitudes, while the second (blue) first estimates the eigenvalues using
Prony’s method before fitting the amplitudes to the resulting signal. (We
compensate for the presence of spurious phases in Prony’s method by a
slight adjustment described in App. 3.C.) All methods of estimation are
seen to converge at a rate ε ∼M−1/2, where ε is the estimation error and
M is the number of samples taken.
We see that using the prior knowledge of the phases gives a significant
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advantage in convergence, with the resulting error rate being almost an
order of magnitude worse when using Prony’s method. This advantage
persists in the presence of a depolarizing channel (1% error rate), although
the convergence of all methods flattens as they approach the sampling-
noise-free estimation value. We note that both classical post-processing
methods converge to the same result here, as expected. It is unclear
whether the good overlap between the unverified circuit and the phase
fitting method is due to them both achieving a lower bound for convergence
or just coincidence. Further investigation here would be a good target for
future work. The addition of noise makes convergence more costly. This
increase can be bounded below by removing the fraction of experiments
where at least one error has occurred (as we are at best effectively removing
these results). Confirming this trend would also be a good target for future
work.

3.6 Conclusion
In this work, we presented a new method for error mitigation, based
on verification of the system register in a single-control quantum phase
estimation routine. We further extended this method to a scheme for
verification of control-free quantum phase estimation. By writing a complex
Hamiltonian as a sum of fast-forwardable parts and using this technique to
estimate the expectation value of each part, this becomes a powerful error
mitigation tool for near-term experiments such as variational algorithms.
Errors that take the system away from the small verified subspace do
not affect the mitigated QPE results (at the cost of requiring additional
repetitions of the circuit). We performed numerical studies of this error
mitigation capability of the verification protocol on three different systems,
finding the suppression of all single depolarizing errors when a Givens
rotation circuit or a fermionic swap network prepare random states of
a small fermionic system. The suppression is further magnified in the
presence of amplitude and phase damping, resulting in a gain of up to four
orders of magnitude in accuracy. For a simulation of the transverse-field
Ising model the error suppression is less pronounced. However, we find
that variational optimization improves the error mitigation to a gain in
accuracy of about 50-fold. We further demonstrated that the combination
of variational optimization and verification mitigates against constant
control error (which is not naturally mitigated by the verification itself).
However, we found that the choice of post-processing technique in the
classical post-processing may affect the estimation error by a factor of 10
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Figure 3.7: Convergence of the estimation of a single point in a 4-site
transverse-field Ising model with the number of samples taken, using
verified phase estimation processed either with Prony’s method (blue) or
by fitting known phases to the phase function (green), or standard partial
state tomography (red) on individual Pauli terms. (Left) convergence in the
absence of error. (Right) convergence in the presence of 1% depolarizing
error per qubit per moment. In each subfigure we plot the median energy
error (crosses and lines) over 200 simulations, which are plotted themselves
behind (faint dashes).

in the presence of sampling noise.
Though verified phase estimation as presented already appears to be

one of the most powerful error mitigation techniques available to NISQ-era
quantum computing, further avenues for optimization exist. The wide
range of possible options for verification, how to divide the Hamiltonian,
and classical post-processing method all provide metaparameters which
we have not yet determined how to optimize for any specific problem.
Furthermore, circuits which quickly scramble errors would appear to make
verification more reliable. Whether this observation can be used for mean-
ingful optimization is a clear target for future work. Similarly, as errors
need to have the instantaneous state as a near-eigenstate to not fail veri-
fication, the errors that verified phase estimation is most-susceptible to
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must commute, and could potentially be corrected with a classical error
correcting code. As these codes require much less overhead than full-blown
QEC, this may be a practical method to ensure universal suppression of
single-qubit errors. Future work could also investigate whether verified
phase estimation may be combined efficiently with other error mitigation
techniques. More generally, it would be timely to benchmark the zoo
of error mitigation techniques against one another, and determine which
combination of techniques works best in a range of situations.

3.A Error analysis
Let us formalize the ideas outlined in Sec. III.C of the main text by
considering how the verified and unverified Hilbert spaces H(v) and H(f),
and the verified and unverified ensembles ρ(v) and ρ(f) within them, evolve
over the course of a noisy quantum circuit. (We remind the reader here
that ρ(v) and ρ(f) are not normalized, hence our use of the word ’ensemble’
rather than ’state’.) We will then attempt to provide some mechanisms
for the observed scaling laws in Sec. V of the main text. At the end of the
VPE circuit, the verified Hilbert space H(f) is spanned by the two verified
basis states. In single-control VPE, these are |0〉|0〉 and |1〉|0〉, while in
control-free VPE these are |0〉 and |~1T〉. Let us label these |0v〉 and |1v〉
respectively, and then we may define the verified Hilbert space as

H(v) = Span{|0v〉, |1v〉}, (3.77)

and the verified ensemble as

ρ(v)(t) = Pvρ(t)Pv, Pv = |0v〉〈0v|+ |1v〉〈1v|. (3.78)

The system state ρ here is the state at the end of the VPE circuit, let
us now consider how the system evolves to get here. This evolution is not
a function of the simulated time t, as we may use entirely different circuits
to estimate the phase function g(t) and g(t′). Instead, we must frame the
evolution of the state on the quantum device over the course of the VPE
circuit in terms of the device time τ . That is, let us fix t, and assume
that the circuit that implements U = eiHt is split into a set of discrete
moments U(τ) (with the last moment occuring at time τmax),

U =
τmax∏
τ=0

U(τ), (3.79)
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where each moment consists of a set of gates acting in parallel

U(τ) =
∏
i

U(τ)i. (3.80)

This is how circuits are represented in the cirq quantum programming
framework [102], and is a good way of approximating the behaviour of a
real quantum circuit.

To best understand how noise and verification work together, we must
move to the interaction picture, or rather a rotating reference frame. In the
Schr odinger picture, the system begins entirely within H(v), as in all cases
it is initialized in |0v〉 = |0〉 and immediately rotated to 1√

2 (|0v〉+ |1v〉). It
then evolves out of H(v) as we prepare, evolve, and un-prepare the system,
even in the absence of error. However, for us it is more helpful to consider
the states that will be rotated into H(v) at the end of the circuit. This
may be achieved by re-defining the verified basis states in the reference
frame

|0v〉 →

(∏
τ ′>τ

U(τ ′)
)−1

|0v〉 (3.81)

|1v〉 →

(∏
τ ′>τ

U(τ ′)
)−1

|1v〉. (3.82)

(This a slightly non-standard choice of reference frame, as we are shifting
backwards in time from the final state, rather than forwards in time from
the initial state, but it makes our error analysis far easier.) In the absence
of error, this is the Heisenberg picture: our system remains in the state

ρ = |ρ〉〈ρ| (3.83)

|ρ〉 = 1√
2
|0v〉+ g(t)√

2
|1v〉+

√
1− |g(t)|2

2 |ρ(f)〉, (3.84)

throughout the entire circuit. Here |ρ(f)〉 is the fraction of the state that
will eventually fail verification —

ρ(f) = |ρ(f)〉〈ρ(f)|. (3.85)

(Recall here that |ρ(f)〉 6= 0 even in the absence of noise, but this fraction of
the state does not contribute to the phase function — 〈ρ(f)|Xc+iYc|ρ(f)〉 =
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0.) We may project our system at any device time τ into the verified
Hilbert space via Eq. 3.78, but with the basis states in their rotating
reference frame (Eq. 3.81 and Eq. 3.82).

Noise may be added to the above by treating it as a perturbation and
switching to the interaction picture. Without loss of generality, we may
say the effect of noise is to shift the unitary U(τ) at each moment

U(τ)→ RU(τ)(1− pτ + pτEτ ), (3.86)

where RU is the process map associated with a unitary U

RU [ρ] = U†ρU, (3.87)

Eτ is the process map associated with errors during the moment τ , and
pτ is the probability of any such errors occurring. In the interaction
picture, the action of the circuit has been shifted into our basis states, and
U(τ) = 1. So, we may write our final state in the presence of error as

ρ(err) = 1
N

{
ρ+

∑
τ0<τ

p′τ0
Eτ0 [ρ]

+
∑

τ1<τ0<τ

p′τ0
p′τ1

Eτ0 [Eτ1 [ρ]] + . . .

}
, (3.88)

where N is a normalization coefficient

N =
∏
τ

1
1− pτ

, (3.89)

and p′τ are the rescaled probabilities

p′τ = pτ
1− pτ

. (3.90)

If desired, one can recognise this also as a discrete form of the well-known
time-ordered integrals in quantum mechanics — a time-ordered sum

ρ(err) = 1
N
T exp

(∑
τ

p′τEτ

)
[ρ], (3.91)

where T is the time-ordering operator. Our projection onto the verified
subspace is linear, so we may consider it on each of the individual terms
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in the sum. Assuming p′(τ) is small for all τ , the first-order corrections to
ρ(v) occur from errors Eτ during a single timestep. These corrections take
the form

Pvp
′
τEτ [ρ]Pv = p′τ

(
p0,τ

1
2g

(err)
τ (t)

1
2g

(err)†
τ (t) p1,τ

)
, (3.92)

where

p0,τ = 〈0v|Eτ [ρ]|0v〉 (3.93)
p1,τ = 〈1v|Eτ [ρ]|1v〉 (3.94)

g(err)
τ (t) = 〈1v|Eτ [ρ]|0v〉 (3.95)

The off-diagonal element in this matrix gives the contribution to the phase
function g(t)

g(t)→ 1
N
g(t) + 1

N
∑
τ

p′τg
(err)
τ (t). (3.96)

One may generalize this to higher-order terms. For example, the second-
order contribution to the error takes the form

1
N

∑
τ0<τ1

p′τ0
p′τ1
〈1v|Eτ1 [Eτ0 [ρ]]|0v〉 (3.97)

The mitigation power from verification requires two conditions: that the
dependence of the normalization N on the simulated time t is simple, and
that the off-diagonal error contributions (Eq. 3.95) are small. We expect
both conditions to often be the case. The positivity of Eτ [ρ] implies that

g(err)
τ + p0,τ +

2N−2∑
n=1
〈ρ(f)
n |Eτ [ρ]|0v〉 ≤ 1, (3.98)

where |ρ(f)〉 is an appropriately chosen basis for H(f). On average all terms
are equally-weighted, so g(err)

τ ∼ 2−N . As such, negligible g(err)
τ should be

the norm rather than the exception; we need reason to expect that the error
channel Eτ will not scatter us out of the verified subspace. If g(err)

τ = 0,
the effect of Eτ on g(t) occurs via the damping by N , which itself may
depend on t. However, N depends only on the rate at which errors occur,
and is oblivious to their specific form. If a Hamiltonian is fast-forwardable,
eiHt may be implemented in time constant in t. Then assuming a constant
error rate per moment of the circuit, our phase function is dampened by a
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constant amount,
gerr(t) = 1

N
g(t), (3.99)

which may be corrected for by renormalization (Eq.30 of the main text). If a
Hamiltonian is not fast-fowardable, eiHt must take real time τmax(t) = O(t)
to simulate to constant error. Assuming this is the case, and that we have
a constant error rate per moment of the circuit, the damping from each
possible error Eτ is multiplicative, and our estimation takes the form

gerr(t) = e−t/T1g(t). (3.100)

Here, T1 is defined as the (simulated) time t over which enough errors E
have accumulated that

1
N (τ) (E) = e−1. (3.101)

This constant damping may be considered an imaginary shift to the eigen-
values Ej ; Ej → Ej + 1

T1
. It may be removed by classical postprocessing

techniques [124, 130, 137]. However, the shrinking of the signal increases
the sampling requirements to estimate g(t) exponentially in t.
Although random error channels are exponentially suppressed by veri-

fication (following Eq. 3.98), realistic error models are biased, and may
apply undesired phases to gerr

τ (t) instead of setting it to 0. The density
matrix in Eq. 3.92 is not normalized, but it must be positive, which implies

|g(err)
τ |2 < p0,τp1,τ

p0,τ + p1,τ
. (3.102)

This means that errors must either fail to scatter both |0v〉 and |1v〉, or
rotate between these states and the failed state |ρ(f)〉. When control-free
methods are used, |0v〉 is separated from |1v〉 and |ρ(f)〉 by highly non-local
excitations, which are non-physical error channels. However, when single-
control methods are used, |0v〉 is coupled to |1v〉 and |ρ(f)〉 by control
qubit errors. These control qubit errors deform the Bloch sphere defined
by |0v〉 = |0〉|0〉 and

g(t)|1v〉+
√

1− |g(t)|2|ρ(f)〉 = |0〉|~1〉. (3.103)

When this deformation is asymmetric around the z-axis, or a rotation,
g(t) may be quickly corrupted4. However, symmetric noise (such as a

4We have observed this for instance due to T1 decay on the control qubit between
final rotation and readout. However, we can correct for this easily by measuring in
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depolarizing channel, or T1 or T2 channels during the bulk of the circuit)
can be seen to simply dampen g(t) in an identical manner to N . That
is, the dampening will depend only on the rate at which these errors
occur. Such dampening will be cancelled by renormalization, as observed
in Fig. 3.9.
Errors that do not rotate between |0v〉 and |1v〉, but still contribute

non-trivially to g(err)
τ (t) to first order must have both |0v〉 and |1v〉 as

approximate eigenstates of the error channel. This suggests a reason why
control-free VPE is more noise-robust to noise than single-control VPE:
the starting and reference states are very different when looked at locally,
which makes it less likely that a single local error will have both states
as near-eigenstates. It also suggests a reason why we might expect the
suppression of errors to only second-order: if the same error occurs in
subsequent moments (in a local frame), and the basis states |0v〉 = |0v(τ)〉
have not evolved significantly between these moments, the second error
will almost (but not completely) cancel out the first, driving the system
back into the verified subspace in an uncorrectable manner. This implies
that a circuit which more quickly scrambles the basis states |0v〉 and |1v〉
between moments should be less susceptible to error than one where the
states evolve slowly. Understanding the dynamics of these noisy circuits
in more detail is a clear target for future work.

3.B Effect of parallelizing QPE

In this appendix we investigate the phase function obtained during the
parallel estimation of multiple commuting Hamiltonians, and demonstrate
that the resulting expectation values from this estimation are not affected
by the parallelization and verification process combined. Let us consider
the case where we have two commuting Hamiltonians H0, H1. In this
case, we may write a simultaneous eigenbasis |Ej〉 for both Hamiltonians
— Hb|Ej〉 = E

(b)
j |Ej〉. Let |ψs〉 =

∑
j aj |Ej〉, and we may calculate the

controlled-time-evolved global state |Ψ(t)〉 to be∑
j

aj(|0〉+ eiE
(0)
j
t|1〉)(|0〉+ eiE

(1)
j
t|1〉)|Ej〉. (3.104)

the opposite basis 50% of the time
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Tracing out control qubit 1 obtains the following reduced density matrix
for the system + control qubit 0∑

j,j′

aja
∗
j′

[
1 + e

i
(
E

(1)
j
−E(1)

j′

)]

×
[(
|0〉+ eiE

(0)
j
t|1〉
)
|Ej〉〈Ej′ |

(
〈0|+ e

−iE(0)
j′
t〈1
)
|
]
. (3.105)

The issue here then comes from this additional factor
[
1 + e

i
(
E

(1)
j
−E(1)

j′

)]
at the front. Note that (as we should expect) this goes away upon tracing
out the system register, as the trace over |Ej〉〈E′j | yields (dropping all
additional terms in the above expression).∑

l

〈El|Ej〉〈Ej′ |El〉 = δj,j′ (3.106)

However, post-selection implies that we take the expectation value with
regards to |ψs〉, obtaining

〈ψs|Ej〉〈Ej′ |ψs〉 = a∗jaj′ . (3.107)

The off-diagonal element of the control qubit density matrix can then be
found to be

1
2
∑
j,j′

|aj |2|aj′ |2
(

1 + e
i(E(1)

j
−E(1)

j′
)t
)
eiE

(0)
j
t (3.108)

= 1
2
∑
j

|aj |2eiE
(0)
j
t

+ 1
2
∑
j

|aj |2ei(E
(1)
j

+E(0)
j

)t
∑
j′

|aj′ |2e
−iE(1)

j′
t
. (3.109)

One can see that this is a linear combination of products of the phase
functions of H0, H1, and H0 + H1. In theory the eigenvalues E(0)

j and
amplitudes squared |aj |2 are still present in this function, and could be
extracted via classical postprocessing. However, the 1

2 coefficient implies
we need 4 times as many single-shot experiments for the estimation of
|aj |2 to the same error (compared to a standard QPE experiment for H0).
Extending this to L > 2 summands, the off-diagonal for the sth control
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qubit can be written:

1
2L
∑
j,j′

|aj |2|aj′ |2eiE
(s)
j
t
∏
s′ 6=s

(
1 + e

i(E(s′)
j
−E(s′)

j′
)t
)
, (3.110)

and we see that the signal corresponding to ‘just’ g(t) is exponentially
small. However, all is not lost. Inspecting the form of Eq. 3.110, we see
that we may expand this as a sum of 2LJ2 separate (possibly degenerate)
spurious energies F (s)

v,j,j′ , indexed by a L-bit binary integer v and the
original j and j′ indices

F
(s)
v,j,j′ = E

(s)
j +

∑
s′ 6=s

vs′(E(s′)
j − E(s′)

j′ ), (3.111)

with corresponding (v-independent) spurious amplitudes

Bj,j′ = 1
2L |aj |

2|aj′ |2. (3.112)

(Note that as stated these energies are automatically at least doubly-
degenerate as vs does not appear in the equation for F (s)

v,j,j′ .) If we then
calculate the weighted average of the F (s)

v,j,j′ (which is what we would do if
we processed the signal as if the parallelization had not occurred), we find∑

v,j,j′

Bj,j′F
(s)
v,j,j′ = 1

2L
∑
v,j,j′

|aj |2|aj′ |2E(s)
j

+ 1
2L

∑
v,j,j′

Bj,j′
∑
s′ 6=s

vs′E
(s′)
j

− 1
2L

∑
v,j,j′

Bj,j′
∑
s′ 6=s

vs′E
(s′)
j′ . (3.113)

As j and j′ are just dummy indices, and as Bj,j′ = Bj′,j , the last two
terms cancel, and as

∑
v = 2L and

∑
j′ |aj′ |2 = 1, we have∑

v,j,j′

Bj,j′F
(s)
v,j,j′ =

∑
j

|aj |2E(s)
j = 〈Hs〉. (3.114)

This implies that expectation values may be extracted via parallel verified
phase estimation, even though the signal itself may be significantly more
complex. For the case of Pauli Hs operators, the spectrum F

(s)
v,j,j′ is highly
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degenerate — it is the set of odd integers {−2L + 1,−2L + 3, . . . , 2L −
3, 2L− 1}. (This parallels the spectrum of a spin- 2L−1

2 operator, which
one might not expect following Hund’s rules for the combination of spin- 1

2
systems, which is curious.) This must be taken into account when signal
processing by amplitude-fitting, as one would otherwise miss components
of the energy. However, the overhead for this is only linear in the number
of simultaneously-estimated terms.

3.C Compensation for spurious eigenvalues
due to sampling noise

When quantum phase estimation is used to estimate eigenvalues as well as
amplitudes to sum together to give an expectation value (Eq. 53 of the
main text), finite sampling noise introduces a small bias to this estimation
that may be cancelled. This bias does not come from the QPE itself. The
sampling noise has a white spectrum which is invariant under a Fourier
transform, so classical post-processing of a noisy spectrum yields a set of
spurious eigenvalue/amplitude pairs evenly distributed around the circle.
However, in order to evaluate Eq. 53 of the main text, we have to make a
branch cut in this circle. The resulting terms then average to bias the signal
by a term ∆bias = 〈H〉 − 〈H〉 towards the center of the resulting region.
(Here, 〈H〉 is the true expectation value, and 〈H〉 that measured naively.)
For example, if we assume all eigenvalues Ej ∈ [−π, π], this biases the
signal towards zero. This bias is dependent on both the number of steps
K, and the number of samples M used in the QPE process. Numerically,
we find (Fig. 3.8):

∆bias = −〈H〉 × (K − 2) 1
2M−

1
2 . (3.115)

Inverting this obtains

〈H〉 = 〈H〉
[
1 + (K − 2) 1

2M−
1
2

]−1
, (3.116)

which is used in the estimation in Sec. V.D.
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Figure 3.8: Predicted (Eq. 3.115) vs found bias from estimating expectation
values using Prony’s method.
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3.D Demonstration of immunity to control
noise in single-control VPE

One might expect that the discrepancy between the scaling of the er-
ror mitigation power of the control-free and single-control circuits seen
throughout this work comes from accumulation of errors on the control
qubit alone. In this appendix, we show that this is not the case. In Fig. 3.9,
we see that removing all errors on the control qubit does little to reduce
the total error rate (black crosses), whilst a model with noise only on the
control qubit achieves an error limited by our use of Prony’s method for
post-processing. In App. 3.A we argue that the increased error suppression
from control-free VPE comes from the large separation between reference
and starting states. Errors will be removed by verification unless they
maintain coherence between these states, which these error models fail to
do.

3.E Use of a variational outer loop to
mitigate constant unitary noise

One of the main uses of expectation values 〈H〉 in quantum experiments is
to use them as a cost function in a variational outer loop. Optimizing the
parameters ~θ in a preparation unitary Up(~θ) to minimize the expectation
value of the prepared state |Ψ(~θ)〉 = Up(~θ)|0〉 then gives an approximation
for the true ground state of H. The variational optimization process
is itself known to be robust against certain types of error [82, 144], in
particular control errors. These occur when a signal meant to implement
a gate G(θ) either drifts or is distorted and instead implements G(θ′). As
this error is often repeated throughout an experiment, i.e. every instance
of G is miscalibrated by a similar amount, it will be repeated throughout
the experiment. Verification can only correct single errors, and as such
is not targeted for this type of noise. By contrast, the dominant source
of errors in a VQE are often the incoherent errors that verification is
designed to target. As such, verification and variational optimization
provide cumulative mitigation by targeting sources of error the other lets
through.

To demonstrate the combined mitigation effects, we use verified control-
free phase estimation of a Givens rotation circuit in the inner loop of a
variational quantum eigensolver. In order to prevent oversimplifying the
problem, we add a next-nearest-neighbour coupling and on-site potential
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Figure 3.9: Mitigation of the same 4-qubit VHA circuit as in Fig. 4 of the
main text, but with either depolarizing noise on only the system register
(black) or only on the control qubit (blue). This is compared with the
error in estimation using partial state tomography instead of VPE (red).
For each dataset, the RMS error (crosses) is plotted over 50 different
estimations for each error rate (with randomly-chosen ansatz parameters),
and individual data points are plotted as dashes behind. For reference,
dashed lines showing linear (red) dependence on the gate error rate are
plotted.

to the Hamiltonian in Eq. 66 of the main text, yielding

H = H1 +H2 (3.117)

H1 = −t1
N∑
j=1

c†jcj+1 + h.c. (3.118)

H2 = −t2

 N∑
j=1

c†jcj+1 + h.c.+
N∑
j=1

c†jcj

 , (3.119)

and estimate expectation values for H1 and H2 separately. Here, we again
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Figure 3.10: Error in estimating the ground state energy of a free-fermion
system (Eq. 66 of the main text) of 4 fermions (on four qubits), using
control-free verified phase estimation and a VQE. Noise model is a mixture
of amplitude and phase damping and constant two-qubit control error
(details in text). Median absolute errors for both verified estimation (black
crosses) and standard partial state tomography (red crosses) are calculated
over 10 different optimization attempts. Individual simulations are plotted
behind (faint dashes) Each optimization started from a different parameter
set and had different control rates set. Linear (red dashed) and cubic (blue
dashed) lines are shown as guides.

take periodic boundary conditions for a N = 4-site system (i.e. all sums
in indices are taken modulo 4), and fix t1 = 1, t2 = 0.5. This ensures that
the ground state of the system is neither a ground state of H1 or H2 (in
which case the compiled variational ansatz and basis rotation would cancel
to become an identity circuit). For a simple model combining control
error and incoherent noise, we fix p, draw a random offset xi ∈ [− p

π ,
p
π ] for

each two-qubit ISWAP gate, and decompose the variational circuit into
ISWAP1/2 gates. (Though not terribly well-known, the ISWAP1/2 gate is a
good native hardware gate for superconducting qubits, and decompositions
of other gates into ISWAP1/2 gates are known [3].) Then, throughout
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the circuit, we implement ISWAP1/2+xi gates in place of ISWAP1/2 gate.
We additionally add amplitude and phase damping noise at a rate p

2 . In
Fig. 3.10, we plot the result following optimization via the COBYLA
algorithm implemented in scipy [152], in the absence of sampling noise.
We see that the verification circuit is insensitive to the incoherent noise
as expected, and behaves similarly to the effect of amplitude and phase
damping alone (Fig. 3(right) of the main text).

3.F Term-wise comparison of VPE
performance

To attempt to further understand the ability of VPE to mitigate errors,
in this appendix we consider the effect of estimating different types of
terms on the same preparation circuit. We consider the fermionic swap
network used in Sec.V.C of the main text to prepare states for a H2
Hamiltonian. When this was split into number-conserving Pauli operator
sums (Fig.6(2a-2b) of the main text), different circuits had to be used to
estimate individual terms. In Fig. 3.11, we show the result of estimating
the expectation values of two of the individual terms used in the control-
free Pauli operator decomposition under an amplitude-damping noise
model (Fig.6(2b) of the main text). (Recall that this figure demonstrated
first-order sensitivity to this error model, whilst the low-rank factorization
demonstrated a third-order sensitivity to the same model.) We see that
the Hs = Z0Z1 term (left plot) shows the cubic dependence on error rate
observed in previous amplitude-damping experiments, whilst the two-body
scattering term (right plot)

Hs = X0Y1Y2X3 + Y0X1X2Y3 −X0X1Y2Y3 − Y0Y1X2X3, (3.120)

does not. This two-body scattering term is the only term contributing to
the first-order decay of the VPE estimation observed in Fig.6(b2) of the
main text — all other terms in the decomposition display similar decay to
Fig. 3.11(left). This indicates that the errors to which we are first-order
sensitive occur during the circuit implementation of eiHst, and not the state
preparation. The circuit implementing eiHst for the two-body scattering
term is the only such circuit that does not conserve number throughout.
(Instead, this evolution is achieved in two steps: a basis transform of
XY, Y X → IZ, ZI on pairs of qubits, ZZ rotations between the pairs
and uncomputing, and then a basis transform of XX,Y Y → IZ, ZI on
pairs of qubits, ZZ rotations between the pairs, and uncomputing again.)
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Finding decompositions of these circuits more amenable to VPE is a clear
target for future work.

Figure 3.11: Expectation value estimation of two individual Hs terms
from the control-free number-conserving Pauli operator decomposition of
the H2 Hamiltonian studied in Fig.6 of the main text on states prepared
by a fermionic swap network. The two terms here comprise part of the
sum (Eq.6 of the main text) for the expectation value of Fig.6(2b) of the
main text — but are studied here without pre-factors (i.e. ‖Hs‖ = 1).
Each figure is labeled with the studied term, and guide-lines (dashed red
and blue) are given to show observed scaling laws. Data presented is
the median (crosses) over 50 individual data points (faint dashes) of the
absolute error in estimation using VPE (black) and standard partial state
tomography (red).

3.G Comparison to symmetry verification
In this section we present a comparison of verified phase estimation and
symmetry verification on a depolarizing noise model, using the experiment

119



3 Error mitigation via verified phase estimation

3

in Fig.6(b1) of the main text. In order to improve performance, we choose
to verify on the number operator

∑
i Zi, instead of the parity

∏
i Zi. To

perform symmetry verification we take the quantum state prepared by the
circuit, and directly project this into the number-conserving space. (In
a real experiment simultaneous readout of the number operator and all
terms is possible [103], but requires a slight addition of circuitry, which
would increase the final error slightly.) In Fig. 3.12, we observe that while
symmetry verification reduces error by around an order of magnitude, it
does not provide the same asymptotic improvement as VPE. We also note
that VPE improves over symmetry verification at all error rates, despite
having circuit over 3 times as deep. This is to be expected; as phase (Zi)
errors commute with the number operator, these cannot be detected by
symmetry verification and so contribute at first order to the final error
rate.

Figure 3.12: Comparison between verified phase estimation and symmetry
verification. Both techniques are compared on the estimation of the
expectation value of the electronic structure Hamiltonian for H2 under a
depolarizing noise model. Verified and unverified results are from the same
simulated experiment as Fig.6(b1) of the main text. Although symmetry
verification improves the energy error by around a factor 10, it still exhibits
first-order scaling, as it cannot correct for phase (Z) errors during the
experiment.
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CHAPTER 4

Optimizing the information extracted by a single qubit
measurement

4.1 Introduction
The largest bottleneck in quantum algorithm design is the encoding and
decoding of a quantum state. Although each full characterization of a
quantum state requires an exponentially large amount of information,
direct measurements of an N -qubit quantum state ρ extract only N bits
of information, and collapse ρ to a state described by those N bits alone
— erasing any other information. Performing this repeatedly allows the
estimation of an expectation value 〈O〉 := Tr[Oρ] of any operator O that is
diagonal in the measurement basis. The rate at which such a measurement
converges is known as the standard quantum or shot noise limit [153] -
after M repeated preparations, 〈O〉 can be estimated with variance

Var[O] = M−1
(〈
O2〉− 〈O〉2) . (4.1)

Though this rate can be improved upon [66, 129, 154, 155], doing so
requires implementing long coherent circuits or performing large correlated
measurements, which are not feasible in the current NISQ era [18].
Instead of using all N qubits to extract data from a quantum state,
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one may perform a partial measurement that extracts less than N bits,
and use the remaining qubits to detect and mitigate errors [29, 66, 122].
Error mitigation is key in obtaining precise results from NISQ circuits,
such as variational algorithms [19, 82], where the output of the quantum
algorithm is a set of estimates of expectation values. Echo verification (EV
- see Section 4.2.2) [69, 156–158] allows one to strongly mitigate errors in
a wide class of algorithms, by recasting measurements as Hadamard tests.
In each EV circuit, a single bit of information is extracted from the system
register as a measurement, freeing up the remainder of the register for error
detection/mitigation. One may combine results of multiple EV circuits
(through classical post-processing) into an error-mitigated estimator of any
target quantity. However, the stringent requirement that only one bit of
information be extracted from the device further tightens the bottleneck
of quantum-classical I/O.

In this paper we study how we can optimize information extraction from
a quantum system to estimate the expectation value of an observable O,
under the restriction that only a single bit of information is measured per
state preparation. This matches the requirements of EV, the rest of the
information being reserved for error mitigation. We do not focus in this
work on the effectiveness of EV as an error mitigation strategy, and consider
only the case of error-free quantum simulation. We define measurements
with a single-bit outcome in terms of the Hadamard test, use these to
construct an expectation value estimator for a more complicated operator
via a linear decomposition, and calculate the variance of this resulting
estimator. We prove necessary conditions for such a linear decomposition
to be optimal; i.e. to minimize the cost of expectation value estimation.
We construct a provably optimal (in some sense) decomposition for a
fast-forwardable operator, and give a general (albeit expensive) method to
implement this decomposition through quantum signal processing [46–48].
We analyse our methods numerically, comparing the variance of estimators
based on our optimal method with other known approaches such as Pauli
decompositions and the Dirichelet kernel measurements introduced in [159].
We find an asymptotic improvement between our optimal decomposition
and a simple Pauli decomposition of a factor N0.7, which at 13 qubits
gives already an order of magnitude improvement.

4.2 Single-qubit measurements
The most general measurement that extracts one bit of information from
a N -qubit state |ψ〉 is a binary Positive-Operator Valued Measurement
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(binary POVM); this is defined by two positive operators Π+,Π− > 0 such
that Π+ + Π− = 1. The outputs of such measurement, which we label +1
and −1, have probabilities p± = 〈ψ|Π± |ψ〉. Schematically,

|0⟩ V

+ %

&
U

|0⟩ H ' ±1

|0⟩ V

%

Π±
& ±1

|0⟩ V
&

U V† 0 0 , {0,1}

|0⟩ H ' ±1
0
+1
−1
0

|0⟩ Vcat& − 1

0 0 , {0,1}

|0⟩ H ' ±1

0
+1
−1
0U Vcat

†

,

where we defined the unitary preparing the state V |0〉 := |ψ〉. In section
4.2.1, we review the Hadamard test and we show that there exists a
one-to-one equivalence between outcomes of Hadamard tests and binary
POVMs.
Extracting only a single bit allows further processing of the quantum

information remaining in the state register. For instance, inverting the
unitary that prepared |ψ〉 and measuring in the computational basis yields
a powerful error mitigation technique, echo verification [156–158], which
we review in Section 4.2.2. In another example, the Hadamard test may
be used to estimate the gradient of a cost function with respect to a
variational term exp(iAθ) in a circuit, as d

dθ exp(iAθ) = iA exp(iAθ) [160,
161]. Both these methods require operating on the system register after
the binary measurement is performed, preventing further information
extraction. (For the specific case of EV, we show in App. 4.B that extracting
more than one bit of information is counterproductive.) Furthermore,
this restricted output model of quantum computation can be relevant
in quantum-enhanced metrology settings [154, 162], where a single-qubit
probe is used [163]. A similar restricted access model has been studied in
the context of Hamiltonian learning [164, 165]. Note that this single qubit
access model is different to the one clean qubit model of computation
(DQC-1) [166]; here we consider using a single qubit to extract information
from a non-trivial quantum state.

4.2.1 The Hadamard test

A Hadamard test (HT) is a binary measurement performed on a state |ψ〉s
in the N -qubit system register s. It is implemented through a control qubit
c initialized in the state |+〉c, a controlled unitary CU and a projective
Pauli measurement Xc on the control qubit. As a quantum circuit this
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can be written

|0⟩ V

+ %

&
U

|0⟩ H ' ±1

|0⟩ V

%

Π±
& ±1

|0⟩ V
&

U V† 0 0 , {0,1}

|0⟩ H ' ±1
0
+1
−1
0

|0⟩ Vcat& − 1

0 0 , {0,1}

|0⟩ H ' ±1

0
+1
−1
0U Vcat

†

and the resulting state before measurement can be easily calculated to be

|Φ〉 = 1√
2

(
|0〉 |ψ〉+ |1〉U |ψ〉

)
. (4.2)

Tracing out the system register then yields the following reduced density
matrix on the control qubit,

ρc = 1
2

(
1 〈U〉
〈U〉∗ 1

)
. (4.3)

One may estimate the expectation value of Re(U) := 1
2 (U + U†) by

measuring the control qubit in the X basis, which returns Tr[Xρc] =〈 1
2 (U + U†)

〉
.

To prove the equivalence between HT and binary POVM, we explicitly
construct one from another. To construct the binary POVM corresponding
to the HT, we define the measurement operators that represent the back-
action of the measurement on the system register

M± = 〈±|c CU |+〉c = 1± U
2 , (4.4)

and the relative positive operators Π± = M†±M± used to compute proba-
bilities p± = 〈ψ|Π± |ψ〉 of measuring ±1 on the ancilla. Vice versa, given
a binary POVM {Π+,Π−}, we can construct a corresponding Hadamard
test by choosing a unitary U that satisfies Re(U) = Π+ −Π−,

U = exp[i arccos(Π+ −Π−)]. (4.5)

This is always possible because Π+ − Π− is Hermitian and ‖Π+ − Π−‖ <
‖Π+ + Π−‖ = 1. It is easy to check that the Hadamard test constructed
from this unitary return the correct positive operators Π±.
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4.2.2 Echo verification

The name echo verification (EV) refers to a class of powerful error miti-
gation techniques [156–158], applicable in most algorithms that make use
a Hadamard test to perform measurements on a system register. This
technique was originally introduced by the name of verified phase esti-
mation [156] as it considered estimating expectation values of multiple
unitaries Ul = eiHtl , with an archetypal application in the context of
single-ancilla phase estimation. However, in this work, we consider the
more general expectation-value estimation subroutine yielding 〈Re(U)〉.
We prefer the name echo verification (used also in [69, 79]) due to the
similarities to a Loschmidt echo.

Echo Verification relies on a key idea: exploiting the information left in
the system register after the application of the controlled-unitary operator
prescribed by the Hadamard test. This information is used to detect errors
and mitigate their effect on estimated quantities. This is done by “echoing”
the preparation unitary V , i.e. applying V † after the controlled evolution,
and verifying whether the register s returns to the initial state |0〉. The
corresponding circuit is

|0⟩ V

+ %

&
U

|0⟩ H ' ±1

|0⟩ V

%

Π±
& ±1

|0⟩ V
&

U V† 0 0 , {0,1}

|0⟩ H ' ±1
0
+1
−1
0

|0⟩ Vcat& − 1

0 0 , {0,1}

|0⟩ H ' ±1

0
+1
−1
0U Vcat

†

,

where the multiplication of the classical information channels (red double-
lines) sets the circuit output to zero upon failed verification (i.e. if the final
system state is orthogonal to |0〉s), and to the output of the Hadamard
test otherwise.
Let us denote the combined state after the controlled unitary as |Φ〉,

and let Πψ = |ψ〉〈ψ| = V † |0〉〈0|V be the projector on the state |ψ〉s.
The estimate of 〈Re(U)〉 can be obtained by measuring the operators
XEV := X ⊗ Πψ on |Φ〉 (EV circuit), as opposed to Xc := X ⊗ 1 (HT
circuit). One can confirm that, in the absence of error, these operators
have identical expectation values on the state at the end of the circuit [156]

〈Φ|XEV|Φ〉 = 〈Φ|Xc|Φ〉 = 〈ψ|Re(U)|ψ〉. (4.6)

For an intuitive explanation, note that if the controlled unitary changes
the state of the system register, the ancilla qubit must have been in the
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|1〉 state, and 〈1|X|1〉 = 0. This implies that the expectation value of
X ⊗ (1N −Πψ) is 0.
In the presence of a circuit error, verification is likely to fail. This

decreases the expectation value measured by the error probability, which
can be measured separately. Rescaling the result by the error probability
yields a noise-mitigated estimate of the expectation value 〈ψ|Re(U)|ψ〉.
The error mitigation power of this method is explored in [79, 156–158, 167]
and experimentally tested in [69]. In this work, we only consider noiseless
circuits.

The EV circuit implements a ternary measurement, with outputs +1,−1, 0.
Compared to a standard HT defined by the same unitary, the probabil-
ities p+ and p− are reduced by the same amount (p0

2 ), yielding a result
with the same expected value. As a consequence, the variance of an EV
measurement is always smaller than that of the corresponding HT (this is
formalized in Appendix 4.A).

An extension of Echo Verification allows extracting more than one qubit
of information per circuit run by using multiple auxiliary qubits. However,
as the measurement is quadratic in |ψ〉〈ψ| (resulting by the use of two
copies of Vψ in the circuit), reconstructing the desired expectation values
requires nonlinear processing of the measurement results. Furthermore,
as each measurement interferes with the verification of the others, all the
variances of estimated expectations increase. In appendix 4.B we explore
this, and we prove that measuring more than one bit of information per
EV experiment is always counterproductive in terms of final variance, for
a fixed total number of shots.

4.2.3 Ancilla-free echo verification
The direct (control-based) measurement via the HT may often be replaced
by an indirect measurement using an altered circuit [156, 168, 169], allowing
control-free implementations of these single-bit measurements. We review
briefly the control-free echo verification scheme.

In the Hadamard test, the control qubit provides a clock-reference state
|0〉 |ψ〉, which is not changed by the application of CU . This clock-reference
state is necessary to give physical meaning to the phase U induces on
the system register states, thus making it measurable. If U has a known
eigenstate U |ψr〉 = eiφr |ψr〉 orthogonal to |ψ〉, this state can be used
as a clock-reference removing the need for a control qubit. In quantum
simulation, this state can often be found thanks to the symmetries of the
system. For example, in second-quantized simulation of particle systems
the vacuum state |0〉 is an eigenstate of any particle-number preserving
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operator.
The control-free EV scheme prescribes preparing a cat-state 1√

2 (|ψ〉+
|ψr〉), applying U , and measuring XCFEV = (|ψ〉 〈ψr|+ |ψr〉 〈ψ|). This can
be done with the circuit

|0⟩ V

+ %

&
U

|0⟩ H ' ±1
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&
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|0⟩ H ' ±1
0
+1
−1
0

|0⟩ Vcat& − 1

0 0 , {0,1}

|0⟩ H ' ±1

0
+1
−1
0U Vcat

†

where Vcat |0...00〉 = |ψr〉 and Vcat |0...01〉 = |ψ〉. After the application of
U , the state is |Φ〉 = 1√

2 (U |ψ〉+ eiφr |ψr〉), thus

〈Φ|XCFEV |Φ〉 = 〈ψ|Re(Ue−iφr ) |ψ〉 . (4.7)

If φr 6= 0, the desired result 〈ψ|Re(U) |ψ〉 can be obtained by substituting
U → Ueiφr or applying a phase gate e−iφr/2Z to the first qubit before
measurement.

4.2.4 Variance of a binary POVM
The Hadamard test differs from the projective measurement of Re(U) :=
1
2 (U +U†) (the Hermitian part of U). Each instance of the Hadamard test
can only output +1 or −1, whereas the spectrum of Re(U) can have up
to 2N distinct eigenvalues in the range [−1, 1]. This has a direct impact
on the estimation uncertainty: performing the Hadamard test M times
and measuring the control qubit in the X-basis yields an estimator of
〈Re(U)〉 = Re(〈U〉) with a variance

Var∗
[
〈Re(U)〉

]
= 1− 〈Re(U)〉2

M
, (4.8)

which can be seen to be strictly larger than the variance one would obtain
by performing a projective measurement of Re(U) on M copies of |ψ〉
[Eq. (4.1)],

Var
[
〈Re(U)〉

]
≤ Var∗

[
〈Re(U)〉

]
, (4.9)

as
〈
Re(U)2〉 ≤ 1. Our goal is to optimize estimators of expectation values

〈O〉 of a given operator, which use data from multiple HTs with different
unitaries U [each with the given variance Eq. (4.8)], and assuming one
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test per state preparation. We want to minimize the total number of state
preparations (distributed over different choices of U) needed to achieve an
estimator of 〈O〉 with error smaller than a fixed ε.

4.3 Operator decompositions
It is common in quantum computing to estimate the expectation value
of an operator O by writing O as a linear combination of simpler terms
(a.k.a. a decomposition) which have their expectation values estimated
independently [19, 54, 170]. In this work, we make use of this method,
and consider estimating these simpler terms via Hadamard tests. Let us
fix a decomposition1 X,

O =
∑
x∈X

cx Re(Ux) ↔ 〈O〉 =
∑
x∈X

cx 〈Re(Ux)〉 , (4.10)

and consider estimating 〈O〉 by estimating each 〈Re(Ux)〉 independently
and summing the results. As Re(Ux) and O are Hermitian operators we
may assume cx to be real without loss of generality, and we may further
assume cx ≥ 0 by absorbing a minus sign onto Ux. Note that the arrow in
Eq. (4.10) points both ways as the set of expectation values on all states
|ψ〉 uniquely defines an operator.

Once a suitable decomposition X of an operator O [Eq. (4.10)] has been
chosen, to calculate the total cost of the algorithm we must allocate a
number mx of repeated single-shot HT experiments to estimate individual
〈Re(Ux)〉. We assume a single-bit measurement per state preparation,
i.e. each HT requires resetting the circuit and re-preparing |ψ〉, and the
total number of re-preparations MX =

∑
x∈X mx is the relevant cost of

implementing our measurement scheme. If each 〈Re(Ux)〉 is estimated
independently, the variance on a final estimate of 〈O〉 can be calculated
by standard propagation of variance

Var∗X
[
〈O〉

]
=
∑
x∈X

c2x Var∗
[
〈Re(Ux)〉

]
(4.11)

=
∑
x∈X

c2x(1− 〈Re(U)〉2)
mx

. (4.12)

1In a slight abuse of notation, throughout this work we will use the same label (e.g. X)
to represent the entire linear decomposition defined by the set {cx, Ux} in Eq. 4.10,
and the set of labels x that we sum over.
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Eq. (4.9) implies that under the same decomposition of O

VarX
[
〈O〉

]
:=
∑
x∈X

c2x Var[〈Re(Ux)〉] ≤ Var∗X
[
〈O〉

]
, (4.13)

for all states ρ.

4.3.1 Adaptive shot allocation
Given a decomposition X and a total shot budget MX , an optimal choice
for the mx may be found using Lagrange multiplier methods [121]

mx = MX

cx

√
1− 〈Re(Ux)〉2∑

y∈X cy

√
1− 〈Re(Uy)〉2

, (4.14)

recalling that cx ≥ 0. This yields a bound on the required MX to estimate
〈O〉 with Var∗

[
〈O〉

]
= ε2

MX ≥MX := ε−2
[∑
x∈X

cx

√
1− 〈Re(Ux)〉2

]2
. (4.15)

We callMX the cost of the decomposition X. This may be compared to
well-known results for measurement bounds using standard tomography
methods [54, 66, 68, 121] by substituting Var∗ for Var in Eq. (4.11).
Though exact values of 〈Ux〉 will not be known in advance, these can be
estimated using a small initial fraction of measurements before a final
distribution of measurements is allocated.

4.3.2 The decomposition hierarchy
We have shown above how to optimize measurement allocation given a
linear decomposition X [Eq. (4.10)]. Let us now consider how to optimize
X to minimize Eq. (4.15).
We first consider the effect of possible rescalings of Re(Ux). If any

term cx Re(Ux) has ‖Re(Ux)‖ < 1,2 one can find some unitary Ux′ for
which Re(Ux′) = Re(Ux)/‖Re(Ux)‖; substituting Ux → Ux′ (and cx → cx′

accordingly) will always improve the bound in Eq. (4.15). (For now we
do not worry about how the unitaries may be implemented as quantum
circuits; we will consider this issue later.)

2Unless stated otherwise, all norms in this work are the spectral norm.
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One may next consider subdividing individual terms Re(Ux) of X, by
writing

cx Re(Ux) = cx,0 Re(Ux,0) + cx,1 Re(Ux,1), (4.16)

where Ux,0 and Ux,1 are both unitary, and cx, cx,0, cx,1 > 0. As we can
assume ‖Re(Ux)‖ = 1, such a decomposition requires cx,0 + cx,1 ≥ cx, to
preserve the spectral norm of Re(Ux,0) and Re(Ux,1). When this inequality
is saturated, we call the sub-decomposition norm-preserving. It turns
out that this condition is sufficient for the sub-decomposition to be non-
increasing in the cost M of estimation [Eq. (4.15)], for all states |Ψ〉;
formally:

Lemma 1
Given a linear decomposition X of a target operator O [Eq. (4.10)], a sub-
decomposition X ′ [Eq. (4.16)] that is norm-preserving has non-increasing
cost,MX′ ≤MX [Eq. (4.15)], for any state |Ψ〉.

We give a proof of this lemma in Appendix 4.C.1
We would like to extend the above lemma to a statement that norm-

increasing subdecompositions of a linear decomposition X are always
suboptimal in some sense. To achieve this, note that as a corollary to
lemma 1, we can improve on all terms cx Re(Ux) in a linear decomposition
X by a norm-preserving identity shift

cx Re(Ux) = cx(1− λ̄x) Re(Ux̃) + cxλ̄x1, (4.17)

where λx = 1
2 (λmin

x + λmax
x ), λmin

x and λmax
x are the lowest and highest

eigenvalues of Re(Ux) respectively, and Re(Ux̃) has the same eigenvectors
of Re(U) (with its spectrum shifted and rescaled). We call the outcome
decomposition X̃ of the procedure above the center of X. Though a
norm-increasing subdecomposition of X may not be suboptimal relative
to X, it is suboptimal relative to this center:

Lemma 2
Let X be a linear decomposition of O with all ‖Re(Ux)‖ = 1; let X̃ be the
center of X and let X ′ be a strictly norm-increasing sub-decomposition.
There exists at least one state |Ψ〉 for which the costMX̃ <MX′ .

We give a proof of this lemma in Appendix 4.C.2.
To recap, the above two lemmas show a) that norm-preserving sub-

decompositions do not increase the cost of estimating expectation values
via Hadamard tests on any given state, and b) norm-increasing sub-
decompositions not only can increase expectation value estimation costs

130



4.3 Operator decompositions

4

on some states, but are guaranteed to do so on at least one. This result
is in direct contrast to standard expectation value estimation, where
independent estimation of 〈A〉 and 〈B〉 is sub-optimal to joint estimation
of 〈A+B〉 whenever the latter is possible. This suggests a path towards
optimizing HT expectation value estimation, by repeatedly dividing terms
Re(Ux) in a norm-preserving manner, until no further sub-decomposition
can reduce the cost any state. It turns out that not all choices of division
lead to the same end-point, however all end points of this procedure have
one common property (proven in Appendix 4.C.3):

Lemma 3
A decomposition X of an operator O has no non-trivial norm-preserving
sub-decompositions if and only if all operators Re(Ux) in X are reflections:
Re(Ux)2 = 1.

It should be no surprise that we find reflection operators Re(Ux)2 = 1 to
be a crucial ingredient to optimize HT tomography, as these are the only
operators that saturate the bound in Eq. (4.9) for all states |Ψ〉. We call
a decomposition X that consists of reflection operators only a reflection
decomposition. We give some simple examples of these in Appendix 4.C.4.

4.3.3 Optimizing reflection decompositions

Above we demonstrated that, for a decomposition X of an operator O to
be optimal with regards to the costMX of estimating expectation values
on a set of states (Eq. 4.15), all terms in X must be reflection operators.
Otherwise, we demonstrated a means of sub-dividing single terms in the
distribution to generate a new distribution with lower cost. However,
this is not to say that all reflection decompositions X have the same
costMX . (These two statements are consistent as we cannot transform
between reflection decompositions using subdivision.) The set of reflection
decompositions of O form a convex set that is 22N−N -dimensional if all
Ux are diagonal in the eigenbasis of O. This raises two questions: is there
an optimal decomposition amongst the set of reflection decompositions,
and does it achieve the von Neumann bound [Eq. (4.13)]?

Lemma 4
Let O be an operator and Πj be projectors onto the eigenvalues of O;
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OΠj = ΠjO = λjΠj. The Ξ-decomposition of O, given by

O = λ0 + λJ
2 1 +

J−1∑
x=1

δλx
2 Ξx (4.18)

Ξx = 1−
∑
j<x

2Πj , δλx = λx − λx−1, (4.19)

uniquely achieves the bound Var∗Ξ[O] = Var[O] on all states |Ψ〉 with
support on up to two eigenstates of O. No such decomposition achieves
this bound on all states |Ψ〉 with support on three or more eigenstates of
O.

We prove this lemma in Appendix 4.C.5. Note that the Ξ-decomposition
can be immediately restricted to any subspace of the full-2N -dimensional
Hilbert space containing |Ψ〉 (i.e. if we knew that due to a symmetry or by
virtue of being a low-energy state, |Ψ〉 had support only on such a space),
and the optimality result still holds. This implies in turn that no linear
decomposition X can achieve the von Neumann variance bound even for
as small as a 3-dimensional subspace. This makes sense, as our restriction
to measure one bit of information per state preparation forms a bottleneck
with respect to the 3 nonzero-probability outcomes of a Von Neumann
measurement on this space.

4.3.4 Implementing the optimal decomposition

In order to realize the Ξ-decomposition estimator, we need to implement
HT circuits that (approximately) estimate 〈Ξx〉. This may be achieved by
realising that

Ξx = sgn[O − µx] , µx = λx−1 + λx
2 , (4.20)

where sgn is the sign function. An approximation of this unitary operator
can then be realized using quantum signal processing (QSP) [46–48] of the
sign function [86], requiring only one additional ancillary qubit. The QSP
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circuit is given by
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consists of reflection operators only a reflection decomposi-
tion. We give some simple examples of these in Appendix C 4.

C. Optimizing reflection decompositions

Above we demonstrated that, for a decomposition X of
an operator O to be optimal with regards to the cost MX of
estimating expectation values on a set of states [Eq. (15)],
all terms in X must be reflection operators. Otherwise, we
demonstrated a means of subdividing single terms in the
distribution to generate a new distribution with lower cost.
However, this is not to say that all reflection decompositions X
have the same cost MX . (These two statements are consistent
as we cannot transform between reflection decompositions
using subdivision.) The set of reflection decompositions of
O form a convex set that is 22N −N dimensional if all Ux are
diagonal in the eigenbasis of O. This raises two questions: Is
there an optimal decomposition amongst the set of reflection
decompositions, and does it achieve the von Neumann bound
[Eq. (13)]?

Lemma 4. Let O be an operator and ! j be projectors
onto the eigenvalues of O; O! j = ! jO = λ j! j . The #-
decomposition of O, given by

O = λ0 + λJ

2
1 +

J−1∑

x=1

δλx

2
#x, (18)

#x = 1 −
∑

j<x

2! j , δλx = λx − λx−1, (19)

uniquely achieves the bound Var∗
#[O] = Var[O] on all states

|%〉 with support on up to two eigenstates of O. No such de-
composition achieves this bound on all states |%〉 with support
on three or more eigenstates of O.

We prove this lemma in Appendix C 5. Note that the #
decomposition can be immediately restricted to any subspace
of the full 2N -dimensional Hilbert space containing |%〉 (i.e.,
if we knew that due to a symmetry or by virtue of being
a low-energy state, |%〉 had support only on such a space),
and the optimality result still holds. This implies in turn that
no linear decomposition X can achieve the von Neumann
variance bound even for as small as a three-dimensional sub-
space. This makes sense, as our restriction to measure one bit
of information per state preparation forms a bottleneck with
respect to the three nonzero-probability outcomes of a von
Neumann measurement on this space.

D. Implementing the optimal decomposition

In order to realize the #-decomposition estimator, we need
to implement HT circuits that (approximately) estimate 〈#x〉.
This may be achieved by realizing that

#x = sgn[O − µx] , µx = λx−1 + λx

2
, (20)

where sgn is the sign function. An approximation of this
unitary operator can then be realized using quantum signal
processing (QSP) [16–18] of the sign function [35], requir-
ing only one additional ancillary qubit. The QSP circuit is

given by

repeat for r = 0, ..., R − 1

|0 c RX(φr)
e−iZ⊗(O−µx)t

RX(φR)

|ψ S / ,

where RX (φr ) = e−i X
2 φr implements a unitary block encoding

Qφ of a degree-R trigonometric polynomial Sφ of the operator
(O − µx )t :

〈1|cQφ|0〉c =
R∑

r=0

cr (φ)e−ir(O−µx )t := Sφ[(O − µx )t]. (21)

Here, φ is a vector containing the individual angles φr
implemented during the QSP circuit. We can then sample
〈Re{Sφ[(O − µx )t]}〉 through HT (or EV), using another qubit
controlling all gates in the QSP circuit. To approximate
Eq. (20) with our block-encoded operator Sφ, we must choose
t < π

‖O−µx‖ to avoid aliasing, and find the optimal φ:

φ = arg min(φr=−φR−r )

∫ π−δ

0+δ

dω[sgn(ω) − Im[Sφ (ω)]].

(22)

Here, the constraint φr = −φR−r ensures Im[Sφ (ω)] is an odd
function of ω. A resolution parameter δ ! 0 can be intro-
duced to improve the approximation away from the nodes
ω = {0,±π} of Sφ (ω). In Appendix D we give further details
of this decomposition, and analyze the approximation error
numerically. We find that this error converges exponentially
in the number of circuit blocks R.

IV. NUMERICAL EXPERIMENTS

To investigate performance of various decompositions on
states that have support on more than two eigenstates of O, and
therefore are not covered by Lemma 4, we perform numerical
simulations using random variationally generated states and
a simple toy operator O =

∑
j Z j . (In Appendix F, we report

this scaling for other systems.) We measure the variances on
states generated by a hardware-efficient Ansatz [36] with ran-
dom input parameters using PENNYLANE [37]. For each data
point 100 random states are generated. We consider estimating
〈O〉 in a realistic scenario where the 〈Re(Ux )〉 values will not
be known in advance to optimally choose mx via Eq. (14).
Instead, for each random state we generate a prior estimate of
each 〈Re(Ux )〉 from 105 measurements of the state, and use
these to determine mx (which are then only approximately op-
timal). This leaves the total shot count MX as a free parameter;
we resolve this in Fig. 1 by calculating MX Var∗

X [〈O〉]. (This
gives a quantity that is relevant regardless of the number of
the shots actually used to estimate 〈O〉.)

An average of MX Var∗
X [〈O〉] over the 100 states is formed

and plotted in Fig. 1 for each grouping method. This is com-
pared to the von Neumann measurement variance Var[O],
which does not require any shot allocation, and sets a lower
limit to the other estimators [see Appendix C 5, Eq. (C15)].
The # decomposition (orange, “#”) has the best asymptotic
scaling of all decompositions, being suboptimal to Var[O] by

012403-5

where RX(φr) = e−i
X
2 φr , implements a unitary block encoding Qφ of a

degree-R trigonometric polynomial Sφ of the operator (O − µx)t:

〈1|cQφ |0〉c =
R∑
r=0

cr(φ)e−ir(O−µx)t := Sφ[(O − µx)t]. (4.21)

Here, φ is a vector containing the individual angles φr implemented during
the QSP circuit. We can then sample 〈Re{Sφ[(O − µx)t]}〉 through HT
(or EV), using another qubit controlling all gates in the QSP circuit. To
approximate Eq. (4.20) with our block-encoded operator Sφ, we must
choose t < π

‖O−µx‖ to avoid aliasing, and find the optimal φ

φ = arg min
(φr=−φR−r)

∫ π−δ

0+δ
dω
[

sgn(ω)− Im[Sφ(ω)]
]
. (4.22)

Here, the constraint φr = −φR−r ensures Im[Sφ(ω)] is an odd function of
ω. A resolution parameter δ ≥ 0 can be introduced to improve the approx-
imation away from the nodes ω = {0,±π} of Sφ(ω). In Appendix 4.D we
give further details of this decomposition, and analyse the approximation
error numerically. We find that this error converges exponentially in the
number of circuit blocks R.

4.4 Numerical experiments
To investigate performance of various decompositions on states that have
support on more than two eigenstates of O, and therefore are not covered
by Lemma 4, we perform numerical simulations using random variationally-
generated states and a simple toy operator O =

∑
j Zj . (In appendix 4.F,

we report this scaling for other systems.) We measure the variances on
states generated by a hardware-efficient ansatz [59] with random input
parameters using PennyLane [171]. For each datapoint 100 random states
are generated. We consider estimating 〈O〉 in a realistic scenario where
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Ξ, m = 1.29± 0.03

GPSK, m = 1.77± 0.01

Pauli, m = 2.04± 0.0

Von Neumann, m = 1.04± 0.01

Figure 4.1: Comparison study of variances of different decompositions on
random states generated by a hardware-efficient ansatz (see text for details).
Different colours correspond to different decompositions [Eq.(4.10)] of the
target operator O (see text for the description of all decompositions).
Dashed lines are power-law fits to the data (obtained exponents are given
in legend).

the 〈Re(Ux)〉 values will not be known in advance to optimally choose
mx via Eq. (4.14). Instead, for each random state we generate a prior
estimate of each 〈Re(Ux)〉 from 105 measurements of the state, and use
these to determine mx (which are then only approximately optimal). This
leaves the total shot count MX as a free parameter; we resolve this in
Fig. 4.1 by calculating MXVar∗X [〈O〉]. (This gives a quantity that is
relevant regardless of the number of the shots actually used to estimate
〈O〉.)

An average ofMXVar∗X [〈O〉] over the 100 states is formed and plotted in
Fig. 4.1 for each grouping method. This is compared to the Von Neumann
measurement variance Var[O], which does not require any shot allocation,
and sets a lower limit to the other estimators [see App. 4.C.5, Eq. (4.52)].
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The Ξ-decomposition [orange, ‘Ξ’] has the best asymptotic scaling of all
decompositions, being suboptimal to Var[O] by a factor ≈ N1/3. The QSP
approximation of Ξ, [teal, ‘SGN’], has a slightly worse asymptotic scaling,
which we associate to the error in approximating sgn(O − µj). At the
largest considered N = 13, these two decompositions suffer approximately
a factor 2 penalty in their total cost compared to Var[〈O〉]. The generalized
parameter-shift kernel decomposition [159] [green, ‘GPSK’, described in
Appendix 4.E] has the worst overall performance out of the investigated
estimators, due to the constant factor. It has however a better asymptotic
scaling than a simple Pauli decomposition Ux = Zj [red, ‘Pauli’, Appendix
4.C.4]. In Appendix 4.F we investigate the scaling of different sets of
observables. We observe that the order of the performance of the different
decompositions remains consistent throughout, but the relative gains and
losses in performance can be significantly different.

4.5 Conclusion
In this work we studied the optimization of expectation value estimation for
a quantum state in the case where we are only allowed to measure a single
qubit per state preparation (e.g. through Hadamard tests, with relevant
application to echo verification). We calculated the cost of estimating the
expectation value of an operator O by linearly decomposing O into a linear
combination of sub-unitary terms, assuming an optimal shot allocation.
We demonstrated that this cost is strictly non-increasing when terms are
further subdivided, under the constraint that this subdivision preserves the
induced 1-norm of the term coefficients. We showed that the end-points of
this procedure of repeated division are linear decompositions of O where
all terms are reflection operators; a so-called ‘reflection decomposition’.
We identified one such decomposition, the Ξ-decomposition, as unique in
its ability to estimate 〈O〉 with a variance matching the Von Neumann
measurement limit on any linear combination of up to 2 eigenstates of
O. We demonstrated how the Ξ-decomposition may be approximately
implemented through quantum signal processing. Numerical results demon-
strate that on simple systems, the Ξ-decomposition and its approximate
couterpart demonstrate clear constant and asymptotic improvements over
other reflection decompositions (in the cost of estimating 〈O〉 on random
states), with up to a factor 10× improvement for estimation on 20 qubits.
Though these results are encouraging, the significant discrepancy be-

tween Var∗Ξ[O] and Var[O] is worrying for NISQ algorithms that already in-
cur a significant cost to tomograph complex Hamiltonians [54, 66, 122, 172–
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174]; either one incurs a large overhead for measurement due to the need
to invoke quantum signal processing or incur the clear asymptotic scaling
cost that comes with measuring single Pauli terms per state preparation.
Given that echo verification has a sampling cost scaling as 1/F 2 (for a
circuit fidelity F ) [156], this result adds to the unlikelihood of beyond-
classical NISQ variational algorithms in chemistry. Finding reflection
decompositions with lower circuit depth is a clear avenue for future work.

4.A Echo verification estimators

The estimator used for echo verification is not identical to the one studied
in the main text, and so its variance is not quite identical. In particular,
we have (XEV)2 = Πψ which implies that the variance on an estimate of
〈Φ|XEV|Φ〉 is

Var∗EV[〈Re(U)〉] = 〈Φ|1⊗Πψ |Φ〉 − 〈ψ|Re(U) |ψ〉2

M
. (4.23)

Clearly | 〈Φ|ψ〉 |2 ≤ 1, which implies Var∗EV[Re(U)] ≤ Var∗[Re(U)] [by
comparison with Eq (4.8)]. In other words, the varianc of the EV estimator
is always smaller or equal to the variance of the relative HT estimator. It
is easy to calculate from the circuit above that

〈Φ|Πψ ⊗ 1 |Φ〉 = 1
2 |1 + 〈ψ|U |ψ〉 |2, (4.24)

(noting that 〈Re(U)〉 = Re(〈U〉), which can be subtituted back into our
variance estimate to obtain

Var∗EV[Re(U)] ≥ 1− 〈ψ|Re(U)|ψ〉2
2M , (4.25)

Thus, we have

Var∗[〈Re(U)〉] ≥ Var∗EV[〈Re(U)〉] ≥ Var∗[〈Re(U)〉]
2 . (4.26)

This justifies our focus in the main text on optimizing the estimator from a
standard Hadamard test; this estimator is simpler to analyse, more general,
and differs from the EV estimator (that motivated this work) by at most
a factor 2.
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4.B Parallelizing echo verification

In absence of echo verification, we can trivially parallelize Hadamard
tests measuring K commuting operators {Re(U0), ...,Re(UK−1)} using K
ancillary qubits, one controlling each Uk. If each Uk is controlled by a
separate ancillary qubit (labeled k, where CkUk represents the k-th unitary
controlled by the k-th control qubit), the combined state of the system
register s and ancillary qubits after all the unitaries are applied will be⊗

k

CkUk |+〉k |ψ〉 . (4.27)

The probabilities of obtaining ±1 when measuring X on the j-th control
qubit are

pj± =

∥∥∥∥∥∥
⊗
k 6=j

CkUk |+〉k
1± Uj

2 |ψ〉

∥∥∥∥∥∥
2

(4.28)

= 1
4 〈ψ| (1± U

†
j )(1± Uj) |ψ〉 (4.29)

which coincides with the probabilities of a single Hadamard test with
unitary Uj .

When performing echo verification, parallelization is more complicated.
The result of verification (the measurement of Πψ = |ψ〉〈ψ| on the system
register) is affected by all the controlled-Uk, and thus its result cannot
be simply associated to one specific ancilla being in the state |1〉. To
mitigate errors, all the cases in which the register is found in a state
orthogonal to |ψ〉 should be considered as null towards all of the ancilla
measurement results. The echo-verified probability of measuring the binary
string ~σ = (σ0, ..., σk), where each σk is ±1 corresponding to the state |±〉
measured on the k-th ancilla, is then

pEV~σ =
∣∣∣∣∣〈ψ|∏

k

〈σk|k CkUk |+〉k |ψ〉
∣∣∣∣∣
2

= 1
4K

∣∣∣∣∣〈ψ|∏
k

(1 + σkUk) |ψ〉
∣∣∣∣∣
2

. (4.30)

The product in this equation can be then developed into a linear combi-
nation of 2K expectation values (note that, as all Uk commute, the order
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does not matter). Under the assumption that all these expectation values
are real [granted if Uk = Re(Uk)] Eq. (4.30) defines a quadratic system of
2K equations with 2K − 1 unknowns3. Solving such system we find that
the expectation value of a single Re(Uj) can be estimated by processing
the sampled pEV~σ as

〈Re(Uj)〉 =

 ∑
~σ:σj=+1

√
pEV~σ

2

︸ ︷︷ ︸
pEV
j+

−

 ∑
~σ:σj=−1

√
pEV~σ

2

︸ ︷︷ ︸
pEV
j−

, (4.31)

where we denoted pEVj± the terms that reproduce the probabilities that
would be returned by a single, un-parallelized EV experiment

pEVj± = 1
4 |〈ψ| 1± Uj |ψ〉|

2
. (4.32)

We assume pEV~σ are sampled by averaging M shots of the parallel EV
experiment. These are probabilities of mutually-exclusive measurements,
thus the covariance matrix of the pEV~σ estimators is defined by

Var[pEV~σ ] = 1
M
pEV~σ (1− pEV~σ ), (4.33)

Cov[pEV~σ , pEV~ρ ] = − 1
M
pEV~σ pEV~ρ if ~σ 6= ~ρ. (4.34)

We can then propagate the error through Eq. (4.31) to obtain the variance
on the parallel-EV (PEV) estimator of 〈Re(Uj)〉

M Var∗PEV[〈Re(Uj)〉] =

∑
~σ

pEVjσj
pEV~σ

pEV~σ (1− pEV~σ )−
∑
~σ 6=~ρ

σjρj

√
pEVjσj√
pEV~σ

√
pEVjρj√
pEV~ρ

pEV~σ pEV~ρ

=
∑
~σ

pEVjσj − 〈Re(Uj)〉

=2K−1(pEVjσ+
+ pEVj− )− 〈Re(Uj)〉 . (4.35)

3In the case of a more general U = Re(U)+i Im(U), a similar system can be constructed
by measuring each Uk and iUk with 2K ancillas. Showing this is besides the scope of
our work, and for the sake of simplicity we restrict ourselves to the case of Hermitian
Uk = Re(Uk).
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which explodes exponentially with the size of the parallelization K.
More generally, we can compute the covariance matrix for all the pEVj,σj

through error propagation

Var[pEVjσj ] = pEVjσj (2
K−1 − pEVjσj ) (4.36)

Cov[pEVjσj , p
EV
kρk

] = δj,k

√
pEVjσjp

EV
kρk
− pEVjσjp

EV
kρk

(4.37)

[where the covariance assumes (j, σj) 6= (k, ρk)]. This shows that, increas-
ing K, we effectively add to the covariance matrix a positive semi-definite
term with a norm that scales exponentially in K. As all the decompositions
Eq. (4.10) are ultimately to be estimated as linear combinations of the
sampled probabilities pEVjσj , parallelizing error verification is counterpro-
ductive.

4.C Proof of decomposition optimality
hierarchy

In this section we build up to the proof that the Ξ-decomposition is
optimal in terms of cost (4.15), by proving the lemmas introduced in
the main text. We first prove that a norm-preserving sub-decomposition
has non-increasing cost with respect to its parent decomposition, for all
states |ψ〉. We then prove that a sub-decomposition that does not have
the norm-preserving property is always sub-optimal (i.e. it has strictly
greater cost than an alternative norm-preserving sub-decomposition). The
iteration of the norm-preserving sub-decomposition procedure leads to
one of many alternative improving sequences of decompositions. The
endpoint of each sequence is a norm-preserving linear decomposition of O
for which all unitaries are reflection operators. Finally, we prove that one
of such decompositions (the Ξ-decomposition) achieves the Von-Neumann
measurement variance bound on a certain set of states, and that no
unbiased estimator based on single-qubit measurements can achieve this
bound on a larger set of states.

4.C.1 Proof of Lemma 1, and corollaries

Given a linear decomposition X of an operator O [Eq. (4.10)], consider a
norm-preserving sub-decomposition X ′ where a single term x ∈ X is split
according to Eq (4.16). The bound on the total number of shots Eq. (4.15)
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will then change:

MX →MX′ = ε−2
[∑
y 6=x

cy

√
1− 〈Re(Uy)〉2 (4.38)

+ cx,0

√
1− 〈Re(Ux,0)〉2 + cx,1

√
1− 〈Re(Ux,1)〉2

]2
.

[with the change with respect to Eq.(4.15) being the second row]. This
results in a reduction of the cost, as can be seen by calculating

c2x
[
1− 〈Re(Ux)〉2

]
= (cx,0 + cx,1)2 −

(
cx,0 〈Re(Ux,0)〉+ cx,1 〈Re(Ux,1)〉

)2
= c2x,0

[
1− 〈Re(Ux,0)〉2

]
+ c2x,1

[
1− 〈Re(Ux,1)〉2

]
+ 2cx,0cx,1

(
1− 〈Re(Ux,0)〉2 〈Re(Ux,1)〉2

)
≥ c2x,0

[
1− 〈Re(Ux,0)〉2

]
+ c2x,1

[
1− 〈Re(Ux,1)〉2

]
+ 2cx,0cx,1

√[
1− 〈Re(Ux,0)〉2

][
1− 〈Re(Ux,1)〉2

]
=
[
cx,0

√
1− 〈Re(Ux,0)〉2 + cx,1

√
1− 〈Re(Ux,1)〉2

]2
, (4.39)

where, in the center inequality we have used the fact that for 0 ≤ a, b ≤ 1,

1− ab ≥
√

(1− a2)(1− b2). (4.40)

As a corollary and example, we look at identity shifts of a term x ∈ X.
For Re(Ux) with unit norm, we can assume without loss of generality the
largest eigenvalue is λmax = 1, and the smallest is λmin. We can then
perform the simple norm-preserving decomposition

cx Re(Ux) = cx(1− λ̄) Re(Ux′) + cxλ̄1 (4.41)

with λ̄ = 1
2 (λmin + λmax). The resulting Re(Ux′) has maximum eigenvalue

+1 and minimum eigenvalue −1, thus it does not admit non-trivial identity
shift.

A norm-preserving sub-decomposition Eq. (4.16) of a term with |Re(Ux)| =
1 will only admit terms with |Re(Ux,i)| = 1. (This can be checked by
taking the expectation value of both sides of Eq. (4.16) on the eigenstate
on which | 〈Re(Ux)〉 | = 1.) By the same reasoning, terms with Re(Ux)
having maximum eigenvalue +1 and minimum eigenvalues −1 [like those
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obtained by the identity shifts Eq. (4.41)] only admit sub-decompositions
whose terms have the same property.

4.C.2 Proof of Lemma 2
In this appendix we compare the costs of two decompositions derived by an
original decomposition X: the center X̃ where all terms are transformed
according to Eq. (4.17), and the norm-increasing subdecomposition X ′

where a term x ∈ X is changed according to Eq. (4.16) assuming cx,0 +
cx,1 > cx. Remembering that all coefficients are positive cy > 0, the cost
of each decomposition Eq. (4.15) is the square of a sum of positive values;
the terms in this sum for y 6= x do not change for X → X ′, and have a
non-increasing value for X → X̃. We thus focus only on the term x ∈ X
and the derived ones, highighted here

MX′ = ε−2
[ m′︷ ︸︸ ︷∑
j∈{0,1}

cx,j

√
1− 〈Re(Ux,j)〉+...

]2
, (4.42)

MX̃ = ε−2
[
cx(1− λ̄x)

√
1− 〈Re(Ux̃)〉2︸ ︷︷ ︸
m̃

+...
]2
. (4.43)

We now prove there exists a state |Ψ〉 for which m̃ < m′, which implies
MX̃ <MX′ .
Let |ψ+〉 and |ψ−〉 be eigenvectors of Re(Ux̃) with eigenvalue +1 and
−1 respectively. We consider three cases:

1. | 〈ψσ|Re(Ux,j) |ψσ〉 | < 1 for at least one combination of σ ∈ {+,−}
and j ∈ {0, 1}. In this case, on the state |Ψ〉 = |ψσ〉 we get m̃ = 0 <
m′ 6= 0.

2. 〈ψσ|Re(Ux,j) |ψσ〉 = σ for all combinations of σ ∈ {+,−} and
j ∈ {0, 1}. By combining Eq. (4.16) and Eq. (4.17) and taking the
expectation value on |ψσ〉 we obtain σ[cx,0+cx,1−cx(1−λ̄x)] = cxλ̄x,
which implies cx,0 + cx,1 = cx, violating one of the hypotheses of the
lemma.

3. 〈ψσ|Re(Ux,j) |ψσ〉 = (−1)jσ for all combinations of σ ∈ {+,−}
and j ∈ {0, 1}. We define the state |Ψ〉 = |ψ+〉+|ψ−〉√

2 , on which〈
Re(Ũx)

〉
=
〈
Re(Ũx,0)

〉
=
〈
Re(Ũx,1)

〉
= 0. On this state, the costs
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are MX̃ = ε2c2x(1 − λ̄x)2 and MX′ = ε2(cx,0 + cx,1)2. As λ̄x ≥ 0
and cx,0 + cx,1 > cx,MX′ <MX̃ .

4.C.3 Proof of Lemma 3
In this appendix, we prove that the end-point of norm-preserving decom-
position sequences are reflection operators. In other terms, if Re(Ux) is a
reflection operator, it only admits a norm-preserving sub-decomposition
[Eq. (4.16)] if Re(Ux,0) = Re(Ux,1) = Re(Ux).

To prove this, consider a state |ψ〉 in the +1 eigenspace of Re(Ux). For
a norm-preserving decomposition, we must have

cx,0 + cx,1 = cx = cx〈ψ|Re(Ux)|ψ〉
= cx,0〈ψ|Re(Ux,0)|ψ〉+ cx,1〈ψ|Re(Ux,1)|ψ〉. (4.44)

As ‖Re(Ux,0)‖, ‖Re(Ux,1)‖ ≤ 1, this equality can only be satisfied if |ψ〉 is
also a +1 eigenstate of both Ux,0 and Ux,1. A similar argument holds for all
−1 eigenstates of Ux, and so Ux,0, Ux,1 and Ux share the same eigenstates
and eigenvalues and must be equal. Taking such a sub-decomposition has
no effect on the estimator of 〈O〉, as the same HT are performed and the
total number of shots doesn’t change, i.e.MX′ =M in Eq. (4.38).

4.C.4 Examples of reflection decompositions
The simplest example of a reflection-based decomposition is a decomposi-
tion in terms of Pauli operators

O =
J∑
j

cjZj , (4.45)

with cj ≥ 0. We could be tempted to measure 〈O〉 with a single HT circuit
(assuming access to a block-encoding of O

‖O‖ , which is optimal). In this
case, as O = ‖O‖Re(U), the bound Eq. (4.15) is

M ≥ ε−2‖O‖2
[

1− 〈O〉
2

‖O‖2

]
. (4.46)

To improve on this, we can estimate each 〈Zj〉 separately, each with a
Hadamard test with Uj = 〈Zj〉 (a binary operator). As the spectral
norm of O is equal to the induced 1-norm ‖O‖1 =

∑J
j cj , Eq. (4.45) is a
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norm-preserving decomposition. The bound Eq. (4.15) then becomes

M ≥ ε−2

∑
j

cj

√
1− 〈Zj〉2

2

, (4.47)

which is always smaller or equal than Eq. (4.46) [easily proven through
Eq. (4.40)]. This inequality is only saturated when the considered state ρ
has support only on the ‖O‖2-eigenvalue subspace of O2; the operator O
projected on this subspace is effectively a binary operator.

Norm-preserving decompositions do not need to involve only mutually
commuting Pauli operators. As a practical example, we consider the
two-qubit operator O = XX + Y Y , which appears commonly in quantum
Hamiltonians. As O = 2 Im[iSWAP], this operator can be measured with
a single Hadamard test circuit. Furthermore, in the context of electronic
structure Hamiltonians, O preserves particle number, so in general a
control-free scheme using the vacuum as reference state can be employed
for the measurement. This operator has three eigenvalues {0,±1}, which
means we can improve its measurement by decomposing it in binary
operators. We propose three decompositions O = ReU0 + ReU1 The
obvious Pauli decomposition U0 = XX,U1 = Y Y has the downside of not
conserving particle number. To fix this, we can take

Uj = 1
2[(XX + Y Y ) + (−1)j(Z1 + 1Z)]. (4.48)

These are particle-number preserving, reflection operators and can be easily
implemented by combining iSWAP with single-qubit e±iZπ/4 rotations on
both qubits. The last decomposition,

Uj = 1
2[(XX + Y Y ) + (−1)j(ZZ + 11)], (4.49)

uses particle-preserving reflection operators with different eigenvalue mul-
tiplicities: unlike Pauli operators, the ±1-eigenvalue subspaces of Uj have
unequal dimension 1 and 3. For any state in the 0-eigenvalue subspace,
spanned by {|00〉 , |11〉}, the estimate variance Var∗[〈Re(Uj)〉] = 0 for de-
composition Eq. (4.49). This is not true for the other two decompositions,
which indicates that not all decompositions in binary operators are born
equal. We will deal with this in the next section. Another example of
a few-qubit reflection operator that is a sum of non-commuting Pauli
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operators is the three-spin all-to-all Heisenberg coupling

O = 1
3

2∑
l=1

l−1∑
m=0

XmXl + YmYl + ZmZl, (4.50)

which appears e.g. in the Kagome-Heisenberg Hamiltonian.

4.C.5 Proof of Lemma 4

In this appendix we prove Lemma 4, which formally states the optimality
and uniqueness of the Ξ-decomposition. To do this, we first define a
variance bound for a class of estimators of 〈O〉 on a state |ψ〉. We prove
that the bound is achieved on all eigenstates of O if all the sampled
operators Re(Ux) are diagonal in the eigenbasis of O. We then construct
the Ξ-decomposition, and prove that the related estimator saturates the
bound on the set S2 of all states with support on at most two eigenstates
of O. Finally, we prove no other decomposition satisfies this requirement
(i.e. the Ξ-decomposition is unique), and no decomposition satisfies the
bound on a superset S ⊃ S2.
A decomposition X [Eq. (4.10)] of an operator O is optimal on a state
|ψ〉 if no other decomposition produces an estimator with lower cost
[Eq. (4.15)] for that state. Optimality can be defined for a set S of states:
X is optimal on S if, for each |ψ〉 ∈ S, no decomposition X ′ has lower
cost MX′ < MX . (Note that this can be readily generalized to mixed
state, without changing any of our next results.) Lemmas 1-3 imply a
necessary condition for optimality on the whole Hilbert space: X can only
be optimal on all states if it has the form

O =λ̄O1 +
∑
x∈X

cx Re(Ux), (4.51)

cx > 0, |λ̄O|+
∑
x∈X

cx = ‖O‖, Re(Ux)2 = 1

where λ̄O is the average of the largest and smalles eigenvalues of O. In
other words, X is a norm-preserving decomposition of the center of O
where all sampled terms are reflection operators. This condition is not
sufficient: as many non-equivalent instances of such decompositions exist,
as exemplified in Appendix 4.C.4.

We now construct a bound on the variance of the estimator of 〈O〉 based
on the decomposition X: saturating this bound on all |ψ〉 ∈ S implies
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optimality of X on S. [The cost of the decomposition Eq. (4.15) is defined
as the minimum value of M required to achieve target variance ε2, so
minimum variance at fixed M implies minimum cost at fixed ε.]

Var∗X [〈O〉] = 1
M

[∑
x

cx

√
1− 〈Re(Ux)〉2

]2

≥ Var[O]
M

. (4.52)

This bound is implied by Eq. (4.9) and Eq. (4.12), with the choice of
optimal shot allocation Eq. (4.14). It physical interpretation is rooted
in the following observation: a Von Neumann measurement of O is the
lowest-variance unbiased estimator of 〈O〉 when given access to a single
state preparation. Thus, given M independent experiments each with a
single state preparation, the mean of Von Neumann measurements is the
lowest-variance unbiased estimator.
We first consider the set S1 of all eigenstates of O. For any |φ〉 ∈ S1,

the value of the bound in Eq. (4.52) becomes Var[O] = 0. The bound is
thus saturated only if we choose all reflection operators Re(Ux) diagonal
in any eigenvector basis of O, i.e. [Ux, O] = 0 and Ux |φ〉 = ± |φ〉 for any
|φ〉 ∈ S1. For any decomposition of this form, we can write all Ux in terms
of the eigenspace projectors of O:

Ux =
J−1∑
j=0

ξx,jΠj , ξx,j ∈ {±1}, (4.53)

where Πj is the projector on the (eventually degenerate) λj-eigenspace of
O, J is the number of distinct eigenvalues {λj} of O, and without loss of
generality we assume λj > λj−1. The coefficients will then have to satisfy
the relation λj =

∑
x cxξx,j .

We define the Ξ-decomposition based on Eq. (4.53), by choosing ξx,j =
−1 if j < x, and +1 otherwise. The resulting decomposition is presented in
Lemma 4, Eq. (4.18). The operators Ξx are reflections by definition, and
it is easy to check that the decomposition satisfied the necessary condition
Eq. (4.51). Note that c0 = (λ0 + λj)/2 defines the optimal identity shift
(producing the center of O) and the cx = (λx − λx−1)/2 complete the
decomposition.
We now prove that the Ξ-decomposition is optimal on the set S2 of

states with support on two eigenstates of O,

S2 =
{
α |λm〉+ β |λn〉√

α2 + β2
: |λm〉 , |λn〉 ∈ S1

}
. (4.54)
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On a general state |ψ〉 with eigenspace occupations aj = 〈ψ|Πj |ψ〉, the
estimator based on the Ξ-decomposition has variance

Var∗Ξ[〈O〉] = 1
M

J−1∑
j

δλj
2

√
4(
∑
i<j

ai)(
∑
i≥j

ai)

2

. (4.55)

For a state |φ〉 ∈ S2, only two occupations are nonzero am, an 6= 0 (we
assume w.l.g. m < n), thus the term under square root is reduced to
4aman if m < j ≤ n and 0 otherwise. The resulting variance

Var∗Ξ[〈φ|O |φ〉] = 1
M

[
λn − λm

2
√

4aman
]2

(4.56)

= 1
M
anam(λn − λm) = Var[〈O〉]

thus saturating the bound Eq. (4.12).
We now prove that the only optimal decomposition on S2 is the Ξ-

decomposition (or equivalent up to relabeling and trivial subdecomposi-
tions). First of all, S1 ⊂ S2, so the terms of the decomposition need to be
of the form of Eq. (4.53). Consider a family of states √am |λm〉+

√
an |λn〉

for any n > m, with only two nonzero eigenstate occupations am + an = 1.
On such a state,

Var∗X [O] = 1
M

[∑
x

cx

√
1− [amξx,m + anξx,n]2

]2

= aman
M

[∑
x

2cx
1− ξx,mξx,n

2

]2

. (4.57)

The bound Eq. (4.52) is then saturated when[∑
x

2cx
1− ξx,mξx,n

2

]2

= λn − λm, (4.58)

where we simplified out the free parameter aman
M . This can be rewritten as∑

x

cxξx,n(ξx,n − ξx,m) =
∑
x

cx(ξx,n − ξx,m) (4.59)

using the condition on the decomposition coefficients λj =
∑
x cxξx,j . This
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implies that, if ξx,n = −1 then (ξx,m − ξx,n) = 0 (recall that cx > 0), i.e.
ξx,m = −1. Thus the only Ux that can appear in this decomposition, are of
the same form as the operators in the Ξ decomposition (ξj,m = −1, ξj,n =
+1 for m < j ≤ n), and thus X is either Ξ or a trivial sub-decomposition
of it.
We now show that the Ξ-decomposition does not saturate the bound

Eq. (4.52) for a state |ψ〉 with three non-zero occupations, am, an, ap 6= 0
(m < n < p). On this state we can write

Var∗Ξ[〈O〉] = 1
M

[
(λn − λm)

√
am(an + ap) (4.60)

+ (λp − λn)
√
ap(am + an)

]2
. (4.61)

Subtracting from this Var[〈O〉], expanding and then collecting terms we
get

Var∗Ξ[〈O〉]−Var[〈O〉] =
= [(λn − λp)(λn − λm)] · (4.62)

·
[
amap −

√
amap(am + an)(ap + an)

]
> 0,

as both the terms in square brackets are strictly smaller than zero. This
(along with the uniqueness of Ξ as the optimal estimator on S2) implies
that no HT-based estimator can saturate the bound Eq. (4.52) for arbitrary
states.
In fact, the bound can only be saturated on states in S2: on these

states the Von Neumann measurement has only two possible outcomes
(λm and λn) with nonzero probability. The adaptive shot allocation scheme
then ensures (for a large enough M) that most of the measurements we
take (Ξx with m ≤ x < n) reproduce the statistics of the Von Neumann
measurement, with the single bit we sample in every experiment always dis-
tinguishing between λm and λn. On any state |ψ〉 ∈ S2, the Von Neumann
measurement has three or more outcomes with non-zero probability, and
we cannot repoduce its statistics by sampling a single qubit per experiment.
This, along with the uniqueness of Ξ, implies that no decomposition can
satisfy the sufficient condition for optimality on a superset S ⊃ S2. The
numerical results presented in this paper quantify the increase in variance
with respect to the bound, along with confirming the Ξ-decomposition
outperforms other decompositions on all states.

147



4 Optimizing the information extracted by a single qubit measurement

4

4.D Implementation of the Ξ decomposition
via quantum signal processing

Verifiable samping of QSP polynomials — To measure the operators in
the Ξ decomposition Eq. (4.20), we implement a Hadamard test (or EV)
on trigonometric polynomials of (H − µx)t generated by the quantum
signal processing. We tune the QSP coefficients such that the polynomials
approximate the sign function in a suitable range. In this section we
display and analyse this technique.
The full circuit we use to achieve this is:
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In fact, the bound can only be saturated on states in S2:
on these states the von Neumann measurement has only
two possible outcomes (λm and λn) with nonzero probabil-
ity. The adaptive shot allocation scheme then ensures (for a
large enough M) that most of the measurements we take ("x
with m ! x < n) reproduce the statistics of the von Neumann
measurement, with the single bit we sample in every experi-
ment always distinguishing between λm and λn. On any state
|ψ〉 ∈ S2, the von Neumann measurement has three or more
outcomes with nonzero probability, and we cannot repoduce
its statistics by sampling a single qubit per experiment. This,
along with the uniqueness of ", implies that no decomposition
can satisfy the sufficient condition for optimality on a superset
S ⊃ S2. The numerical results presented in this paper quantify
the increase in variance with respect to the bound, along with

confirming the " decomposition outperforms other decompo-
sitions on all states.

APPENDIX D: IMPLEMENTATION OF THE !

DECOMPOSITION VIA QUANTUM
SIGNAL PROCESSING

Verifiable sampling of QSP polynomials. To measure the
operators in the " decomposition (20), we implement a
Hadamard test (or EV) on trigonometric polynomials of (H −
µx )t generated by the quantum signal processing. We tune the
QSP coefficients such that the polynomials approximate the
sign function in a suitable range. In this Appendix we display
and analyze this technique.

The full circuit we use to achieve this is

|0 HT H • • • • H

|0 QSP RX(φr)

e−iZ⊗(O−µx)t

RX(φR) RY (π) (verify)

|ψ S / (verify) .

repeat for r = 0, ..., R − 1

The first control qubit (labeled HT) takes care of the
Hadamard test. The second ancilla (labeled QSP) manages the
quantum signal processing subroutine, extended through the
sign-controlled evolution e−iZ⊗(O−µx )t to implement a quan-
tum signal processing (QSP) on the operator e(O−µx )t . We
now describe how the measurement scheme works, and how
to select the φ parameters to approximate a measurement of
sgn[(O − µx )t] in the interval [−π ,π ].

First, we analyze the QSP routine. Let us assume |ψ〉 to
be an eigenstate of (O − µx )t with eigenvalue ω ∈ (−π ,π ),
and only consider the effect of the controlled gates (removing
the HT qubit). Then, we can reduce the circuit to an effective
single qubit gate on the QSP qubit, with action

Qφ (ω) = e−i Y
2 πe−i X

2 φR

[
R∏

r=1

e−i Z
2 2ωe−i X

2 φR−r

]

=
(

Sφ (ω) · · ·
· · · · · ·

)
(D1)

which is a block encoding of Sφ (ω), a degree-R trigonometric
polynomial of ω. For the sake of simplicity we inserted the
final gate e−i Y

2
π
2 = −iY , shifting the polynomial of interest S

from the block 〈1|Q|0〉 to 〈0|Q|0〉. We ensure Sφ (ω) is real
and odd by constraining

φr = −φR−r ⇒ S(ω) = −S(−ω) ∈ R. (D2)

Reintroducing the system register, i.e., taking a general |ψ〉S,
can be done by linearity taking Q(ω) (→ Q[(O − µx )t] and
recovering the circuit above.

The result of the verified Hadamard test (or EV) is obtained
by measuring on the output state of the circuit the expec-
tation value of ZHT (or ZHT ⊗ |0〉〈0|QSP ⊗ |ψ〉〈ψ |S). (In the

absence of noise these two expectation values are equal. In
the presence of noise, an additional measurement at t = 0 can
be taken to mitigate errors. For more details on the technique
we refer the reader to the original work on EV [12].)

Approximating the sign function. To approximate the op-
erators (20) that make up the " decomposition, we need to
choose the QSP parameter φ such that Sφ(ω) in Eq. (D1)
approximates sgn[ω]. The polynomial Sφ(ω) is odd, real,
and 2π periodic, thus having nodes Sφ(0) = Sφ(±π ) = 0. To
account for the approximation error in the neighborhood of
these nodes, we introduce a resolution parameter δ " 0, and
request the approximation to be effective only in the [δ,π − δ]
interval. Choosing δ > 0 implies accepting a larger error in
approximating the sign function close to zero. For exam-
ple, we know the eigenvalues of (O − µx )t closest to zero
have absolute value δλx

2 t , and we can use this knowledge to
choose δ.

We define a loss function to characterize the quality of the
approximation: the average error

Lδ (φ) = 1
π − 2δ

∫ π+δ

δ

dω[sgn(ω) − Im[Sφ(ω)]]. (D3)

To choose the optimal parameters φ, we minimize this loss
under the constraints (D2). Although an analytical approach to
this problem is possible building on the techniques described
in [18], we take the numerical route to this approximation
(which is efficient, scalable, and easy to implement). The
integral is thus substituted with a sum on a grid with a number
of points much larger than the degree of the trigonometric
polynomial. We plot in Fig. 2 the minimized cost function,
as a function of the approximation’s order R and of the
resolution parameter δ. We find that the loss always decays

012403-11

The first control qubit (labeled HT) takes care of the Hadamard test.
The second ancilla (labeled QSP) manages the quantum signal processing
subroutine, extended through the sign-controlled evolution e−iZ⊗(O−µx)t

to implements a quantum signal processing (QSP) on the operator e(O−µx)t.
We now describe how the measurement scheme works, and how to select
the φ parameters to approximate a measurement of sgn[(O − µx)t] in the
interval [−π, π].

First, we analyze the QSP routine. Let us assume |ψ〉 to be an eigenstate
of (O − µx)t with eigenvalue ω ∈ (−π, π), and only consider the effect of
the controlled gates (removing the HT qubit). Then, we can reduce the
cicuit to an effective single-qubit gate on the QSP qubit, with action

Qφ(ω) = e−i
Y
2 πe−i

X
2 φR

[
R∏
r=1

e−i
Z
2 2ωe−i

X
2 φR−r

]

=
(
Sφ(ω) ·
· ·

)
(4.63)

which is a block encoding of Sφ(ω), a degree-R trigonometric polynomial
of ω. For the sake of simplicity we inserted the final gate e−iY2 π

2 = −iY ,
shifting the polynomial of interest S from the block 〈1|Q |0〉 to 〈0|Q |0〉.
We ensure Sφ(ω) is real and odd by constraining

φr = −φR−r =⇒ S(ω) = −S(−ω) ∈ R. (4.64)

148



4.D Implementation of the Ξ decomposition via quantum signal
processing

4

Re-introducing the system register, i.e. taking a general |ψ〉S, can be
done by linearity taking Q(ω) 7→ Q[(O − µx)t] and recovering the circuit
above.

The result of the verified Hadamard test (or EV) is obtained by mea-
suring on the output state of the circuit the expectation value of ZHT (or
ZHT ⊗ |0〉〈0|QSP ⊗ |ψ〉〈ψ|S). (In the absence of noise these two expectation
values are equal. In the presence of noise, an additional measurement at
t = 0 can be taken to mitigate errors. For more details on the technique
we refer the reader to the original work on EV [156].)

Approximating the sign function — To approximate the operators
Eq. (4.20) that make up the Ξ decomposition, we need to choose the
QSP parameter φ such that Sφ(ω) in Eq. (4.63) approximates sgn[ω].
The polynomial Sφ(ω) is odd, real, and 2π-periodic – thus having nodes
Sφ(0) = Sφ(±π) = 0. To account for the approximation error in the
neighborhood of these nodes, we introduce a resolution parameter δ ≥ 0,
and request the approximation to be effective only in the [δ, π− δ] interval.
Choosing δ > 0 implies accepting a larger error in approximating the sign
function close to zero. For example, we know the eigenvalues of (O − µx)t
closest to zero have absolute value δλx

2 t, we can use this knowledge to
choose δ.

We define a loss function to characterize the quality of the approximation:
the average error

Lδ(φ) = 1
π − 2δ

∫ π+δ

δ

dω
[

sgn(ω)− Im[Sφ(ω)]
]
. (4.65)

To choose the optimal parameters φ, we minimize this loss under the
constraints (4.64). Although an analytical approach to this problem is
possible building on the techniques described in [48], we take the numeri-
cal route to this approximation (which is efficient, scalable and easy to
implement). The integral is thus substituted with a sum on a grid with
a number of points much larger than the degree of the trigonometric
polynomial. We plot in Fig 4.2 the minimized cost function, as a function
of the approximation’s order R and of the resolution parameter δ. We find
that the loss always decays exponentially with an increasing order R, with
a decay rate depending on δ.
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Figure 4.2: Loss Eq (4.65) for the optimal choice of QSP parameters
φ, as a function of the order R (number of QSP layers) and resolution
parameter δ. The dotted lines are log-lin fits for R > 10. The dependence
of the fit parameter β on the resolution δ is shown in the inset.

4.E The generalized parameter-shift kernel
decomposition of a diagonal operator
with ladder spectrum

In [159] the authors propose techniques to estimate derivatives
〈
d
dtU(t)

〉
of

a unitary U(t) = eiOt generated by O, by sampling 〈sin(Otl)〉 = 〈Re[U(tl)]〉
at a discrete set of points {tl}. This technique can be used to estimate
expectation values of O, as 〈O〉 =

〈
[−i ddteiOt]t=0

〉
, and it is clearly compat-

ible with Hadamard test or EV measurements (as it only requires sampling
〈ReU(tl)〉).
For an operator O with equispaced eigenvalues Ω, 2 Ω, ..., RΩ (com-

monly referred to as a “ladder spectrum"), the authors give a choice of
{tl} and explicit coefficients cl(t) for the linear combination

〈
d
dtU(t)

〉
=∑

l cl 〈Re[−iU(tl)]〉. Assuming Ω = 1 (which can be considered a choice
of units for the energy), the time points are chosen as {tl = 2l

2R+1π}. We
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can then define a modified version of the Dirichelet kernel,

D̃l(t) = 1
R

cos(tl)

1
2 sin(Rt) +

R−1∑
j=1

sin(jt)

 , (4.66)

which satisfies D̃l(tl′) = δll′ . This is a linear combination of the R basis
functions {sin(jt)}j=1,...,R, like 〈sin(Ot)〉. Thus, as the equality

〈sin(Ot)〉 =
R∑
l=1
〈sin(Otl)〉 D̃l(t) (4.67)

holds for all {tl}l=1,...,R, it must to hold for all t. We can then differentiate
the kernel rather than the expectation value itself. Evaluating [ ∂∂tD̃l(t)]t=0
and combining the equations above we obtain

〈O〉 =
R∑
l=1

(−1)l−1

2R sin2( 1
2 tl)
〈sin(Otl)〉 (4.68)

=
R∑
l=1

cl 〈Re[−iU(tl)]〉 . (4.69)

This matches the form of decompositions Eq. (4.10). We call thi the gen-
eralized parameter shift kernel (GPSK) decomposition. Under the optimal
shot allocation choice [Eq. (4.14)], the shot-variance of the estimator based
on this decomposition is

M Var∗GPSK =

 R∑
l=1

√
1− 〈sin(Otl)〉2

|2R sin2( 1
2 tl)|

2

(4.70)

4.F Details on numerical simulations and
further numerical results

We measure the variances on random states generated by hardware-efficient
ansatzes using PennyLane [171]. For each value of N , 100 random set of
parameters (and therefore 100 random states) are generated and measured
for all decompositions. For each decomposition X, we first use 105 shots
(allocated proportionally to the weight of each term) to obtain a rough
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Figure 4.3: Comparison study of variances of different decompositions on
random states generated by a hardware-efficient ansatz (see text for de-
tails). Different colours correspond to different decompositions [Eq.(4.10)]
of the target operator O (see text for the description of all decomposi-
tions). Dashed lines are exponential fits (a exp(mN + b)) to the data (the
parameter m is given in legend).

estimate of the expectation value of each term 〈Re(Ux)〉 for x ∈ X. These
values are plugged in Eq. (4.14) to get an estimate of the optimal shot
allocation ratios rx = mx

Mx
. The variance of each term Var∗[〈Re(Ux)〉] is

obtained by Eq. (4.8) (or by sampling in the case of the QSP-approximation
decomposition ‘SGN’). With these we compute the final shot-variance
MX Var∗X [〈O〉] =

∑
x∈X r

−1
x Var∗[〈Re(Ux)〉. Finally, we average the values

of MX Var∗X [〈O〉] obtained for each random state. This average is the
quantity reported in Fig. 4.1, Fig. 4.3 and Fig. 4.4.

The terms Ξx are constructed as per Eq. (4.18) using the known eigen-
vectors of O, and projectively measured on the prepared state (as these
are reflection operators, Hadamard test samples match projective measure-
ment samples). The terms in the Pauli decomposition are also directly
measured on the prepared state. The GPSK-decomposition is constructed
as described in 4.E and measured through a Hadamard test. The Von
Neumann variance Var[O] is computed analytically.

The QSP approximation of Ξ (denoted SGN from the sign term approx-
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Figure 4.4: Comparison study of variances of different decompositions on
random states generated by a hardware-efficient ansatz (see text for details).
Different colours correspond to different decompositions [Eq.(4.10)] of the
target operator O (see text for the description of all decompositions).
Dashed lines are exponential-power-law fits (exp

(
aN2 + bN + c

)
) to the

data (the dominant scaling parameter a is given in the legend).

imation) is implemented as described in Appendix 4.D for R = 20 and
δ = 0. For fair comparison with the other methods, echo verification is
not used. The comparison between the Ξ and SGN decomposition shows
how the approximation increased the final variance. (The approximation
also introduces a bias, see Appendix 4.D.
All the simulations assume Hadamard-test-based measurement in an

ideal circuit simulation: no circuit-level noise is considered and EV is not
implemented.

We additionally report scaling results for the shot-variances of two other
observables, O =

∑
j jZj and O =

∑
j 2jZJ . The overall scaling of all

decompositions matches the scaling of the operator norm ‖O‖. Similarly
to the case of Fig. 4.1, the Ξ decomposition performs best, the SGN
approximation has a relatively small effect on the shot-variance, and the
Pauli decomposition shows the worst scaling.
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CHAPTER 5

Virtual mitigation of coherent non-adiabatic transitions
by echo verification

5.1 Introduction
The study of quantum many-body systems requires the precise estimation
of observables. Quantum state preparation is naturally a prerequisite to
this end, which is the rationale behind quantum computers or quantum
simulators. The adiabatic algorithm has demonstrated large success in a
variety of platforms [175, 176]. Still, the performance of current devices
is hindered by noise, which cannot be error corrected, yet. Therefore,
error mitigation techniques have been explored both theoretically and
experimentally and can significantly improve the estimation of observ-
ables [69, 79, 177]. Surprisingly, there have been few synergies jointly
considering error mitigation for the adiabatic algorithm.

Any quantum circuit can be efficiently simulated by the adiabatic algo-
rithm [178]. In adiabatic quantum computation, the system is initialized
in the ground state of a trivial Hamiltonian and one seeks to prepare the
ground state of the final Hamiltonian by slowly interpolating between
the two. The success of the algorithm is determined by the speed of the
adiabatic passage and spectral properties of the Hamiltonians [49, 179].
More precisely, the total evolution time, or circuit depth, depends inverse
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verification

5

Adiabatic algorithm
Dephase

Purify

Measure

Figure 5.1: Schematic overview of the method. Density matrices are
expressed in the energy eigenbasis of the target Hamiltonian. The pure
state after the adiabatic evolution (ρad) approximates the true ground
state. Via a dephasing operation, the coherent error is promoted to an
incoherent error in ρd such that error mitigation techniques can be applied.
This allows measuring the kth degree purified observable 〈O〉(k) which
yields a lower bias than evaluating the state directly after the adiabatic
preparation

[
〈O〉ad

]
.

polynomially on the minimum spectral gap between the ground state and
the first excited state along the adiabatic path. These relations are quanti-
fied by the adiabatic theorem and versions thereof [51–53]. The adiabatic
algorithm is especially suited for devices that implement dynamics natively
without any Trotter overhead [180–183].

To address the restrictions in current hardware, various error mitigation
techniques have been explored in recent years to improve the usefulness
of a noisy quantum computation [79]. These methods include zero-noise
extrapolation, exploiting symmetry or purity constraints, and several other
approaches. Here, we focus on purity methods, which aim to suppress
stochastic errors by projecting the noisy state ρ onto the closest pure state,
given by the dominant eigenvector of ρ.

The purification can in general be achieved by collective measurements
of several copies of ρ, known as virtual state distillation [148] or error
suppression by derangement [184]. Echo verification (EV) achieves this
using two copies of ρ multiplexed in time, rather than in space [156–
158]. In EV, a desired state is prepared, an observable is measured
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t

Figure 5.2: (a) Quantum circuit for adiabatic echo verification to esti-
mate an observable 〈O〉. A quasi-adiabatic sweep U→ is followed by an
approximate ground state dephasing operation D. After the controlled
application of a unitary observable O and dephasing again, the sweep is
performed backward U←(6= U†→). Postprocessing the measurement result,
including the success information of the ground state projection, allows to
extract an improved expectation value. (b) Schematic of the Hamiltonian
dynamics. Approximate dephasing is implemented by evolving with the
target Hamiltonian at s = 1 for a random time. Typically, this time
is much smaller than the time required for the adiabatic algorithm as
depicted in (c), where we sketch a corresponding low-energy spectrum.

controlled by an auxiliary qubit, and the state is then uncomputed. This
allows to access expectation values of the so-called 2nd degree purified
state of ρ: 〈O〉EV = Tr

[
Oρ2]/Tr

[
ρ2]. Recently, purification-based error

mitigation has been tested experimentally in the context of the variational
quantum eigensolver [69]. Error mitigation methods tailored specifically
to the adiabatic algorithm have been explored considerably less in the
literature. Few exceptions consider error suppression and correction [185]
or symmetry-protection for Trotter dynamics [186].

In this work, we present a mitigation technique for estimating observables
on quasi-adiabatically-prepared states, in the spirit of echo verification
(Fig. 5.1). Along with stochastic device noise, our method seeks to sup-
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press the coherent error due to non-adiabatic transitions. Our method
which we denote Adiabatic Echo Verification (AEV) relies on dephasing
operations to promote the coherent errors to random errors, which can
then be mitigated. Similar to the original echo verification technique, the
leading order error in the ground state expectation value of an observ-
able is suppressed quadratically. In particular, we consider an imperfect
implementation of the dephasing operation using random-time evolution.
Related random-time dynamics have been successfully used in the context
of Zeno-type protocols [187]. The overhead from this dephasing operation
is only poly-logarithmic in the accuracy of the dephasing operation for
estimating observables of states within gapped phases. We discuss how
the protocol compares favorably against doubling the total evolution time
in the standard adiabatic algorithm. A key feature of our technique is that
hardware noise is also mitigated naturally through the EV method. Our
protocol only requires implementing positive-time evolution and applying
the operator of interest in a controlled way. Hence, the protocol is not
only suitable for purely gate-based quantum devices but also for hybrid
quantum simulators, e.g. using neutral Rydberg atoms [182].

5.2 The adiabatic algorithm and
purification-based error mitigation

In order to be able to measure observables on the ground state |E0〉 of
a target Hamiltonian HT , a state approximating |E0〉 with sufficient pre-
cision needs to be prepared. The quantum adiabatic algorithm (QAA)
is a suitable algorithm for this task. At the heart of the QAA is the
adiabatic theorem, which states that a system remains in an instantaneous
eigenstate if the Hamiltonian is changed sufficiently slowly and the eigen-
state is separated from other eigenstates by a minimum spectral gap ∆min
throughout the transition [50]. Hence, the desired ground state |ψT 〉 of
a Hamiltonian of interest HT can be prepared by interpolating from a
suitable Hamiltonian H0 with a trivial ground state |ψ0〉 as

H(s) = (1− s)H0 + sHT . (5.1)

where s = t/T is the parametrized time. The folk version of the adiabatic
theorem states that a total time T = O

(
∆−2

minε
−1/2) suffices to prepare

the ground state up to fidelity 1− ε. Rigorous versions of the adiabatic
theorem give a bound T = O

(
∆−3

minε
−1/2) if H(s) is twice differentiable [51,

52]. Given a finite coherence time, the QAA prepares an approximation
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to the target state |ψad〉 =
√

1− ε |E0〉 +
√
ε
∣∣E⊥0 〉 where 〈E0|E⊥0 〉 = 0.

Measuring an observable O, we obtain an approximation to the true value
Tr [O |ψ〉〈ψ|ad] = (1− ε)〈O〉|E0〉 +O(

√
ε).

Purification methods such as echo verification (EV) or virtual state
distillation improve the quality of an expectation value measurement on a
noisy (incoherent) approximation ρ of a pure state |ψ〉〈ψ|. This is achieved
by effectively measuring the expectation value Tr

[
Oρk

]
of O on the k-th

power of the density matrix. Raising ρ to the k-th power suppresses the
eigenvectors with smaller eigenvalues, increasing the relative weight of
the dominant eigenvector which, for small enough noise, should be |ψ〉.
As ρk is non-normalized, purification methods prescribe to independently
measure Tr

[
ρk
]
to calculate the desired estimator

〈O〉(k) := Tr
[
Oρk

]
/Tr

[
ρk
]
. (5.2)

If ρ has an eigenstate |E0〉 with large weight c0 = 1− ε (small positive ε),
we can write the density matrix as ρ = c0 |E0〉〈E0|+ ερ⊥ with ρ⊥ a density
matrix orthogonal to |E0〉 (i.e., ρ⊥ |E0〉 = 0). The kth degree purified
estimator is then

〈O〉(k) =
ck0 〈E0|O |E0〉+ εk Tr

[
ρk⊥O

]
ck0 + εk Tr

[
ρk⊥
] (5.3)

= 〈E0|O |E0〉+O(εk Tr
[
ρk⊥
]
‖O‖), (5.4)

where ‖·‖ is the operator norm. Echo verification implements purification
for k = 2 using a single register by multiplexing two state-(un)preparation
oracles in time. The method suppresses the error contributions O(ε) such
that the leading order becomes O(ε2).

5.3 Mitigating coherent errors in adiabatic
state preparation

Our main contribution is to propose a method where the echo verification
technique is applied to coherent errors. We focus on an application where
the coherent error arises in the adiabatic algorithm due to finite algorithm
runtimes. However, as the state prepared by a noiseless implementation of
the adiabatic algorithm is pure, naive purification will not have any effect.

To recover the error mitigation power on ρad = |ψad〉〈ψad|, we introduce

159



5 Virtual mitigation of coherent non-adiabatic transitions by echo
verification

5

an ideal dephasing channel that turns coherent errors into incoherent noise,

deph
H

[ρ] :=
∑
j

|Ej〉〈Ej | ρ |Ej〉〈Ej | = diag[ρ], (5.5)

where we sum over an eigenbasis {|Ej〉}j of the target Hamiltonian HT .
Here, we assume a nondegenerate spectrum and give an extension for
degenerate spectra in the Supplement. The dephasing channel projects a
density matrix onto its diagonal in the energy eigenbasis, removing the
off-diagonal coherences. Applying the channel to the state prepared by
the adiabatic algorithm yields

ρd := deph
H

[ρad] = c0 |E0〉〈E0|+ ερ⊥ =


c0 0 . . . 0
0
... ερ⊥
0

 (5.6)

with ρ⊥ =
∑
j 6=0 ρjjε

−1 |Ej〉〈Ej |. Then, using the echo verification tech-
nique on the dephased state, which is a mixed state, we obtain the following
result for the observable O:

Tr
[
Oρkd

]
Tr
[
ρkd
] = (1− γ) 〈E0|O |E0〉+ γ

Tr
[
Oρk⊥

]
Tr
[
ρk⊥
] , (5.7)

with γ =
[
1 + ck0/

(
εk Tr

[
ρk⊥
])]−1 ∼ O

(
εk Tr

[
ρk⊥
])
.

To implement echo verification, typically, an inverse pair of unitaries
(U→, U†→) would be required [156]. The unpreparation U†→ then uses
negative-time dynamics, which is generally not available in analog sim-
ulators. For our purposes, however, we can consider the two states
ρad = U→ |ψ0〉〈ψ0|U†→ and σad = U†← |ψ0〉〈ψ0|U←, where U← is a positive-
time adiabatic evolution with an inverted schedule from s = 1 to s = 0
[cf. Fig. 5.2(b)]. Both states have the same guaranteed fidelity with the tar-
get state |E0〉 from the adiabatic theorem and ground state coherences are
surpressed after the dephasing operation. This allows to use positive-time
dynamics for the unpreparation step in AEV.
Next, we consider the implementation of the dephasing channel. Im-

portantly, we observe that a channel that dephases only the ground state
would also be sufficient to achieve our goal, producing a state of the form
Eq. 5.6 with a more general, non-diagonal ρ⊥, provided that c0 still domi-
nates. In the following part, we analyze such an approximate dephasing
operation using positive-time dynamics.
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5.4 Implementation and cost of the
dephasing

We can implement an approximation of the dephasing channel [Eq. 5.5] by
a random-time evolution exp(−iHT τ), with τ sampled from a probability
distribution P (τ), as follows: We limit the support of P to the interval τ ∈
[0, Td]. This ensures the dephasing can be realized naturally in quantum
simulators and limits the time overhead of the dephasing operation to 2Td
for the AEV circuit. We define the approximate dephasing channel

deph
H,P

[ρ] :=
∫ Td

0
dP (τ)e−iHT τρeiHT τ (5.8)

=
∑
j,k

Fjk |Ej〉〈Ej | ρ |Ek〉〈Ek| , (5.9)

where Fjk := F [P ](Ej − Ek) is the Fourier transform of the random-time
distribution at the transition energies. We will make use of the shorthand
D[ρ] := dephH,P [ρ]. As we only need to dephase the ground state, we
require maxj>0 |F0j | < δ. Evaluating the adiabatic echo verification circuit
(Fig. 5.2) with the approximate dephasing channel D[ρ] yields an estimator
with expectation

〈O〉AEV = Tr[Oρ̃σ̃]
Tr[ρ̃σ̃] (5.10)

where ρ̃jk = Fjk[ρad]jk and σ̃kl = F∗kl[σad]kl, expressed as matrix elements
in the eigenbasis of the target Hamiltonian (cf. Supplement). We can bound
the deviation of the AEV estimator from the ground state expectation
value as ∣∣∣〈O〉AEV − 〈E0|O |E0〉

∣∣∣ . ‖O‖(ε1/2δ + ε2) (5.11)

with a small prefactor. To ensure this error is bounded by O(ε2), it is then
sufficient to take δ ∼ ε3/2.
An upper bound on the |F0j | can be obtained as a functional of the

distribution P (τ). We can thus redefine

δ := max
∆>∆T

∣∣F [P ](∆)
∣∣ (5.12)

where ∆T < E1 − E0 is a lower bound on the target Hamiltonian ground
state gap. In principle, different distributions can be chosen. We might, for
example, simply choose a uniform distribution P (τ) = 1/Td for τ ∈ [0, Td].
As its Fourier transform is the cardinal sine function sin(x)/x, we obtain
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δ ∼ (∆Td)−1. However, discontinuities in P or its derivatives limit the
asymptotic decay of F [P ] to a polynomial. We can improve upon this
without increasing the maximal evolution time by choosing a mollifier,
i.e. a smooth distribution supported on [0, Td]. A suitable example for our
purposes is the rescaled bump function

PTd(τ) =
{

2
NTd

exp
[

T 2
d

4τ(τ−Td)

]
if τ ∈ [0, Td],

0 otherwise,
(5.13)

where N ≈ 2.25 is a normalization factor. The Fourier transform of this
function decays super-polynomially. Adapting the results from Ref. 188,
we recover

δ <

√
8π√
e

(Td∆T )−3/4 exp
[
−
√
Td∆T /2

]
, (5.14)

with the full derivation included in the Supplement. A dephasing time
Td ∼ ∆−1

T log2[ε] is thus sufficient to achieve an overall error O(ε2). Often,
one is interested in observables of states in gapped phases [189], such that
only the poly-logarithmic term contributes to a non-constant overhead.

5.5 Comparison with standard adiabatic
algorithm.

We seek to compare the method proposed here with the trivial alternative
for improving the performance of the adiabatic algorithm, which is simply
doubling the evolution time in the QAA. In the standard adiabatic theorem,
there is a polynomial relationship between the accuracy and the evolution
time [51]. In principle, the adiabatic theorem can be improved towards an
exponential error dependence by assuming a sufficiently smooth schedule
with vanishing derivatives at the beginning and end of the schedule [53].
However, this is at the cost of passing the minimal spectral gap at a faster
rate, which, in general, leads to more transitions. In practice, we can
observe an exponential scaling (Landau-Zener regime) transitioning into
an inverse-quadratic scaling for longer times [190].
Regarding our method, we therefore conclude that if the error depen-

dence was indeed exponential, as in a Landau-Zener problem, the AEV
would yield a performance comparable to the QAA with double the evo-
lution time. Compared to the standard theorems with a polynomial
dependence, our method improves up to quadratically. For the sake of
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Figure 5.3: Comparing the QAA and AEV for different dephasing times
Td, as a function of the total sweep time T (QAA: T = Tad, AEV:
T = 2Tad). AEV improves over simply doubling the QAA sweep time in
the regime of polynomial error dependence. The respective estimator bias
from 〈E0|O |E0〉 is shown, where O = 1− 2 |E0〉〈E0| is a reflection on the
target state. The target Hamiltonian is an Ising modelHT = 0.2

∑5
j=1 σ

z
j−∑4

j=1 σ
z
jσ

z
j+1, and H0 =

∑5
j=1 σ

x
j , using a linear schedule. We perform

density-matrix simulations; time-dependent evolution is implemented by
Euler integration, ensuring a sufficiently small error when discretizing the
sweep. Approximate dephasing is implemented with P (τ) as in Eq. 5.13.

concreteness, we include numerical benchmarks in Fig. 5.3 showing an
advantage for preparing the ground state of a transverse field Ising model.

5.6 Discussion and practical considerations.
In this letter, we introduced Adiabatic Echo Verification (AEV), a scheme
to mitigate the coherent errors that characterize adiabatic state prepa-
ration. Our method is tailored to current quantum devices, which lack
the possibility to correct errors. AEV requires doubling the circuit time
compared to standard adiabatic state preparation, but improves up to
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quadratically in the estimator bias. The additional features of the protocol
are the following. First, in order to implement the verification part of
the circuit, the path of the quasi-adiabatic evolution is simply reversed.
Moreover, we show how the dephasing operation can be approximately
implemented with positive-time dynamics. Hence, only positive-time evo-
lution is required in AEV. This makes our method suitable for quantum
computers that operate in a hybrid mode of digital gates and analog
simulation. Rydberg atom arrays have recently demonstrated such ca-
pabilities [182, 191]. Additionaly, AEV naturally mitigates non-coherent
hardware noise through echo verification. While our focus in the paper
was not on the technical analysis of hardware noise mitigation, the results
in echo verification literature fully apply to our case [69, 156].

We note that our method is compatible with arbitrary sweep profiles
in the QAA. This is especially helpful as it is well known that slowing
down the adiabatic sweep at the position of the minimum spectral gap
mitigates transitions out of the ground state [192, 193]. More generally, our
technique can be applied to other coherent approximate state preparation
approaches, such as variational quantum algorithms (VQAs) [194]. This
applies to VQAs that prepare a pure state heuristically by a parametrized
operation U(θ) aiming at approximating the desired ground state. By
dephasing the prepared state and using the echo verification technique,
unpreparing the state with U(θ)†, we expect that the performance of VQAs
can be improved.

We note that the control-free versions of echo verification [69, 156], which
employ a reference state instead of a control qubit, are not naively avail-
able for AEV. This is due the dephasing channel annihilating coherences
between the reference state and the state of interest. Recently, a method
for rescaling survival probabilities was considered that has similarities with
control-free echo verification [195]. While their unnormalized estimator
Tr
[
ρOρO†

]
differs from the echo verification counterpart Tr

[
Oρ2], it would

still allow for mitigating errors for certain interesting observables such
as out-of-time-order correlators (OTOCs) [146]. Not requiring the imple-
mentation of a controlled operation can significantly simplify experiments.
This is why an extension of AEV without a control qubit is an interesting
direction for future work. Another promising research direction is the com-
bination of AEV with other purification-based error mitigation methods
such as virtual state distillation [148, 184]. Using multiple copies of the
quasi-adiabatically prepared state, further improvements for surpressing
errors seem possible.
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5.A Dephasing operation on a degenerate
spectrum

In Eq. 5.5 we define the perfect dephasing channel for an operator H with
non-degenerate spectrum. If the spectrum of H contains degeneracies, the
dephasing channel will project ρ to a block-diagonal operator, where the
blocks are defined by the (degenerate) eigenspaces of H:

deph
H

[ρ] =
∑
j

ΠjρΠj (5.15)

where Πj = δ(H − Ej) is the projector on the eigenspace of H with
eigenvalue Ej .

For AEV, we are only interested in dephasing the ground state with
respect to the rest of the spectrum; we only require the ground state of H
to be non-degenerate for Eq. 5.6 and the subsequent analysis to be valid.
This is anyway a typical requirement in adiabatic state preparation.

5.B Evaluation of AEV estimator with
approximate dephasing

In this section, we evaluate the error on the Adiabatic Echo Verification
(AEV) estimator with respect to the target value 〈E0|O |E0〉. We bound
it as a function of the adiabatic state (un)preparation error ε and the de-
phasing approximation error δ. The AEV circuits we consider only require
positive-time evolution with respect to the adiabatic Hamiltonian Eq. 5.1,
and the ability to perform a controlled-O operation (or a decomposition
thereof) to implement the Hadamard test.

We recall the echo verification (EV) expectation value estimator [69, 196]
is defined as

〈O〉EV := E[verified Hadamard test circuit (VHT)]
E[echo circuit (Echo)] . (5.16)
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In our case, the verified Hadamard test circuit is

VHT :=
|+〉 X + iY

|ψ0〉 U→ D O D U← |ψ0〉〈ψ0|
,

(5.17)
where U→ is the adiabatic state preparation, U← is the state unpreparation,
and deph := dephH,P is the approximate dephasing. At the end of the
circuit we need to measure X⊗ |ψ0〉〈ψ0| and Y ⊗ |ψ0〉〈ψ0| to recover the
real Re[〈O〉EV] and imaginary i Im[〈O〉EV] parts of the expectation value,
respectively. The output of a single sample of the circuit will be the
result of the Pauli X (±1) or Y (±i) on the control qubit if the system
register returns to the state |ψ0〉, and 0 otherwise. Our notation supposes
that O is a unitary operator, and its application is controlled by the
state of the control qubit. If O is not unitary, we can rewrite it as a
decomposition O =

∑
x ax Re[Ux] + bx Im[Ux] and measure the terms of

the decomposition separately [196]. The echo circuit, which is used to
compute the normalization of 〈O〉EV, is given as

Echo := |ψ0〉 U→ D D U← |ψ0〉〈ψ0| (5.18)

and obtained by substituting the operator O with the identity in the
previous circuit.

The adiabatic preparation and the adiabatic unpreparation are defined
as

U→ =T exp
{
−i
∫ Tad

0
H[s(t)] dt

}
; (5.19)

U← =T exp
{
−i
∫ Tad

0
H[s(Tad − t)] dt

}
, (5.20)

where T exp notates the time-ordered exponential, H(s) is the adiabatic
Hamiltonian (5.1), s(t) the adiabatic schedule with s(0) = 0 and s(Tad) = 1,
and Tad is the total evolution time of the adiabatic algorithm. Note that dt
is always positive, thus negative-time evolution is not required to implement
U→ and U←. Typically, in an EV circuit, if the preparation unitary is U ,
then the unpreparation is performed with its conjugate transpose U† such

166



5.B Evaluation of AEV estimator with approximate dephasing

5

that UU† = 1. Here, however, this is not the case for the two operations
U← and U→. We will show that the added dephasing indeed removes this
requirement for our purposes.
In our calculations, we only assume that U→ (U←) implement an ap-

proximate state (un)preparation of |E0〉 with a fidelity of at least 1 − ε
with small ε > 0. Concretely, we define

| 〈E0|U→ |ψ0〉 |2 = 1− ε← , | 〈ψ0|U← |E0〉 |2 = 1− ε→, (5.21)

such that ε = max{ε←, ε→}. It is reasonable to assume the two adiabatic
processes will have a similar error, as any adiabatic theorem bounds both
in the same way.

The approximate dephasing channel, of the form Eq. 5.8, is defined via
a matrix of Fourier coefficients

Fjk := F [P ](Ej − Ek) ∈ C , D[ρ]jk = Fjkρjk (5.22)

We denote Ajk = 〈Ej |A |Ej〉 the matrix elements of an operator in the
eigenbasis of HT .
The only requirement on the dephasing channel is that the Fourier

coefficients are bounded maxj>0 |F0j | < δ, which imposes that the coher-
ences between the ground state and any other eigenstate are suppressed
by a factor smaller than δ. In the main text, we relate this factor to the
dephasing time and to ground state gap of the target Hamiltonian.
The expectation value of circuit Eq. 5.17 is

E[VHT] = Tr
{
U← D

[
CtrlO D

[
U→(|+〉〈+| ⊗ |ψ0〉〈ψ0|)U†→

]
CtrlO†

]
U†← (|ψ0〉〈ψ0| ⊗ 2 |0〉〈1|)

}
=

= Tr
{
U†← |ψ0〉〈ψ0|U←︸ ︷︷ ︸

σ

D
[
O D

[
U→ |ψ0〉〈ψ0|U†→︸ ︷︷ ︸

ρ

]]}
=

=
∑
jk

Fjk Tr
{
U†← |ψ0〉〈ψ0|U←·

· D
[
O |Ej〉 〈Ej |U→ |ψ0〉〈ψ0|U†→ |Ek〉︸ ︷︷ ︸

ρjk

〈Ek|
]}

=

=
∑
jkl

FjkFlkσklOlj ρjk (5.23)
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where we expand the dephasing channels, and we define the density matrices
ρ and σ, corresponding respectively to the pure states

U→ |ψ0〉 =
√

1− ε |E0〉+
√
ε
∑
j>0

αj |Ej〉 ,
∑
j>0
|αj |2 = 1; (5.24)

〈ψ0|U← =
√

1− ε 〈E0|+
√
ε
∑
j>0

β∗j 〈Ej | ,
∑
j>0
|βj |2 = 1. (5.25)

We can then absorb the dephasing coefficients into ρ̃jk = Fjkρjk and
σ̃kl = Flkσkl = F∗lkσkl, simplifying

E[VHT] = Tr[ρ̃σ̃O] , E[Echo] = Tr[ρ̃σ̃] , 〈O〉EV = Tr[ρ̃σ̃O]
Tr[ρ̃σ̃] . (5.26)

Comparing this result to the standard purification estimator Eq. 5.2, we
see that the ρ2 is substituted by ρ̃σ̃. The explicit expression for this
operator in the HT eigenbasis is

ρ̃σ̃ =
[
(1− ε)2 + ε(1− ε)

∑
j>0

α∗jβjF∗j0F0j

]
|E0〉 〈E0|

+
√
ε
√

1− ε
∑
j>0

[
(1− ε)αjFj0 + ε

∑
l>0

αjα
∗
l βlFjlF∗l0

]
|Ej〉 〈E0|

+
√
ε
√

1− ε
∑
j>0

[
(1− ε)β∗jFj0 + ε

∑
l>0

β∗jα
∗
l βlFjlF∗l0

]
|E0〉 〈Ej |

+ ε
∑
j,k>0

[
(1− ε)αjβ∗kFj0F∗0k + ε

∑
l>0

αjα
∗
l βlβ

∗
kFjlF∗lk

]
|Ej〉 〈Ek|

=[ρ̃σ̃]00 |E0〉 〈E0|+
∑
j>0

[ρ̃σ̃]j0 |Ej〉 〈E0|+

+
∑
j>0

[ρ̃σ̃]0j |E0〉 〈Ej |+
∑
j,k>0

[ρ̃σ̃]jk |Ej〉 〈Ek| . (5.27)

We proceed by bounding the error of 〈O〉EV with respect to the target
〈E0|O |E0〉,

error :=
∣∣∣∣Tr[Oρ̃σ̃]

Tr[ρ̃σ̃] − 〈E0|O |E0〉
∣∣∣∣

=
∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]

∣∣ · ∣∣Tr[ρ̃σ̃]
∣∣−1

. (5.28)
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In the HT eigenbasis, the relevant terms read

Tr[Oρ̃σ̃] = [ρ̃σ̃]00O00 +
∑
j>0

[ρ̃σ̃]0jOj0 +
∑
k>0

[ρ̃σ̃]k0O0k +
∑
j,k>0

[ρ̃σ̃]jkOkj ,

(5.29)

Tr[ρ̃σ̃] = [ρ̃σ̃]00 +
∑
j>0

[ρ̃σ̃]jj . (5.30)

We focus first on bounding the first factor on the right-hand side of Eq. 5.28,∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]
∣∣ =

∣∣Tr[(O −O00)ρ̃σ̃]
∣∣. (5.31)

We separate this expression through the triangle inequality,∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]
∣∣ =

=
∣∣∣∣∑
j>0

[ρ̃σ̃]0jOj0 +
∑
k>0

[ρ̃σ̃]k0O0k +
∑
j,k>0

[ρ̃σ̃]jkOkj −
∑
j>0

[ρ̃σ̃]jjO00

∣∣∣∣
≤ ‖O‖

(∣∣∣∣∑
j>0

[ρ̃σ̃]0j
∣∣∣∣+
∣∣∣∣∑
j>0

[ρ̃σ̃]j0
∣∣∣∣)+

∣∣∣∣ ∑
j,k>0

[ρ̃σ̃]jkOkj −
∑
j>0

[ρ̃σ̃]jjO00

∣∣∣∣,
(5.32)

where ‖ · ‖ is the operator norm. To bound the first term, we apply again
the triangle inequality,∣∣∣∣∑

j>0
[ρ̃σ̃]0j

∣∣∣∣ ≤ ∣∣∣∣∑
j>0

ρ̃00σ̃0j

∣∣∣∣+
∣∣∣∣ ∑
j,k>0

ρ̃0kσ̃kj

∣∣∣∣ (5.33)

and bound both resulting terms through Cauchy-Schwartz inequalities,∣∣∣∣∑
j>0

ρ̃00σ̃0j

∣∣∣∣ ≤(1− ε)3/2 ε1/2
∣∣∣∣∑
j

Fj0β∗j
∣∣∣∣

≤(1− ε)3/2 ε1/2 |~β| max
k>0
|F0k| = (1− ε)3/2 ε1/2δ; (5.34)
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∣∣∣∣ ∑
j,k>0

ρ̃0k σ̃kj

∣∣∣∣ = (1− ε)1/2 ε3/2
∣∣∣∣ ∑
j,k>0

F0kα
∗
kβkFjkβ∗j

∣∣∣∣
≤ (1− ε)1/2 ε3/2 |~β|

∑
j>0

∣∣∣∣∑
k>0
Fjkα∗kβkF0k

∣∣∣∣
≤ (1− ε)1/2 ε3/2 |~β|2 |~α| max

j,k>0
|Fjk| max

k>0
|F0k|

≤ (1− ε)1/2 ε3/2δ (5.35)

where we note that ~α and ~β are normalized by defintion, Fjk ≤ 1 and
maxk>0 |F0k| = δ. The same bound applies to the second term in the
parentheses in Eq. 5.32,

∣∣∑
j>0[ρ̃σ̃]j0

∣∣. The last term of Eq. 5.32 can be
rewritten as∑

j,k>0
[ρ̃σ̃]jkOkj −

∑
j>0

[ρ̃σ̃]jjO00 = Tr[Π> ρ̃σ̃Π>(O −O001)] (5.36)

where Π> = 1− |E0〉〈E0| is the projector on the subspace orthogonal to
|E0〉. We can then use the Von Neumann inequality to bound∣∣Tr[Π> ρ̃σ̃Π>(O −O001)]

∣∣ ≤ ‖O −O001‖ · ‖Π> ρ̃σ̃Π>‖1 (5.37)

where ‖A‖1 = Tr
√
A†A is the trace norm.

Now, by virtue of the triangle inequality, and the fact that ‖ |u〉〈v| ‖1 =
‖u‖‖v‖, for any vectors |u〉 , |v〉, we have

‖Π>ρ̃σ̃Π>‖1 ≤ε(1− ε)
∥∥∥∑
j>0

αjFj0 |Ej〉
∥∥∥∥∥∥∑

k>0
βkF0k |Ek〉

∥∥∥+

+ ε2
∑
l>0
|αl||βl|

∥∥∥∑
j>0

αjFjl |Ej〉
∥∥∥∥∥∥∑

k>0
βkFlk |Ek〉

∥∥∥
≤ε(1− ε)δ2 + ε2 (max

j,k>0
|Fjk|)2

∑
l>0
|αl||βl|

≤ε(1− ε)δ2 + ε2 (5.38)

where we used Cauchy-Schwartz in the last line.

Combining the bounds from Eqs. (5.34), (5.35) and (5.38), and using
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‖O −O001‖ ≤ 2‖O‖, we get∣∣Tr[Oρ̃σ̃]−O00 Tr[ρ̃σ̃]
∣∣ ≤

≤ 2‖O‖
[
(1− ε)3/2 ε1/2δ + 3(1− ε)1/2 ε3/2δ + ε(1− ε)δ2 + ε2

]
. (5.39)

Next, to bound the factor |Tr[ρ̃σ̃]|−1 in Eq. 5.28, we apply the reverse
triangle inequality to |Tr[ρ̃σ̃]|:

∣∣Tr[ρ̃σ̃]
∣∣ =

∣∣∣∣(1− ε)2 + 2ε(1− ε) Re
(∑
j>0

αjβ
∗
jF2

j0

)
+ ε2

∑
j,l>0

αjα
∗
l βlβ

∗
jF2

jl

∣∣∣∣
≥
∣∣(1− ε)2 − 2ε(1− ε)− ε2

∣∣ (5.40)

where we used that δ ≤ 1. For ε <
√

3/2− 1, the argument in Eq. 5.40 is
strictly positive, so we can remove the absolute value signs. The dominant
terms in the error Eq. 5.28 are then

error ∼ ‖O‖(ε1/2δ + ε2). (5.41)

We can verify that for δ → 0 we recover the error scaling with ε2, as
expected from perfect dephasing. To achieve the same scaling, it is in fact
sufficient to choose δ = ε3/2.

5.C Dephasing time for a smooth probability
distribution

In this section we motivate the choice of the rescaled bump function in
Eq. 5.13 for the distribution P (τ) used to implement dephasing by random-
time evolution (Eq. 5.8). We recall that we require P : [0, Td]→ R+ to have
support on [0, Td]. This ensures we only need to evolve for positive times
and the maximal dephasing time is Td. The performance for the dephasing
operation on the ground state is measured by δ = max∆>∆T

|F [P ](∆)|,
which is essentially a bound on the decay of the Fourier transformation of
P . As τ and ∆ are conjugate dimensionful variables, we can equivalently
study

δ = max
ω>∆TTd

|F [P̃ ](ω)| for P̃ : [0, 1]→ R+, (5.42)

where P̃ (τ∆T ) = P (τ).
To obtain the best possible asymptotic decay of the Fourier transform of

a function F [f ], we should choose f to be smooth. In fact, requiring the
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Fourier transform of f to decay as F [f ](k) . |k|−(r+1+ε) (for any choice
of ε > 0) implies that

∃Lr > 0 : ∀x
∣∣∣∣drf(x)

dxr

∣∣∣∣ =
∣∣∣∣ ∫ dk eikt krF [f ](k)︸ ︷︷ ︸

.|k|−(1+ε)

∣∣∣∣ < Lr, (5.43)

because |k|−(1+ε) is absolutely integrable away from 0 and F [f ](k) is
bounded. This implies that f and all its derivatives up to order r − 1
are Lipschitz continuous. Thus, to achieve a Fourier transform decaying
faster than any polynomial F [f ](k) = o(1/poly(k)), we have to choose
f(x) ∈ C∞ a smooth function.

One smooth function with compact support is the bump function

f(x) =
{
e−(1−x2)−1 if − 1 < x < 1,
0 otherwise,

(5.44)

we define its norm N :=
∫ 1
−1 f(x) dx ≈ 2.25. Based on this function, we

define the probability distribution

PTd(τ) = 2
TdN

f

(
2 τ
Td
− 1
)

=

 2
TdN

exp
([

4( τ
Td
− 1) τ

Td

]−1
)

if 0 < τ < Td,

0 otherwise,
(5.45)

which is normalized, smooth, and has support on [0, Td]. The Fourier
transform of this function can be estimated through the saddle point
approximation; we build on the results of Ref. 188 which provide a bound
the Fourier transform F [N f ] of the normalized f(x):

F [N f ](k) ≈ 2 Re
[√
−iπ√

2i
eik−

1
4−i
√
k

]
k−

3
4 e−

√
k. (5.46)

We construct a monotonic envelope for this oscillating function by sub-
stituting the real part for an absolute value, and we perform a change of
variables obtaining the bound

δ = max
∆>∆T

|F [PTd ](∆)| <
√

8π√
e

(Td∆T )−3/4
e−
√
Td∆T /2. (5.47)
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The validity of this bound is also verified numerically. This translates to a
statement on the dephasing time Td required to achieve a target dephasing
performance δtarget for a given gap ∆T between the ground state and the
first excited state of HT . Note that the inverse is defined in terms of the
principal branch W0 of the Lambert W function. We obtain

Td = 9
2 ∆T

W0

[
2
√

2π1/3

3 e1/6 δ
2/3
target

]
. O

(
log2(δ−1

target)∆−1
T

)
. (5.48)

Thus, Td grows linearly with ∆T and poly-logarithmically with δ−1
target.
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CHAPTER 6

A hybrid quantum algorithm to detect conical
intersections

6.1 Introduction

Conical intersections (CI) are degeneracy points in the Born-Oppenheimer
molecular structure Hamiltonians, where two potential energy surfaces
cross. Similar to Dirac cones in graphene [197], these intersections are
protected by symmetries of the Hamiltonian which guarantee that any
loop in parameter space around a conical intersection has a quantized
Berry phase [198]. CIs play an important role in photochemistry [199, 200],
as they mediate reactions such as photoisomerization and non-radiative
relaxation, which are key steps in processes such as vision [201] and pho-
tosynthesis [202]. Therefore, detecting the presence and resolving the
properties of CIs is important for computing reaction and branching rates
in photochemical reactions [203, 204]. Nevertheless, the study of such
processes requires electronic structure methods capable of accurately mod-
elling both the shape and the relative energies of the two intersecting
potential energy surfaces, a requirement that poses challenges for the cur-
rent available methods [205]. Given the need to develop novel methods for
identifying and characterizing CIs, quantum computers present themselves
as a highly promising option for this task.
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Quantum computing has long been driven by the desire to simulate
interacting physical systems, such as molecules, as a novel means of
investigating their properties [2, 70]. This is typically achieved by preparing
eigenstates of molecular Hamiltonians in quantum devices which can
natively store and process quantum states. This task would otherwise
require an exponentially-scaling classical memory. Recently, with the first
noisy and intermediate-scale quantum devices (NISQ) [18] being built, it
became increasingly important to research tailored and robust algorithms
that minimize the quantum device requirements [18]. Variational quantum
algorithms (VQA), such as the variational quantum eigensolver [19, 82]
(VQE) and its variations, caught the spotlight in this context, as they allow
to prepare and measure quantum states with circuits of relatively low depth.
The key feature of VQAs is the repeated execution of short parameterized
quantum circuits on the quantum device, from which measurement results
are sampled. These results are used to estimate a cost function, which
is then minimized by varying the parameters defining the gates of the
quantum circuit. Due to the noise introduced by sampling, a relatively
large number of circuit runs and measurements are typically needed to
estimate the cost function accurately. In chemistry, where VQEs are often
proposed as a method to resolve ground state energies to high accuracy,
the number of required samples to achieve such accuracy can become
prohibitively large [54]. Furthermore, the convergence of the cost function
to an optimum is typically only suggested heuristically, and it is proven
to be problematic in some cases that lack such heuristic structure [206].
Therefore, it is compelling to suggest VQAs that can access quantities
that are less reliant on the precision of both the optimization process and
the measurement procedure.
A promising target for VQAs is the computation of the Berry phase

ΠC , which can be used to resolve the existence of CIs. More specifically,
ΠC is defined as the geometric phase acquired by an eigenstate of a
parameterized Hamiltonian over a closed adiabatic path C in parameter
space [198]. Most importantly, it is known that in the presence of certain
symmetries, the Berry phase will be quantized to values 0 or π. This
quantization is exactly what makes the Berry phase an attractive target
for a VQAs, as it implies the final result of the computation need only
be accurate to error < π

2 . Quantum algorithms to compute Berry phases
have been already proposed, both variational [207, 208] and Hamiltonian-
evolution based [209]. Moreover, the long-known effects of Berry phase
on nuclear dynamics around a conical intersection [210–212] have been
explored recently in analog quantum simulation experiments [213–215].
Nevertheless, previous proposals did not attempt to detect CIs in realistic
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quantum chemistry problems with an efficient algorithm that can be run
on NISQ devices.
In this chapter, we propose a hybrid quantum algorithm to compute

the quantized Berry phase for ground states of a family of parameterized
real Hamiltonians. We focus on the specific application to molecular
Hamiltonians, where we can identify a conical intersection by measuring
the Berry phase along a loop in atomic coordinates space. We first review
the definition of CIs and Berry phases in Sec. 6.2. Then, we present all
the ingredients of the proposed algorithm in Sec. 6.3, which is similar
to a VQA in spirit, but it does not require full optimization; rather, the
variational parameters are updated by a single Newton-Raphson step for
each molecular geometry along a discretization of the loop. In Sec. 6.4, we
prove a convergence guarantee for the algorithm under certain assumptions
on the ansatz, by providing sufficient condition bounds on the total number
of steps and the acceptable sampling noise. Finally, we adapt our algorithm
to a specific ansatz in Sec. 6.5 and we benchmark it on a model of the
formaldimine molecule H2C––NH in Sec. 6.6. Section 6.7 presents our
conclusions, a discussion of potential application cases for our algorithm
and an outlook on possible enhancements.

The core code developed for the numerical benchmarks, which provides
a flexible implementation of an orbital-optimized variational quantum
ansatz, is made available in a GitHub repository [216].

6.2 Background
6.2.1 Conical intersections
Let us consider a molecular electronic structure Hamiltonian H(R) pa-
rameterized by the nuclear geometry R in some configuration space R. A
conical intersection is a point R× ∈ R where two potential energy sur-
faces become degenerate, leading to non-perturbatively large non-adiabatic
couplings, and thus a breakdown of the Born-Oppenheimer approxima-
tion [217, 218]. Conical intersections extend to a manifold of dimension
dim[R]− 2, and lead to the two potential energy surfaces taking the form
of cones in the remaining two directions x̂, ẑ. These two potential energy
surfaces can be described as eigenstates of the effective Hamiltonian

Heff(R) = hx[R −R×]xσx + hz[R −R×]zσz. (6.1)

The Pauli terms σx and σz form a complete basis for two-dimensional
real symmetric matrices. Thus, a single conical intersection cannot be
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lifted by any real-valued and continuous perturbation of Heff(R); such a
perturbation would only shift the value of R×. Moreover, the presence of
such an effective Hamiltonian implies that in any direction other than Rx
or Rz the energies must be degenerate.
Simulations involving conical intersections are challenging due to the

degeneracy of the two states involved, as the character of both states
needs to be considered. Active space methods are often used for organic
molecules, which involve selecting the chemical bonds that are formed or
broken in the reaction pathway as well as the most significant spectator
or correlating orbitals [219]. The situation is more complicated when
transition metals are involved because the close energetic spacing of d-
orbitals typically requires including all five d-orbitals of such a metal into
the active space. An additional complication arises if the two crossing
states correspond to different atomic configurations: a situation that is not
uncommon for the early or late d- (or f-) metals, for which configurations
with a different d- (f-) population are energetically close. In such cases,
one may need to either work with non-orthogonal orbitals [220] or add an
additional d-shell to the active space [221] to qualitatively describe the
nature of both states. For cases of practical interest in which one wants to
characterize and simulate the internal conversion processes in a complex
photo-excited system, the presence of transition metals may easily lead
to large active space requirements. These can not be met by classical
algorithms and would be highly challenging for quantum algorithms as
well.

One way to reduce the complexity of the problem is to first focus on the
presence or absence of conical intersections that connect the ground and
excited states. The measurement of the Berry phase in chemical systems
allows this: without explicitly computing the excited state surface and
non-adiabatic couplings, it should be possible to detect whether a loop in
the nuclear coordinate space encloses a conical intersection or not. In this
manner, one may alleviate the requirements for the active space selection
and orbital optimization and quickly establish the region in the potential
energy surface that contains an intersection with another surface and needs
to be scrutinized further [222]. Information about the location of conical
intersections is of interest also for ground-state dynamics; the CIs and the
Berry phase they induce influence the propagation of nuclear wave packets
on the adiabatic ground state surface and thereby affect the branching
rates and efficiency of reactions or isomerizations [223]. For both types of
applications, precise study of dynamics on ground state surfaces as well
as characterizing the efficiency of radiationless decay, it is of interest to
explore the possibilities offered by quantum algorithms.
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6.2.2 Berry phases in real Hamiltonians

The Berry phase ΠC is the geometric phase acquired by some eigenstate
|Φ(R)〉 of a system with parameterized Hamiltonian H(R) as it is adia-
batically transported around a closed loop in parameter space C ⊂ R. ΠC
can be defined as the closed line integral of the Berry connection along
the loop C

ΠC = −i
∮
C
dR · 〈Φ(R)| ∇R |Φ(R)〉 . (6.2)

The integrand must be imaginary, as

∇R 〈Φ(R)|Φ(R)〉 = 2 Re[〈Φ(R)| ∇R |Φ(R)〉] = 0, (6.3)

thus ΠC is real. In this work, we assume |Φ(R)〉 is the ground state of
H(R).
We need to parameterize the loop C = {R(t), t ∈ [0, 1]} in order to

evaluate the integral. Moreover, it is possible to multiply the ground state
|Φ(R)〉 by a t-dependent phase, resulting in a U(1)-gauge a transformation
which leaves all physical quantities invariant. We take

|Ψ(t)〉 = eiΘ(t)|Φ(R(t))〉, (6.4)

which allows us to rewrite the Berry phase as

ΠC = −i
∫ 1

0
dt〈Ψ(t)|∂t|Ψ(t)〉+

∫ 1

0
dt ∂tΘ(t). (6.5)

If there is a representation for which each Hamiltonian H(R) is real, it is
possible to choose eigenstates that have all real components. In this case,
we can choose Θ(t) such that |Ψ(t)〉 has real expansion, which implies the
first integrand is real; as ∂t〈Ψ(t)|Ψ(t)〉 = 0 this must also to be imaginary,
therefore 〈Ψ(t)|∂t|Ψ(t)〉 = 0. Under this choice, we can evaluate the Berry
phase as a boundary term

ΠC =
∫ 1

0
dt ∂tΘ(t) = Θ(1)−Θ(0) = arg

[
〈Ψ(0)|Ψ(1)〉

]
, (6.6)

where the last equality is obtained using the definition in Eq. (6.4). Fur-
thermore, |Ψ(1)〉 and |Ψ(0)〉 are real by construction, which implies ΠC
can only take two values (modulo 2π): 0 or π.

The quantization of ΠC implies that it is invariant for topological defor-
mations of C. If C can be contracted to a point, then ΠC = 0. A non-trivial
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ΠC = π can only occur when C encircles a degeneracy. One can check
with the effective Hamiltonian Eq. (6.1) that any loop encircling R× has
a Berry phase of π. This extends by continuity to any region of R around
the CI, as long as C does not enclose a second degeneracy point. Thus, we
have a one-to-one correspondence between CIs and the nontrivial Berry
phase.

6.2.3 Measuring Berry phase with a variational
wavefunction

There have been various proposals in the literature for computing Berry
phases using a gate-based quantum device [207, 209]. In this work, we
propose to use a variational algorithm to track |Ψ(t)〉 when parallel-
transported around the loop C, in the spirit of the variational adiabatic
method described in Ref. [54, 224]. We approximate

|Ψ(t)〉 ≈ |ψ(θ∗t )〉 := U(θ∗t ) |ψ0〉 , (6.7)

where |ψ(θ)〉 is a variational ansatz state, and θ∗t continuously tracks a
local minimum [∇θE(t,θ∗t ) = 0] of the variational energy

E(t,θ) = 〈ψ(θ)|H(R(t))|ψ(θ)〉. (6.8)

The angle θ∗t is well-defined as long as the Hessian ∇2
θE(t,θ) remains

positive definite in a neighbourhood of θ∗t for all t, ensuring the θ∗t is
continuous in t and non-degenerate. Although our treatment naturally ex-
tends to any variational ansatz that continuously parametrizes normalized
states |ψ(θ)〉 (including classical ansätze like e.g. matrix-product states),
we assume the operator U(θ) is implemented by a parameterized quantum
circuit (PQC) acting on an initial state |ψ0〉; this implies that information
about the state needs to be extracted from a quantum device through
sampling.

6.3 Methods
In this section, we detail all the ingredients needed to implement our
hybrid algorithm to resolve quantized Berry phases with a variational
quantum ansatz. Initially, in Sec. 6.3.1, we discuss how selecting an ansatz
that preserves the Hamiltonian’s symmetries establishes a natural gauge,
leading to the reduction of the Berry phase integral to the boundary term
Eq. (6.6). In Sec. 6.3.2, we introduce our parameter update approach,
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which employs single Newton-Raphson steps to trace the variational state
along a discretization of the loop C. In Sec. 6.3.3 we explain how to employ
a basic regularisation technique to handle the potential non-convexity of
the cost function and in 6.3.4 we explain how to measure the final overlap
using an ancilla-free Hadamard test. Finally, in Sec. 6.3.5, we provide a
full overview of the algorithm.

6.3.1 Fixing the gauge with a real ansatz

As discussed in Sec. 6.2, the quantization of the Berry phase is granted
by the symmetries of the Hamiltonian family H(R), which ensure the
existence of a basis for which each H(R) has a real representation. When
it comes to electronic structure Hamiltonians, it is always possible to find a
real representation for time-reversal symmetric Hamiltonians with integer
total spin [225]. Moreover, real noninteger-spin Hamiltonians are also
found throughout nonrelativistic quantum chemistry.
As our variational ansatz state [in Eq. (6.7)] is defined by a family of

unitary operators, it inherits a natural gauge from U(θ). In particular, if
U(θ) is written as a product of real rotations in the basis in which H(R)
is real, then we force |ψ(θ)〉 to have real components as well, which fixes a
global U(1) phase. This can be obtained by constructing the PQC with a
sequence of parameterized unitaries such as

Uj(θj) = eAjθj (6.9)

generated by antisymmetric operators Aj that are real in the chosen repre-
sentation. (We choose dimensional units such that ‖Aj‖ = 1 without loss of
generality, see Appendix 6.A). Examples from electronic structure include
real fermionic (de-)excitations, such as unitary singles (Apq = â†pâq − â†qâp)
and doubles (Apqrs = â†pâqâ

†
râs − â†qâpâ†sâr). Many PQC ansätze com-

monly proposed for quantum chemistry, such as unitary coupled cluster
(UCC) [19, 226, 227] and quantum-number preserving gate fabrics (NPF)
[57], are composed from these elementary rotations. Formally, our ansatz
state can then be defined as

|ψ(θ)〉 =
np∏
j=1

Unp−j(θnp−j) |ψ0〉 , (6.10)

where Uk are the aforementioned parameterized rotations applied in circuit-
composition order.
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In this case, the Berry phase can be estimated by

ΠC = arg
[
〈ψ(θ∗t=0)|ψ(θ∗t=1)〉

]
, (6.11)

which corresponds to the boundary term in Eq. (6.6). This implies that,
in the case of a non-trivial Berry phase, the path traced by θ∗t will not
close up on itself (i.e. θ∗1 6= θ∗0), highlighting an important difference
between the ansatz parameters θ, which fix the gauge of |ψ(θ)〉, and the
Hamiltonian parameters R, which define a ground state |Φ(R)〉 up to
a U(1) gauge freedom. However, the change in optimal parameters is
insufficient to prove the existence of a nontrivial Berry phase; we must
both successfully track the minimum θ∗t as t traces from 0 to 1, and
estimate the final overlap 〈ψ(θ∗0)|ψ(θ∗1)〉. While the argument (sign) of the
overlap will yield the Berry phase, its absolute value is a proxy of success
as it certifies the initial and final states are physically equivalent.

6.3.2 Avoiding full optimization via Newton-Raphson
steps

As mentioned above, the Berry phase ΠC is a discrete quantity, and
therefore we only need to estimate it to accuracy < π

2 . In Appendix 6.A,
we show that this implies that we can accept an error on the estimate θ̃1
of the final optimum θ∗1 bounded in 1-norm by ‖θ̃1 − θ∗1‖1 < 1. Thus, we
are not required to exactly track |ψ(θ∗t )〉 and as a result, the variational
energy Eq. (6.8) does not need to be fully re-optimized at every time-step
t. Instead, it suffices to keep the estimate θ̃t of the optimal parameters
within the basis of convergence of the true minimum θ∗t .

To achieve this, we still need an initial optimum as an input, which
is obtained by running one full optimization. If possible, the initial
point is selected such that optimization is simplest. Then, we propose
to use a single step of the Newton-Raphson algorithm at points t ∈
{∆t, 2 ∆t, . . . , 1−∆t, 1}.
The Newton-Raphson (NR) algorithm determines the update of the

estimate of the minimum θ̃ through the gradient G(t,θ) := ∇θE(t,θ)
and Hessian H(t,θ) := ∇2

θE(t,θ) of the variational energy Eq. (6.8).
The derivatives can be computed using either finite-difference methods or
parameter-shift rules [228]; either method requires sampling the variational
energy E(t,θ) at a number of different parameter points θ. Given the
estimate θ̃t of the optimum at point t as an initial guess, the NR step with
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cost E(t+ ∆t,θ) prescribes the update θ̃t+∆t = θ̃t + dθNRt,∆t, with

dθNRt,∆t = −H−1(t+ ∆t, θ̃t)G(t+ ∆t, θ̃t). (6.12)

The Newton-Raphson method is well-known to have a finite-sized basin
of quadratic convergence, as long as the cost function is strongly convex
at the optimum,

m(θ∗) := min
v

vTH(θ∗)v
vTv > 0. (6.13)

In other words, the lowest eigenvalue m of the Hessian of the cost function
(which we call convexity) at the optimum θ∗ needs to be positive. Details
on the convergence properties of NR are given in App. 6.D. In section 6.4,
we show that this quadratic convergence is fast enough to keep track of
the minimum with only a single step for each t-point.

6.3.3 Regularization and backtracking
To ensure that we successfully track the minimum of the cost function
θ∗t , the estimates θ̃t need to remain in the strongly convex region of
optimization space. The existence of such strongly convex region is not
always guaranteed since it depends on the ansatz. A common cause of
failure of this requirement is exemplified for ansätze with (local) over-
parametrization of the state manifold. In fact, if the ansatz has redundant
parameters the Hessian of the cost function Eq. (6.8) will always be singular
(m = 0). Then, arbitrarily small perturbations of the cost function can
then cause m < 0. When this occurs, the inversion of the Hessian needed
for the Newton-Raphson step is ill-defined.

The most direct approach to solve this issue is to select an ansatz with
no degeneracies, facilitating a strongly convex cost function at its minima.
Nevertheless, this is only possible for very simple problems, and even in
this case, quasi-degeneracies can make the convergence region extremely
small. Since this is a well-known problem, many alternative solutions have
been proposed in the literature. In this subsection, we will explore and
implement two of them – back-tracking and regularization.
Back-tracking — Small positive eigenvalues of the Hessian can cause the

standard Newton-Raphson step to overshoot along the relative parameter
eigenmodes. This effectively reduces the size of the neighborhood of the
minimum θ∗ in which quadratic convergence is granted (see Appendix 6.D).
Since for positive convexity the direction provided by the Newton-Raphson
step is guaranteed to be a descent direction, we can mitigate this overshoot
by implementing line-search of the minimum on the segment defined by
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the NR step. In the common variant of back-tracking, the Newton step
is iteratively damped by a constant β ∈ (0, 1). At each iteration, the
cost function in the new point is measured, until the cost function is
reduced enough (the detailed condition is given in Algorithm 6.1). While
some additional evaluations of the cost function are needed, the (more
expensive) gradient and Hessian are only calculated once. Due to the
repeated evaluation, one needs to consider extending line-search methods
to cost functions evaluated with sampling noise.
Regularization — For realistic ansätze and Hamiltonians, it is difficult

to avoid (quasi-) redundancies in some regions of parameter space. In
this case, the cost function might not be strongly convex around the
minimum, or the convexity might be too small to ensure a sufficiently-
large convergence region. Furthermore, even for an ideally-convex cost
function, noisy evaluation on a quantum device might result in a distorted
Hessian with non-positive eigenvalues. To mitigate this issue, we can use a
regularization technique that penalizes the change in parameters along the
quasi-redundant directions. We propose to use augmentation of the Hessian
to regularize the NR step, obtaining a so-called quasi-Newton optimizer.
Hessian augmentation is a common practice in quantum chemistry methods
that feature orbital optimization, such as self-consistent field methods
[219]. If the smallest eigenvalue of the Hessian λ0 is smaller than a positive
threshold convexity mthr, we construct the augmented Hessian as follows

B = H+ ν1, (6.14)

where we add a constant ν > |λ0|. The augmented Hessian is then positive,
and we can realize the NR update as

dθNR = −βB−1G. (6.15)

Here, β is the damping constant from back-tracking line search and G
is the gradient as in eq. (6.12). Regularization and back-tracking are
typically used in tandem, as quadratic convergence is harder to guarantee
when using regularization. The choice of ν is non-trivial: we want it to
be large enough to suppress parameter changes along quasi-redundant
directions, but we need to avoid exaggerating the damping along relevant
directions. Common solutions include choosing ν = ρ|λ0|+ µ with fixed
positive constants ρ and µ, or using a trust-region method [229, 230] where
the Newton step is constrained to lie within a ball of some radius h (such
that ||dθNR||2 ≤ h).

The augmented Hessian method does not require further evaluations of
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the cost function, although the damping of the parameter updates might
imply that more t-steps are needed to successfully resolve the Berry phase.

Algorithm 6.1: NR step subroutine with regularization and back-
tracking
Input: Initial estimated parameters θ̃τ

Estimated Hessian H̃
Estimated gradient G̃
Cost function E(θ) given by eq. (6.8)
Convexity requirement mthr > 0
Positive constants µ, ρ, α, β

Output: Updated estimated parameters θ̃τ + dθ.

1 λ0 ← lowest eigenvalue of H̃;
// Regularization

2 if λ0 < m then
3 B ← H̃+ (ρ|λ0|+ µ)1;
4 dθ ← B−1G̃
5 else
6 dθ ← H̃−1G̃

// Backtracking
7 while E(θ̃τ + dθ) > E(θ̃τ ) + α(G̃ · dθ) do
8 dθ ← βdθ

9 return θ̃τ + dθ

6.3.4 Measuring the final overlap

For a real ansatz, the overlap of the tracked states at t = 0 and t = 1 must
be real and it can be rewritten as〈

ψ(θ̃0)
∣∣ψ(θ̃1)

〉
= Re

[
〈0|U†(θ̃0)U(θ̃1) |0〉

]
. (6.16)
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This quantity can readily be measured by a Hadamard test, implemented
as

X

/ .

|0〉 H

|ψ0〉 U†(θ̃0) U(θ̃1)

The required number of samples is small, as we only need to resolve
whether the sign of the overlap is +1 (trivial ΠC = 0) or −1 (nontrivial
ΠC = π).

Implementing the circuit above requires to realize controlled-U(θ), which
might increase significantly the depth of the compiled quantum circuit and
make the implementation unfeasible on near-term hardware. However, this
requirement can be bypassed by using the control-free echo verification
technique [156, 196], in place of the standard Hadamard test, to sample
Eq. (6.16). This technique requires access to a reference state |ψref〉
orthogonal to |ψ0〉, which should acquire a known eigenphase ϕ under the
action of the PQC, U(θ) |ψref〉 = eiϕ |ψref〉. As most of the PQC ansätze
used for electronic structure states preserve the total number of electrons
(including UCC and NPF), the fully unoccupied state |0...0〉 can be used as
reference. Control-free echo verification circuits only require implementing
the non-controlled U(θ), and furthermore provide built-in error mitigation
power.

6.3.5 Overview of the algorithm

We are now ready to formalize the proposed algorithm for resolving Berry
phases, Algorithm 6.2. The formalization we present here will allow us
to bound the number of steps and the sampling cost in the following
Section 6.4. Given a path C and a number of steps 1/∆t, the algorithm
attempts to calculate ΠC yielding either ΠC = 0, ΠC = π, or a FAIL
state. Again, in Section 6.4 we will bound the probability of the FAIL
state occurring. Additional features that extend the practicality of the
algorithm and mitigate the failure cases are presented in Sec. 6.5 and later
implemented in Sec. 6.6.

If the algorithm fails, it can be re-run with a larger number of steps N
and thus a smaller step size ∆t. A smaller step size decreases additive NR
error bound (the error per step scales as ∆t2, the total bound thus scales
as ∆t).
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Algorithm 6.2: Resolve quantized Berry phase
Input: Family of Hamiltonians H(R), R ∈ R

Real ansatz PQC |ψ(θ)〉
Set of initial optimal θ∗0
Closed path C ∈ R, R(t) : [0, 1] 7→ C
Number of steps N to discretize C
Precision requirements σG > 0 and σH > 0
Convexity requirement mthr > 0
Regularization reg ∈ {False,True}
Final fidelity requirement F ∈ (0, 1)

Output: ΠC = 0 or ΠC = π or FAIL.

1 ∆t = 1/N ;
2 θ̃0 = θ∗0 ;
3 for τ ∈ {0,∆t, 2 ∆t, ..., 1− ∆t} do
4 E(t, θ)← define cost function as in Eq. (6.8);
5 G̃j ← sample the gradient to precision σG
6

[
G̃j = ∂E

∂θj
(τ + ∆t, θ̃τ )

]
;

7 H̃jk ← sample the Hessian to precision σH
8

[
Hjk = ∂E

∂θj∂θk
(τ + ∆t, θ̃τ )

]
;

9 if reg = False then
10 λ0 ← lowest eigenvalue of H̃;
11 if λ0 < mthr then return FAIL and exit;
12 dθNR ← −H̃−1G̃ (see Eq. (6.12)); θ̃τ+∆t ← θ̃τ + dθNR;
13 if reg = True then
14 θ̃τ+∆t ← Subroutine 1 (θ̃τ , G̃, H̃);

15 f ← final overlap as in Eq. (6.16) to precision F ;
16 if f2 < F then return FAIL and exit;
17 return ΠC = arg{f}
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6.4 Error analysis and bounding
In this section, we find analytic upper bounds on the cost of estimating
a quantized Berry phase ΠC on a fixed curve C using Algorithm 6.2. To
simplify the treatment regularization and back-tracking are not considered:
instead, we require each estimate θ̃j∆t at the j-th step to be within the
region of quadratic convergence of the cost function at the next t-step
E((j+1)∆t,θ). We prove that this translates to a guarantee of convergence
of the algorithm, under three conditions:

1. At the local minimum θ∗t , where ψ(θ∗t ) approximates the ground
state, the cost function E(t,θ) is strongly convex [as described in
Eq. (6.13)];

2. The number of discretization steps N is sufficiently large;

3. The sampling noise on each of the Hessian and gradient elements
(σH and σG respectively) is sufficiently small.

The first point entails a requirement on the cost function, defined by
the family of Hamiltonians H(R) and the choice of ansatz |ψ(θ)〉. This
requirement is not satisfied if the ansatz state is defined with redundant
parameters. We contend that, while strong convexity is a significant
assumption, incorporating regularization (or one of the other techniques
suggested in the outlook) can alleviate the necessity for such an assumption
in practical applications. Our proof provides upper bounds on N and lower
bounds on σH and σG , which suffice to grant convergence. However, these
are not to be considered practical prescriptions, as we do not believe them
to be optimal; rather they show which are the relevant factors playing a
role in the convergence of the algorithm. As the sampled gradient and
Hessian are random variables, the guarantee of convergence for bounded
error is to be understood in a probabilistic sense.

We first clarify natural assumptions and notation used in the calculation
of the basin of convergence of Newton’s method. We require the cost
function E(t,θ) to be twice-differentiable by θ, for all t, in a region around
the true minima θ∗t . We require the Hessian to be Lipschitz continuous
across this region,

‖H(t,θ)−H(t,θ + dθ)‖ < L‖dθ‖. (6.17)

(Here, the Lipschitz constant L can be considered a bound ‖T ‖ ≤ L on
the norm of the tensor of third derivatives T (t,θ) = ∇θ∇θ∇θE(t,θ).) We
also require that the gradient of the t-derivative Ġ = ∇θ dEdt is bounded
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by Ġmax in 2-norm. These regularity conditions are satisfied for the PQC
ansätze we consider in Sec. 6.5, and in App. 6.B we argue for bounds on
L and Ġmax. The strong convexity assumption described in the previous
paragraph entails a constant lower bound mthr on the smallest eigenvalue
of the Hessian H(t,θ∗t ) at the minimizer θ∗t for all t.

6.4.1 Bounding the NR error

We will first calculate a lower bound on ∆t that ensures the error δθ̃t = θ̃t−
θ∗t is bounded by a constant for all values of t. (as shown in Appendix 6.A,
a bound on ‖δθ̃1‖1 is sufficient to ensure ΠC can be accurately resolved.)
In this calculation, we will allow for an additive error σθ on θ̃t due to
sampling noise; we will simultaneously calculate an upper bound on σθ.
We sketch the calculation here and defer details to App. 6.D.

Firstly, it can be shown (Theorem 6.1 in Appendix 6.D) that the Newton-
Raphson step Eq. (6.12) with cost function E(t + ∆t,θ) is guaranteed
to converge quadratically [231] to the minimizer θ∗t+∆t as long as the
initial guess θ̃t is within a ball centred in the minimizer of radius mthr

4L .
Quadratic convergence means that the distance of the updated guess from
the minimizer will scale as the square of the distance of the initial guess
from the minimizer,

‖δθ̃t+∆t‖ ≤
L

mthr
‖θ̃t − θ∗t+∆t‖2. (6.18)

The right-hand side of this equation can be bounded through the triangle
inequality as

‖θ̃t − θ∗t ‖ ≤ ‖δθ̃t‖+ ‖θ∗t − θ∗t+∆t‖. (6.19)

We can bound the second term in this equation by taking the total t-
derivative of the optimality condition G(t,θ∗t ) = 0, yielding

‖θ∗t+∆t − θ∗t ‖ ≤ m−1
thrĠmax∆t. (6.20)

If at step t we are within the radius given by Theorem 6.1, the NR step
will quadratically converge, suppressing also the error from the previous
step, and yielding ‖δθ̃t‖ ≤ m2

thr
16L2 .

To account for sampling noise effect, we then consider a small additive
error σθ to θ̃t. Maximising this allowed sampling noise at each step (as
we will see, this becomes the bottleneck in our method) then yields the
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two bounds
σθ ≤

√
2− 1
4

mthr

L
, ∆t ≤ m2

thr
8LĠmax

. (6.21)

When both bounds are satisfied, we are guaranteed single steps of Newton’s
method will maintain convergence around the path C.

6.4.2 Bounding the sampling noise
We now translate the bound on σθ to bounds on the variance of estimates
of each element of the gradient and Hessian (σ2

G and σ2
H respectively).

This proceeds by simple propagation of variance through Eq. (6.12). We
find

σ2
θ := Var[dθNRt,∆t] ≤ ‖H−1‖2E

[
‖δG‖2

]
+ (6.22)

+‖H−1‖2E
[
‖δH‖2

]
‖dθNRt,∆t‖2,

where δG and δH are the random variables representing the errors on
gradient and Hessian. (a more detailed calculation is given in App. 6.E.)
Assuming θ has np elements, each element of the gradient is i.i.d. with
variance σ2

G , we get
E
[
‖δG‖2

]
= np σ

2
G . (6.23)

As δH is a np × np real symmetric matrix, assuming its elements are
i.i.d. with variance σ2

H, we can invoke Wigner’s semicircle law [232] to
approximate its norm by √np σH, thus

E
[
‖δH‖2

]
≈ np σ2

H. (6.24)

Combining these with Eq. (6.22), and requiring the resulting variance to
be small compared to the square allowed additive error σ2

θ we obtain the
bound

σ2
G + σ2

H‖dθNRt,∆t‖2 �
3− 2

√
2

16
m4

thr
npL2 . (6.25)

We can then bound the norm of the NR update as ‖dθNRt,∆t‖ ≤ m−1
thr‖G‖.

Splitting the error budget in half we obtain.

σ2
G �

3− 2
√

2
32

m4
thr

npL2 (6.26)

σ2
H �

3− 2
√

2
32

m6
thr

npL2‖G‖2 . (6.27)
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Note that these bounds are not tight. For instance, by applying Cauchy-
Schwartz inequality to bound ‖H−1 · G‖ ≤ ‖H−1‖‖G‖, we overlook the
fact that the gradient will change more slowly along a lower-eigenvalue
eigenmode of the Hessian. We believe further work might allow to define
tighter bounds.

6.4.3 Scaling of the total cost
To give an estimate on how many measurements we need to sample gradient
and Hessian to sufficient precision, we need to recast the quantities in
Eq. (6.27) (the dominant term of the sampling variance) in terms of
parameters of the problem. If we use an ansatz without redundancies
(or if we can get rid of redundancies through e.g. regularization), and
assuming we approximate the ground state well enough, the convexity
mthr will be larger than the ground state gap ∆, as every parameterized
rotation in the PQC ansatz will introduce a state orthogonal to the
ground state. The norm of the gradient and the Lipschitz constant can
be bound proportionally to their max norm, as shown in Appendix 6.B,
thus ‖G‖ ≤ √np‖H‖, ‖Ġ‖ ≤

√
np‖Ḣ‖ and L ≤ n

3/2
p ‖H‖ (where ‖H‖ is

the spectral norm of the Hamiltonian). The number of measurements
to sample the Hessian to precision Eq. (6.27) are proportional to the
inverse of the bound, with proportionality constant MH indicating the
number of shots required to sample a single element of the Hessian to
unit variance (this depends on details such as the decomposition taken to
measure the Hamiltonian, and the specifics of the derivative estimation
method). Multiplying this by the number of steps 1

dt [Eq. (6.21)] gives us
the total number of shots required for convergence

Mtot = 103npL
3‖G‖2Ġmax

∆8 MH (6.28)

< 103n
4
p‖H‖7‖Ḣ‖

∆8 MH. (6.29)

6.5 Adapting to an orbital-optimized PQC
ansatz

To achieve a good representation of the ground state character while
minimizing depth and number of evaluations of quantum circuits, we
employ a hybrid ansatz composed of classical orbital rotations and a
parameterized quantum circuit (PQC) to represent correlations within an
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active space. The concept of an orbital-optimized variational quantum
eigensolver (OO-VQE) is explored in [233, 234] In this section, we introduce
the construction of the OO-PQC ansatz and discuss its specific use in our
algorithm, where the orbitals need to continuously track a changing active
space depending on the nuclear geometry.

6.5.1 An OO-PQC ansatz with geometric continuity
To represent the electronic structure state, we start by choosing an atomic
orbital basis, i.e. a discretization of space defined by a set of N non-
orthogonal atomic orbitals χµ(R,x) (functions of the electronic coordinate
x ∈ R3, where we make explicit the parametric dependence on the nuclear
coordinates R); these orbitals define the overlap matrix

Sµν(R) =(χµ(R)|χν(R)) (6.30)

:=
∫

R3
χ∗µ(R,x)χν(R,x) d3x. (6.31)

The atomic orbitals (AOs), along with the overlap matrix, depend on the
geometry of the molecule specified by the nuclear coordinates R. (For the
sake of simplicity, we limit to considering real AOs.) From these, we could
define a set of parameterized orthonormal molecular orbitals (MO)

φp(R, CAO) =
∑
µ

χµ(R)CAO
µp , (6.32)

which would allow for the definition of a parameterized active space. The
downside of this parametrization is that, to ensure MO orthonormality,
we need CAO to satisfy the constraint

CAO†S(R)CAO = 1, (6.33)

which depends nontrivially from R. This implies that we cannot trivially
use the same CAO for different geometries R.

In order to address this problem, we have opted to use orthonormalized
atomic orbitals (OAO) that are derived from the AOs through symmetric
Löwdin orthogonalization [235] as reference in the definition of parame-
terized MOs. The OAOs are defined as φOAOp (R) =

∑
µ χµ(R)S−1/2

µp (R).
Building on these, we can define the MOs as

φq(R, C) =
∑
µ,p

χµ(R)S−1/2
µp (R)Cpq, (6.34)
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where C = S1/2(R) · CAO. The orthonormality constraint Eq. (6.33) then
reduces to requiring C to be orthogonal, and it is independent on R.
In summary, Eq. (6.34) defines a set of orthonormal molecular orbitals
parameterized by C, well-defined and continuous for changing R.

To start up our algorithm, the matrix CAO can be initialized by a Hartree-
Fock (or any other molecular coefficient matrix, e.g. coming from a small
CASSCF calculation) at some initial geometry R(0). From this we recover
C = S1/2(R(0)) · CAO, which is then treated as a variational parameter
of the ansatz. Using the parameterized MO Eq. (6.34) we construct the
electronic structure Hamiltonian H(R,C) in the (parameterized) molecular
basis.

Based on the initial Hartree-Fock orbital energies, we split the N orbitals
into a core set with NO doubly-occupied orbitals, an active set with NA
orbitals, and a virtual set with NV empty orbitals. Although the split
of the orbital indices remains constant throughout the algorithm, the
orbitals themselves continuously change through their dependence on R
and C. The correlations are treated only within an active space of ηA
electrons in NA orbitals. Tracing out the core and virtual orbitals yields
the active-space Hamiltonian HA(R, C).
The correlated active-space state |ψ(θ)〉 is represented on a quantum

device, using a PQC ansatz of the form Eq. (6.10). The cost function then
becomes

E(R, C,θ) = 〈ψ(θ)|HA(R, C) |ψ(θ)〉 , (6.35)

and it can be evaluated by sampling the 1- and 2-electron reduced den-
sity matrix (RDM) of the state [67]. (Other efficient sampling schemes,
e.g. based on double factorization [73, 236], can be used.)

6.5.2 Measuring boundary terms with the OO-PQC
ansatz

When evaluating the final overlap [Eq. (6.16)] with an orbital-optimized
ansatz, we have to consider that the states |ψ(θ0)〉 and |ψ(θ1)〉 are defined
on different active space orbitals, determined by the MO matrices C0
and C1 respectively. The transformation between the two sets of orbitals,
φ(R, C1) = φ(R, C0) · C0→1, is represented by the orthogonal matrix

C0→1 = C†0C1. (6.36)

If the algorithms successfully tracked the lowest-energy active space state
of the system, the Hilbert spaces spanned by the active orbitals defined
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by C0 and C1 should match. (The same is true for the core space and the
virtual space.) This implies the matrix C0→1 will have block structure,
with [C0→1]pq 6= 0 only if p, q are both in the same set of orbitals (core,
active or virtual). The orbital rotations within the core (virtual) subspace
will not generate any phase on the state of the system, as all orbitals are
doubly-occupied (doubly-unoccupied). The orbital rotation within the
active space can then be translated to a unitary transformation on the
state by a Bogoliubov transformation

G0→1 = exp
{ ∑
{p,q}∈AS

[log(C0→1)]pqc†pcq
}
, (6.37)

with c†p, cp fermionic creation and annihilation operators on the p orbital.
The final overlap

Re
[
〈0|U†(θ̃0)G0→1U(θ̃1) |0〉

]
=: ωC (6.38)

can then be sampled with a Hadamard test, given an quantum circuit
implementing the (eventually controlled) operation G0→1. Under Jordan-
Wigner encoding, a quantum circuit for G0→1 can be implemented as a
fabric of parameterized fermionic swap gates of depth NA following a QR
decomposition of the orbital rotation generator [log(C0→1)]pq, also known
as a givens rotation fabric [103]. These gates preserve the zero-electrons ref-
erence state, allowing to employ the ancilla-free echo verification technique
mentioned in section 6.3.4 to measure the final overlap.

6.5.3 Newton-Raphson updates of the OO-PQC ansatz
The proposed OO ansatz has two sets of parameters, C and θ. As the
MO matrix C is subject to the constraint Eq. (6.33), its elements cannot
be freely updated with NR. Instead, for each NR update with initial
MO matrix C, we reparametrize the MOs with a unitary transformation:
C ← Ce−κ, where κ is any antisymmetric matrix. The derivatives of
the energy with respect to any element κpq can be evaluated analytically
(see Appendix 6.C). Furthermore, under this parametrization it can be
shown that κpq where p, q are both core indices or both virtual indices
are redundant [219] in the definition of the active space orbitals; these
N2

O + N2
V parameters are set to zero without reducing the expressivity

of the ansatz. We call the unraveled set of remaining parameters κ.
To implement the Newton-Raphson step, the gradient and Hessian with
respect to the combined set of parameters (θ,κ) is computed. In this
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manner the gradient splits into two components, and the Hessian into
three components

∇(θ,κ)E = (∇θE,∇κE) (6.39)

∇2
(θ,κ)E =

[
∇2
θE ∇κ∇θE

(∇κ∇θE)ᵀ ∇2
κE

]
. (6.40)

The PQC parameter derivatives ∇θE and ∇2
θE can be evaluated through

parameter-shift rule [228, 237] or finite difference, by sampling on the
quantum device. The derivatives with respect to the OO parameters ∇κE
and ∇2

κE are linear functions of the 2-electron RDM, whose coefficients
can be computed analytically [219]. The remaining component, the mixed
Hessian ∇κ∇θE can be similarly evaluated as a linear function of θ-
derivatives of the RDM; for this, we can use the same data sampled
from the quantum device to evaluate ∇θE. We detail the procedure of
estimating these Hessian components in App. 6.C. Thus, evaluating the
derivatives with respect to the OO parameters does not require extra
sampling on the quantum device.

6.6 Numerical results
In this section, we demonstrate the application of our method to a small
model system: the formaldimine molecule H2C––NH, an established model
in the context of quantum algorithms for excited states in [233, 234, 238].
This molecule is known to have a conical intersection between the singlet
ground state and first excited state potential energy surfaces [239]. This CI
plays an important role in the photoisomerization process of formaldimine,
which in turn can be considered a minimal model for the photoisomerization
of the rhodopsin protonated Schiff-base (a key step in the visual cycle
process [240, 241]). We consider geometries obtained from the equilibrium
configuration by varying the direction of the N–H bond, defined by the
bending angle α and the dihedral angle φ (see Fig. 6.1d). Varying these
angles defines the considered plane in nuclear configuration space R. First,
we consider a minimal model of formaldimine (within the minimal basis
and a small active space), on which we can test the properties of the
algorithm 6.2. Then, we investigate the effects of sampling noise on these
results. Finally, we study a more complex model of the same molecule
(with a larger basis set and active space), and show that we can achieve
similar results by employing regularization and backtracking to deal with
the degeneracies of the ansatz manifold.
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6.6.1 Numerical simulation details
For our simulations, we use the PennyLane [171] package with the Py-
Torch backend to construct the hybrid quantum-classical cost function
of Eq. (6.35) supporting automatic differentiation (AD) with respect to
the PQC parameters. To achieve this, we implement the transformation
of the one- and two-body AO basis integrals to the parameterized MO
basis [Eq. (6.34)] with AD support. The transformed integrals are pro-
jected onto the active space and contracted with the active space one- and
two-electron RDM. The RDM elements and their derivatives with respect
to the PQC parameters are obtained using PennyLane and its built-in
AD scheme based on the parameter shift rule. In summary, gradients
and Hessians of the cost function with respect to the PQC parameters
are obtained using AD, the orbital gradient and Hessian components are
estimated analytically (see Appendix 6.C), and the off-diagonal block of
the composite Hessian [Eq. (6.40)] is retrieved by automatic differentiation
of the analytical orbital gradient. We use PySCF [242] to generate the
molecular integrals (i.e. the full space one- and two-electron integrals and
overlap matrices) in the atomic orbital basis.

The core code developed for this project is made available as a python
package in the GitHub repository [216]. This code provides a flexible
implementation of the orbital-optimized PQC ansatz, which can find many
applications in VQAs for chemistry. A tutorial Jupyter notebook showcas-
ing a calculation of Berry phase in the minimal model of Formaldimine is
provided in the examples folder in the repository.

6.6.2 Minimal model with an degeneracy-free ansatz
We first demonstrate the application of our algorithm to a minimal model
of formaldimine, for which we can approximate the ground state with a
simple ansatz with no degeneracies. The molecule is described in a minimal
STO-3G basis-set, and we select an active space of ηA = 2 electrons in
NA = 2 spatial orbitals [i.e. CAS(2,2)]. As the orbital optimization already
allows (spin-adapted) single excitations within the active space, the only
parameterized gate we can include in our PQC ansatz is the double-
excitation U(θ) = eθ(c

†
0c
†
1c2c3−c†2c

†
3c0c1); this corresponds to the unitary

coupled-cluster doubles [UCC(S)D] ansatz, where the singles (S) are not
explicitly included because they would be redundant with the orbital
optimization. This is enough to describe exactly any active space state
compatible with the symmetries of the model, without over-parametrizing
the ansatz state.
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Figure 6.1: (a) Three loops in the nuclear configuration space of
formaldimine; C1 (green), C× (red) and C2 (blue). C× encircles a CI,
resulting in a non-trivial Berry phase. In this representation, the loops are
discretized by N = 25 points. The color plot indicates the energy gap at
the full configuration interaction (FCI) level. (b) Energy and (c) change
in PQC parameter around the three loops, with the same color coding as
in (a) and the same N = 25. These results refer to a (2,2) active space, and
a minimal (STO-3G) basis set description of Formaldimine, with a OO-
UCCD ansatz that has a single θ parametrizing the only double excitation.
The continuous lines show the true optimum θ∗t and the relative energy
(obtained by full optimization), while the markers show the progress of the
estimate θ̃t from Algorithm 6.2, in absence of sampling noise. The Hessian
stays positive throughout the path, no regularization is needed. (e) Final
overlap computed by Algorithm 6.2 for the red loop containing a CI, for a
varying number of total discretization points N . For N < 9, the Hessian is
not always positive and regularization is needed to invert the Hessian, but
no backtracking is used. (d) Schematic representation of Formaldimine,
indicating the parameters used to define the nuclear geometries in this
work.

In Fig. 6.1 we demonstrate the application of our algorithm to this
model. The minimal basis set is small enough that we can run a full
configuration interaction (FCI) calculation to exactly resolve the ground
and first excited state energies E0(R) and E1(R). Observing the gap
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E1(R)− E0(R) (portrayed in Fig. 6.1a), we can determine the location
of the conical intersection φ× = 90°, α× ≈ 132°. We then define three
loops in the configuration space R, one loop C× containing the CI and
two “trivial” loops C1, C2. These loops are centered around φ = 90° and
α = 110° (C1), α = 130° (C×) and α = 150° (C2), and all have a radius
of 10°. Fig. 6.1c shows the progress of the estimate θ̃t (shifted by θ̃0) of
the optimal PQC parameter θ∗t throughout the N = 25 single-NR-update
t-steps. Note that, while we only plot the single PQC parameter relative
to the parameterized double excitation, the algorithm updates the MO
coefficients C̃t as well. We observe that θ̃1 = θ̃0 for the trivial loops C1, C2,
while θ̃1 6= θ̃0 for the loop C× containing the CI. This is an indication of the
effect of the Berry phase, but not the result of the algorithm yet; measuring
the overlap Eq. (6.38) yields the correct Berry phase ΠC = arg[ωC ]. The
estimated energy E(t, θ̃t) and the optimal E(t,θ∗t ) (obtained by full local
optimization) are shown in Fig. 6.1b. We can observe a small deviation
from the optimal energy in the region where the character of the state
changes faster (along the line φ = φ×, α < α×), but this does not disrupt
the tracking of the minimum. Finally, Fig. 6.1e shows that a number
of discretization points N ≥ 9 is needed to correctly resolve ΠC× = π,
through the evaluation of the overlap [Eq. (6.38)] ωC× = −1.

6.6.3 Sampling noise
In this section, we explore the robustness of our algorithm with respect to
the sampling noise characteristic of VQAs. To avoid defining a specific
sampling strategy and keep our results general, we directly add a proxy of
sampling noise η to each element of the gradient and Hessian. Each η is an
independent Gaussian random variable with variance σ2; a different η is
added to each element of the gradient of (6.39) and Hessian of Eq. (6.40)
to get the noisy estimates G̃ and H̃. In Fig. 6.2 we show the energy profile
of the three loops whose geometry is represented in Fig. 6.1a, for one such
random realisation of the sampling noise. (The plotted energy expectation
is evaluated exactly, noise is only added to the gradient and Hessian used
in the NR updates.) These three loops yield the same Berry phase results
as the noiseless case.
The probability Psuccess of Algorithm 6.2 correctly resolving the Berry

phase ΠC× on the nontrivial loop C× is reported in Fig. 6.3, as a function
of the number of discretization steps N and of the variance of the added
noise on each sampled quantity σ2. The expected final overlap Eq. (6.38)
is −1 for this case, as the loop contains a CI. For each value of N and σ2,
we simulate 100 noisy runs of the algorithm and we declare as successful
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Figure 6.2: Energies throughout the loops in Fig. 6.1 (discretized by
N = 25 steps), in the presence of sampling noise. Each element of the
composite gradient Eq. (6.39) and Hessian Eq. (6.40) are perturbed by
random gaussian noise with variance σ2 = 5× 10−6. In this instance the
Hessian stays positive around the path, so no regularization is needed. The
full lines, like in Fig. 6.1b, indicate the true optimum E(t,θ∗t ) obtained by
full optimization.

the ones that yield a negative final overlap (implying ΠC× = π). Finally
we average these outcomes to retrieve the succes probabilities Psucces.

From these simulations we conclude that sampling noise reduces the
accuracy of tracking the ground state and thus increases the probability
of obtaining inaccurate energies. Nevertheless, for a moderate amount of
sampling noise our algorithm still resolves the Berry phase correctly. We
observe that an error on each gradient and Hessian element with variance
of σ2 = 10−5 (or smaller) does not compromise the resolution of the Berry
phase, as long as the number of discretization points is sufficiently high
(N > 10, very close to the noiseless case portrayed in Fig. 6.1e). On
the other hand, a large enough sampling error (σ2 ≥ 5× 10−5) produces
essentially random results (Psuccess ≈ 50%).

6.6.4 Larger basis and active space
To test convergence for a more realistic case where the cost function is
not always strongly convex at its minima, we simulate the algorithm on
a more challenging model of formaldimine. The model is constructed
employing the cc-pVDZ basis set (43 atomic orbitals), and an active space
of four electrons in four spatial orbitals [CAS(4,4)]. As a PQC ansatz
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Figure 6.3: Success probability Psucces of the algorithm as a function of
the number of discretization points N and the sampling noise variance σ2

for the loop C× containing a CI. The details of the model and geometry
of the loop C× match Fig. 6.1 (red loop). Success is defined by resolving
a final overlap

〈
ψ(θ̃0)

∣∣ψ(θ̃1)
〉
< 0, which returns ΠC× = π. The success

probability is computed over 100 simulated runs. A Psuccess ≈ 50%
indicates the algorithm returns random outcomes. Regularization by
Hessian augmentation is enabled in these calculations, while no back-
tracking is used.

for the active space state, we use the number-preserving fabric (NPF)
ansatz introduced in [57], consisting of a fabric of spin-adapted orbital
rotations and double excitations on sets of two spatial orbitals (four spin-
orbitals). Four layers of this ansatz are enough to recover the exact CASCI
ground state energy inside the active space of 4 orbitals, resulting in 20
PQC parameters. This is an overparameterization of the ground state,
implying a global redundancy in the ansatz and resulting in a singular
hessian at every point. The goal of this numerical demonstration is to
show that Algorithm 6.2 can still recover the Berry phase, in this case
using regularization and backtracking.

In Fig. 6.4 the energies throughout two loops are shown. The location of
the conical intersection (α×, φ×) in the larger basis set moves compared the
case shown in Fig. 6.1 (this is to be expected, as the cc-pVDZ and STO-3G
models are effectively different); the basis is now too large to attempt an
FCI calculation that would resolve the gap exactly. One could instead
resort to a State-Averaged CASSCF calculation to resolve the location of
the CI, however, the state-average approach might bias the location of the
CI. For this demonstration, we manually select two loops with a slightly
larger radius of 15°, centered around α = 113° (C×, red line) and around
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Figure 6.4: Energies throughout two loops, for a more challenging model
of Formaldimine, described in the cc-pVDZ basis set and with a (4,4)
active space. The (red) blue loop indicates a (non-)trivial Berry phase,
centered around (α = 113°) α = 145° and φ = 90° (both), with a radius
of 15°, and discretized by N = 50 points (note these loops are different
from Fig. 6.1). The basis set is too large to run a FCI calculation to
locate the CI, and using another approximate method (e.g. state-average
CASSCF) might bias the CI location. Instead, we manually choose larger
loop geometries and use Algorithm 6.2 to find the value of ΠC .

α = 145° (C1, blue line). These values are chosen based on the location
of the CI at the level of theory of large state-average CAS(14,14)SCF
calculation, which returns α× ≈ 113°. We choose φ = 90°, as the CI is
forced to lie on the φ× = 90 hyperplane due to the Cs reflection point-
group symmetry. Indeed, we can resolve the correct Berry phase with only
N = 50 discretiation points, accumulating a small error around the loop
which has a minor effect on the final overlap [Eq. (6.38)] of ωC× = −0.9994
(loop containing the CI), and ωC1 = 0.99998 (trivial loop).

6.7 Conclusion and outlook
In this work, we introduced a hybrid algorithm to resolve conical intersec-
tions through the Berry phase they induce. This is achieved by tracking
the ground state with a variational quantum ansatz, along a closed path C
in nuclear configuration space. This algorithm only requires approximating
the ground state (in contrast to e.g. the state-average VQE [233]) for
one nuclear geometry R at a time, reducing the expressivity requirements
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of the ansatz. The key requirement of the algorithm is that the ansatz
parameters are changed smoothly, tracking a local minimum of the cost
function (6.8) and ensuring the U(1)-gauge (global phase) of the ansatz
state remains well-defined.
As the output is quantized (ΠC ∈ {0, π}), the result only needs to be

estimated to a constant precision, and the algorithm is robust to some
amount of error; we considered optimization error (the error on estimates of
a variational parameter, due to the approximate minimizer) and sampling
noise on the quantities measured on the quantum device. We showed that
one can update the variational parameters with a single newton step for
each geometry in a discretization of the loop C. We proved analytically
that the algorithm is granted to converge for a large enough number
of discretization steps N , and small enough additive error, under the
assumption that the cost function is strongly convex at its minimum. (We
consider sampling noise explicitly, but the robustness results extends to any
additive noise, including hardware noise.) We argue this result practically
extends to cases where the strong convexity assumption is not satisfied, as
long as some regularization technique is employed.

This reasoning is corroborated by numerical demonstrations of CI reso-
lution on a small example system – the formaldimine molecule. Using a
minimal description of formaldimine [STO-3G basis, a CAS(2,2), UCCD
ansatz], for which we have a strongly convex cost function, we show conver-
gence of Algorithm 6.2 without using regularization for a sufficiently large
N > 11, as we expect from our analytical results. We also demonstrate
the effect of sampling noise in this setting, showing that our algorithm
is robust to a sizable amount of noise, achieving convergence for N com-
parable to the noiseless case. Finally, we demonstrate the application of
Algorithm 6.2 with regularization on a more complicated and realistic
model of formaldimine [cc-pVDZ basis, CAS(4,4), NPF ansatz]. This case
shows that, even with a cost function that is never convex, we can employ
regularization to resolve the Berry phase correctly.

6.7.1 Paths towards improving convergence
The key step in our algorithm, where most of the cost in terms of quantum
resources is concentrated, is the evaluation of the (NR) parameter update.
Ensuring the parameter estimates remain within the basin of convergence
of the cost function is crucial, and it is the bottleneck in terms of the
cost of our algorithm. As shown in Section 6.4, the size of the basin of
convergence depends on the convexity of the cost function at the minimum
(6.13). Overparametrizations (local or global) of the cost function are
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especially disrupting, as they produce singular Hessians (m = 0) even at
optimal points. In this work, we proposed to use regularization by Hessian
augmentation and back-tracking to solve this problem; this technique
is practical and, as shown numerically in Section 6.6.4, it can produce
convergent results for systems with overparametrized cost functions. How-
ever, the success of these techniques may depend on the choice of their
hyperparameters (α, β, µ, ρ in Algorithm 6.1), and their application makes
the analytical study of the algorithm convergence harder. In this section,
we suggest alternative approaches to regularization and resource allocation
for the algorithm, which would require further study.
Quantum natural gradients — Quantum natural gradient (QNG) descent

is a recently-proposed parameter update technique [243, 244], which takes
into account the geometry of the ground state manifold. Natural gradient
techniques, already long in use in classical machine learning [245], are
invariant with respect to reparametrizations of the cost function; more
importantly for our case, they nullify the effect of overparametrizations
[246]. The idea of QNG is to transform gradients with respect to the
ansatz parameters into gradients with respect to Quantum Information
Geometry. This reparametrization is achieved through the Fubini-Study
metric tensor g(θ̃t) (to be evaluated at each update). A gradient descent
step would then become:

θ̃t+∆t = θ̃t − ηg+(θ̃t)G(t+ ∆t, θ̃t), (6.41)

where η is the learning rate and g+(θ̃t) is the pseudo-inverse of the metric
tensor. Here G(t + ∆t, θ̃t) is just the usual gradient of the energy as
in Algorithm 6.2. The resulting QNG step updates the ansatz by a
fixed amount in the norm induced by the distance between quantum
states, instead of a parameter-space norm, solving the issues connected
to overparametrization. Another option would be to use classical natural
gradients (NG) [245] defined on the 1- and 2-RDM manifold, which rely
on the classical Fisher information matrix.
Adaptive step selection — Choosing a sufficient number of steps N to

discretize C is key to the success of our algorithm, as proven in Section 6.4
and shown in Fig. 6.1 (bottom right). This is because the minimum θ∗t ,
along with its basin of convergence, changes between subsequent steps by
an amount proportional to the step size ∆t = 1/N . In Algorithm 6.2, we
propose to linearly discretize a given parametrization of C for the sake of
simplicity. An adaptive choice of ∆t could greatly reduce the cost of the
algorithm, letting the steps be larger in the regions where the ground state
changes the least, while concentrating more points in the regions where the
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ground state character sharply shifts. An adaptive step selection technique
that preserves the provable convergence could be easily implemented if
the gradient and Hessian of the cost function are measured through the 1-
and 2-electron RDM. In fact, the cost function can then be written as

E(t,θ) =
∑
ξ

D(θ)ξh(t)ξ, (6.42)

where ξ = pq, pqrs ∈ [NA] are the one- and two-body active-space orbital
indices, D(θ)ξ are the RDM elements and h(t)ξ are the one- and two-
electron integrals. The derivatives with respect to θ are then calculated
by chain rule from the derivatives of the RDMs, at the current parameter
value of θ = θ̃t. This allows to compute energy E(t′, θ̃t), gradient G(t′, θ̃t)
and Hessian H(t′, θ̃t) for any value t′, without further evaluations of the
PQC. The step size can be then chosen as the maximum ∆t such that the
Hessian convexity m(t + ∆t, θ̃t) remains above some positive threshold
value. Further research could quantify the improvement that adaptive
step selection would bring to our algorithm, and identify a method to
implement this for optimized energy derivatives sampling techniques, such
as those using double factorization [247].

6.7.2 Potential applications
The algorithm we propose resolves the Berry phase along a given path
C; the description of the loop is an input of the algorithm. This loop
construction will depend on the details of the considered application, and
might involve chemical intuition and the consideration symmetries of the
molecule where present. In realistic applications, we conceive our algorithm
as a tool that can help to (1) certify CIs proposed by other methods, (2)
determine whether a CI plays a role in a certain reaction, and/or (3) locate
a point of the CI manifold in parameter space. In either case, an initial
proposal of a path C that might contain the CI is necessary.
The case 1 is the most direct application of our algorithm. The loop
C is chosen to surround a quasi-degeneracy previously identified by an
approximate classical method. The result of our algorithm could then
confirm or disprove the presence of the CI. In case 2, given a photochemical
reaction whose geometry is approximately known, we can use our algorithm
on a set of loops to understand wether a CI plays a role in the reaction.
These loops can be constructed by variations of the reaction path along
perpendicular coordinates, focusing on the modes that influence the orbitals
involved in the reaction, thus greatly reducing the search space for the
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CI. Finally, to locate the CI (case 3) various search approaches can be
considered. For example, starting from a large loop C that is known to
contain the CI, binary-search can be used to iteratively shrink the loop
and locate the CI to the desired precision. The considered loops could be
defined on a plane, if there is heuristic information about the direction
along which the potential energy surfaces split. In alternative, a mesh
of orthogonal loops in a subspace of the nuclear configuration space R
can be tested. This, in combination with the data about the ground state
energy collected by running the optimization in our algorithm, could also
be used to determine the approximate location of the minimal energy
crossing point [i.e. the point RMECP on the CI manifold with minimum
E0(RMECP) = E1(RMECP)]. Further work is needed to explore these
problems, develop procedures to solve them and define and test practical
application cases in the three categories.

6.7.3 Outlook
The bounds presented in Section 6.4 have been calculated to provide a
guarantee of convergence for our method, which is an atypical feature
for variational quantum algorithms. These are not supposed to be tight
bounds or resource estimates for a realistic application of our algorithm.
Further research is needed to define better bounds. This, along with
the choice of a specific method to extract the energy and its derivatives
(e.g. RDM sampling and parameter shift rule) could allow estimating the
cost of a practical application of this algorithm. Furthermore, a study of
the errors due to the ansatz not perfectly reproducing the ground state,
and those induced by circuit noise, could help to understand the practical
limitations of the algorithm.
The computation of Berry phases is also central when characterizing

topological phases of matter [248]. For the specific case of non-interacting
Hamiltonians with chiral or inversion symmetry, the winding number is
analytically computed through the Zak phase [249], which is related to the
Berry phase that is accumulated after a closed loop through the Brillouin
Zone. For interacting systems, in which one cannot access momentum
space, there is a mechanism in which one introduces an external periodic
perturbation to the Hamiltonian [250, 251]. As long as the perturbation
does not close the gap and respects the symmetries of the system, the
Berry phase can be computed by considering a closed loop in parameter
space, similar to what is proposed in this work. As an outlook, one could
consider extending the VQE approach to detect topological phases of
matter through the computation of the Zak phase. Furthermore, VQA
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approaches to other topological invariants, such as the Chern number
[252] could be considered (possibly inspired by methods related to their
experimental detection, such as Thouless pumping [253]).
Finally, classical algorithms to resolve conical intersections from Berry

phases inspired by this approach could be designed. If the approximate
ground state is represented by a variational classical ansatz that fixes the
U(1) gauge, a simple extension of our method could be achievable. For
example, this could be achieved with an extension of CASSCF (essentially a
CASCI solver on top of an orbital optimization) that implements continuous
local optimization of the SCF matrix, to allow enforcing the smoothness
constrains that are crucial to keep the gauge of the state fixed.

6.A Bounding overlaps by change in ansatz
parameters

The variational Berry phase for a real ansatz state (as introduced in section
6.3.1) is resolved as the argument of the boundary term arg[

〈
ψ(θ̃(0))

∣∣ψ(θ̃(1))
〉
].

To obtain a nontrivial Berry phase, the initial and final parameters θ̃(0)
and θ̃(1) need to be far enough to allow

〈
ψ(θ̃(0))

∣∣ψ(θ̃(1))
〉

= −1. This
implies that the optimal parameters need to change enough along the
parametrization of the path (for t going from 0 to 1). In this appendix,
we translate this into a lower bound on the one-norm-distance between
initial and final parameters ‖θ̃(1) − θ̃(0)‖1. As a consequence, we also
find a lower bound on how much error can be allowed without on the final
parameter θ̃(1) compromising the Berry phase measurement.
We first state a lemma which will be useful in the proof:

Lemma 5
Given two unitary operators U,U ′, each decomposed as a product of N ≥ 2
unitary operators U = UN−1...U1U0, there holds the bound ‖U − U ′‖ ≤∑

j∈[N ]‖Uj − U ′j‖.

We prove this by induction. For N = 2, the proof is by the triangle
inequality

‖U ′1U ′0 − U1U0‖ = ‖U ′1(U ′0 − U0) + (U ′1 − U1)U0‖ (6.43)
≤ ‖U ′1‖‖(U ′0 − U0)‖+ ‖(U ′1 − U1)‖‖U0‖ (6.44)
= ‖(U ′0 − U0)‖+ ‖(U ′1 − U1)‖. (6.45)
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The proof for N + 1 can be similarly be reduced to the proof for N :

‖U ′NU ′N−1...U
′
0 − UNUN−1...U0‖ ≤ ‖U ′N − UN‖+ ‖U ′N−1...U

′
0 − UN−1...U0‖.

(6.46)

Let us consider the case of real Ansatz Eq. (6.10). We remind Ui = eAiθi

for antisymmetric real Ai. We can then bound the overlap between ansatz
states using Lemma 5,

1− 〈ψ(θ)|ψ(θ′)〉 = 1− 〈ψ0|U†(θ)U(θ′) |ψ0〉 (6.47)
= 〈ψ0|U†(θ)[U(θ)− U(θ′)] |ψ0〉 (6.48)
≤ ‖U(θ)− U(θ′)‖ (6.49)

≤
∑
j∈[N ]

‖Uj(θj)− Uj(θ′j)‖ (6.50)

=
∑
j∈[N ]

‖eAjθj − eAjθ
′
j‖ (6.51)

= 2
∑
j∈[N ]

∥∥∥∥sin
[
Aj
2 (θj − θ′j)

]∥∥∥∥ ≤ ∑
j∈[N ]

‖Aj‖|θj − θ′j |

(6.52)

The difference of parametrers |θj−θ′j | is always rescaled by the respective
‖Aj‖; we can interpret this by considering θj and Aj as dimensionful
quantities, with inverse dimension to each other. We can always redefine
units rescaling θj and Aj – without loss of generality we choose units
for which ‖Aj‖ = 1 (the only assumption being the boundedness of Aj).
Under this choice,〈

ψ(θ̃(0))
∣∣ψ(θ̃(1))

〉
= −1 =⇒ ‖θ̃(0)− θ̃(1)‖1 ≥ 2 (6.53)

Thus the parameters need to change (in 1-norm) by at least 2 along the
path to achieve the same state and nontivial Berry phase. By the same
reasoning, an error on the final parameters δθ̃(1) bounded by ‖δθ̃(1)‖1 < 1
will not change the argument (i.e. the sign) of the overlap, thus allowing
to resolve the correct Berry phase.

207



6 A hybrid quantum algorithm to detect conical intersections

6

6.B Bounding the norm of energy derivatives

Suppose we have a variational state parameterized by θ

|ψ(θ)〉 = U(θ) |0〉 =
np−1∏
k=0

Uk(θk)Vk |0〉 (6.54)

on a np-dimensional manifold (within a larger Hilbert space), where the
product is assumed to be taken in unitary composition order (right to left).
Assume each Uk is generated by anti-hermitian operators iAk with unit
norm

Uk(θ) = eiAkθ, Ak = A†k, ‖Ak‖ = 1. (6.55)

Given H is an observable of known norm ‖H‖, define

E(θ) = 〈ψ(θ)|H |ψ(θ)〉 . (6.56)

Define the tensors of derivatives,

Gj(θ) = ∂

∂θj
E(θ) (6.57)

Hjk(θ) = ∂2

∂θj∂θk
E(θ) (6.58)

Tjkl(θ) = ∂3

∂θj∂θk∂θl
E(θ) (6.59)

(6.60)

our goal is to bound their (vector-induced) 2-norms ‖G‖, ‖H‖, ‖T ‖.

We first notice that

∂

∂θj
U(θ) =

np−1∏
k=j

Uk(θk)Vk

 iAj

(
j−1∏
k=0

Uk(θk)Vk

)
= iÃjU(θ) (6.61)

where ‖Ãj‖ = ‖Aj‖ = 1, as conjugation by a unitary preserves norm.
Using this, we can get expressions for the tensors of derivatives in terms
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of commutators of Hermitian operators of known norm

Gj(θ) = i〈ψ(θ)|[H, Ãj ]|ψ(θ)〉 (6.62)
Hjk(θ) = −〈ψ(θ)|[[H, Ãj ], Ãk]|ψ(θ)〉 (6.63)
Tjkl(θ) = −i〈ψ(θ)|[[[H, Ãj ], Ãk], Ãl]|ψ(θ)〉 (6.64)

A trivial bound on this involves bounding each commutator by its norm,
e.g.

‖G(θ)‖2 =
np+1∑
k=0
‖〈ψ(θ)|[H, Ãj ]|ψ(θ)〉‖2 ≤ 4np‖H‖2. (6.65)

It is an open question wether we can improve on this bound.
We can get a similar result for the derivatives with respect to the orbital

rotations, considering the reparametrization described in Sec. 6.5.3. We
call |ψ〉 the PQC ansatz state in the full (active + core + virtual) space,
padded with virtual (core) registers of qubits in the state |0〉 (|1〉). We
drop explicit dependence on C and θ, and we make explicit the differential
rotation parameters κ. The cost function is then

E(κ) = 〈ψ| e
∑

pq
κpqEpqHe−

∑
rs
κrsErs |ψ〉 , Epq = c†p,↑cq,↑ + c†p,↓cq,↓,

(6.66)
where Epq is the generator of a spin-adapted orbital rotation. Its derivatives
at κ = 0 [note that the index pairs (pq) are collected in one index for the
purpose of rotating higher order derivatives] are easily calculated to be

G(pq)(κ = 0) = 〈ψ| [H,Epq] |ψ〉 , (6.67)
H(pq),(rs)(κ = 0) = 〈ψ| [[H,Epq], Ers] |ψ〉 , (6.68)

T(pq),(rs),(tu)(κ = 0) = 〈ψ| [[[H,Epq], Ers], Etu] |ψ〉 . (6.69)

Observing that ‖Epq‖ = 2 we obtain the same result as above (up to
constant factors 2, 4, 8 respectively, coming from this norm).

6.C Analytical orbital gradient and Hessian
In this section, we expand on the estimation of analytic orbital gra-
dient [right block of the vector in Eq. (6.39)] and orbital-orbital and
orbital-circuit Hessian [bottom right and top right blocks of the matrix
in Eq. (6.40), respectively]. We show how after the reparametrization
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C ← C · e−κ, the κ-derivatives of the cost function E(C · e−κ,θ) can be
expressed as a linear function of the 1- and 2-electron RDM, and the mixed
Hessian ∇κ∇θE(C · e−κ,θ) can be expressed in terms of θ-derivatives of
the same RDM.

We first define the 1- and 2-electron reduced density matrix (RDM) in
the spin-restricted formalism

γpq(θ) = 〈ψ(θ)|Epq |ψ(θ)〉 (6.70)
Γpqrs(θ) = 〈ψ(θ)| epqrs |ψ(θ)〉 , (6.71)

where Epq =
∑
σ c
†
pσcqσ and epqrs =

∑
στ c
†
pσc
†
rτ csτ cqσ = EpqErs− δqrEps.

Here, p, q, r, s are meant to be general indices (either occupied, active or
virtual), where the state |ψ(θ)〉 is to be intended as padded by two registers
of qubits in the |0〉⊗2NV (|1〉⊗2NO) state for the virtual (occupied) orbitals.
In the molecular orbital basis defined by C [orbitals in Eq. (6.34)], we can
write the Hamiltonian as

H =
∑
pq

hpqEpq + 1
2
∑
pqrs

gpqrsepqrs (6.72)

where hpq and gpqrs are the one- and two-electron integrals (with spatial
orbital indices p, q, r, s ordered according to the chemists’ convention), and
they implicitly depend on C through the MOs. The expectation value of
the Hamiltonian can then be written as a contraction of the integrals with
the RDM,

E(C,θ) = 〈ψ(θ)|H(C) |ψ(θ)〉 =
∑
pq

[h(C)]pqγpq + 1
2
∑
pqrs

[g(C)]pqrsΓpqrs

(6.73)

where we made explicit the dependence on C.
To derive analytical orbital rotation derivatives, we closely follow Ref. [219].

We start by separating the dependence on κ of the reparametrized cost func-
tion E(C · e−κ,θ), by using the equivalent state transformation formalism
provided by Thouless theorem [254]

E(C · e−κ,θ) = 〈ψ(θ)|H(C · e−κ) |ψ(θ)〉 = 〈ψ(θ)| eκ̂H(C)e−κ̂ |ψ(θ)〉
(6.74)

where κ̂ =
∑
pq κpqEpq is the operator that generates a unitary on the

Hilbert state space equivalent to the orbital rotation. We know that the
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rotations where p, q are both virtual indices form a redundant subgroup,
so we can freeze the corresponding κpq = 0; the same is true for p, q both
core space indices. In other terms, κpq = 0 if p, q ∈ V or p, q ∈ O, with V
and O the sets of virtual and core indices. The remaining elements of κpq
satisfy κpq = −κqp. We define a vector of unique non-redundant orbital
rotation parameters

κ = {κpq,∀p ∈ O ∪A,∀q ∈ A ∪ V : q > p}, (6.75)

and we redefine the cost function with respect to this vector,

E(C,κ,θ) ≡ E(C · e−κ,θ). (6.76)

We are interested in the derivative with respect to this vector; we can
always switch from the matrix κ to the unraveled vector of unique non-
redundant parameters κ, and vice versa. By comparing the Taylor series
in κ with the Baker-Campbell-Hausdorff expansion:

E(θ,κ) = 〈ψ(θ)|H |ψ(θ)〉+ 〈ψ(θ)| [κ̂,H] |ψ(θ)〉+ 1
2 〈ψ(θ)| [κ̂, [κ̂,H]] |ψ(θ)〉+ . . .

(6.77)

One can readily verify that the analytical orbital derivatives at κpq = 0
are given by:

[∇κE]pq := ∂E(θ,κ)
∂κpq

∣∣∣∣
κ=0

= 〈ψ(θ)| [E−pq, H] |ψ(θ)〉 (6.78)

[∇2
κE]pqrs := ∂2E(θ,κ)

∂κpq∂κrs

∣∣∣∣
κ=0

= 1
2(1 + Ppq,rs) 〈ψ(θ)| [E−pq, [E−rs, H]] |ψ(θ)〉

(6.79)

where Ppq,rs permutes the pair of indices pq with rs. The calculation of the
commutators in Eq. (6.78) and (6.79) can be found in common quantum
chemistry textbooks [219], and they all one- or two-body operators; thus
their expectation value can be written as a linear form in the RDM (γ, Γ).
The gradient evaluates to

[∇κE]pq = 2(Fpq(θ)− Fqp(θ)) (6.80)
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where F is the generalized Fock matrix,

Fpq(θ) =
∑
m

γpm(θ)hqm +
∑
mnk

Γpmnk(θ)gqmnk (6.81)

The Hessian evaluates to

[∇2
κE]pqrs = (1− Ppq)(1− Prs) [2γprhqs − (Fpr + Frp)δqs + 2Ypqrs] ,

(6.82)

where we introduced

Ypqrs =
∑
mn

Γpmrngqmns + Γpmnrgqmns + Γprmngqsmn (6.83)

and dropped the explicit dependence on θ. For the composite Hessian,
we simply take the gradient of Eq. (6.80) with respect to θ, by using the
chain rule

[∇κ∇θE]pq := ∂2E(θ,κ)
∂κpq∂θ

∣∣∣∣
κ=0

= 2
(
∂Fpq(θ)
∂θ

− ∂Fqp(θ)
∂θ

)
(6.84)

where

∂Fpq(θ)
∂θ

=
∑
m

∂γpm(θ)
∂θ

hqm +
∑
mnk

∂Γpmnk(θ)
∂θ

gqmnk. (6.85)

Thus, once we have the derivatives of the 1- and 2-RDM to sufficient
precision, we can evaluate the orbital gradient, Hessian and composite
Hessian analytically, recovering all terms in Eq. (6.39) and Eq. (6.40)
without any additional quantum cost.

6.D Bounding the cumulative error due to
Newton-Raphson updates

In this section, we prove that using a single Newton-Raphson (NR) param-
eter update per ∆t-step is sufficient to achieve an error on the estimate
of the minimizer scaling as O(∆t2) after any number of ∆t-steps, as long
as the cost function is strongly-convex at the minimum and ∆t is small
enough. First, we recall sufficient conditions for quadratic convergence of
the Newton-Raphson step. We then use these to bound the error of a single
NR-step when the cost function is changed from E(t,θ)→ E(t+ ∆t,θ).
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We translate this into an upper bound on ∆t which guarantees the error
stays bounded throughout the optimization path. Finally, we show that
we can allow a sufficiently small additive error on the Newton-Raphson
update and retain the bounded error throughout the path.
Quadratic convergence of NR — Consider a cost function E(θ) with

gradient Gj = ∂E
∂θj

and Hessian Hjk = ∂E
∂θj∂θk

, and an initial guess of a
minimizer θ(0). The Newton-Raphson step prescribes the update θ(0) 7→
θNR = θ(0) + dθNR with dθNR = H−1(θ(0))G(θ(0)). Theorem 3.5 from
Nocedal and Wright [231] gives sufficient conditions under which quadratic
convergence of the NR update is guaranteed. We simplify these conditions,
and obtain the following

Theorem 6.1
Consider a cost function E(θ) with Lipschitz-continuous Hessian ‖H(θ)−
H(θ + δθ)‖ ≤ L‖δθ‖ and a local minimizer θ∗ with positive convexity
m := ‖H−1(θ∗)‖−1 > 0. Given an initial guess θ(0) which is close enough
to the minimum, i.e.

‖θ(0) − θ∗‖ ≤ m

4L, (6.86)

the NR update will converge quadratically towards the minimum with

‖θNR − θ∗‖ ≤ L

m
‖θ(0) − θ∗‖2. (6.87)

To prove this, we only need to show that a strong convexity condition is
satisfied within a r-ball centered in θ∗ including all close-enough possible
initial guesses (r = m

4L ), i.e.

‖H−1(θ∗ + δθ)‖ ≤ 2m−1, ∀‖δθ‖ ≤ m

4L. (6.88)

To prove this we expand H−1(θ∗ + δθ) using Taylor’s theorem,

∃0 < s < 1 : H−1(θ∗ + δθ) = H−1(θ∗) + δθ · ∂H
−1

∂θ
(θ∗ + sδθ) (6.89)

∂H−1

∂θ
= −H−1 ∂H

∂θ
H−1 (6.90)

‖H−1(θ∗ + δθ)‖ ≤ ‖H−1(θ∗)‖+ ‖H−1(θ∗ + sδθ)‖2L‖δθ‖
(6.91)

≤ m−1 + ‖H−1(θ∗ + sδθ)‖2m4 , (6.92)

where we used the Lipschitz constant L as a bound on the derivative of
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the Hessian. This last condition holds if

‖H−1(θ∗ + sδθ)‖ ≤ 2m−1. (6.93)

As we can choose s < 1 and the result is clearly true at δθ = 0, the result
holds recursively.

Single NR update with a changing cost function — We now consider a
family of cost functions E(t,θ) continuously parameterized by t. Suppose
we have an approximation θ̃t of the minimizer θ∗t of E(t,θ), with error
‖θ̃t − θ∗t ‖. In each step of our method (Algorithm 6.2), we shift the cost
function E(t,θ)→ E(t+ ∆t,θ) by ∆t and we use the current minimizer
estimate θ̃t as initial guess for the next step; θ(0)

t+∆t = θ̃t. We can bound
the error of this initial guess by the triangle inequality,

‖θ(0)
t+∆t − θ

∗
t+∆t‖ ≤ ‖θ̃t − θ∗t ‖+ ‖θ∗t+∆t − θ∗t ‖. (6.94)

While the first term is the (given) error on the estimate, the second can
be obtained by taking the total t-derivative of the minimum condition
G(t,θ∗(t)) = 0, and applying Taylor’s theorem

∃τ ∈ [t, t+∆t] : ‖θ∗t+∆t−θ∗t ‖ =
∥∥∥∥dθ∗tdt ∣∣∣t=τ

∥∥∥∥∆t = ‖H−1(τ,θ∗τ )Ġ(τ,θ∗τ )‖∆t

(6.95)
with Ġ = ∇ ∂

∂tE(θ, t).

We now assume that the convexity at the minimum is bounded from
below throughout the whole t-path by a constant m ≥ 0,

m(t,θ∗t ) := ‖H−1(t,θ∗t )‖−1 > m ∀t ∈ [0, 1], (6.96)

and that the gradient of the change is never larger than Ġmax. (while
the first assumption imposes the nontrivial condition of strong convexity
at the minimum, the second is always granted for cost functions from a
continuous family of bounded Hamiltonians). We can then write

‖θ(0)
t+∆t − θ

∗
t+∆t‖ ≤ ‖θ̃t − θ∗t ‖+m−1Ġmax∆t. (6.97)

To ensure this initial guess is within the quadratic convergence region of
the NR step, we require

‖θ̃t − θ∗t ‖+m−1Ġmax∆t ≤ m

4L, (6.98)
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choosing an α, β ∈ (0, 1] this condition can be written as

∆t = m2

4LĠmax
αβ, (6.99)

‖θ̃t − θ∗t ‖ = (1− α)β m4L. (6.100)

This allows to apply Theorem 6.1, and bound the error after a single NR
step,

‖θ̃t+∆t − θ∗t+∆t‖ ≤
L

m

[
βm

4L

]2
= β2 m

16L. (6.101)

Multiple steps — We want to ensure the error on the minimizer estimate
remains bounded for t taking subsequent values is [0,∆t, 2 ∆t, ..., 1], while
taking a single NR step at a time. We can do this by imposing the error
after each step [Eq. (6.101)] is not larger than the error on the previous
step estimate,

β2 m

16L ≤ (1− α)β m4L. (6.102)

This is granted for any β ∈ (0, 1] by choosing α = 1− β
4 . The maximum

∆t = 3
4

m2

4LĠmax
is achieved by picking β = 1, and yields an error bounded

by the constant m
16L .

Allowing an additive error — To account for sampling noise, it is useful
to consider an additive error of magnitude σθ on the estimate θ̃t of the
minimizer θ∗t at each t-point, modifying Eq. (6.100) into

‖θ̃t − θ∗t ‖ = (1− α)β m4L + σθ. (6.103)

This yields the condition

L

m

[
βm

4L + σθ

]2
≤ (1− α)β m4L. (6.104)

If we define γ by σθ = γβm
4L , we can write

(1 + γ)2 m

16Lβ
2 ≤ (1− α)β m4L, (6.105)
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which is saturated by β = 4 1−α
(1+γ)2 . We then get

∆t = m2

LĠmax

α(1− α)
(1 + γ)2 , (6.106)

which is maximised (while keeping β ≤ 1) by α = max[ 1
2 , 1−

(1+γ)2

4 ]. The
allowed additive noise is then

σθ = γ

(1 + γ)2
m

L
(1− α) = γm

2L min[12 ,
1

(1 + γ)2 ], (6.107)

maximised for the choice γ =
√

2− 1 yielding

σθ =
√

2− 1
4

m

L
, ∆t = m2

8LĠmax
. (6.108)

6.E Bounding the sampling cost
We call σ2

G and σ2
H the variances of each element of the gradient and

Hessian respectively, due to sampling noise. To compute the error on the
parameter updates, we propagate these variances through the definition
of the NR update Eq. (6.12). The first-order differential change (here
denoted with δ) of the NR update dθNR with respect to changes in the
gradient and Hessian is

δ[dθNR] = H−1 · [−δG + δH · dθNR], (6.109)

where we use the ordered matrix-product notation, with vectors in boldface.
When δG and δH are the random variables representing the errors on the
gradient and Hessian, the expected mean square error on the NR update
defining the norm of the covariance matrix∥∥Var[dθNR]

∥∥ := E
[
‖δ[dθNR]‖2

]
= E

[
‖H−1 · δG‖2

]
+E
[
‖H−1 · δH · dθNR‖2

]
,

(6.110)
where we used the zero-average property of δG and δH to drop the expec-
tation values of mixed terms. This can further be bounded as

Var[dθNR] ≤ ‖H−1‖2E
[
‖δG‖2

]
+ ‖H−1‖2E

[
‖δH‖2

]
‖dθNR‖2. (6.111)

Assuming the same variance σ2
G on each of the np elements Gj of the

gradient, we get
E
[
‖δG‖2

]
= np σ

2
G . (6.112)
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As the Hessian is a random real symmetric matrix with i.i.d. elements,
each with a variance σH, we can invoke Wigner’s semicircle law [232] to
bound the spectral norm as

E
[
‖δH‖2

]
≤ (√np σH)2. (6.113)

Combining these with the strong convexity bound ‖H−1‖ ≤ m−1, we get

Var[dθNR] ≤ m−2 [np σ2
G + np σ

2
H‖dθNR‖2

]
(6.114)

The calculations in Appendix 6.D conclude that, for each ∆t-step, we
can afford an additive error on the NR update of at most σθ ≤ γ

4
m
L with

γ =
√

2− 1. Comparing this result to the variance just calculated, we can
formulate the requirement on the variance

m−2np
[
σ2
G + σ2

H‖dθNR‖2
]
� γ2

16
m2

L2 . (6.115)

This gives conditions on the elementary sampling variances

σ2
G �

γ2

16
m4

L2np
(6.116)

σ2
H �

γ2

16
m4

L2np ‖dθNR‖2
<
γ2

16
m6

L2np‖Ġmax‖2∆t2
(6.117)

To recast this bound in terms of variables of the problem, we use the
following relations derived in Appendix 6.B: L = max‖T ‖ < n

3/2
p ‖H‖ (the

norm of the third derivative tensor T is bounded by n3/2
p times by its

infinity norm), ‖Ġmax‖∆t <
√
np‖dHdt ‖∆t ≈

√
np‖H‖ (same infinity norm

bound). Furthermore, we assume the convexity is larger than the ground
state gap, m > ∆; this holds if the ansatz approximates the ground state
well enough, and changes in any ansatz parameter θk introduce a different
excited state. Substituting these relations we obtain

σ2
G � 0.01 ∆4

‖H‖2n4
p

, (6.118)

σ2
H � 0.01 ∆6

‖H‖4n5
p

. (6.119)

The number of total required shots to sample the Hessian (gradient) for all
the N steps will thus scale as σ−2

H ∆t−1 (σ−2
G ∆t−1). Picking the maximal
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∆t = m2

8LĠmax
, and considering only the dominant term (relative to sampling

the Hessian) we can write

#shots ∝ n7
p

‖H‖7‖dHdt ‖
∆8 (6.120)
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Samenvatting

Quantumcomputing is een opkomende technologie die het potentieel heeft
om complexe quantumsystemen te simuleren die buiten het bereik van
klassieke numerieke methoden vallen. Ondanks de recente formidabele
vooruitgang op het gebied van quantumhardware, blijft het bouwen van een
quantumcomputer die nuttige berekeningen kan uitvoeren een uitdagende
taak. Bij gebrek aan een betrouwbare quantumcomputer is de studie van
potentiële toepassingen afhankelijk van wiskundige methoden, ingenieuze
benaderingen en heuristieken die zijn afgeleid van de toepassingsgebieden.
Dit proefschrift richt zich op de ontwikkeling van quantumalgoritmen met
toepassingen in de simulatie van complexe quantumsystemen.

Het inleidende hoofdstuk schetst de uitdagingen van quantumsimulatie,
identificeert en formaliseert de belangrijkste simulatiedoelstellingen, en
bespreekt succesvolle quantum- en klassieke simulatiealgoritmen. Met
behulp van de simulatie van chemische systemen als prototypisch voorbeeld
leidt het hoofdstuk de lezer vervolgens door het proces van de ontwikkeling
van quantumsimulaties.

De daaropvolgende hoofdstukken introduceren en detailleren nieuwe
algoritmen voor quantumsimulatie, allemaal verbonden door de rode draad
van het introduceren van een enkele hulpqubit in het simulatiealgoritme.
Deze qubit (een fundamentele eenheid van quantuminformatie) speelt een
actieve rol in elk algoritme en dient als sleutelelement in het constructieve
ontwerp ervan. Het belang van het werken met een eenvoudig systeem,
zoals een qubit, wordt door het hele proefschrift heen duidelijk en blijkt es-
sentieel te zijn vanuit zowel fundamenteel als toepassingsgericht perspectief.
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Hoofdstuk 2 onderzoekt het simuleren van koeling via een met één qubit
gesimuleerde koelmachine. In de natuur koelen systemen af door interactie
met grote koude omgevingen, waar ze warmte en entropie kunnen afvo-
eren. Hoewel het theoretisch mogelijk is om dergelijke baden te simuleren,
brengt dit een aanzienlijke rekenlast met zich mee. We stellen voor om
de omgeving te vervangen door een enkele hulpqubit, die periodiek wordt
gereset naar zijn energiezuinige toestand, waardoor warmte en entropie
aan het systeem kan worden onttrokken, analoog aan de werking van een
koelkast. Ons onderzoek naar koelmachines met één qubit brengt ons
ertoe een categorie algoritmen te introduceren die zijn ontworpen voor het
voorbereiden van energiezuinige toestanden van gesimuleerde systemen,
die we quantum digital cooling (quantumdigitale koeling) noemen. We
beschrijven verschillende mogelijke benaderingen van deze algoritmen en
karakteriseren deze met analytische en numerieke hulpmiddelen.
De volgende drie hoofdstukken hebben betrekking op echo verification

(echoverificatie) — een nieuwe techniek voor het beperken van fouten
die voor het eerst wordt geïntroduceerd in hoofdstuk 3. Quantumappa-
raten vormen een aanzienlijke uitdaging vanwege hun inherente ruis, die
leidt tot de geleidelijke corruptie van opgeslagen en verwerkte gegevens
en uiteindelijk tot rekenfouten. Quantumhardwareonderzoek heeft tot
doel het ruisniveau te verminderen, met langetermijnvooruitzichten voor
quantumfoutcorrectie om dit probleem op te lossen. Ondertussen moet
elk effectief quantumalgoritme worden ontworpen met bestendigheid tegen
ruis in overweging. Technieken voor het beperken van fouten spelen een
cruciale rol bij het bieden van deze mogelijkheid.

De foutbeperkingstechniek die in hoofdstuk 3 is geïntroduceerd, schrijft
voor dat een enkel bit aan informatie uit een toestand van het gesimuleerde
systeem moet worden gemeten, terwijl de resterende quantuminformatie
wordt gebruikt om fouten te detecteren en hun effect te verminderen. Deze
aanpak wordt geïmplementeerd via een methode die doet denken aan de
echo van Loschmidt, omdat de single-qubit-meting is ingeklemd tussen
twee berekeningen die elkaar in de tijd weerspiegelen. Echoverificatie is
gemakkelijk toepasbaar op een grote verscheidenheid aan quantumalgo-
ritmen die zijn afgestemd op bestaande technologie. We onderzoeken
de toepassing ervan op het schatten van verwachtingswaarden en het
schatten van quantumfasen met één controlequbit, waarbij we numerieke
benchmarks uitvoeren op simulaties van kleine quantumchemie- en mag-
netismemodellen. De toepassing van deze techniek resulteerde in de meest
uitgebreide experimentele test van een variationeel quantumalgoritme voor
de chemie.

In hoofdstuk 4 bestuderen we de theoretische grenzen van het meetmodel
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opgelegd door echoverificatie, waarbij per toestandsvoorbereiding een
enkel bit aan informatie wordt geëxtraheerd. Dit model sluit aan bij
de algemene categorie van binaire metingen en vertegenwoordigt ja-nee-
vragen die kunnen worden gesteld over een quantumtoestand, en heeft een
theoretische betekenis die verder gaat dan het bereik van echoverificatie.
We ontwikkelen een raamwerk om de metingen van verwachtingswaarden
binnen dit model te optimaliseren en een substantiële prestatieverbetering
aan te tonen vergeleken met een naïeve aanpak.
In Hoofdstuk 4 onderzoeken we het gebruik van echoverificatie in een

duidelijk andere context: het beperken van algoritmische fouten in het
adiabatische algoritme. Het adiabatische algoritme is een belangrijke tech-
niek die wordt gebruikt om fundamentele toestanden van een gesimuleerd
systeem voor te bereiden. Hoewel de adiabatische stellingen hun succes
verzekeren binnen de limiet van de oneindige rekentijd, zijn praktische
eindige-tijdberekeningen gevoelig voor systematische fouten. Deze fout
is van een andere aard dan de stochastische hardwarefout die doorgaans
wordt aangepakt door mitigatietechnieken. We introduceren een techniek
die het mogelijk maakt om de systematische fout om te zetten in een
stochastische fout, waardoor de toepassing van echoverificatie het effect
ervan kan onderdrukken.

Ten slotte onderzoekt hoofdstuk 6 een mogelijke toepassing van bestaande
quantumcomputers in de quantumchemie: de detectie van conische inter-
secties in een moleculair model. Een groot deel van de quantumchemie is
gebaseerd op de Born-Oppenheimer-benadering, die de beschrijving van
kernen en elektronen scheidt. Conische intersecties zijn belangrijke punten
in de geometrie van een molecuul, waar de Born-Oppenheimer-benadering
mislukt. Dit vergemakkelijkt processen zoals niet-stralingsrelaxatie, die
van bijzonder belang zijn bij de studie van fotochemische reacties. Conische
intersecties worden gekenmerkt door een eigenschap die Berry-fase wordt
genoemd en die alleen de discrete waarden 0 of π kan aannemen. We
ontwerpen een quantumalgoritme dat het mogelijk maakt om deze twee
waarden te onderscheiden, weergegeven in een enkel stukje informatie. De
inherente discretisatie van het resultaat zorgt ervoor dat het algoritme
bestand is tegen een bepaalde hoeveelheid ruis. We leveren analytisch
bewijs van deze robuustheid en we voeren numerieke tests uit op een
moleculair model dat is ontworpen om bepaald gedrag te reproduceren
van het biochemische systeem dat verantwoordelijk is voor lichtperceptie.
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Quantum computing is an emerging technology, holding the potential to
simulate complex quantum systems beyond the reach of classical numerical
methods. Despite recent formidable advancements in quantum hardware,
constructing a quantum computer capable of performing useful calcula-
tions remains a challenging task. In the absence of a reliable quantum
computer, the study of potential applications relies on mathematical meth-
ods, ingenious approximations, and heuristics derived from the application
fields. This thesis focuses on the development of quantum algorithms with
applications in the simulation of complex quantum systems.

The introductory chapter outlines the challenges of quantum simulation,
identifies and formalizes key simulation targets, and reviews successful
quantum and classical simulation algorithms. Using the simulation of
chemical systems as a prototypical example, the chapter then guides the
reader through the quantum simulation development pipeline.

Subsequent chapters introduce and detail novel algorithms for quantum
simulation, all connected by the common thread of introducing a single
auxiliary qubit into the simulation algorithm. This qubit (a fundamen-
tal unit of quantum information) plays an active role in each algorithm,
serving as a key element in their constructive design. The significance of
working with a simple system, such as a qubit, becomes evident through-
out the thesis, proving essential from both fundamental and applicative
perspectives.

Chapter 2 explores simulating cooling through a single-qubit emulated
fridge. In Nature, systems cool down by interacting with large cold environ-
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ments, where they can dissipate heat and entropy. While simulating such
baths is theoretically possible, it comes with a significant computational
burden. We propose to substitute the environment with a single auxiliary
qubit, which is periodically reset to its low-energy state allowing to extract
heat and entropy from the system, analogous to the functioning of a fridge.
Our investigation of single-qubit fridges leads us to introduce a category of
algorithms designed for preparing low-energy states of simulated systems,
which we name quantum digital cooling. We describe various possible
approaches to quantum digital cooling, characterizing them with analytical
and numerical tools.

The following three chapters relate to Echo Verification – a novel error
mitigation technique first introduced in chapter 3. Quantum devices
present a significant challenge due to their inherent noise, leading to the
gradual corruption of stored and processed data and ultimately causing
computation errors. Quantum hardware research aims to reduce noise
levels, with long-term prospects for quantum error correction to solve this
problem. Meanwhile, any effective quantum algorithm must be designed
with resilience to noise in consideration. Error mitigation techniques play
a crucial role in providing this resilience.
The error mitigation technique introduced in chapter 3 prescribes to

measure a single bit of information from a state of the simulated sys-
tem, while using the remaining quantum information to detect errors and
contrast their effect. This approach is implemented through a method
reminiscent of Loschmidt’s echo, as the single-qubit measurement is sand-
wiched between two computations which mirror each other in time. Echo
verification is readily applicable to a wide variety of quantum algorithms
tailored to near-term devices. We explore its application to expectation
value estimation and single-control quantum phase estimation, conduct-
ing numerical benchmarks on simulations of small quantum chemistry
and magnetism models. The adoption of this technique resulted in the
most extensive experimental test of a variational quantum algorithm for
chemistry.

In chapter 4, we study the theoretical limits of the measurement model
imposed by echo verification, wherein a single bit of information is extracted
per state preparation. This model aligns to the general category of binary
measurements, representing yes-no questions that can be posed about
a quantum state, holding theoretical significance beyond the scope of
echo verification. We develop a framework to optimize measurements
of expectation values within this model, and demonstrate a substantial
improvement in performance compared to a naive approach.

In Chapter 4, we explore the utilization of echo verification in a distinctly
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different context: mitigating algorithmic errors in the adiabatic algorithm.
The adiabatic algorithm is an important technique utilized to prepare
fundamental states of a simulated system. While the adiabatic theorems
ensure its success in the limit of infinite computation time, practical finite-
time computations are susceptible to systematic errors. This error is of
different nature from the stochastic hardware error typically addressed by
mitigation techniques. We introduce a technique that allows to convert
the systematic error into a stochastic one, enabling the application of echo
verification to suppress its effect.

Finally, chapter 6 explores a potential application of near-term quantum
computers in quantum chemistry: the detection of conical intersections
in a molecular model. Much of quantum chemistry relies on the Born-
Oppenheimer approximation, which separates the description of nuclei
and electrons. Conical intersections are significant points in the geometry
of a molecule, where the Born-Oppenheimer approximation breaks down.
This facilitates processes like non-radiative relaxation, holding particular
significance in the study of photochemical reactions. Conical intersections
are characterized by a property called Berry phase, which can only take
the discrete values of 0 or π. We design a quantum algorithm that allows
to discern these two values, represented in a single bit of information.
The inherent discreteness of the result renders the algorithm resilient to
a certain amount of noise. We provide analytical proof of this resilience,
and we conduct numerical testing on a molecular toy model designed to
reproduce some behaviors of the biochemical system responsible for light
perception.
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La computazione quantistica è una tecnologia emergente che ha il poten-
ziale di permettere la simulazione di sistemi quantistici complessi, oltre la
portata dei metodi numerici classici. Nonostante gli ultimi anni abbiano
visto formidabili progressi nello sviluppo dell’hardware quantistico, costru-
ire un computer quantistico capace di eseguire calcoli utili rimane una sfida
onerosa. In assenza di un calcolatore quantistico affidabile, lo studio delle
possibili applicazioni si basa su metodi matematici, astute approssimazioni
e strategie euristiche derivanti dai vari campi di applicazione. Questa tesi si
concentra sullo sviluppo di algoritmi quantistici applicati alla simulazione
di sistemi quantistici complessi.
Il capitolo introduttivo delinea le sfide della simulazione quantistica,

individua e formalizza gli obiettivi principali ed esamina gli algoritmi
(classici e quantistici) di maggior successo. Utilizzando la simulazione
di sistemi chimici come esempio prototipico, il capitolo guida il lettore
attraverso il percorso che porta allo sviluppo di un’applicazione della
simulazione quantistica.

I capitoli successivi presentano e approfondiscono nuovi algoritmi per la
simulazione quantistica, tutti accomunati dalla caratteristica di introdurre
un singolo qubit ausiliario nell’algoritmo di simulazione. Questo qubit
(un’unità fondamentale di informazione quantistica) gioca un ruolo attivo
in ciascun algoritmo, fungendo da elemento chiave nel processo di sviluppo
del metodo. La rilevanza del lavorare con un sistema semplice, come un
qubit, si manifesta nel corso dell’intera tesi, dimostrandosi essenziale sia
dal punto di vista fondamentale che applicativo.
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Il capitolo 2 esplora la simulazione del processo di raffreddamento at-
traverso un frigorifero emulato a singolo qubit. In natura, i sistemi fisici si
raffreddano interagendo con un ambiente esteso e freddo, nel quale possono
dissipare calore ed entropia. Anche se la simulazione di tali ambienti
termodinamici è possibile a livello teorico, essa comporta un notevole
onere computazionale. Proponiamo di sostituire l’ambiente con un singolo
qubit ausiliario, che viene periodicamente azzerato al suo stato di minima
energia, consentendo quindi la ripetuta estrazione di calore ed entropia
dal sistema simulato, in maniera analoga ad un frigorifero. La nostra
indagine sui frigoriferi a singolo qubit ci porta a introdurre una categoria
di algoritmi quantistici progettati per preparare stati fondamentali di
sistemi simulati, che chiamiamo quantum digital cooling (raffreddamento
quantistico digitale). Descriviamo vari approcci per la realizzazione di
questi algoritmi, caratterizzandoli con strumenti analitici e numerici.
I successivi tre capitoli sono collegati alla tecnica di mitigazione degli

errori chiamata echo verification (verifica dell’eco), sviluppata ed introdotta
nel capitolo 3. Una sfida significativa del calcolo quantistico è posta dal
rumore intrinseco ai dispositivi quantistici, che porta al graduale degrado
dei dati memorizzati e processati e, in definitiva, provoca errori di calcolo.
La ricerca sull’hardware quantistico mira a ridurre i livelli di rumore, ed a
lungo termine la correzione quantistica degli errori promette di risolvere
questo problema. Nel frattempo, qualsiasi algoritmo quantistico efficace
deve essere progettato tenendo in considerazione la resilienza al rumore.
Le tecniche di mitigazione degli errori svolgono un ruolo cruciale nel fornire
questa resilienza.

La tecnica di mitigazione degli errori introdotta nel capitolo 3 prescrive di
misurare un singolo bit di informazione da uno stato del sistema simulato,
utilizzando il resto dell’informazione quantistica per rilevare gli errori
e contrastarne gli effetti. Quest’approccio è implementato attraverso
un metodo che ricorda l’eco di Loschmidt, poiché la misurazione di un
singolo qubit è interposta tra due computazioni speculari nel tempo. La
verifica dell’eco è facilmente applicabile a una vasta gamma di algoritmi
quantistici progettati per i dispositivi del prossimo futuro. Esploriamo la
sua applicazione alla stima del valore atteso e alla stima quantistica della
fase a singolo controllo, conducendo test numerici su simulazioni di piccoli
modelli chimica quantistica e magnetismo. L’adozione di questa tecnica
ha portato al test sperimentale di un algoritmo quantistico variazionale
per la chimica di massima dimensione.
Nel capitolo 4, studiamo i limiti teorici del modello di misurazione

imposto dalla verifica dell’eco, in cui viene estratto un singolo bit di
informazione da ogni stato preparato. Questo modello corrisponde alla
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categoria generale delle misurazioni con esito binario, che ha rilevanza
teorica al di là dello specifico campo della mitigazione degli errori. Svilup-
piamo una metodologia per ottimizzare la misurazione del valore atteso
all’interno di questo modello e dimostriamo un miglioramento sostanziale
delle prestazioni rispetto a un approccio elementare.

Nel capitolo 4, esploriamo l’utilizzo della verifica dell’eco in un contesto
nettamente diverso: la mitigazione degli errori algoritmici nell’algoritmo
adiabatico. L’algoritmo adiabatico è un’importante tecnica utilizzata per
preparare stati fondamentali di un sistema simulato. Seppure i teoremi
adiabatici ne garantiscono il successo nel limite di tempo di calcolo infinito,
in pratica la sua approssimazione a tempo finito è suscettibile ad errori
sistematici. Questo errore ha una natura diversa dall’errore stocastico
causato dal rumore dei dispositivi quantistici, sul quale le tecniche di
mitigazione si concentrano. Introduciamo una tecnica che consente di
convertire l’errore sistematico in uno stocastico, consentendo l’applicazione
della verifica dell’eco per ridurre i suoi effetti.
Infine, il capitolo 6 esplora una potenziale applicazione dei computer

quantistici del prossimo futuro in chimica quantistica: la identificazione di
intersezioni coniche in un modello molecolare. Gran parte della chimica
quantistica si basa sull’approssimazione di Born-Oppenheimer, che separa
la descrizione di nuclei ed elettroni. Le intersezioni coniche sono punti
significativi nella geometria di una molecola, dove l’approssimazione di
Born-Oppenheimer cessa di essere valida. Questo permette processi come
il rilassamento non radiativo, e riveste particolare importanza nello studio
delle reazioni fotochimiche. Le intersezioni coniche sono caratterizzate
da una proprietà chiamata fase di Berry, che può assumere solo i valori
discreti di 0 o π. Progettiamo un algoritmo quantistico che consente di
distinguere questi due valori, una distinzione rappresentabile in un singolo
bit di informazione. La natura discreta del risultato rende l’algoritmo
resiliente a una certa quantità di rumore; forniamo una prova matematica
di questa resilienza. Conduciamo test numerici su un modello molecolare
giocattolo, progettato per riprodurre alcuni comportamenti del sistema
biochimico responsabile della percezione della luce.
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