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Abstract

We present the calibration of the new subgrid model colibre for hydro-
dynamical simulations of galaxy formation. colibre builds upon the eagle

model with significant improvements on various fronts. In particular, coli-
bre includes the multiphase structure of the interstellar medium, gas cooling
in non-equilibrium, a live dust model coupled to the chemistry, and more so-
phisticated prescriptions for star formation and feedback from star formation
and active galactic nuclei (AGN). To calibrate colibre, we employ the new as-
trophysical code swift. We run Latin hypercubes of ∼ 102 simulations that
vary up to four subgrid parameters in cosmological volumes of (50 comoving
Mpc)3 at a gas (dark-matter) mass resolution of 1.47×107M⊙ (1.94×107M⊙).
We train Gaussian process emulators on these runs to predict the z = 0 galaxy
stellar mass function (GSMF) and size-stellar mass relation (SSM) as functions
of the model parameters, which we then fit to observations. The trained em-
ulators not only provide the best-fitting parameter values but also enable us
to investigate how different aspects of the colibre supernova (SN) and AGN
feedback affect the predicted GSMF and SSM. In particular, we demonstrate
that while the z = 0 observed GSMF and SSM can be matched separately with
a relatively simple SN feedback model, reproducing both necessitates a more
sophisticated prescription for SN feedback. We show that the colibre model
not only reproduces the calibration observables, but also matches a rich va-
riety of other galaxy properties to which the model has not been calibrated,
including the properties of cold gas.
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5.1 Introduction

In the last few decades, numerical simulations of galaxy formation have become
an indispensable tool for advancing our understanding of the physics of galaxy
formation (see Crain & van de Voort, 2023, for a recent review). The rapid
growth of computational facilities opened the possibility of simulating large, ≳
(0.1 Gpc)3 cosmological volumes with self-consistent modelling of baryonic pro-
cesses (e.g. Schaye et al., 2010; Dubois et al., 2014; Schaye et al., 2015; Pillepich
et al., 2018; Davé et al., 2019; Bird et al., 2022; Pakmor et al., 2023; Schaye et al.,
2023), and reaching spatial resolutions sufficient to study the properties of the
multiphase interstellar medium (ISM) of galaxies in smaller volumes situated in
a cosmological environment (e.g. Dubois et al., 2021; Feldmann et al., 2023). A
major part of this success stems from the progress in computational methods,
which has greatly increased the efficiency with which large computational ma-
chines can be exploited. In particular, modern astrophysical codes demonstrate
impressive performance in standard scaling tests extending up to ∼ 105 compute
cores (e.g. Springel et al., 2021; Schaller et al., 2023).

At the same time, the advent of advanced observational facilities such as the
Atacama Large Millimeter/submillimeter Array (ALMA; Wootten & Thompson,
2009) and JWST (Gardner et al., 2006), has allowed us to study spatially resolved
properties of galaxies with unprecedented sensitivity and accuracy, both in the
local and high-redshift Universe. Dense, cold interstellar gas can be probed by
ALMA at sub-pc resolution either through CO rotation-line emission at low z
(e.g. Ramos Almeida et al., 2022) or via [CII] 158 µm line at high z (e.g. Gurman
et al., 2023). The properties of warmer gas of high−z objects can be studied at
comparable resolution with JWST, using emission lines such as [OIII] or Hβ (e.g.
Chen et al., 2023; Giménez-Arteaga et al., 2023). Clearly, for a fair comparison
between theory and observations, both JWST and ALMA data demand numerical
simulations that reach comparable (or higher) spatial resolutions, and that self-
consistently model the multiphase interstellar gas.

Simulations of galaxy formation from the past 10 years have shown remark-
able success in matching observational data and producing galaxies with realistic
properties (see e.g. Crain & van de Voort, 2023, and references therein). Vari-
ous observed relations are successfully reproduced by the simulations, including
the observed galaxy stellar mass functions (GSMF) and luminosity functions at
different redshifts, the galaxy size-stellar mass relation (SSM), the galaxy star
formation main sequence, the galaxy stellar mass-metallicity relation and many
others (e.g. Schaye et al., 2015; Pillepich et al., 2018; Davé et al., 2019). However,
those successful simulations mostly neglected the modelling of the cold neutral
gas, which is believed to play a key role in the cosmic baryon cycle (e.g. Péroux &
Howk, 2020).

In fact, the large, high-resolution cosmological-volume simulations from the
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past decade such as HorizonAGN (Dubois et al., 2014), eagle (Schaye et al.,
2015), IllustrisTNG (Pillepich et al., 2018), Simba (Davé et al., 2019) all applied
‘a temperature floor’ to the interstellar gas and/or artificially enhanced the gas
pressure assuming an effective equation of state, so that the (dense) gas cannot
cool below ∼ 104 K. The reason for this is twofold. First, simulating the cold
phase is numerically difficult because of the small time-steps and small Jeans
lengths and masses that are readily reached in the dense, cold phase, which can
make the computations unfeasibly slow. Second, modelling the cold phase can-
not be accomplished without accounting for the intricate physical processes that
are relevant to the cold phase. These processes include (self-)shielding of gas
from the extragalactic UV background, the physics of formation and dissociation
of molecules and cooling emission therefrom, and the formation and evolution of
dust grains, including their live interactions with the cold gas phase (e.g. Tacconi
et al., 2020).

Among the most recent simulations of cosmological volumes that allow the
gas to enter the cold phase are NewHorizon (Dubois et al., 2021) and FIRE-

box (Feldmann et al., 2023). The FIREbox simulation used the Fire2 galaxy for-
mation model (Hopkins et al., 2018) and was run in a cosmological volume of
(22.1 comoving Mpc)3 down to redshift z = 0 with gas and dark-matter parti-
cle masses of, respectively, mgas = 6.3 × 104M⊙ and mDM = 3.3 × 105M⊙. As the
Fire2 simulations, FIREboxwas run with theGizmomesh-less finite-mass hydro-
dynamic and gravity solver (Hopkins, 2015). The element ionization states were
calculated based on tabulated results from the simulations with the photoion-
ization code cloudy (Ferland et al., 1998), including a shielding correction for
cosmic UV background and local sources. The molecular-to-neutral gas fraction
was computed on-the-fly by employing an analytical expression from Krumholz
& Gnedin (2011). FIREbox did not model the self-consistent evolution of dust
grains but accounted for dust collisional heating/cooling and photo-electric heat-
ing using the analytical expressions from Meijerink & Spaans (2005) and Wolfire
et al. (2003), assuming a constant dust-to-metal ratio and a constant dust temper-
ature of 30 K (for further details, see Hopkins et al. 2018). The model reproduces
multiple scaling relations of low- and intermediate-mass galaxies, including the
mass-metallicity relation for the stellar component and gas phase, as well as the
relations between galaxy Hi and H2 masses and stellar mass. The drawbacks of
FIREbox include the limited statistical power of the simulation due to the rela-
tively small volume, the lack of AGN feedback, and that the galaxies are gener-
ally too massive (the GSMF in FIREbox is systematically higher than the observed
GSMF).

The domain of the NewHorizon simulation is a zoom-in region of ∼(16 co-
moving Mpc)3 taken from the larger, (142 comoving Mpc)3 volume of the Hori-

zonAGN simulations (Dubois et al., 2014). TheNewHorizon simulation was run
to redshift z = 0.25 with a modified version of the HorizonAGN model, using
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the adaptive mesh refinement code ramses (Teyssier, 2002). Inside the zoom-in
region, the dark-matter particle mass is equal to 1.2 × 106M⊙ and the gas spa-
tial resolution can reach ≈ 34 pc in the densest environments. The cooling of
metal-enriched gas in NewHorizon is based on tabulated rates from Sutherland
& Dopita (1993) at temperatures above ≈ 104 K and Dalgarno & McCray (1972)
below ≈ 104 K, which allows the gas to cool to 0.1 K. Primordial species are as-
sumed to be in ionization equilibrium in the presence of a homogeneous redshift-
dependent UV background, whose intensity is exponentially suppressed at densi-
ties nH ≳ 0.01 cm−3 due to self-shielding. The prescription for star formation as-
sumes a variable star formation efficiency based on a cloud turbulent Mach num-
ber, following Padoan & Nordlund (2011); Hennebelle & Chabrier (2011). The
NewHorizon model incorporates mechanical feedback from CC SNe (Kimm &
Cen, 2014) and black hole (BH) spin-dependent feedback from AGN. It neglects
feedback from stellar winds, Hii regions, and type-Ia supernovae (SNe), and does
not include a prescription for the evolution of interstellar dust. The NewHori-

zon model reproduces – among others – the observed Kennicutt-Schmidt (KS)
star formation law (Kennicutt, 1998a; Kennicutt et al., 2007), the cosmic stellar
density, and the stellar mass-metallicity relation. The drawbacks of NewHori-

zon include the limited simulated volume and the lack of data at redshifts lower
than z = 0.25. Furthermore, similar to FIREbox, most galaxies in NewHorizon

are over-massive, which results in a discrepancy with the observed GSMF1.

The results from NewHorizon and FIREbox demonstrate that simulations of
galaxy formation that include a cold ISM are challenging but possible. In this
paper, we present the calibration of a new galaxy formation model that includes
a cold gas phase: colibre (Schaye et al., in preparation). In order to calibrate the
model, we exploit machine-learning techniques, following the approach taken
by Kugel et al. (2023) for the flamingo simulations (Schaye et al., 2023). Based
on a modest number of actual simulations, we train Gaussian process emulators
that reconstruct the GSMF and SSM relations from the colibre simulations as
smooth, continuous functions of a small number of subgrid parameters. We then
fit these emulators to the observed GSMF and SSM at z = 0 and obtain the best-
fitting values for the subgrid parameters. Furthermore, we consider variations
of the fiducial colibre model that use simplified versions of SN feedback, and
discuss how changes in various subgrid parameters affect the galaxy properties.
This work is structured as follows. In Section 5.2 we describe the most relevant
aspects of the colibre galaxy formation model. In Section 5.3 we present the
details of the emulation. In Section 5.4 we outline our strategy for calibrating the
colibre model. In Section 5.5 we present the results of the calibration, and in
Section 5.6 we summarize our conclusions.

1The authors argue, however, that by accounting for the selection effects and environment, these
discrepancies can be reduced.
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5.2 Simulations

All simulations in this work were run with the open-source astrophysical code
swift (Schaller et al., 2023). At the core of the swift code is a task-based
parallelism method. The equations of hydrodynamics are solved with the
smoothed particle hydrodynamics (SPH) method using the energy-density SPH
scheme Sphenix (Borrow et al., 2022). The gravity is solved with the use of the
Fast Multiple Method (Greengard & Rokhlin, 1987) for short-range forces and a
particle-mesh method solved in Fourier space for long-range forces. We utilize
the linear response method (Ali-Haïmoud & Bird, 2013) to model the evolution
of massive neutrinos in the linear approximation, and their effect on dark matter
(DM) and baryons.

In the SPH scheme Sphenix, we adopt the same values of the artificial viscosity
and energy conduction parameters as in Borrow et al. (2022). We take the quartic
spline as our SPH kernel and set the resolution parameter η = 1.2348, which gives
the effective number of neighbours within kernel support ofNngb = 64.9. We also
use η = 1.2348 for BH particles2, while for stellar particles we set η to 1.1642.

Gas particle time-steps are limited by the standard Courant-Friedrichs-Lewy
(CFL) condition with the CFL parameter of CCFL = 0.2, as well as by the local

gravitational acceleration agrav (such that ∆tmax,grav ∝ 1/
√
|agrav|). Additionally,

we do not allow the time-steps of gas particles to exceed the time-steps of any of
their SPH neighbours by more than a factor of 4. Moreover, if at a given time-
step in the simulation, some gas particles are inactive3 because of their longer
time-steps, while one or several of their gas neighbours are active because they
are on shorter time-steps, then the inactive particles are ‘woken up’ and their
time-steps are recomputed according to the present conditions (for details, see
Durier & Dalla Vecchia, 2012). We also recompute particle time-steps when par-
ticles receive energy in SN and/or AGN feedback, which ensures that the injected
energy is not quickly dissipated due to numerically enhanced radiative losses, as
shown by Durier & Dalla Vecchia (2012).

During the simulation, gas particle masses may increase if the particles are
affected by stellar mass loss (§5.2.6) or decrease if (a fraction of) their mass is ac-
creted onto supermassive black holes (SMBHs, see §5.2.10). We do not allow the
particle mass to exceed four times the initial particle mass. This is accomplished
by splitting gas particles violating the mass threshold into two new particles of
equal mass. At the same time, we forbid the particle mass from becoming less

2Although neither BH nor stellar particles experience hydrodynamic forces, they follow the SPH
neighbour search algorithm to locate their gas neighbours, which is necessary for the modelling of
AGN and stellar feedback processes.

3The division into active and inactive gas particles is a consequence of the time-step hierarchy
adopted in swift: because of differences in the local properties, gas particles may have different time-
steps that vary by 2n where n is some integer number.
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than ≈ 50 per cent of the initial mass. This is achieved by not letting SMBHs
accrete mass from gas particles whose mass is smaller than the lowest allowed
value.

In this work, we use the simulation output at redshifts z = 0 and 2. To iden-
tify (sub-)haloes in the simulation snapshots, we employ the publicly available
structure finder VELOCIraptor

4 (Cañas et al., 2019; Elahi et al., 2019).

5.2.1 Initial conditions

Initial conditions (ICs) of our simulations are produced by the monofonIC code
(Hahn et al., 2020; Michaux et al., 2021) using third-order Lagrangian pertur-
bation theory (LPT). We follow the 2-field prescription from Hahn et al. (2021)
to generate ICs for baryons and DM and take z = 127 as the starting redshift of
the simulations. The Gaussian random fields underlying the ICs are taken from
the public multiscale Gaussian white noise field panphasia (Jenkins, 2013). The
values of the phases are indicated in table B1 of Schaye et al. (2015). In all our
runs, we use the ‘3x2pt + all external constraints’ cosmology from Abbott et al.
(2022): Ωm,0 = 0.306,Ωb,0 = 0.0486, σ8 = 0.807, h = 0.681, ns = 0.967. We assume
a single massive neutrino species with a mass of 0.06 eV.

The simulations in this work were run in a cosmological volume of (50 co-
moving Mpc)3, which is smaller than the volume of the colibre production runs
(see Schaye et al., in preparation). In the ICs, for each gas particle there are four
corresponding dark-matter particles (for the details on particle positions in the
ICs, see, e.g., Richings et al., 2021). We set the number of DM particles to be four
times greater than that of the gas in order to minimize the effects of spurious
collisional heating of galactic stellar discs. Namely, owing to two-body collisions
between stellar and DMparticles, the dynamically hotter DMwill transfer energy
to the dynamically colder stars in an attempt to reach equipartition between the
two components, which has a negative impact on the morphology and kinematics
of the stellar component in simulated galaxies (Ludlow et al., 2019, 2021, 2023).
In total, we use 3763 particles for the gas and 4×3763 particles representing DM,
which yields a particle mass for the gas (DM) of 1.47 × 107M⊙ (1.94 × 107M⊙).
The associated Plummer-equivalent gravitational softening length for gas (DM)
particles, εsoft,gas (εsoft,DM), is equal to the minimum of 3.58 (4.18) comoving kpc
and 1.4 (1.64) proper kpc.

As colibre captures the multiphase structure of the ISM, we set the minimum
SPH smoothing length, hmin, to be very small (but non-zero) to avoid potential
runaway collapse of cold, dense gas, following the findings of Ploeckinger et al.
(2023). We use hmin/εsoft,gas≪ 10−5.

4https://velociraptor-stf.readthedocs.io/en/latest/

https://velociraptor-stf.readthedocs.io/en/latest/
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5.2.2 Radiative cooling

The radiative cooling and heating rates for hydrogen and helium (and free elec-
trons therefrom) are computed with the non-equilibrium thermochemistry solver
chimes (Richings et al., 2014a,b). Additionally, we explicitly track nine heavy
elements that contribute most to the cooling rate: C, N, O, Ne, Mg, Si, S, Ca,
and Fe. Their rates are provided by a modified version of the Ploeckinger &
Schaye (2020) cooling tables (Ploeckinger et al., in preparation), which were gen-
erated by chimes under the assumption of ionization equilibrium. The tables
also account for cooling due to free-free emission and molecular cooling (includ-
ing from CO, H2O, OH, HD), while the molecular cooling from H2 is computed
in non-equilibrium by chimes. Additionally, we include dust-associated heating
and cooling processes using a live dust model (§5.2.4) coupled to chimes and ac-
count for the inverse Compton cooling off CMB photons and cosmic ray heating.
We do not impose an artificial pressure floor or a temperature floor. We allow the
gas to cool down to a temperature of 10 K.

Ploeckinger & Schaye (2020) used the photoionization code cloudy (Ferland
et al., 2017) to tabulate element-by-element radiative cooling and heating rates
of 11 individual elements (9 heavy elements, hydrogen, and helium) as func-
tions of the gas density, metallicity, temperature, and redshift. Their equilibrium
tables include a modified version of the uniform, redshift-dependent UV and
X-ray background from Faucher-Giguère (2020) (see appendix B of Ploeckinger
& Schaye (2020) for details on the modification), a cosmic ray ionization back-
ground, and an interstellar radiation field (ISRF) whose shape is constrained by
the ISFR in the Milky Way Galaxy (Black, 1987). The intensities of the cosmic ray
background and ISRF scale as N1.4

Jeans where NJeans is the Jeans column density of
the gas5. Furthermore, the model includes the effects of dust, such as metal de-
pletion onto dust grains, assuming a constant dust-to-gas ratio ofD/G = 5.6×10−3
at hydrogen column densities above 1020.56 cm−2, and a scaling with N1.4

Jeans at
lower densities.

While Ploeckinger & Schaye (2020) considered a Jeans column density con-
tributed only by gas thermal motions, the updated tables from Ploeckinger et al.
(in preparation) also account for contributions from turbulent motions, which
become important in the cold ISM. A turbulent velocity of vturb = 6 km s−1 is as-
sumed and the total Jeans column density, NJeans, is computed as the maximum
of the thermal and turbulent Jeans column densities. We do not allow this col-
umn density to be greater than the minimum of NJeans,max = 1024 cm2 and nH lmax
where the length scale lmax = 100kpc and nH is the gas hydrogen number density.

The original version of the Ploeckinger & Schaye (2020) model incorporates

5The power of 1.4 comes from the observed Kennicutt-Schmidt relation (Kennicutt, 1998b),
ΣSFR ∝ Σ1.4

gas, where ΣSFR and Σgas are the galaxy-averaged star formation rate surface density and
gas surface density, respectively.
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the effects of self-shielding of cold, dense gas by assuming that the gas shielding
column is equal to half of the thermal Jeans column density. In the new ver-
sion, self-shielding effects are approximated in a similar manner but the thermal
Jeans column density is replaced with the total NJeans, which includes contribu-
tions from turbulent motions. The other changes between the tables employed
in this work and Ploeckinger & Schaye (2020) include adjustments in the scaling
relations of the cosmic ray and ISRF rates with NJeans. Further details will be
provided in Ploeckinger et al. (in preparation).

We stress that the redshift-dependent UV and X-ray background, cosmic ray
ionization background, and ISRF are all applied self-consistently both to indi-
vidual metal elements, which are evolved assuming ionization equilibrium (but
use the non-equilibrium electron density to compute the cooling rates), and to H
and He whose chemical abundances and ionization states are calculated in non-
equilibrium with the chimes solver.

5.2.3 Chemistry

We track the abundance of 12 individual species: H, He, C, N, O, Ne, Mg, Si, Fe,
Sr, Ba, and Eu6. At the start of the simulations, the hydrogen mass fraction is
equal to XH = 0.756, and the remaining baryonic mass is contained in He. The
abundances of heavier elements become non-zero shortly after the first stars have
formed, as a result of stellar chemical enrichment (see §5.2.6).

Once stellar production of metals has begun, metals will be gradually released
into the ISMwhere they are expected to get mixed and redistributed, as governed
by the turbulent motions in the gas phase (e.g. Klessen & Lin, 2003). However,
in galaxy simulations that are conducted with SPH codes, the mixing of metals
is notoriously difficult to accomplish. First of all, the standard SPH equations
lack intrinsic mixing terms (e.g. Wadsley et al., 2008). Additionally, given the
typical resolution of galaxy simulations performed in a cosmological context, the
simulations will likely fail to resolve gas turbulent motions already at ∼ 10 pc
scales, thus suppressing turbulent mixing at these and smaller scales.

To overcome these issues, in colibre we solve a set of diffusion equations for
the individually tracked species. The 12 species are diffused among the neigh-
bouring SPH gas particles following the element diffusion prescription from Cor-
rea et al. (in preparation). In short, over one time-step, the diffusion affects the
mass fraction of some element X carried by gas particle i as

Xnew
i = Xold

i +
∑
j

Kij (X
old
i −Xold

j )∆tij , (5.1)

6This set of elements is not identical to that used in the prescription for gas radiative cooling
(§5.2.2). In particular, the abundances of Ca and S are used to compute radiative cooling rates but
these elements are not tracked in colibre chemistry. Instead, their abundances are assumed to have
solar mass ratios relative to Si.
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where the sum runs over the gas neighbours of particle i, which are enumerated
by the index j, and the superscripts ‘old’ and ‘new’ stand for the mass fraction of
element X immediately before and after the diffusion update, respectively. The
diffusion coefficients Kij are calculated according to a turbulent mixing model
(e.g. Shen et al., 2010); they depend on the gas particle density, the local velocity
shear, and the dimensionless diffusion coefficient C, which we set to 0.01. The
time-step ∆tij is equal to the minimum of the time-steps of the interacting parti-
cles i and j, ensuring the conservation of diffused mass in the case where the gas
particles have different time-steps.

5.2.4 Dust

The colibre simulations incorporate a subgrid model for the formation and evo-
lution of interstellar dust, which will be described in detail by Trayford et al. (in
preparation). Briefly, the model traces two types of dust grains: graphites and
silicates, with the silicates further divided into Mg and Fe flavours. Dust grains
are produced in the AGB phase of stellar evolution and in CC SNe. Dust grains
grow by accreting mass from the gas phase, and they lose mass in hot gas due to
thermal sputtering. Furthermore, we account for grain destruction due to shocks
from individual SNe that are unresolved at our resolution, following Asano et al.
(2013). Additionally, the model incorporates two processes that modify the sizes
of the grains while preserving their (total) mass: grain shattering and coagula-
tion. We assume that all dust grains have spherical shapes and track two grain
sizes: grains with radii of 0.01 and 0.1 µm.

The dust grains can readily grow within molecular cloud environments, with
local densities exceeding 103 cm−3 (e.g. Hirashita, 2000; Stepnik et al., 2003).
Because such densities and associated spatial scales are poorly resolved in our
simulations, we apply a density-dependent boost factor to the rates of the dust-
growth processes: accretion from the gas phase and coagulation. The form of the
boost factor βdust is as follows,

log10βdust(nH) =


0 nH < nb,min
(log10 nH−log10 nb,min) log10 βdust,max

log10 nb,max−log10 nb,min
; nb,min ≤ nH < nb,max

log10βdust,max nH ≥ nb,max,

(5.2)

where the parameters nb,min and nb,max specify, respectively, the density above
which we apply a boost and the density above which the boost saturates, with the
saturation level controlled by the parameter βdust,max. Throughout this work, we
adopt the following values of the boost parameters: nb,min = 0.1 cm−3, nb,max =
100 cm−3, and βdust,max = 100. Variations in the dust-boost factor will be studied
in Trayford et al. (in preparation).
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The live dust abundances are coupled to the chimes solver, accounting for the
distribution of grain sizes. The dust is used by chimes to calculate the forma-
tion rate of molecular hydrogen on dust grains and other reactions facilitated by
dust, and to compute the dust-associated heating and cooling processes, includ-
ing dust radiative cooling and photoelectric heating. Additionally, the live dust
abundances are used to set the metal abundances in the gas phase.

5.2.5 Star formation

The colibre prescription for star formation is detailed in Nobels et al. (2023).
A gas element is labelled as ‘star-forming’ if the gas is locally unstable against
gravitational collapse.

Mathematically, the instability condition is expressed by requiring that the
(absolute) gravitational binding energy of a gas cloud represented by the gas ele-
ment exceeds its kinetic energy due to thermal and turbulent motions,

α ≡
σ2
turb + σ2

th

Gρ1/3⟨mngb⟩2/3
< 1 , (5.3)

in which ρ is the mass density of the gas element, ⟨mngb⟩ is the average mass in
the SPH kernel of the gas element, σturb is the three-dimensional turbulent ve-
locity dispersion, σth is the thermal velocity dispersion, and G is the gravitational
constant. The value of ⟨mngb⟩ is calculated as ⟨mngb⟩ = ⟨Nngb⟩mgas where mgas is
the mass of the gas element for which the star formation criterion is used, and
the effective number of gas neighbours in the kernel ⟨Nngb⟩ ≈ 65. Physically, the
SPH smoothing length of the gas element can be regarded as the radius of the
(collapsing) cloud.

The thermal velocity dispersion, σth, is given by

σth =

√
3P
ρ

, (5.4)

where P is the thermal pressure of the gas element. The turbulent velocity dis-
persion σturb of some gas element labelled by the index i is computed as

σ2
turb,i =

1
ρi

∑
j

mj |vi − vj |2W (|ri − rj |,hi) , (5.5)

where the sum runs over the neighbours of gas element i, which are labelled by
the index j, ri and rj are the vectors describing the positions of gas elements i
and j, respectively, vi and vj are the velocities of gas elements i and j, and W is
the SPH kernel function centred on gas element i, which has a smoothing length
hi .

The finite resolution of our simulations prevents us from directly following
gas collapse into stars. Instead, we convert star-forming gas particles into stellar
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particles stochastically. To compute the probability of a star-forming gas element
becoming a stellar particle, we use the Schmidt (1959) law,

psf =
ṁsf

mgas
∆t =

ε
tff
∆t , (5.6)

where ṁsf is the star formation rate (SFR) of the gas element, ∆t is the size of the
time-step at which the calculation is performed, tff = [3π/(32Gρ)]1/2 is the free-
fall time-scale, and we assume a star formation efficiency per free-fall time of
ε = 0.01, motivated by the star formation efficiencies inferred from observations
of giant molecular clouds (e.g. Krumholz & Tan, 2007; Lee et al., 2016).

Nobels et al. (2023) demonstrated that this prescription for star formation
reproduces the observed KS laws for neutral, atomic, and molecular gas.

5.2.6 Stellar evolution and chemical enrichment

A stellar particle physically represents a population of many stars that formed si-
multaneously from a single gas cloud and therefore possess the same properties.
We assume that all stellar particles are characterized by a Chabrier (2003) stellar
initial mass function (IMF) with the minimum and maximum masses of 0.1 and
102 M⊙, respectively. Besides standard properties such as position and velocity,
which are inherited from the parent gas particle, a stellar particle is character-
ized by its age, initial metallicity, and initial mass. The age is counted since the
moment the stellar particle has entered the main sequence of stellar evolution,
and the initial mass is the mass at the zero-age main sequence (ZAMS). Once
formed, stellar particles become involved in various forms of stellar feedback,
among which are stellar winds, radiation pressure, Hii regions, core-collapse su-
pernovae (CC SNe) and type-Ia supernovae, and chemical enrichment of the gas
phase.

To improve the temporal sampling of stellar feedback processes, we limit the
time-steps of stellar particles with age tage < 40Myr to be smaller than 1Myr. The
exact values of the time-steps are determined by gravitational forces exerted on
the stellar particles. In contrast, when the age of a stellar particle becomes greater
than 102 Myr, its feedback-related processes are sampled in time only once every
0.05 tage Myr, which is done in order to limit the computational expense. We
verified that this sampling strategy has a negligible impact on our results.

Stellar particles continuously inject metal-enriched gas into their surrounding
ISM as part of CC and type-Ia SN feedback as well as during the Asymptotic Gi-
ant Branch (AGB) phase, followingWiersma et al. (2009); Schaye et al. (2015). We
compute the net stellar yields of a stellar particle of age tage in a given time-step
∆t by integrating the Chabrier (2003) IMF over the ZAMS masses of individual
stars that died at ages between tage and tage+∆t. We use themetallicity-dependent
stellar lifetime tables from Portinari et al. (1998) to relate ZAMSmasses to tage, in
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which tage physically corresponds to the sum of the time-scales of the stellar H-
and He-burning stages. We assume that all mass (including metals) ejected over
the lifetime of an individual star that died at age tage, is released instantaneously
once the stellar particle’s age reaches tage.

We take CC SN yields from Nomoto et al. (2013) who provide the data for
ZAMS masses between 13 and 40 M⊙ and metallicities between 0 and 0.05. We
assume that all stars with ZAMS masses between 8 and 40 M⊙ evolve into CC
SNe. However, because Nomoto et al. (2013)’s lowest ZAMS stellar mass is 13M⊙,
we linearly extrapolate the yields down to 8M⊙, at a fixed stellar metallicity. If
a stellar particle is born with an initial metallicity greater than 0.05, we evaluate
its yields at Z = 0.05.

Yields from type-Ia SN feedback are taken from Kobayashi et al. (2020) as-
suming that type-Ia SNe originate from explosions of near-Chandrasekhar mass
white dwarfs. Given the weak dependence of the yields on metallicity, we evalu-
ate all type-Ia SN yields at Z = 0.02. The times of detonation of individual type-Ia
SNe are calculated according to a delay time distribution (DTD, see Eq. 5.15 in
§5.2.9).

We model metal enrichment during the AGB phase of stellar evolution by
adopting nucleosynthesis yields from Karakas (2010); Doherty et al. (2014);
Fishlock et al. (2014); Karakas & Lugaro (2016); Cinquegrana & Karakas (2022).
We connect these datasets by creating a single look-up table with ‘net stellar
yield’ extending over the mass range from 1 to 12 M⊙ and metallicity ranging
between 10−4 and 0.1. Further details on metal enrichment will be provided by
Correa et al. (in preparation).

5.2.7 Early stellar feedback

Our stellar evolution model includes three early stellar feedback processes from
massive stars: stellar winds, direct radiation pressure, and Hii regions. To de-
termine the energies, momenta, and ionizing flux injected into the gas phase by
these feedback processes, we use the Binary Population and Spectral Synthesis
(bpass) tables (Eldridge et al., 2017; Stanway & Eldridge, 2018) version 2.2.1 with
a Chabrier (2003) IMF whose minimum and maximum stellar masses are 0.1 and
102M⊙, respectively.

The details of the numerical implementation and impact of these early feed-
back processes will be presented in Ploeckinger et al. (in preparation). Briefly,
stellar wind and direct radiation pressure feedback are realized by star particles
stochastically kicking their gas neighbours with a kick velocity of 50 km s−1. The
number of kicks in the stellar-wind feedback is based on the cumulative momen-
tum provided by the bpass tables given the stellar particle’s age and metallicity
at birth. The radiation pressure feedback is determined by the photon energy
spectrum, which is also fetched from the bpass tables. To calculate the photon
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momentum exerted onto the gas, we use the wavelength-dependent optical depth
taken from the modified tables of Ploeckinger & Schaye (2020) (see §5.2.2), which
is based on the local Jeans column density. Finally, in Hii regions young star par-
ticles stochastically ionize and heat their surrounding gas to a temperature of
T = 104 K, following a Strömgren sphere approximation. The probability of a gas
particle becoming an Hii region depends on the density of the ambient medium
and on the bpass ionizing photon flux from the stellar particle(s). While a gas par-
ticle is part of an Hii region, it is not allowed to turn into a stellar particle even if
it satisfies the star formation criterion. Young stellar particles select a new set of
their gas neighbours as Hii regions every 2 Myr, provided the conditions for the
Strömgren sphere are fulfilled.

5.2.8 Core collapse supernova feedback

The colibre model for feedback from CC SNe is a modified version of the
thermal-kinetic model of Chaikin et al. (2023).

The amount of energy in CC SN feedback released by a stellar particle in a
time-step from t to t +∆t is calculated as

∆ECCSN = 1051 ergfE m∗

∫ md(t)

md(t+∆t)
Φ(m)dm, (5.7)

in which Φ(m) is the Chabrier (2003) IMF and md(t) denotes the mass of the
star(s) that explode as core-collapse SNe at age t. We use the metallicity-
dependent stellar lifetime tables from Portinari et al. (1998) to compute md(t).
The function md(t) is non-zero only for ZAMS masses between mmin,CCSN = 8
and mmax,CCSN = 102M⊙, which roughly correspond to the stellar ages of ≈ 40
and 3 Myr, respectively.

Unlike Chaikin et al. (2023), we assume that the energy of a single SN in units
of 1051 erg, fE, depends on the thermal pressure of the parent gas particle, Pbirth,
measured immediately before it turned into the stellar particle under considera-
tion. The relation between fE and Pbirth has the following form7,

fE(Pbirth) = fE,min +
fE,max − fE,min

1+ exp
(
−
log10 Pbirth − log10 Pbirth,0

σP

) , (5.8)

where fE,min and fE,max are, respectively, the minimum and maximum energies
that can be injected by a single SN, in units of 1051 erg, Pbirth,0 is a normaliza-
tion constant, which we will call the pivot birth pressure, and the parameter σP

7This function can also be expressed in the functional form used in eagle for their metallicity-
dependent SN energy, fE = fE,min + (fE,max − fE,min)/[1 + (Pbirth/Pbirth,0)−nP ], in which nP =
1/(σP log10 e). However, in addition to the dependence on the metallicity, the SN energy in eagle,
fE, was a function of the birth density of star particles.
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defines the width of the transition from fE,min to fE,max. The functional form of
equation (5.8) implies that the SN feedback of stellar particles born in higher gas
pressure environments will be more energetic. In our fiducial setting, we take
fE,min = 0.1, fE,max = 3.5, and σP = 0.3, while the best value of Pbirth,0 will be
predicted by emulators (see below). Additionally, in §5.5.4, we will show how
variations in fE,min, fE,max, and σP affect the simulated galaxies, and discuss how
the fiducial values of these three parameters were chosen.

Physically, the dependence of the SN energy on Pbirth can be interpreted as
non-universality of the stellar IMF, which is not unrealistic. In fact, a variable
IMF has been suggested by multiple observational studies (e.g. Thomas et al.,
2011; Cappellari et al., 2012; Martín-Navarro et al., 2015; Li et al., 2017) and a
pressure-dependent IMF has been employed in numerical simulations to success-
fully reproduce the observational trends (e.g. Barber et al., 2018, 2019). Values of
fE greater than one can be regarded as accounting for hypernovae (e.g. Woosley
et al., 1999), and/or as compensation for some degree of numerical overcooling
in high-density (and typically also high-pressure) gas (e.g. Stinson et al., 2006;
Dalla Vecchia & Schaye, 2012).

The energy ∆ECCSN is injected stochastically into the gas within the SPH ker-
nel of the stellar particle. As in Chaikin et al. (2023), the parameter fkin is used to
split the energy ∆ECCSN between the two channels of energy injection: thermal
and kinetic. A fraction fkin∆ECCSN is injected kinetically, while the remainder,
(1− fkin)∆ECCSN, is distributed within the gas in thermal form.

Thermal channel of energy injection

The thermal channel of CC SN feedback utilizes the stochastic model of Dalla
Vecchia & Schaye (2012), which was employed in the eagle simulations (Schaye
et al., 2015). In the Dalla Vecchia & Schaye (2012) model, gas particles receive
SN energy from nearby stellar particles with a certain probability, pSN,heat. The
amount of the injected energy, ∆ESN, is chosen such that following the injection,
the gas particle’s temperature is increased by a fixed, pre-defined amount, ∆TSN.
Mathematically, the relationship between ∆ESN and ∆TSN is expressed as

∆Eheat(mgas,∆TSN) =
kB∆TSN
(γ − 1)

mgas

µmp
, (5.9)

where mp is the proton mass, kB is the Boltzmann constant, mgas indicates the
mass of the gas particle that is being heated, γ = 5/3 is the ratio of specific heats
for an ideal monatomic gas, and µ = 0.59 is the mean molecular weight of a fully
ionized gas. The probability that a given stellar particle will heat one of its gas
neighbours in some time-step from t to t+∆t, pSN,heat, is calculated as the ratio of
the available SN energy in the time-step, (1− fkin)∆ECCSN, to the energy required
to heat the gas mass contained within the stellar kernel, ∆Eheat(mngb,∆TSN),
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pSN,heat = (1− fkin)
∆ECCSN(t,∆t,m∗, fE)
∆Eheat(mngb,∆TSN)

, (5.10)

where mngb is the sum of the masses of the gas neighbours found within the
kernel of the stellar particle. Once pSN,heat has been computed, we start drawing
random numbers r from the interval 0 ≤ r < 1. We draw the random numbers
Nngb times where Nngb is the number of the stellar particle’s gas neighbours. We
then check how many times (out of Nngb) the random numbers happened to be
smaller than pSN,heat. The number of such outcomes determines the number of
energy injections the stellar particle will carry out in this time-step. To decide
which gas particles within the stellar particle’s kernel will receive these energy
injections, we adopt the isotropic neighbour selection algorithm from Chaikin
et al. (2022) with the maximum number of rays set to 8.

We note that in eagle, thermal energy injections were distributed among gas
neighbours with a mass-weighted neighbour selection scheme, as opposed to the
isotropic method from Chaikin et al. (2022) who showed that the former scheme
is biased towards injecting SN energy into high-density gas, and for this reason
leads tomore radiative energy losses than the isotropic algorithm. Whereas eagle
used a constant heating temperature ∆TSN, in colibre ∆TSN depends on the gas
density.

A density-dependent heating temperature

Specifically, the CC SN feedback in the eagle simulations used a constant heating
temperature of ∆TSN = 107.5 K, with the detailed motivation provided by Dalla
Vecchia & Schaye (2012). In short, values greater than ∼ 107.5 Kwould lead to un-
dersampling of SN feedback because the number of energy injections distributed
within the surrounding gas by a single stellar particle over its lifetime, ⟨Nheat,tot⟩,
would be less than 1. The value of ⟨Nheat,tot⟩ is computed as

⟨Nheat,tot⟩ =
(1− fkin)ECCSN,tot(m∗, fE)

∆Eheat(mgas,∆TSN)
,

= 0.91(1− fkin)fE
(
m∗
mgas

) (
∆TSN
107.5K

)−1
, (5.11)

wherem∗ is the initial mass of the stellar particle,mgas is the (average) mass of gas
particles in the simulation, and ECCSN,tot(m∗, fE) = 1051 ergfE m∗

∫ mmax,CCSN

mmin,CCSN
Φ(m)dm

is the total CC SN energy released by the stellar particle over the course of its
lifetime. Assuming that m∗ ≈ mgas, fE ∼ 1, and fkin ≪ 1 and requiring that each
star particle on average deposits at least one energy injection in its lifetime (i.e.
⟨Nheat,tot⟩≳ 1), gives a constraint on the heating temperature ∆TSN ≲ 107.5 K.
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On the other hand, ∆TSN needs to be high enough to prevent the injected en-
ergy from being radiated away before doing work, which would lead to inefficient
SN feedback, which is a consequence of the limited resolution (e.g. Stinson et al.,
2006; Dalla Vecchia & Schaye, 2012). Assuming that at high temperatures ra-
diative cooling is dominated by bremsstrahlung, Dalla Vecchia & Schaye (2012)
showed that the maximum density at which the feedback can remain efficient is

nH,crit = 2cm−3
(
∆TSN
107.5K

)3/2 ( ft
10

)−3/2
×(

mgas

1.5× 107M⊙

)−1/2 ( ⟨Nngb⟩
65

)−1/2
×

( µ

0.6

)−9/4 (g(XH)
0.14

)3/2
, (5.12)

where ft is the ratio of the radiative cooling time-scale of the heated gas element
to the sound-crossing time-scale across the element and the function g(XH) =
X2/3
H (1 +XH)−1(1 + 3XH)−1 with XH being the hydrogen mass fraction8.
In contrast to eagle, in colibre we exploit equation (5.12) and allow the heat-

ing temperature to vary within a certain range of values, ∆TSN,min < ∆TSN <
∆TSN,max, monotonically increasing with the gas density. In our fiducial model,
we set ∆TSN,min and ∆TSN,max to 106.5 and 107.5 K, respectively. The usage of val-
ues lower than 107.5 K will greatly increase the sampling of SN feedback events
in low-mass galaxies where the number of stellar particles (and hence SN en-
ergy injections) may be small. Moreover, lower ∆TSN will make SN feedback less
destructive in gas environments with relatively low densities, which potentially
alleviates the problem of overly large SN-driven bubbles identified in the eagle

simulations (Bahé et al., 2016).
More precisely, in colibre we assume that the value of the heating tempera-

ture, ∆TSN, depends on the average (physical) gas density at the location of the
star particle, ρSN, which is estimated in the time-step when the star particle does
SN feedback. We compute ρSN as

ρSN =

Nngb∑
i=1

miW(|r∗ − ri |,h∗) , (5.13)

where the sum runs over all gas particles within the stellar kernel, mi is the mass
of gas particle i, r∗ and ri are the coordinates of the stellar particle and gas par-

8From separate tests, we found that at the resolution of our simulations (mgas = 1.47 × 107M⊙),
the requirement of ft = 10 proposed by Dalla Vecchia & Schaye (2012) is sufficient but not neces-
sary: somewhat lower values of ft are acceptable too, as long as ft ≳ 2. For example, for ft = 2, the
critical density for ∆TSN = 107.5 K becomes ≈ 20 cm−3. For comparison, the median density in our
simulations at which CC SNe take place is ∼ 1 cm−3.
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ticle i, respectively, and W is the SPH kernel function with the stellar particle’s
smoothing length h∗. After having computed ρSN, we convert it to a hydrogen
number density nH,SN assuming primordial abundances, with the hydrogen mass
fraction of XH = 0.756, and calculate ∆TSN as

∆TSN(nH,SN) = ∆TSN,0

(
nH,SN

nSN,0

)2/3
, (5.14)

in which∆TSN,0 and nSN,0 are free parameters and the slope of 2/3 is motivated by
the cooling argument from Dalla Vecchia & Schaye (2012), our equation (5.12).
Because of the degeneracy between nSN,0 and ∆TSN,0 (∆TSN,0 ∝ n2/3SN,0), we fix
∆TSN,0, setting it to 106.5 K and only consider nSN,0 in the following.

Kinetic channel of energy injection

The remaining part of CC SN energy, which is not used up in the thermal chan-
nel, fkin∆ECCSN, is released in kinetic form, following a modified version of the
stochastic kinetic model of Dalla Vecchia & Schaye (2008). The full details of our
algorithm for SN kinetic feedback are presented in Chaikin et al. (2023). Briefly,
stellar particles inject kinetic energy with a probability

pkick,pair = fkin
∆ECCSN(t,∆t,m∗, fE)
2∆Ekick(mngb,∆vkick)

,

where ∆Ekick(mngb,∆vkick) = mngb∆v
2
kick/2 and ∆vkick is the desired kick veloc-

ity. Chaikin et al. (2023) showed that low values of ∆vkick, such as 50 km s−1,
help drive turbulence in the neutral ISM and improve the agreement with the
observed spatially resolved relation between Hi velocity dispersion and SFR sur-
face density in nearby galaxies. Based on these findings, in this work, we adopt
∆vkick = 50 km s−1. The effect of varying ∆vkick between 10 and 103 km s−1 can
be found in Chaikin et al. (2023).

Similarly to the thermal SN feedback, once we know pkick,pair, we draw a ran-
dom number Nngb times from an interval of 0 ≤ r < 1. The number of kick events
that the stellar particle will distribute in the time-step from t to t +∆t is equal
to the number of times the condition r < pkick,pair is found. In each kick event,
the stellar particle kicks two of its gas neighbours in opposite directions, which
is necessary to conserve linear momentum. Additionally, the model ensures that
angular momentum and energy in SN feedback are exactly conserved9 and the
injected energy is distributed statistically isotropically. For further details, we
refer the reader to Chaikin et al. (2023).

9The exact conservation of energy is realized by accounting for the relative motion between stel-
lar particles and their gas neighbours. Owing to the relative velocity corrections, gas particles may
experience velocity kicks that are greater or smaller than the desired kick velocity ∆vkick.
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5.2.9 Type-Ia supernovae

We implement type-Ia SN feedback as a purely thermal (fkin = 0) isotropic
stochastic feedback following the ‘isotropic’ algorithm from Chaikin et al.
(2022). We assume that the heating temperature in type-Ia SN feedback scales
with the gas density in the same way as for CC SN feedback, following equation
(5.14), where the values of ∆TSN,min,∆TSN,max, ∆TSN,0, nH,0, and the maximum
number of rays are set to those from CC SN feedback.

To calculate the energy budget for type-Ia SN feedback executed by one stellar
particle, we use a DTD,

DTD(t) =
ν
τ
exp

(
−
t − tdelay

τ

)
Θ(t − tdelay) , (5.15)

in which ν = 1.6×10−3M−1⊙ is the total number of type-Ia SNe that will ever occur
per unit initial stellar mass, τ = 2 Gyr is the type-Ia SN time-scale, andΘ(x) is the
Heaviside step function. Nobels et al. (in preparation) will show that this form
of DTD results in good agreement with the observed rates of type-Ia SNe.

As was the case for CC SNe, the energy of type-Ia SN released by one stellar
particle corresponds to the combined energy from many individual type-Ia SNe
that are not resolved in our simulations. We set the time tdelay to 40 Myr, which
marks the delay since the birth of the stellar particle before the first unresolved,
individual SN has gone off and contributed its energy to the stellar particle’s total
energy. The energy from all individual type-Ia SNe in a time-step [t, t + ∆t) is
calculated by integrating equation (5.15) from t to t+∆t and assuming an energy
per individual type-Ia SN of 1051 erg.

Energy-wise, type-Ia feedback is subdominant to that from CC SNe, and its
presence has only little effect on the galaxy properties that are relevant for the
calibration of the colibre simulations (see Appendix 5.A formore details). Unless
stated otherwise, all discussions about SN feedback in the following text will refer
entirely to CC SN feedback.

5.2.10 Black holes

In galaxy simulations, supermassive black holes (SMBHs) are represented by col-
lisionless BH particles, which can grow in mass by accreting surrounding gas
and/or by merging with other BH particles (e.g. Springel et al., 2005; Booth &
Schaye, 2009).

Seeding

To seed SMBHs in the simulation, we run an on-the-fly friends-of-friends (FoF)
group finder, using a linking length of 0.2 times the mean inter-particle separa-
tion (e.g. Di Matteo et al., 2008). The FoF algorithm is executed every ∆ log10 a =
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1.00751, starting at a = 0.05, where a is the cosmic scale factor. SMBHs are seeded
in haloes whose FoF mass is greater than 1010M⊙, that contain at least 256 parti-
cles (of any type), and that do not already harbour a BH particle.

During seeding, we look for the densest gas particle in the FOF halo and con-
vert it into a BH particle, which inherits the gas particle’s dynamical mass, veloc-
ity, and position. For all mass-dependent processes that aremodelled in a subgrid
fashion, such as gas accretion onto SMBHs and energy feedback, we use the BH
subgrid mass, as opposed to the dynamical mass of the particle, in order to al-
low BH masses smaller than the particle mass (e.g. Springel et al., 2005; Booth
& Schaye, 2009). The subgrid mass is initially equal to the seed mass, MBH,seed,
which is one of the free parameters of the simulation.

Gas accretion

The (instantaneous) mass accretion rate onto a BH particle is computed using a
modified Bondi-Hoyle-Lyttleton formula (Krumholz et al., 2006),

ṁBH = 4πG2m
2
BHρgas

c3sound

[
(1 +M 2)4

1.12 +M 2 +
1

(0.34f⋆)2

]−1/2
, (5.16)

whereM 2 = (σturb/csound)2+(vgas/csound)2 is theMach number squared, f⋆ = 1/[1+
(ωrBondi/csound)0.9] is the correction due to vorticity in the gas flow with ω being
the vorticity, and rBondi = GmBH/c

2
sound is the Bondi radius with mBH being the

subgrid mass of the BH particle. The absolute value of the gas bulk velocity
vgas,vgas ≡ |vgas|, the gas turbulent velocity dispersion σturb, and the vorticity ω ≡
|∇ × vgas| are all computed as mass-weighted averages over all gas neighbours
within the kernel of the BH particle. Finally, we calculate the gas mass density,
ρgas, in the standard SPHway by applying Eq. (5.13) to the gas neighbours within
the BH kernel.

Out of the total gas mass accreted by a BH particle over a given time-step
from t to t +∆t, ṁBH∆t, the BH receives a fraction

∆mBH = (1− εr)ṁBH∆t , (5.17)

where εr is the radiative efficiency. The remaining mass, εrṁBH∆t, is assumed to
have been converted into energy that escapes the SMBH as radiation (see §5.2.10).
If the updated subgrid mass of the BH particle, mnew

BH = mBH +∆mBH, is greater

than its dynamical mass at the beginning of the time-step, mdyn
BH , then the value

of mdyn
BH is increased to mnew

BH . To ensure conservation of mass, the mass deficit,

mnew
BH − m

dyn
BH is ‘nibbled’ from the mass of the gas particles that reside within

the BH kernel, following the method of Bahé et al. (2022). Briefly, as a result of
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nibbling, some gas neighbour i loses δmi of its mass, which is calculated as

δmi =
mnew

BH −m
dyn
BH

1− εr
W(|rBH − ri |,hBH)mi∑
jW(|rBH − rj |,hBH)mj

, (5.18)

while the dynamical mass of the BH is increased by (1 − εr)δmi due to the con-
tribution of gas neighbour i. In Eq. (5.18), the sum is computed over all gas
neighbours in the SPH kernel of the BH particle, rj and mj denote, respectively,
the position and mass of gas neighbour j, hBH is the smoothing length of the BH
particle, and rBH describes the BH particle’s position.

Conversely, if mnew
BH is less than m

dyn
BH , then we assume that the difference

m
dyn
BH − m

new
BH > 0 represents a subgrid gas reservoir around the SMBH and all

accreted mass comes therefrom. We then only reducemdyn
BH by εr∆mBH to account

for the energy that has been converted into radiation. No gas particle’s mass is
nibbled in this case.

Finally, in colibre the mass accretion rate, ṁBH, is capped above 10 times the
mass accretion rate at the Eddington luminosity, ṁEdd,

ṁBH,max = 10ṁEdd = 10
4πGmBHmp

εrσTc
, (5.19)

where σT is the Thompson cross section for electron scattering and c is the speed
of light. In practice, we find that setting ṁBH,max to ṁEdd, which is commonly
done in galaxy simulations (e.g. Schaye et al., 2015; Pillepich et al., 2018; Dubois
et al., 2021), results in negligible differences in galaxy and SMBH properties, as
super-Eddington accretion events are rare and short-lived.

BHmergers

Following Bahé et al. (2022), two BH particles will merge if the distance between
them, ∆rBH, is less than three gravitational softening lengths, ∆rBH < 3εsoft,gas; the
less massive BH is within the kernel of the more massive BH; and if their relative
velocity ∆vBH satisfies ∆vBH <

√
2G(M +m)/∆r whereM andm are the dynamical

masses of the larger and smaller merging BH particle, respectively. Once the
merger criteria are simultaneously satisfied, the BHs are instantaneously merged.
During the merging, all properties of the BH particle with the lower subgrid
mass are transferred to the more massive particle, after which the less massive
BH particle is removed from the simulation.

BH repositioning

SMBHs are subject to significant dynamical friction, which causes them to lose
their orbital energy and spiral in towards the centre of the host galaxy (e.g. Os-
triker, 1999). Because galaxy simulations of representative volumes lack the res-
olution to properly capture the effects of dynamical friction, SMBHs have to be
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pushed towards the centre of the galaxy with an ad hoc prescription (e.g. Di Mat-
teo et al., 2008; Bahé et al., 2022). In colibre we follow the method of Bahé et al.
(2022) where every time-step ∆t, BH particles search for the gas particle that has
the lowest gravitational potential and are immediately ‘re-positioned’ at its co-
ordinates. The gas particles that are considered for BH re-positioning have to be
both within the BH particles’ SPH smoothing kernels and within 3 gravitational
softening lengths from the BH. As recommended by Bahé et al. (2022), when se-
lecting the gas neighbour with the lowest gravitational potential we exclude the
contribution of the BH particle to the potential.

Feedback from active galactic nuclei

Following Booth & Schaye (2009) and similar to eagle (Schaye et al., 2015), we
implement active galactic nuclei (AGN) feedback from SMBHs as a purely ther-
mal AGN feedback.

In a given time-step of length ∆t, we first compute the energy of the radiation
emitted around the SMBH that is coupled to the gas,∆EAGN, based on the SMBH’s
instantaneous gas accretion rate ṁBH (Eq. 5.16). The value of ∆EAGN is given by

∆EAGN = εfεr ṁBH c2∆t , (5.20)

where εf is the coupling efficiency. For both εr and εf, we use a value of 0.1, which
yields a plausible AGN luminosity function and realistic SMBH masses.

As is the case with stellar feedback, injecting the energy ∆EAGN into sur-
rounding gas may result in numerical overcooling if ∆EAGN is relatively small.
Following Booth & Schaye (2009), we wait until a sufficiently large amount of
energy has been accumulated by the BH. Numerically, this is achieved by hav-
ing each BH particle carry an energy reservoir, Ereservoir

AGN , which is empty upon
BH seeding but whose energy is increased every time-step by the value of ∆EAGN
for that time step. Once the energy in the reservoir has exceeded some thresh-
old energy ∆EAGN,thr, we inject the energy ∆EAGN,thr into one of the gas particles
within the BH’s kernel and subtract an equivalent amount of energy from the
reservoir. We define ∆EAGN,thr as the energy that results in a temperature in-
crease of the heated gas neighbour by ∆TAGN, ∆EAGN,thr ≡ ∆Eheat(⟨mgas⟩,∆TAGN),
where ⟨mgas⟩ is the average gas particle mass in the BH’s kernel and the expres-
sion for ∆Eheat(⟨mgas⟩,∆TAGN) is given by equation (5.9). We use ∆TAGN = 109 K,
which is the same value as used in the fiducial eagle simulation. If the BH parti-
cle accretes rapidly and/or its time-step is very long, the energy in the reservoir
Ereservoir
AGN may temporarily exceed NAGN∆EAGN,thr where NAGN is some integer

number greater than one. In this case, the energy ∆EAGN,thr is injected into NAGN
gas neighbours, and Ereservoir

AGN is reduced by NAGN∆EAGN,thr.
To select the gas neighbours that will receive the energy, we employ the ‘Min-

imumDistance’ algorithm from Chaikin et al. (2022). In the ‘MinimumDistance’
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algorithm, if a BH particle needs to distribute NAGN ≥ 1 energy injections among
its neighbours, then the NAGN closest neighbours each receive one energy injec-
tion. As in Bahé et al. (2022), we set the maximum number of rays carried by
BH particles to NBH,rays = 50, meaning that a BH particle can simultaneously
heat no more than 50 of its neighbours. In rare events where NAGN is greater
than NBH,rays, we increase ∆TAGN by NAGN/NBH,rays and heat the NBH,rays closest
neighbours using the updated value of ∆TAGN. Additionally, if the number of gas
particles within the BH’s kernel, Nngb, is smaller than min(NAGN,NBH,rays), then
∆TAGN is raised by min(NAGN,NBH,rays)/Nngb and all Nngb particles receive the
energy corresponding to the updated ∆TAGN.

5.3 Emulators

We use Gaussian process emulators to validate the choice of the subgrid param-
eters in the colibre model and to demonstrate that simplified models with re-
duced numbers of subgrid parameters cannot provide an equally good fit to the
target observational data. We construct Gaussian process emulators using the
python package swift-emulator (Kugel & Borrow, 2022).

Generally, finding the values of subgrid parameters for which the simula-
tion best reproduces a certain set of observational data is a cumbersome process.
Given the number of ‘knobs to tune’ in a galaxy formation model, the search for
the best-fitting values may require running thousands of simulations for various
values of the subgrid parameters. Such a blind search would clearly be inefficient
for colibre because of the high dimensionality of the model’s parameter space.
Instead, we will follow the method10 from Kugel et al. (2023), who employed
Gaussian process emulators to calibrate the large (but lower resolution and using
a simpler galaxy formation model) cosmological simulations flamingo (Schaye
et al., 2023; Kugel et al., 2023).

We set up a number of simulations (∼ 100) that sample a part of the colibre

parameter space of interest here at unique points, utilizing the Latin hypercube
sampling technique (see §5.4.3). We use these simulations to train emulators in
order to ‘interpolate’ to other points in the parameter space. That is, the emu-
lators will provide a continuous reconstruction of the parameter space, without
requiring us to run any additional simulations. With the trained emulators, the
search for the best-fitting values of subgrid parameters will be simplified to the
minimization of the error between the emulator predictions and the target obser-
vational data.

10However, unlike Kugel et al. (2023), in our analysis we do not consider the bias parameters for
stellar mass and cosmic variance, which Kugel et al. (2023) found to have a negligible effect on the
calibration of the flamingo simulations.
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5.3.1 Setup

Consider a smooth, surjective mapping f between some input scalar variable x
and an output y where the mapping f depends on some parameters11 repre-
sented by a vector θ. Assuming that we know the true relation y = f (x,θ) only
at some finite number of points N , {xn,θn, yn = f (xn,θn)}Nn=1, our goal will be to
make use of this limited information to interpolate the relation y = f (x,θ) to the
unknown parts of the space along θ and x. If the data {xn,θn, yn}Nn=1 come from a
numerical simulation, as will be the case for us, then the interpolation process is
termed emulation.

We will write a hat above ‘f ’ to distinguish an emulator of y = f (x,θ), y =
f̂ (x,θ), from the true relation. The size of vector θ is equal to the number of pa-
rameters on which the emulator depends. In the following, we will write Nparam
as a short-hand notation for the length of θ.

A Gaussian process with zero mean is fully specified by its covariance func-
tion (e.g. Rasmussen & Williams, 2006). As in Kugel et al. (2023), we construct
the covariance function by using the squared exponential kernel,

k(X ,X ′) = exp
[
− (X −X

′)TC(X −X ′)
2

]
, (5.21)

where the vectors X = (x,θ) and X ′ = (x′ ,θ′) correspond to two different points in
the Nparam +1-dimensional parameter space, and C is a diagonal matrix that sets
the length scale for each dimension of the parameter space. We do not need to
opt for more sophisticated kernels because the relations we are going to emulate
are smooth and their behaviour is relatively straightforward to predict once the
emulators have been trained.

5.3.2 The emulated relations

We emulate two relations that will be used to calibrate the colibre model:

• Galaxy stellar mass function (GSMF) at z = 0. Here the input variable x is
the galaxy stellar mass, M∗, measured in 3D apertures of size 50 kpc, and
the output variable y is the number of galaxies per unit volume, dn, per
logarithmic bin of stellar mass, dlog10M∗. Because the stellar mass M∗ can
span many orders of magnitude, to increase the accuracy of the emulation
we will work in log scale, adopting x = log10M∗ as opposed to x =M∗. Like-
wise, for the output y, we will take y ≡ f (x) = log10(dn/dlog10M∗), as op-
posed to dn/dlog10M∗.

11As we will show later in §5.4.2, these extra parameters will be combinations of various subgrid
parameters of the colibre model.
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• Size-stellar mass relation (SSM) at z = 0. Here the input is again x = log10M∗,
while the output is the median projected stellar half-mass radius of the
simulated galaxies whose stellar mass is M∗.

Our stellar mass, M∗, is computed in 3D spherical apertures with a radius of
50 proper kpc. By conducting mock observations of galaxies from the eagle sim-
ulations, de Graaff et al. (2022) found that this choice of aperture yields results
similar to the masses inferred from fitting Sérsic profiles, which is a method com-
monly used for observations. For both emulated relations, we take the x values
from the simulations and arrange them in bins of equal size of ∆ log10(M∗/M⊙) =
0.2. For the SSM relation, we then compute the median projected galaxy half-
mass size in each bin, while for the GSMF we count the number of objects in each
mass bin and divide it by the simulated volume and by the logarithmic width of
the bin.

We account for the errors on y values as follows. For the SSM, we set the
error, ∆y, to be half of the difference between the 84th and 16th percentiles of the
distribution of the y values in each stellar-mass bin. For the GSMF the error is
given by the Poisson noise.

• Additionally, we emulate the z = 0 relation between the stellar mass to halo
mass ratio and halo mass (SMHM). This relation will not be used to cali-
brate the colibre model because the SMHM is poorly constrained observa-
tionally. Instead, we will use it for diagnostic purposes. Our halo mass,
Mvir, is defined using the spherical overdensity threshold of Bryan & Nor-
man (1998). The x and y values fed to the emulator are x = log10Mvir and
y = log10(M∗/Mvir). The y values are the median SMHM values computed
in halo-mass bins with a 0.2-dex width and the error on the y values equals
half the difference between the 84th and 16th percentiles of the SMHM val-
ues of individual simulated galaxies falling in each bin. In the computation
of the SMHM, we consider only central sub-haloes.

5.3.3 Target observational data

We will now describe the observational data to which the GSMF and SSM emula-
tors from §5.3.2 will be fit.

Galaxy stellar mass function at z = 0

The GSMF provides one of the most stringent constraints on the evolution of
stellar mass in the Universe: it determines not only the total stellar mass formed
in the Universe but also the relative abundance of low- and high-mass galaxies.
We constrain the simulated z = 0 GSMF by matching it to the z = 0 GSMF from
Driver et al. (2022). The Driver et al. (2022) GSMF was derived from the Galaxy
And Mass Assembly, Data Release 4 (GAMA DR4) survey, which provides more
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than 240000 galaxy spectra in the redshift range from z ≈ 0 to 1. The Driver et al.
(2022) GSMF is not only highly robust but it is also presented exactly at z = 0 as
the authors correct for the redshift evolution.

Galaxy size-stellar mass relation at z = 0

Reproducing the observed GSMF does not guarantee that other properties of the
simulated galaxies, besides stellar mass, will be realistic. For example, while the
GSMF provides constraints on the total stellar masses of galaxies, it says nothing
about how that stellar mass is distributed within the galaxies. Indeed, Crain et al.
(2015) showed that depending on the subgrid model adopted in the numerical
simulation, simulated galaxies may be described by the same GSMF, but differ
drastically in their stellar half-mass radii.

We take the galaxy stellar mass-size relation from Hardwick et al. (2022) as
a second constraint on our simulations. The Hardwick et al. (2022) data come
from the eXtended GALEX Arecibo SDSS Survey (xGASS) survey (Catinella et al.,
2018), which contains ∼ 1200 galaxies in the redshift range 0.01 < z < 0.05 with
a flat distribution of stellar masses between M∗ ≈ 109 and 1011.5M⊙. Hardwick
et al. (2022) provide the median galaxy half-mass radii in stellar-mass bins of
0.2 dex width. The half-mass sizes are estimated based on Sérsic profile fits, and
are smaller by ≈ 0.1 dex than the corresponding half-light sizes in the r-band, in
agreement with de Graaff et al. (2022) who found a similar difference between
mass- and light-weighted galaxy sizes in the eagle simulations, using the SDSS
pipeline for the analysis.

5.3.4 The search for the best-fitting parameter values

Each emulated relation y = f̂ (x,θ) changes continuously and smoothly with x
and θ. Once we have constructed y = f̂ (x,θ) by training the emulator on the
simulation data {xn,θn, yn}Nn=1, our goal is to find the values of the parameters
θ that result in the best agreement between the emulator’s predictions and ob-
servational data. To quantify how well Gaussian process emulators can fit the
observational data, we will use Bayesian analysis.

Prior

We start by setting up a prior on the emulator parameters θ, Pprior(θ). We assume
that each parameter θi has a uniform prior within some range from θi,min to
θi,max, and drops to zero otherwise,

Pi,prior(θi) =

1, if θi,min ≤ θi ≤ θi,max

0, otherwise .
(5.22)



5

216 Chapter 5. Calibration of the COLIBRE model

The total prior for θ is then the product Pprior(θ) =
∏Nparam

i Pi,prior.
We opt for such a prior because of our limited knowledge about the parame-

ters θ. The vector θ contains subgrid parameters of our galaxy formation model.
Probing N random realizations of vector θ requires running N independent sim-
ulations, each of which may take a long time (∼ weeks) to complete. Therefore,
given the finite number of simulations that we can afford to run, our training
data contain a rather small number of values for each subgrid parameter θi . The
values of θi are distributed within a certain interval whose lower and upper ends
define, respectively, θi,min and θi,max in equation (5.22). We have to set the prior
to zero outside the domain sampled by the actual simulations because the errors
of a Gaussian process emulator become large if the emulator is used for extrapo-
lation.

Likelihood

We compute the total log-likelihood function, lnL(θ), as the sum of individual
log-likelihood functions for the emulated GSMF and SSM,

lnL(θ) = lnLGSMF(θ) + lnLSSM(θ) , (5.23)

which means that the GSMF and SSM relation contribute equally to the total
likelihood.

The likelihood of each emulated relation is computed assuming that the sta-
tistical errors in the emulator’s prediction and the observational data are Gaus-
sian distributed and independent,

lnLR(θ) = −
⟨Nobs⟩
NR,obs

1
2

NR,obs∑
n=1

 f̂R(xR,n,θ)− yR,n√
σ2
R,n + ε2emu


2

, (5.24)

where the subscript ‘R’ stands for GSMF or SSM. Next, xR,n, yR,n, and σR,n are, re-
spectively, the x values, y values, and errors on the y values of the observational
data used to constrain the emulated relation ‘R’ (see §5.3.3), and NR,obs is the
number of observational data points over which the sum is computed. f̂R(xR,n,θ)
is the prediction of the emulator of the relation ‘R’ evaluated at xR,n and for the
parameter vector θ. The SSM and GSMF likelihood functions are normalized by
NR,obs/⟨Nobs⟩ where ⟨Nobs⟩ = (NGSMF,obs + NSSM,obs)/2 is the average number of
data points contained in the observational data for the GSMF and SSM emula-
tors. This normalization ensures that having different numbers of data points for
the GSMF and SSM datasets has no impact on the relative contributions of the
GSMF and SSM to the total likelihood. Note that since the emulators are built
using the simulation data in log-log space (see §5.3.2), the x and y values of the
observational data in Eq. (5.24), as well as the errors on the observed y values,
are logarithmic too.
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Finally, εemu is the uncertainty in the emulator predictions. As will be de-
scribed in §5.4.1, we build emulators not only for the full colibremodel but also
for three variations that simplified prescriptions for SN feedback. To estimate
εemu, we train the emulators on all but one simulation from the training data of
a given model, and ask the emulator to predict the GSMF and SSM for the sim-
ulation that was left out. We repeat this procedure for each simulation in the
training data of each model and record the differences between the emulator pre-
dictions and the actual simulation data. This gives us 2N allmodels

runs vectors with
emulator errors where entries of each vector correspond to different stellar mass
bins and N allmodels

runs = 136 is the total number of simulations in the training data
from the four models (see §5.4.3). The factor of 2 accounts for the fact that we
collect the errors for two emulated relations: GSMF and SSM. We concatenate all
vectors into a single list and compute its standard deviation. We found that the
emulator errors for the GSMF and SSM are both close to 0.06 dex, so we will set
εemu to this value for both the GSMF and SSM relation.

Posterior

The log posterior is the sum of the log likelihood and the log prior,

lnPposterior(θ) = lnL(θ) + lnPprior(θ) , (5.25)

fromwhich we obtain the values of the parameters of the best-fittingmodel, θbest,
as

lnPposterior(θbest) = max
(
lnPposterior(θ)

)
. (5.26)

To find the maximum of the posterior distribution, lnPposterior(θ), we use the
Markov chain Monte Carlo (MCMC) python package emcee (Foreman-Mackey
et al., 2013). We run MCMC for 5000 steps using 30 independent walkers that
start at random positions in the parameter space. In the analysis of the posterior
distribution, we remove the first 200 steps for each walker to avoid the ‘burn-
in’ phase. In order to generate proposal steps for the random walk through the
parameter space, we employ the ‘stretch move’ algorithm (Goodman & Weare,
2010) with a stretch scale parameter of 2. Lastly, we note that it is not necessary
to normalize the posterior to find the best-fitting parameter values, as can be seen
from equation (5.26).

5.4 Calibration with emulators

This section describes the calibration strategy of the colibre simulations, which
makes use of the method of emulators detailed above. The objective of the cali-
bration is to maximize the agreement between the simulation and target observa-
tional data, which is achieved by adjusting the subgrid parameters of the model,
or the model itself.
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5.4.1 Models with simplified supernova feedback

As the starting point of the calibration, we take a model of galaxy formation
with a significantly simplified version of SN feedback, compared to the fiducial
colibre algorithm presented in §5.2.8. We will call this model the Basic model.
The other aspects of the galaxy formation physics in the Basic model will be the
same as described in Section 5.2.

We do not commence with calibrating the full colibre algorithm for SN feed-
back because it is not obvious a priori whether using a more complex model will
lead to a better fit of the simulation to the observational data. Only failing to
match the target observational data with the simplified model will indicate that
a more sophisticated model might be a necessity.

Besides the Basic model, we will consider two other simplified prescriptions
for SN feedback, ThermalKinetic and ThermalKineticVariable∆T, all of which will
be detailed below. We emphasize that only the treatment of SN feedback is differ-
ent between the fiducial colibre model and its simplified versions – Basic, Ther-
malKinetic, and ThermalKineticVariable∆T – while all other parts of the galaxy
formation physics remain identical. In particular, the BH physics is kept fixed.

The Basicmodel

Compared the fiducial colibre model for SN feedback from Section 5.2, in the
Basic model we make the following simplifications:

(i) The energy of a single SN in units of 1051 erg, fE, is constant, as opposed to
being dependent on the stellar birth pressure, Pbirth (see Eq. 5.8);

(ii) All energy released by SNe is injected thermally. In other words, the frac-
tion of SN energy injected in kinetic form, fkin, is set to 0 and the kinetic
channel of SN feedback is not used;

(iii) Instead of being density-dependent (Eq. 5.14), the heating temperature in
the thermal channel of SN feedback, ∆TSN, is constant and equal to 107.5 K,
the value used in the eagle model.

The thermal-kinetic model

In addition to the Basicmodel, we consider a modification in which the prescrip-
tion for SN feedback consists of both kinetic and thermal channels of energy
injection (i.e. fkin is no longer necessarily 0). We will call this model ThermalKi-

netic. As is the case in the colibre reference model, the kinetic channel of the
ThermalKinetic model uses the desired kick velocity of ∆vkick = 50 km s−1. Oth-
erwise, ThermalKinetic is the same as Basic, including the constant energy in SN
feedback and the constant heating temperature of ∆TSN = 107.5 K in the thermal
channel of energy injection.
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Compared to Basic, the ThermalKinetic model has one extra free parameter:
the fraction of SN energy injected in kinetic form, fkin. For fE = 2 and fkin = 0.1,
the CC SN feedback in the ThermalKineticmodel becomes identical to that in the
fiducial model used in the simulations of isolated disc galaxies by Chaikin et al.
(2023).

The thermal-kinetic model with a variable heating temperature

Our final simplified model is ThermalKineticVariable∆T. As the name suggests,
compared to ThermalKinetic, ThermalKineticVariable∆T adopts the density-
dependent heating temperature for thermal SN feedback (for both CC and
type-Ia SNe) detailed in §5.2.8, while Basic and ThermalKinetic use a constant
value of ∆TSN = 107.5 K.

Of the simplified models, ThermalKineticVariable∆T is closest to the colibre

reference model. The only difference between the two models is that in the latter
one the SN energy fE depends on the stellar birth gas pressure, following equa-
tion (5.8), while ThermalKineticVariable∆T uses a constant fE.

5.4.2 Selection of subgrid parameters for calibration with emulators

We next describe the selection of the subgrid parameters that will be calibrated
using the emulators. These parameters, which we denote by the vector θ, enter
the emulators defined in §5.3.2 and are optimized with the methods of Bayesian
statistics (§5.3.4), such that the simulation provides the best match to the obser-
vational data from §5.3.3.

We will only examine the subgrid parameters that are important for SN and
AGN feedback. We will consider no parameters related to other parts of the
galaxy formation physics (such as star formation, chemical enrichment, or ra-
diative cooling) because those parameters will have a smaller-to-no impact on
the galaxy properties that are relevant to our calibration (i.e. GSMF and SSM),
and/or because their values are well constrained by the fundamental physics or
inferred from other observations.

AGN feedback parameters

The notable parameters of the colibre model related AGN feedback are (i) the
AGN heating temperature, ∆TAGN; (ii) the seed mass of SMBHs, MBH,seed; and
(iii) the minimum mass of a halo in which BH particles can be seeded, MFOF,seed.
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Table 5.1: Latin hypercubes used to train the emulators. Column (1): the name of the model for which the Latin hypercube is
created (see §5.4.1); column (2): the number of simulations in the Latin hypercube; column (3): the energy per single CC SN
in units of 1051 erg; column (4): the fraction of SN energy that is injected in kinetic form; column (5): the pivot density in the
relation between the SN heating temperature and the gas density (Eq. 5.14); column (6) the pivot birth pressure in the relation
between the energy in CC SN feedback and the stellar birth gas pressure (Eq. 5.8); column (7) the seed mass of SMBHs. The
two numbers in each cell of columns 3−7 specify the interval over which each parameter is varied in the Latin hypercube. For
a given model, an empty cell means that the corresponding parameter does not exist in the model.

Model name Nruns Model parameters that are varied in the Latin hypercube
fE fkin nSN,0 log10 Pbirth,0/kB log10MBH,seed

[cm−3] [K cm−3] [M⊙]

Basic 24 [0.1,5] – – – [3, 5]
ThermalKinetic 32 [0.5,2.5] [0,1] – – [3, 5]
ThermalKineticVariable∆T 40 [0.5,2.5] [0,0.5] [0.1,3] – [3.8, 4.8]
Reference (colibre) 40 – [0,0.5] [0.05,2] [3.2,4.4] [3.7, 4.7]
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• The AGN heating temperature, ∆TAGN, determines the thermal energy re-
ceived by a gas particle in a single AGN energy injection event. In other
words, ∆TAGN is a measure of the ‘burstiness’ of AGN feedback. In princi-
ple, higher (lower) values of ∆TAGN are expected to yield stronger (weaker)
AGN feedback. However, owing to the ability of SMBHs to self-regulate, the
exact value of ∆TAGN may have only a small impact on the z = 0 GSMF and
SSM12 (e.g. McCarthy et al., 2017), as long as the temperature of the heated
gas remains high enough that the injected thermal energy is not quickly
radiated away (e.g. Booth & Schaye, 2009). We will therefore not consider
∆TAGN as one of the subgrid parameters for calibration. In §5.5.4 we will
confirm that (modest) variations in ∆TAGN indeed have only a minor effect
on the z = 0 GSMF and SSM, and that these small differences can be com-
pensated for by adjusting other model parameters.

• The SMBH seed mass, MBH,seed, determines how quickly SMBHs can grow
over time. HigherMBH,seed will cause faster SMBH growth, leading to more
energetic AGN feedback in lower-mass galaxies and at higher redshifts (e.g.
Booth & Schaye, 2009). Because both the GSMF and SSM depend sensitively
on the strength of AGN feedback, we will include MBH,seed in the set of
subgrid parameters for optimization with emulators, θ.

• The minimum halo (friends-of-friends) mass in which SMBHs are seeded,
MFOF,seed, has a prominent effect on the calibrated relations too, because,
similarly to MBH,seed, MFOF,seed determines how fast SMBHs can start
growing in mass (e.g. Booth & Schaye, 2009). However, for the same
reasons, MFOF,seed is strongly degenerate with MBH,seed. For example,
increasing MFOF,seed will delay the growth of SMBHs, but a similar effect
can be achieved by decreasing MBH,seed. Owing to this degeneracy, which
will be demonstrated in §5.5.4, we will not include MFOF,seed in our set
of parameters for optimization. As already explained in §5.2.10, we set
MFOF,seed = 1010M⊙.

Supernova feedback parameters

Because we consider four different prescriptions for SN feedback, we will, for
clarity, describe the SN feedback parameters for each model separately.

• In the Basic model, the only free parameter is the energy per single SN
in units of 1051 erg, fE. Therefore, the full parameter vector θ for the

12In contrast, ∆TAGN will have a strong effect on gas fractions within galaxy clusters (e.g. Le Brun
et al., 2014; Kugel et al., 2023), which we, however, cannot incorporate as an additional constraint
in the emulation because of the limited size of the simulations in our training set (503 comoving
Mpc3). By re-running a single simulation with the fiducial colibre model in the 1003 comoving
Mpc3 volume, we verified that the value of ∆TAGN = 109 K gives reasonable cluster gas fractions.
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Basic model, including the AGN feedback parameters from §5.4.2, is θ =
(MBH,seed, fE).

• The ThermalKinetic model contains an additional free parameter: the frac-
tion of SN energy injected in kinetic form, fkin. This makes the total num-
ber of parameters entering the parameter vector θ equal to three: θ =
(MBH,seed, fE, fkin).

• The ThermalKineticVariable∆T model employs a density-dependent
heating temperature for SN feedback (Eq. 5.14), which is described by
four parameters: the pivot gas density nSN,0, the heating temperature
at the pivot density ∆TSN,0, and the minimum and maximum heating
temperatures, ∆TSN,min and ∆TSN,max. As documented in §5.2.8, we set
∆TSN,0, ∆TSN,min and ∆TSN,max to 106.5, 106.5, and 107.5 K, respectively,
which leaves us with only one free parameter: nSN,0. Therefore, the final
form of the parameter vector θ for the ThermalKineticVariable∆T model is
θ = (MBH,seed, fE, fkin,nSN,0).

• Finally, the reference colibre model (henceforth, Reference) uses a stel-
lar birth pressure dependent energy for CC SN feedback (Eq. 5.8). This
comes with another set of four parameters, fE,min, fE,max, Pbirth,0 and σP ,
which together replace the parameter fE that specifies the constant energy
in SN feedback in the three simplified models. As explained in §5.2.8, the
values of three out of the four extra parameters are fixed: fE,min = 0.1,
fE,max = 3.5, and σP = 0.3. Thus, in the emulation, the dependence of fE
on the stellar birth pressure will be described with a single free param-
eter, Pbirth,0, resulting in the parameter vector for the Reference model,
θ = (MBH,seed, Pbirth,0, fkin,nSN,0).

We note that due to the functional degeneracies between Pbirth,0, fE,min, and
fE,max (see Eq. 5.8), a very low (high) Pbirth,0 preferred by the emulator will
indicate that our chosen value of fE,max (fE,min) is too low (high). In §5.5.4
we will show that Pbirth,0, fE,min, and fE,max are indeed degenerate with one
another, and that the exact value of σP has only a weak impact on the GSMF
and SSM.

5.4.3 Training data for emulators

For the fiducial colibremodel from Section 5.2, as well as for each of the simpli-
fied versions described in §5.4.1, we create three emulators introduced in §5.3.2.
Each emulator needs to be trained before it can be exploited in the search for the
best-fitting parameter values.

To build the training datasets, we run actual simulations. For a given model,
each simulation will represent a unique combination of values of the subgrid



5

5.4. Calibration with emulators 223

parameters θ. To optimally choose the locations of the simulations in the pa-
rameter space, we make use of the Latin hypercube sampling technique (McKay
et al., 1979). Themain advantage of Latin hypercube sampling compared to naive
random sampling is that the former requires a much smaller number of sample
points to achieve the desired accuracy of the emulator predictions. Therefore,
the number of actual simulations needed to train the emulators for each model
can be relatively modest. We choose to run Nruns = 24 simulations for the Basic

model, 32 for the ThermalKinetic model, and 40 for ThermalKineticVariable∆T

and Reference. The number of simulations in the Latin hypercube increases with
the size of the parameter vector θ, whose dimensions for the four models are,
respectively, 2, 3, 4, and 4. The properties of the Latin hypercubes for the four
models are summarized in Table 5.1, including the ranges over which the param-
eters θ are varied. These ranges have been preselected such that the peaks of the
posterior distribution of the parameters θ fall inside the hypercube domain13.

All simulations in the Latin hypercubes were run to z = 0 in (50 comoving
Mpc)3 volumes with initial numbers of gas and dark-matter particles of 3763 and
4 × 3763, respectively (see §5.2.1 for more details on the ICs). Each simulation
was run on 128 cores and took approximately one week to reach z = 0. In total,
this translates into ≈ 3 × 106 core hours. The values of the subgrid parameters
that are not part of θ do not change between different simulations from the same
Latin hypercube.

As an illustration, in Fig. 5.1 we show the Latin hypercube for the ThermalKi-

netic model. Different axes correspond to different parameters of the hypercube:
fE, MBH,seed, and fkin. The grey hatched rectangle indicates the domain of the
Latin hypercube and orange triangles represent 32 individual simulations sam-
pling the parameter space. Thanks to the Latin hypercube sampling, the range
of values of each parameter is sampled nearly uniformly despite using only 32
simulations. These simulations are used to train the emulators to predict the
z = 0 GSMF, SSM, and SMHM as functions of the hypercube’s parameters. Once
the GSMF and SSM emulators have been trained, we can fit the ThermalKinetic

model to the observed GSMF and SSM, as described in §5.3.4, to find the best-
fitting values of the model parameters.

The Latin hypercubes for the other three models – Basic, ThermalKineticVari-

abledT and Fiducial – look qualitatively similar but have different numbers of
dimensions.

13This information was obtained by running small cosmological volumes (253 comoving Mpc3)
for much wider ranges of parameter values.
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Table 5.2: The best-fitting values of the parameters identified by the emulator by matching the model to the observational
data. Column (1): the name of the model; column (2): the observational data to which the model was fit; column (3): the
reduced χ2 of the fit. The remaining columns indicate the best-fitting values of the model parameters and the corresponding
1σ errors. The model parameters are arranged in the same way as in Table 5.1. For a given model, an empty cell means that
the corresponding parameter does not exist in the model.

Model name Emulator was fit to Reduced χ2 Best-fitting values of model parameters
fE fkin nSN,0 log10 Pbirth,0/kB log10MBH,seed

[cm−3] [K cm−3] [M⊙]

Basic GSMF and SSM 11.7 1.0± 0.1 – – – 3.4± 0.1
ThermalKinetic GSMF and SSM 5.5 1.1± 0.1 0.37± 0.05 – – 4.2± 0.1
ThermalKineticVariable∆T GSMF and SSM 3.3 1.4± 0.1 0.1± 0.05 0.5± 0.2 – 4.1± 0.1
Reference (colibre) GSMF and SSM 1.1 – 0.1± 0.05 0.6± 0.1 3.8± 0.1 4.2± 0.1

ThermalKinetic GSMF 1.6 1.4± 0.1 0.72± 0.1 – – 4.4± 0.2
ThermalKinetic SSM 0.7 0.8± 0.1 0+0.05−0 – – 3.8± 0.1
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5.4.4 Best-fitting parameters and extra simulations

The best-fitting values of the parameters of the colibre reference model, as well
as its three simplified analogues, are presented in Table 5.2. For each model,
the table lists only the values of those parameters that were optimized by the
emulators by fitting the model to the observational data. Additionally, the table
provides 1σ errors on the parameter values. Finally, we show the values of re-
duced χ2, which indicate the goodness of the fit to the observational data. We
compute χ2 as a sum of the differences (squared) between the predictions of the
best-fitting model and the observational data to which the model was fit, normal-
ized by the errors that are used in the likelihood (Eq. 5.24).

We round the best-fitting values of model parameters, as we found no signif-
icant gain in the accuracy of the fits by using more precise numbers. The Ther-

malKinetic model appears three times in Table 5.2, as we fit it to the observed
GSMF and SSM separately and together (see §5.5.1).

For each model and each combination of best-fitting parameter values (dif-
ferent rows in Table 5.2), we run a separate numerical simulation, which in total
gives us 6 new simulations14. In addition, we run 20 variations of the Reference
model with the best-fitting parameters where one of the following 10 subgrid pa-
rameters is varied: ∆TSN,max, ∆TSN,min, nSN,0, fE,min, fE,max, Pbirth,0, σP , MBH,seed,
MFOF,seed, and ∆TAGN (note that 7 out of these 10 parameters were not consid-
ered in the hypercubes). We will discuss these runs in §5.5.4. Finally, we run one
more variation of the Reference model that uses the best-fitting parameters, but
in which the energy feedback from type-Ia SNe is switched off. This simulation
is discussed in Appendix 5.A. All simulations use the same ICs from §5.2.1.

5.5 Results

We begin this section by assessing the performance of the two simplest best-
fitting models: Basic and ThermalKinetic, focussing on their predicted GSMF,
SSM, and SMHM relations and testing the accuracy of the emulators relative to
the actual simulations (§5.5.1). We then investigate the z = 0 GSMF and SSM
in the more complex models: ThermalKineticVariabledT and Reference (§5.5.2).
Next, we show how the simulations with the four best-fitting models compare to
observations for various galaxy properties that were not considered during em-
ulation and to which the models have not been tuned (§5.5.3). We then demon-
strate how the calibrated galaxy properties in the Reference model are impacted

14Because slight changes in the parameter values do not have a significant effect on the accu-
racy of the fit to the observational data, we choose to run the simulation with the Reference model
for rounder values of the best-fitting parameters when expressed in scientific format. We take
Pbirth,0/kB = 7× 103 K cm−3 instead of 103.8 K cm−3 and MBH,seed = 2× 104M⊙ instead of 104.2M⊙.
The values of the parameters nSN,0 and fkin remain the same as in Table 5.2.
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Figure 5.1: The Latin hypercube for the ThermalKinetic model. The panels’ axes
correspond to different parameters of the model: fE, MBH,seed, and fkin. The grey
hatched rectangle indicates the hypercube’s domain and orange triangles repre-
sent its sampling with 32 individual simulations, which constitute the training
dataset of the ThermalKinetic model. These simulations are used to train the
emulators of the z = 0 GSMF, SSM, and SMHM.

by changes in the subgrid parameters that were not optimized by the emulators.
Additionally, we point out degeneracies between those parameters that were op-
timized and those that were not (§5.5.4).

5.5.1 Basic and ThermalKinetic models

GSMF and SSM with the best-fitting parameters

Fig. 5.2 shows the z = 0 GSMF and median SSM for the Basic (green) and Ther-

malKinetic (orange) models. The dashed curves are the best-fitting predictions
of the emulators that were trained on the Latin hypercubes and fit to the ob-
served GSMF from Driver et al. (2022) and the observed SSM from Hardwick
et al. (2022). The solid curves are the GSMF and SSM from the simulations
that use the best-fitting parameters found by the emulators. The shaded orange
region designates the scatter in the simulation with the ThermalKinetic model:
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Figure 5.2: The galaxy stellar mass function (GSMF; left) and median size-stellar mass relation (SSM; right) at z = 0, for the
Basic (green) and ThermalKinetic (orange) models fit to the observed GSMF and SSM. The dashed and solid curves indicate,
respectively, the best-fitting predictions of the emulator and the corresponding simulations with the best-fitting parameters.
The shaded orange region shows the scatter in the GSMF and SSM for the simulation with the ThermalKineticmodel. We con-
vert the green and orange solid curves into dotted curves where galaxies are unresolved (M∗ < 109M⊙) and where the number
of galaxies is strongly limited by the finite simulated volume (M∗ > 1011.4M⊙). The vertical solid (dash-dotted) lines show the
mass range within which the emulators were trained on the simulations (fit to observational data). The target observational
data from Driver et al. (2022) and Hardwick et al. (2022) are shown in grey-scale colours. Although the ThermalKineticmodel
produces a combined fit to the observed GSMF and SSM that is better than the fit with the Basic model, neither model is
particularly satisfactory.
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the Poisson error for the GSMF and the 16th to 84th percentile scatter for the
SSM. We change the style of the solid curves to ‘dotted’ in the stellar mass range
where galaxies become poorly resolved (M∗ < 109M⊙) and where the number of
galaxies becomes too small due to the finite simulated volume (M∗ > 1011.4M⊙).
The vertical solid lines indicate the edges of the stellar mass interval used in the
training of the emulators. The vertical dash-dotted lines show the mass range
within which the trained emulators were fit to the observational data. The ob-
served GSMF from Driver et al. (2022) is shown in the left panel as black squares
and the observed SSM from Hardwick et al. (2022) is shown in the right panel
as dark-grey circles connected by a line. The error bars in the observed GSMF
indicate Poisson scatter, while in the observed SSM, they show the 1σ error on
the median. The grey hatched region in the right panel additionally shows the
galaxy population-wide scatter in the SSM from Hardwick et al. (2022).

By comparing the solid curves to the dashed curves of the same colour, we find
that the differences between the GSMF and SSM predicted by the emulators and
resulting from the actual simulations are negligibly small. Specifically, there are
no systematic differences between the simulations and emulators, and the emu-
lator errors in different stellar-mass bins of the SSM and GSMF range between 0
and ∼ 0.1 dex, which is comparable to the intrinsic scatter of numerical simula-
tions due to their stochastic nature (e.g. Borrow et al., 2023). In other words, our
trained emulators can predict the GSMF and SSM from actual simulations both
accurately and robustly.

By comparing the solid curves to the black squares in the left panel and the
dark-grey circles in the right panel, we find that the ThermalKinetic model is
closer to the observational data than the Basic model is. In particular, the Basic

model severely underpredicts the number of galaxies with stellar masses around
M∗ ∼ 1010.5M⊙ and overpredicts it at M∗ ≲ 109.5M⊙. In fact, the shape of the Ba-
sic model’s GSMF resembles a power-law, which disagrees with the shape of the
observed GSMF, which is known to be described by single- or double-component
Schechter (1976) functions, featuring an exponential down-turn at high stellar
mass. Although the ThermalKinetic model matches the observed GSMF signifi-
cantly better than Basic, the discrepancy between its GSMF and the observed data
is still quite large. Moreover, both models perform poorly in matching the ob-
served galaxy sizes: the SSM in ThermalKinetic features a prominent dip around
M∗ ∼ 1010.5M⊙, while in the Basic model, the sizes of galaxies with stellar mass
M∗ ≳ 109.5M⊙ are consistently lower than the observed relation by ≈ 0.15 dex.

Overall, the combined fit to the observed GSMF and SSM is better in the Ther-
malKinetic model than in Basic, but still not satisfactory.
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Figure 5.3: Posterior distribution of the parameters for the Basic (green) and
ThermalKinetic (orange) models fit to the observed z = 0 GSMF and SSM. The
values of reduced χ2 of the fits are shown in the legend. The three contours
of each colour indicate 34, 68, 95 per cent credibility levels. The vertical and
horizontal dotted lines indicate the best-fitting values of the model parameters,
corresponding to the maximum of the posterior.

Posterior distributions of the model parameters

Fig. 5.3 shows the posterior distributions of the parameters of the Basic (green)
and ThermalKinetic (orange) models resulting from fitting the emulators to the
observed GSMF and SSM, as explained in §5.3.4. The three contours of the same
colour signify the 34, 68, 95 per cent credibility levels of the posterior. Addition-
ally, we show one-dimensional projections of the posterior distribution for each
subgrid parameter. Because the Basicmodel does not include the kinetic channel
of SN feedback, this model is not displayed in the bottom row where the values
of the kinetic feedback-related parameter, fkin, are plotted.

First, we notice that the regions of the parameter space inspected with the
Latin hypercubes contain the models’ best-fitting parameters within 2σ (the
outer contours). This is reassuring in that it implies our results are not driven
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by the sharp edges of the chosen prior. Second, both models prefer the value of
the dimensionless SN energy parameter fE to be around 1, implying that a single
CC SN releases ∼ 1051 erg of energy, which is in agreement with the standard
theoretical expectations. Third, the best-fitting ThermalKinetic model has a
BH seed mass of MBH,seed ≈ 104.2M⊙, whereas for the Basic model, MBH,seed is
almost one order of magnitude lower, MBH,seed ≈ 103.4M⊙. This is likely because
the prescription for SN feedback in the Basic model is too simple, such that
the model’s only way to find a better agreement with the observed GSMF at the
massive end, without making the agreement at the low-mass end even worse,
is to reduce the importance of AGN feedback. The emulator achieves this via
lowering MBH,seed, as there is no other AGN feedback-related parameter to tune.
Fourth, the posterior of the ThermalKinetic model peaks at the kinetic energy
fraction in SN feedback of fkin ≈ 0.37, indicating the importance of SN kinetic
feedback in bringing the model closer to the observational data.

Finally, in the legend next to the models’ names, we show the values of the
reduced χ2 of their fits to the observed data, which is 11.7 for the Basic model
and 5.5 for ThermalKinetic. These values are in line with our conclusions from
Fig. 5.2: that the ThermalKineticmodel outperforms the Basicmodel but neither
model is a particularly good fit to the data.

The effect of changing the model parameters

Fig. 5.4 shows the SMHM relation in the ThermalKinetic model. As previously
explained, we do not try to fit the emulator to the SMHM relation because it is
not directly observed and ignores satellite galaxies. Here we only use the SMHM
to predict how varying the model parameters affects the galaxy stellar mass. Dis-
playing the SMHMas opposed to the GSMFmakes it easier to visually distinguish
the impact of different subgrid parameters, because, compared to the GSMF, the
SMHM relation varies over a smaller dynamical range and includes a character-
istic change in the sign of the slope.

In each panel of Fig. 5.4, differently coloured solid curves correspond to dif-
ferent SMHM relations predicted by the emulator in which two of the threemodel
parameters are fixed to their best-fitting values and the remaining parameter is
varied. The SMBH seed mass is varied in the left panel, the SN energy in the
middle panel, and the fraction of SN energy injected in kinetic form in the right
panel. In addition, in the middle panel, we display the SMHM relation predicted
by the emulator of the Basicmodel and how it changes with fE (dashed curves in
different colours). The only other parameter of the Basicmodel,MBH,seed is equal
to its best-fitting value, 103.4M⊙. The SMHM relations from the semi-empirical
models of Moster et al. (2018) and Behroozi et al. (2019) are shown for reference
only (grey-scale curves with error bars).



5
1011 1012 1013

Mvir [M�]

10−3

10−2

10−1

M
∗/
M

vi
r

ThermalKinetic [emulator]

log10MBH,seed [M�]= 3.0

log10MBH,seed [M�]= 3.4

log10MBH,seed [M�]= 3.8

log10MBH,seed [M�]= 4.2

log10MBH,seed [M�]= 4.6

log10MBH,seed [M�]= 5.0

1011 1012 1013

Mvir [M�]

ThermalKinetic [emulator]
fE= 0.5

fE= 0.9

fE= 1.3

fE= 1.7

fE= 2.1

fE= 2.5

Basic
fE= 0.2

fE= 1.3

fE= 2.5

fE= 3.7

fE= 4.9

1011 1012 1013

Mvir [M�]

Moster et al. (2018)

Behroozi et al. (2019)

ThermalKinetic [emulator]
fkin= 0.0

fkin= 0.2

fkin= 0.4

fkin= 0.6

fkin= 0.8

fkin= 1.0

Figure 5.4: Median stellar to halo mass ratios (SMHM) versus halo mass at z = 0 predicted by the trained emulators. The results
are shown for the ThermalKinetic model fit to the observed GSMF and SSM. The individual panels show how the emulated
SMHM varies with the SMBH seed mass MBH,seed (left), the energy in SN feedback in units of 1051 erg fE (middle), and the
fraction of SN energy injected in kinetic form fkin (right). Different colours correspond to different values of each parameter.
Only one parameter is varied at a time, while the other parameters have their best-fitting values. For reference, each panel
shows the data from the semi-empirical models of Moster et al. (2018) and Behroozi et al. (2019), displayed in grey-scale
colours. Additionally, the middle panel shows the SMHM relation in the Basic model, also for different values of fE (dashed
curves). Regardless of the value of fE, the SMHM in the Basic model is always too flat compared to the data. This problem is
resolved in the ThermalKinetic model for high enough fkin.
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First, by examining the left panel, we find that, as expected,MBH,seed predom-
inantly affects the stellar mass of massive haloes (Mvir ≳ 1011.5M⊙). In haloes of
lower mass (Mvir ≲ 1011.5M⊙), SMBHs do not grow as efficiently, which leads
to a lack of AGN feedback therein and hence essentially no dependence of the
SMHM relation on MBH,seed at those halo masses. Furthermore, we observe that
the value of the SMHM seed mass determines the halo mass at which the SMHM
relation reaches its peak. The best-fitting value is MBH,seed ≈ 104.2M⊙, which re-
sults from fitting the ThermalKinetic model’s emulator to the GSMF and SSM,
yields an SMHM relation that is broadly consistent with the SMHMs inferred
from the data by the semi-empirical models of Moster et al. (2018) and Behroozi
et al. (2019). This is expected since constraints on the GSMF and SMHM are cor-
related: fitting the model to either relation should improve the agreement with
the other one.

We next move to the middle panel of Fig. 5.4, which shows the effect of
varying fE. Unlike the left panel, here we display the results for both the Ther-

malKinetic and Basic models15. In essence, increasing (decreasing) fE moves the
bulk of the SMHM relation down (up) in both models, as the SN feedback be-
comes stronger (weaker) leading to less (more) stellar mass formed by z = 0.
Crucially, there is very little dependence of the shape of the SMHM relation on
fE, which renders it impossible for the Basic model to match the SMHM of the
semi-empirical models solely by adjusting fE. Clearly, the change inMBH,seed can-
not help either because SMBHs have a small-to-no effect on galaxies in low-mass
haloes whose SMHM ratios the Basic model also gets very wrong.

The agreement with the semi-empirical models’ SMHMs is strongly improved
in the ThermalKinetic model, which exploits the kinetic channel of SN feedback
with low-energy kicks, corresponding to the kick velocity of 50 km s−1. The
right panel of the figure shows that increasing fkin reduces the galaxy stellar mass
at low Mvir and increases it at high Mvir, thereby steepening the slope of the
SMHM relation. This helps the ThermalKinetic model obtain a better fit to the
observed GSMF, as we have seen in Fig. 5.2, and correspondingly, to the SMHM,
as is seen in the current figure. Such a behaviour of the SMHM with fkin can be
expected: higher fkin implies that more SN energy is injected kinetically through
numerous 50-km s−1 kicks and that less energy is distributed thermally via large,
rare energy injections corresponding to a gas temperature increase of ∆TSN =
107.5 K. The kinetic channel is especially efficient in low-mass galaxies, in which
the escape velocity is comparable to or lower than the kick velocity used by the
kinetic channel. At the same time, the kinetic channel is too weak to push the
gas out of more massive objects because of their deeper gravitational potential
wells. Conversely, the thermal channel can drive vigorous outflows in galaxies as
massive as the Milky Way (Chaikin et al., 2023) but is hindered by poor sampling

15Note that the ranges over which fE is varied are different for the two models.
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in low-mass objects (see §5.2.8).

Fitting to the observed GSMF and SSM separately and simultaneously

The best-fitting models that we have discussed so far were all fit simultaneously
to the observed GSMF and SSM. We now investigate the effect of fitting the mod-
els separately to either GSMF or SSM. Mathematically, this means setting the log
likelihood function in equation (5.23), lnL(θ), to either lnLGSMF(θ) or lnLSSM(θ),
instead of the sum of the two.

Fig. 5.5 compares the Thermalkinetic model with three different sets of the
best-fitting parameters, obtained from fitting the emulator to three different sets
of observational data: the GSMF (purple), the SSM (brown), or both the GSMF
and SSM (orange). The dashed curves indicate the best-fitting predictions of the
emulators and the solid curves correspond to simulations with the best-fitting
parameters. The shaded orange region shows the 1σ scatter in the simulation
whose model was fit to both the GSMF and the SSM relation.

The left panel shows the z = 0 GSMF, the middle panel shows the z = 0 SSM,
and the right panel shows the z = 0 SMHM. As in Fig. 5.2, we indicate the
range of stellar mass where galaxies become poorly resolved (M∗ < 109M⊙) or
where the number of galaxies becomes strongly limited due to the finite size of
the simulated volume (M∗ > 1011.4M⊙). In the right panel, which plots the halo
mass instead of stellar mass, we use Mvir = 1011.15 and 1013.4M⊙. In each panel,
the vertical solid lines indicate the mass range within which the emulators were
trained on the Latin hypercubes, while the vertical dash-dotted lines, if present,
specify the mass range where the trained emulators were fit to the observational
data. As in the previous figures, the comparison data points from Moster et al.
(2018), Behroozi et al. (2019), Hardwick et al. (2022), and Driver et al. (2022) are
displayed in grey-scale colours.

Examining the left and middle panels of Fig. 5.5, we see that the ThermalKi-

netic model with the best-fitting parameters matches the observed GSMF (SSM)
well if it is fit to the GSMF (SSM) alone. This, however, comes at the expense of
a very poor fit to the other observed relation, which was left out of the fitting. In
contrast, fitting the model to both the GSMF and SSM at the same time forces the
emulator to find a compromise solution. In this case, the best-fitting model pro-
vides a mediocre match to the observed GSMF while also being less far off from
(but still not close to) the observed SSM (orange). We conclude that although the
ThermalKinetic model can match either of the two observed relations well, the
model is too limited to be able to reproduce both relations at the same time. To
succeed in doing so, a more complex model is required.
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Figure 5.5: Predictions of the best-fitting ThermalKineticmodel fit to the observed galaxy stellar mass function (GSMF, purple),
galaxy size-stellar mass relation (SSM, brown), or to both the GSMF and SSM (orange). We show the z = 0 GSMF (left), z = 0
SSM relation (middle), and z = 0 stellar to halo mass ratios versus halo mass (SMHM, right). The emulator predictions are
shown as dashed curves, and the results from simulations using the best-fitting parameters are shown as solid curves. The
solid curves become dotted at stellar (or halo) masses where galaxies are poorly resolved or where the number of galaxies is
small due to the finite simulation volume. The vertical solid and dash-dotted lines carry the same meaning as in Fig. 5.2.
There are no vertical dash-dotted lines in the right panel because we do not fit the model to the SMHM. Fitting to the observed
GSMF (SSM) separately from the SSM (GSMF) results in a good match to the observed GSMF (SSM) but a poor match to the
SSM (GSMF). Fitting to both observed relations at the same time produces only a reasonable match to the two constraints.
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The right panel of Fig. 5.5, which shows the SMHM relation, confirms what
we have seen in the left panel, but the differences between the different cases
appear more striking. The galaxies in the ThermalKinetic model fit to the SSM
follow a nearly flat SMHM relation, which is clearly wrong. The two other cases,
in which the observed GSMF was used as a constraint to the model, have SMHM
relations whose shape resembles that in Moster et al. (2018) and Behroozi et al.
(2019). Interestingly, the model that is constrained only by the GSMF produces
an SMHM relation whose peak is ≈ 0.1 dex higher than in the two semi-empirical
models. This discrepancy is gone in the model fit to both the GSMF and SSM.

Similar to Fig. 5.2, for all cases of observational constraints and for all emu-
lated relations shown in Fig. 5.5, the actual simulations closely follow the pre-
dictions of the emulators, thereby validating our emulator-based approach.

Fig. 5.6 shows the posterior distributions of the subgrid parameters for the
ThermalKinetic model after fitting the emulator to the observed GSMF (purple),
to the observed SSM (brown), or to both (orange). The three contours of each
colour indicate the 34, 68, and 95 per cent credibility regions of the posterior
distributions. In the legend, we quote the values of the reduced χ2 for each fit.
Fitting to either the GSMF or SSM yields a reduced χ2 of order unity, indicating
that the model is a good fit to the data, as we have seen in Fig. 5.5. In contrast,
fitting simultaneously to the GSMF and SSM yields a reduced χ2 of 5.5, indicating
the model lacks the necessary complexity to match both observed relations.

Examining the positions of the peak of the posterior distribution reveals that
in each case the model fitting the GSMF and the model fitting the SSM belong to
very different regions of the parameter space. In particular, the best-fitting model
to the SSM (brown) prefers an SMBH seed mass ofMBH,seed ≈ 103.8M⊙, an energy
per SN in units of 1051 erg of fE ≈ 0.8, and no SN kinetic feedback (fkin ≈ 0),
whereas the best-fitting model to the GSMF (purple) has MBH,seed ≈ 104.4M⊙,
fE ≈ 1.4, and fkin ≈ 0.72. The best-fitting parameters of the model fit to both the
GSMF and SSM are located roughly in between the best-fitting parameters of the
models fit to only one observed relation.

5.5.2 ThermalKineticVariable∆T and Reference models

Having learned that neither the Basic model nor the ThermalKinetic model can
simultaneously fit the observed GSMF and SSM, we turn our attention to the
more complex models: ThermalKineticVariable∆T and Reference.

Galaxy stellar mass function and galaxy sizes

Fig. 5.7 shows the GSMF and SSM relation at z = 0 for the best-fitting Ther-

malKineticVariable∆T (navy-blue) and Reference (light-blue) models. The differ-
ent symbols and line styles have the same meaning as in Fig. 5.2.



5

236 Chapter 5. Calibration of the COLIBRE model

0.5

1.0

1.5

2.0

f E

3.5 4.0 4.5 5.0
log10MBH,seed [M�]

0.0

0.5

1.0

f k
in

0.5 1.0 1.5 2.0
fE

0.0 0.5 1.0
fkin

Fit to GSMF [χ2 = 1.6]

Fit to SSM [χ2 = 0.7]

Fit to GSMF & SSM [χ2 = 5.5]

Figure 5.6: The posterior distributions of the parameters of the ThermalKinetic

model resulting from fitting the emulator to the observed GSMF (purple), the
observed SSM (brown), or both the GSMF and SSM (orange). The three contours
of each colour indicate 34, 68, 95 credibility levels. The vertical and horizontal
lines indicate the values of the best-fitting parameters for each case. The best-
fitting parameter values of the model fit to the GSMF and the model fit to the
SSM belong to very different regions of the parameter space. The model fit to
both the GSMF and SSM is located in between the models fit to the GSMF and
SSM separately.

It is evident that both the ThermalKineticVariable∆T and Reference models
outperform the Basic and ThermalKinetic models, whose GSMF and SSM were
presented in Fig. 5.2. The GSMFs for both ThermalKineticVariable∆T and Refer-

ence closely follow the observed relation from M∗ ≈ 108.5 to 1011.5M⊙, with the
errors relative to the observed GSMF scattered within ≈ 0.1 dex. The SSM rela-
tion in the ThermalKineticVariable∆T model matches the observed relation only
broadly: similar to the ThermalKinetic model shown in Fig. 5.2, the ThermalKi-

neticVariable∆T model features a dip in the SSM at M∗ ≈ 2 × 1010M⊙ (albeit not
as pronounced), which is not present in the observed relation. This dip is absent
in the SSM of the Referencemodel, which closely follows the observed SSM rela-
tion for nearly all stellar masses, reproducing both the median galaxy half-mass
size and its scatter at a fixed M∗. As expected, the model’s SSM begins to diverge
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Figure 5.7: As Fig. 5.2 but showing the z = 0 galaxy stellar mass function (GSMF; left) and median size-stellar mass relation
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neticVariable∆T model shows a good agreement with the observed GSMF but only broad agreement with the observed SSM,
the colibre reference model successfully reproduces both observational constraints.
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from the observed relation below M∗ ∼ 109M⊙ where the finite resolution of the
simulation starts to play a role (at our resolution, a galaxy with a stellar mass of
109M⊙ is sampled with only ≈ 68 stellar particles).

To sum up, among the four considered models – Basic, ThermalKinetic, Ther-
malKineticVariable∆T, and Reference – the colibre reference model is the only
model that is consistent with both the observed GSMF and SSM. Furthermore, as
in previous figures that showed results from emulators and simulations for the
same model parameters, Fig. 5.7 confirms that the emulator errors are negligibly
small.

Posterior distributions of the model parameters

Fig. 5.8 displays the posterior distribution of the parameters in ThermalKinet-

icVariable∆T (navy-blue) and Reference (light-blue) after each model was fit to
both the observed GSMF and SSM. Because one of the four parameters from Ther-

malKineticVariable∆T does not exist in Reference, and vice versa, in the bottom
row of the figure, we plot the unique parameters of the two models at the same
time: fE for ThermalKineticVariable∆T and Pbirth,0 (in log) for Reference. We
show the same range of values for both parameters but attach to the panels’ axes
two different labels, which for clarity are shown in the colours of the correspond-
ing models (light-blue and navy-blue).

First, bothmodels prefer an SMBH seedmass close to 104.1M⊙, with the Refer-
ence (ThermalKineticVariable∆T) model leaning towards slightly higher (lower)
values. The fraction of SN energy injected in kinetic form is approximately 0.1
in both cases, which is lower than fkin ≈ 0.37 in the ThermalKinetic model that
was fit to the same observational data. This is likely because, unlike in ThermalKi-

netic, the heating temperature ∆TSN in ThermalKineticVariable∆T and Reference

can vary between 106.5 and 107.5 K. The SN thermal feedback with low ∆TSN can
reproduce some of the effects resulting from SN kinetic feedback with low ∆vkick,
so the value of fkin no longer needs to be as high as ≈ 0.37. However, the ther-
mal feedback cannot replace kinetic feedback completely because for low ∆TSN
and/or in high-density gas, radiative energy losses will inevitably become high,
rendering the thermal feedback inefficient.

Second, the best-fitting value of the pivot density in the SN thermal feed-
back with a variable heating temperature, nSN,0, is approximately 0.5 cm−3 in
ThermalKineticVariable∆T and 0.6 cm−3 in the Referencemodel, which both cor-
respond to the Dalla Vecchia & Schaye (2012) critical density for ft ≈ 2 (see Eq.
5.12). The best-fitting value of fE in the ThermalKineticVariable∆Tmodel is ≈ 1.4,
which is slightly higher than in the ThermalKineticmodel (fE ≈ 1.1). The increase
in fE likely originates from the fact that the average ∆TSN in ThermalKineticVari-

able∆T is lower than 107.5 K, making the SN thermal feedback in this model
weaker than in ThermalKinetic. To compensate for the weaker SN feedback, the
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Figure 5.8: The posterior distributions of the parameters of the ThermalKinet-

icVariable∆T model (navy-blue) and the colibre reference model (light-blue) re-
sulting from fitting the emulator to the z = 0 observed GSMF and observed SSM.
The contours of the same colour indicate the 34, 68, and 95 per cent credibility
regions of the posterior distributions. The vertical and horizontal dotted lines
indicate the values of the best-fitting parameters for each model, corresponding
to the maximum of the posterior distribution. Both models prefer an SMBH seed
mass around 104.1M⊙, a fraction of SN energy injected in kinetic form fkin ≈ 0.1,
and a pivot density in SN thermal feedback, nSN,0, around 0.55 cm−3. In the bot-
tom row, we plot the parameters that are unique to each model: fE for ThermalKi-

neticVariable∆T, and Pbirth,0/kB (in log) for the Referencemodel; their best-fitting
values are approximately 1.4 and 103.8 Kcm−3, respectively.
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energy per SN in units of 1051 erg is increased from ≈ 1.1 to 1.4.

Third, the best-fitting value of the pivot birth pressure in the Reference

model, Pbirth,0/kB, is ≈ 103.8 Kcm−3. Coincidentally, the median stellar birth
pressure in the Reference model with the best-fitting parameters is also
≈ 103.8/kB Kcm−3. Plugging this median value into equation (5.8) along with the
other model parameters that we did not consider in the calibration (fE,min = 0.1,
fE,max = 3.5 and σP = 0.3), we obtain for the SN energy at the median stellar
birth pressure fE(Pbirth/kB = 103.8 Kcm−3) = 1.8 The value of fE averaged over
all stellar particles formed in the simulation is also ≈ 1.8, which is comparable
to the best-fitting value of (constant) fE in ThermalKineticVariable∆T, fE = 1.4,
indicating that both models prefer the (average) energy in SN feedback to be
slightly higher than the theoretical expectation (∼ 1051 erg).

Fourth, the legend of Fig. 5.8 gives the reduced χ2 of the fits to the obser-
vational data, which is 3.3 for the ThermalKineticVariable∆T model and 1.1 for
Reference. This confirms that both models perform better than the Basic and
ThermalKinetic, and that the Reference model provides the best match to the
GSMF and SSM.

Lastly, we note that based on isolated galaxy simulations at much higher res-
olution (mgas = 105M⊙), Chaikin et al. (2023) found that fkin ≈ 0.1 (together with
the kick velocity of ∆vkick = 50 km s−1) allows reproducing the relation between
spatially resolved Hi velocity dispersion and the galaxy SFR surface density, as
well as the observed KS star-formation law. The latter was confirmed in Nobels
et al. (2023), who showed that the observed KS relation is reproduced for the
range of mass resolutions from mgas = 1.25 × 104 to 5.12 × 107 M⊙. These find-
ings are reassuring given that both the ThermalKineticVariable∆T and Reference

best-fitting models prefer16 fkin ≈ 0.1.

5.5.3 Galaxy properties to which the models were not explicitly
calibrated

In this section, we explore the simulation predictions for galaxy properties that
have not been discussed before, and, consequently, have not been considered dur-
ing the search for the best-fitting parameter values. In the following figures,
we will present the results for the four best-fitting models, Basic, ThermalKi-

netic, ThermalKineticVariable∆T, and Reference, which have all been fit to the
observed GSMF and SSM. We will show only the results from the simulations, as
our emulators exist only for the z = 0 GSMF, SSM, and SMHM.

16For comparison, fitting the ThermalKineticVariable∆T and Reference models to the z = 0 ob-
served GSMF and SSM with a constraint fkin = 0 yields a reduced χ2 for both models that is a factor
of ≈ 1.4 higher compared to the case with fkin ≈ 0.1.
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Star formation rates and quenched fractions

Fig. 5.9 displays the specific star formation rates (sSFR) of active galaxies, the
fraction of passive galaxies, and the masses of SMBHs. All relations are shown at
z = 0 and plotted versus galaxy stellar mass. All quantities are computed in 3D
apertures of 50 kpc. If a halo contains multiple BH particles, then the mass of
the most massive one is plotted. In a given stellar mass bin, we show the median
sSFR and the median mass of the SMBHs. We define a galaxy as ‘active’ if its
sSFR is greater than 10−2 Gyr−1. The results from the simulations with the four
best-fitting models are given by the solid curves. Namely, we display the Basic

model (green), ThermalKinetic (orange), ThermalKineticVariable∆T (navy-blue),
and Reference (light-blue). The shaded light-blue region indicates the 16th to
84th percentiles scatter around the median values in the Reference model.

As comparison data, we take the sSFR-stellar mass relation for star-forming
galaxies from Bauer et al. (2013) and Chang et al. (2015). The former includes
∼ 105 galaxies from the GAMA survey (Driver et al., 2011) with redshifts between
0.05 < z < 0.32, while the latter is based on ∼ 106 SDSS galaxies with redshifts
z < 0.2 including four-band photometry from WISE (Wright et al., 2010). For the
quenched fractions, we take the z ∼ 0.1 data from Moustakas et al. (2013), which
is based on a sample of 1.7×105 SDSS galaxies; and the z = 0 quenched fractions
from the semi-empirical model universemachine (Behroozi et al., 2019). The ob-
servations for the SMBH mass-stellar mass relation are taken from Graham &
Sahu (2023) whose sample is subdivided into galaxies with different morpholog-
ical types: E, ES/S0, and S. Where needed, we correct for the differences in the
assumed stellar IMF by converting the data into the Chabrier (2003) IMF, and
account for the differences in the assumed cosmology.

Overall, the agreement between the simulations and comparison data im-
proves with the complexity of the galaxy formation model. First, the Basicmodel
predicts a z = 0 sSFR-stellar mass relation that has an unrealistic, flat shape and
is offset by more than 0.5 dex towards lower values at low and intermediate stel-
lar masses (≲ 1010M⊙), compared to the observed trends. In consequence, the
fraction of passive galaxies with similar stellar masses is much too high rela-
tive to the data. At the same time, the passive fraction of the most objects with
M∗ > 1011M⊙ is too low in the Basic model. The agreement with the data is
slightly better for the ThermalKinetic model. At the high-mass end, the passive
fractions are no longer suppressed compared to the data, which is a result of in-
creasing the SMBH seed mass by more than a factor of 6 relative to that in the Ba-
sic model. However, the sSFRs (passive fractions) of low- and intermediate-mass
galaxies still remain too low (high). This is a consequence of using a constant
heating temperature in the SN thermal feedback, ∆TSN = 107.5 K, leading to an
energy output by multiple SNe that is too powerful. By z = 0, this powerful SN
feedback has likely disrupted, heated, and/or ejected most of the cold gas in
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Figure 5.9: The median specific star formation rate (sSFR) of active galaxies (sSFR > 10−2 Gyr−1) versus stellar mass (left), the
fraction of passive galaxies versus stellar mass (middle), and the median mass of supermassive black holes versus stellar mass
(right), all shown at z = 0. Differently coloured solid curves show the results from the simulations with the best-fitting parame-
ters for the Basic (green), ThermalKinetic (orange), ThermalKineticVariable∆T (navy-blue), and Referencemodels (light-blue).
All models were fit to the z = 0 observed GSMF and SSM. The solid curves turn into dotted curves at stellar mass below 109M⊙
indicating that those galaxies are poorly resolved, and above 1011.4M⊙ indicating the limit due to the simulated volume. The
shaded blue region shows the 1σ scatter in the Referencemodel. A compilation of data from observations and semi-empirical
models is shown in grey-scale colours. Both the ThermalKineticVariable∆T and Referencemodels show a good agreement with
the comparison data for all three relations, with the Reference model exhibiting marginally better sSFR and passive fractions
at low stellar mass.
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low- and intermediate-mass galaxies, which would otherwise be eligible to form
stars, resulting in higher sSFRs.

Indeed, switching to the density-dependent heating temperature in the Ther-
malKineticVariable∆T and Reference models strikingly improves the agreement
with the data. ThermalKineticVariable∆T successfully reproduces both the pas-
sive fractions and sSFR for galaxies with stellar masses M∗ ≳ 1010M⊙, while in
Reference the agreement with the data is extended down to ∼ 109M⊙. At lower
stellar masses, M∗ ≲ 109M⊙, the fractions of passive galaxies in the four models
all begin to increase with decreasing stellar mass, which is a resolution effect:
galaxies sampled with too few star-forming gas particles will on average appear
more passive, leading to a lower median sSFR and higher passive fractions (e.g.
Schaye et al., 2015).

Focussing on the right panel, we discover that in all four models, galaxies
with stellar masses M∗ ≳ 1010.5M⊙ harbour SMBHs that grew to masses far ex-
ceeding 107M⊙. The masses of these SMBMs follow a tight relation with the
host galaxy’s stellar mass, which has roughly the same slope and normalization
as the observed scaling from Graham & Sahu (2023). We do not find any large
differences between the models, which is expected since all models employ the
same numerical prescription for SMBH growth and AGN feedback. The only
AGN-related parameter that is different between the models is their best-fitting
value of the seed mass,MBH,seed. Among the four models, the Basicmodel adopts
the lowest seed mass, and the Reference model the highest. The higher (lower)
MBH,seed leads to a somewhat faster (slower) SMBH growth in the latter (former)
model, which lasts until the SMBH has reached the self-regulating regime where
AGN feedback dominates over stellar feedback. As a result, at M∗ ≲ 1010.5M⊙,
the median SMBHmass in the Referencemodel is higher than in the Basicmodel.
The SMBH masses in the other two models, ThermalKinetic and ThermalKinetic-

Variable∆T, have values that are intermediate between those in Basic and Refer-

ence.

Cosmic star formation history

Fig. 5.10 displays the redshift evolution of the cosmic star formation rate den-
sity (SFRD). We show the same four models as in Fig. 5.9. For comparison, we
consider the observational estimates of the SFRD derived from the LOFAR Deep
Fields’ radio data at 0 < z < 4 (Cochrane et al., 2023), the rest-frame far-ultraviolet
data collected with ALMA at z ≈ 4.5 to 5.5 (Khusanova et al., 2021), the sources
detected in ALMA and combined with their multi-wavelength counterparts in
the COSMOS and ECDFS surveys at 0.5 < z < 6 (Gruppioni et al., 2020), the
deep VLA COSMOS radio observations over 0.3 < z < 5 (Novak et al., 2017),
and the VLA radio observations from a subsample of the GOODS-N survey at
0.1 < z < 3 (Enia et al., 2022). Additionally, we include the prediction for the
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Figure 5.10: Cosmic average star formation rate density (SFRD) versus red-
shift from the simulations with the best-fitting models to the z = 0 GSMF and
SSM: Basic, ThermalKinetic, ThermalKineticVariable∆T, and Reference (differ-
ently coloured solid curves). A compilation of comparison data is shown in grey-
scale colours. The use of a variable heating temperature in the SN feedback of
the ThermalKineticVariable∆T and Referencemodels greatly improves the agree-
ment with the comparison data at low z. The inclusion of a stellar birth pressure-
dependent SN energy in the Reference model results in a lower SFRD at z > 2,
thereby further improving the agreement with the comparison data.

evolution of the SFRD using the best-fitting function from Madau & Dickinson
(2014) (black dashed curve), which was derived based on a collection of IR and
UV data at 0 < z < 8. Finally, we display the SFRD from the semi-empirical model
universemachine (Behroozi et al., 2019), for which we show the ‘true’ and ‘ob-
served’ values (grey shaded regions), the latter of which accounts for systematic
effects while the former reports the intrinsic values predicted by the model.

The Basic and ThermalKinetic models predict significantly steeper slopes
than observed for z < 2 and underpredict the observed SFRD at low redshift
by ≈ 0.5 dex, which is consistent with both models having too low sSFR at
z = 0 in Fig. 5.9. As is the case with the sSFR, the suppression in the SFRD
at low redshifts is related to the high (constant) heating temperature used
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Figure 5.11: The z = 2 galaxy stellar mass function (GSMF; left) and the z = 2
median specific star formation rate (sSFR, right) versus stellar mass. The solid
curves show the results from the simulations with the best-fitting parameters
for the Basic, ThermalKinetic, ThermalKineticVariable∆T, and Reference mod-
els. For comparison, we show the z = 2 GSMF from Leja et al. (2020) and the
z = 2 sSFR from Leja et al. (2022), which were derived from the COSMOS2015
and 3D-HST galaxy catalogues, using non-parametric methods. The shaded blue
region shows the 1σ scatter in the Referencemodel. Among the four models, the
Reference model (in light-blue) produces the best match to the z = 2 observed
GSMF and sSFR though the simulated galaxies appear slightly overmassive, by
about 0.2 dex compared to Leja et al. (2020).

in SN thermal feedback: ∆TSN = 107.5 K. Conversely, the SFRD in the other
two models, ThermalKineticVariable∆T and Reference, which incorporate the
variable heating temperature, matches the z ≲ 1 observed SFRD much better,
following the fit from Madau & Dickinson (2014) nearly perfectly.

Moving to high redshifts (z ≳ 2), we observe that the SFRD in the Basic, Ther-
malKinetic, and ThermalKineticVariable∆Tmodels rises very steeply with cosmic
time and reaches its maximum before or at z ≈ 3. This is an indication that the
star formation at high redshifts might be overly efficient. Note that because all
four models were calibrated to reproduce the observed GSMF (and SSM) at z = 0,
a too-high SFRD at early cosmic times necessitates a too-low SFRD at late times
(and vice versa), such that the right amount of stellar mass is formed by z = 0.

The situation is noticeably improved in the Reference model, in which the
amount of stellar mass formed before z = 3 is significantly reduced compared
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to the other models. The SFRD in the Reference model exhibits a broad peak
between z = 4 and 1 and starts declining rapidly with cosmic time only there-
after. This improvement was made possible by the dependence of the SN energy
on the stellar birth pressure (see Eq. 5.8), which is incorporated only into the
Reference model. Specifically, the SN feedback in the Reference is more ener-
getic at higher redshifts, as the star formation at high z proceeds on average in
higher gas-pressure environments. Releasing more SN energy at high z not only
reduces the cosmic SFRD but also helps avoid runaway star formation in the cen-
tres of massive galaxies, which may lead to the formation of a pronounced stellar
bulge component. The presence of a dominant bulge can be traced by the dip in
the z = 0 SSM relation at M∗ ∼ 1010.5M⊙, which is absent only in the Reference

model (see Figs. 5.2 and 5.7).

Galaxy stellar mass function and star formation rate at high redshift

Fig. 5.11 shows the GSMF and sSFR versus stellar mass at z = 2 for the same four
simulations as were shown in Figs. 5.9 and 5.10. At a given stellar mass, we show
the median sSFR considering both passive and active galaxies. For comparison,
we display the z = 2 GSMF and median sSFR derived by Leja et al. (2020, 2022)
who applied the SED-fitting code Prospector to the data fromCOSMOS2015 and
3D-HST galaxy catalogues and used non-parametric methods to model the evo-
lution of stellar populations. The error bars in Leja et al. (2020, 2022) correspond
to the 16th and 84th percentiles estimated by their model.

Clearly, at z = 2, the agreement with the data is much better for the Reference
model than for its three simplified counterparts. Although the Reference model
was only calibrated to the z = 0 data, the model broadly reproduces the observed
median sSFR, with the largest discrepancies with the data being smaller than
≈ 0.1 dex, and is systematically offset by only ≈ 0.2 dex from the observed GSMF.
The other three models appear less satisfactory: they all systematically under-
predict the observed sSFR and their GSMF is on average higher by more than 0.3
dex relative to the observed data.

Cold gas properties

We next investigate the z = 0 properties of cold gas predicted by the simulations.
The left and right panels of Fig. 5.12 show, respectively, the z = 0 ratios of galaxy
Hi mass to stellar mass and H2 mass to stellar mass as functions of galaxy stellar
mass. The solid curves correspond to the median mass fractions in the simula-
tions. As is conventional for observational studies, all H2 mass fractions include
helium, which makes the H2 mass larger by a factor of ≈ 1.3. For reference, we
show the z ≈ 0 observational data of Hi to stellar mass fractions from the xGASS
survey (Catinella et al., 2018) and H2 to stellar mass fractions from the xCOLD
GASS survey (Saintonge et al., 2017). Furthermore, we include the data from
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Figure 5.12: As Fig. 5.11, but showing the z = 0 Hi mass to stellar mass ratio
(left) and the z = 0 H2 mass to stellar mass ratio (right) versus galaxy stellar mass.
For comparison, we show the observed H2 mass fractions from Saintonge et al.
(2017), Hi mass fractions from Catinella et al. (2018), and the measurements of
both Hi and H2 content from Hunt et al. (2020). Only the ThermalKineticVari-

able∆T and Referencemodels reproduce both the Hi and H2 observed mass frac-
tions for M∗ < 1010.5M⊙, while at M∗ > 1010.5M⊙ only the Basic model matches
the observations.

the MAGMA sample of 392 galaxies at z ≈ 0 with measurements of both Hi and
H2 masses (Hunt et al., 2020). While the xGASS and xCOLD GASS samples are
stellar mass selected, the selection of MAGMA galaxies requires both Hi and CO
detections, implying that MAGMA may be biased towards higher cold gas frac-
tions.

We stress that the colibre model does not impose an effective pressure
and/or temperature floor and uses the non-equilibrium thermochemistry solver
chimes to predict the abundances of primordial species. This allows us to take
the (non-equilibrium) H2 and Hi abundances directly from the simulations,
which is in contrast to many previous works, including eagle, IllustrisTNG,
and Simba, where the atomic and molecular gas fractions need to be estimated
in post-processing, using (semi-)analytic models or ionization fitting formulas
calibrated by other simulations (e.g. Gnedin & Kravtsov, 2011; Rahmati et al.,
2013).

We find that ThermalKineticVariable∆T and Reference are remarkably consis-
tent with the observational data at stellar masses 109 < M∗ < 1010.5M⊙, for both
the H2 and Hi mass fractions. The sharp downturn of the simulated fractions of
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Figure 5.13: As Fig. 5.11, but showing the median gas-phase metallicity (left)
and stellar metallicity (right) versus galaxy stellar mass at z = 0. The z ≈ 0 com-
parison data (grey-scale colours) are taken from Fraser-McKelvie et al. (2022);
Tremonti et al. (2004); Curti et al. (2020) for the gas-phase metallicity and from
Gallazzi et al. (2005); Kirby et al. (2013) for the stellar metallicity. The gas-phase
metallicity is computed in the gas that is sufficiently dense (nH > 0.1 cm−3) and
cool (T < 104.5 K) and only for star-forming galaxies, excluding metals that are
present in dust. All four models are consistent with the observations for both the
gas-phase and stellar metallicities.

molecular (atomic) gas below the stellar mass of ∼ 109M⊙ (∼ 108M⊙) is driven by
the limited numerical resolution17. The molecular gas fractions in the Basic and
ThermalKinetic models are on average too low compared to the data, which is in
line with the models’ too low sSFR at z = 0 (Fig. 5.9).

In contrast, at the high-mass end (M∗ > 1010.5M⊙), only the Basic model
matches the observed gas fractions of H2 and Hi, whereas the three more complex
models underpredict the observed relations. The gas fractions in the Basicmodel
are the largest among the four models because Basic uses a rather low SMBH seed
mass, which results in weaker AGN feedback compared to the other models. In
fact, there appears to be tension between the cold gas fractions and the passive
fractions at M∗ > 1010.5M⊙: the Basic model reproduces the observed gas frac-
tions but undershoots the observed galaxy passive fractions, while the opposite
is true for the other three models. This discrepancy might indicate a limitation of
our fairly simple treatments of gas accretion onto SMBHs and/or AGN feedback.

17Convergence tests show that higher resolution is required to robustly predict H2 than to predict
Hi.
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Alternatively, it might suggest that extra physics is needed such as cosmic ray
transport or magnetic fields, which are not included in the colibremodel, to po-
tentially allow massive galaxies to contain more gas that is not star-forming (see,
e.g., Krumholz & Federrath, 2019; Hopkins et al., 2020, and references therein).

Metal content

The left panel of Fig. 5.13 shows the relationship between the metallicity of the
gas phase, in units of 12 + log10(O/H), and galaxy stellar mass at z = 0. The gas
metallicity in the simulations is derived directly from the oxygen abundance, as
predicted by the chemistry model of colibre. Each galaxy’s ratio between the
number of oxygen and hydrogen nuclei, O/H, is calculated as

O/H =
mH

mO

∑
i(XO/XH)imgas,i∑

imgas,i
, (5.27)

where (XO/XH)i is the ratio of the oxygen and hydrogen mass fractions carried
by gas particle i, mgas,i is the mass of gas particle i, and mH/mO is the ratio of
the masses of hydrogen and oxygen nuclei. To aid the comparison with observa-
tional data, in equation (5.27) we consider only those gas particles that are dense
(nH > 0.1 cm−3) and cool (T < 104.5 K). Furthermore, we apply a spatial mask
by requiring the selected particles to be within 50-kpc apertures centred on the
galaxies. We do not include those metals that are present in dust. In a given
stellar mass bin, we show the median value of 12 + log10(O/H) considering only
star-forming galaxies (sSFR > 10−2 Gyr−1).

For comparison, we display the gas-phase metallicities of 472 star-forming
galaxies at 0.04 < z < 0.128 extracted from the SAMI Galaxy Survey (Fraser-
McKelvie et al., 2022), and the metallicities of ∼ 105 local star-forming SDSS
galaxies from Tremonti et al. (2004) and Curti et al. (2020). The observational
data follow two metallicity tracks that are separated from each other by ≈ 0.3
dex. The systematic discrepancy originates from the differences in the meth-
ods used to infer gas metallicity values from the observed galaxy spectra. The
lower track corresponds to the metallicity determined based on the so-called Te-
method, whereas the values of gas metallicity in the upper track are calibrated
based on photoionization models (see e.g. López-Sánchez et al., 2012; Curti et al.,
2020, for further details).

We find that all four models are consistent with the observational data, in-
cluding the normalization of the mass-metallicity relation, its slope, and scatter.
At stellar masses M∗ > 109M⊙, ThermalKinetic and Reference closely follow the
upper track of the observations, while the metallicities in Basic and ThermalKi-

netic saturate at slightly lower values.
The right panel of Fig. 5.13 shows the relationship between the galaxy stel-

lar mass and the stellar metallicity, [Fe/H], at z = 0. The stellar metallicity in
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the simulations is derived directly from the galaxies’ iron abundance. For each
galaxy, we first calculate the ratio of the number of iron and hydrogen nuclei,
Fe/H, where we employ the same expression as for the gas-phase O/H (Eq. 5.27)
but apply it to stellar particle-carried fields and replace oxygen with iron. Stellar
particles that contribute to Fe/H are selected within 50-kpc apertures. The re-
sulting ratio is subsequently normalized by the solar value of Fe/H, assuming a
solar iron abundance of 12 + log10(Fe/H) = 7.5 (Asplund et al., 2009). In a given
stellar mass bin, we show the median value of [Fe/H].

For reference, we display the observed stellar metallicity-mass relation for a
large (∼ 105) sample of z ≈ 0.1 SDSS galaxies from Gallazzi et al. (2005) and
dwarf irregular and spheroidal satellite galaxies of the Milky Way and M31 from
Kirby et al. (2013). Where needed, the solar abundances used in the observations
have been converted to the solar values reported by Asplund et al. (2009).

Overall, all four models appear consistent with the observations within the
stellar mass range from ∼ 107 to 1011M⊙. The stellar mass-metallicity relation
in the Basic model saturates at somewhat higher metallicity compared to the
other three models. This is a consequence of the low seed mass adopted in the
Basic model, which leads to weaker AGN feedback, and, hence, more late-time
star formation in the massive objects, thereby elevating their present-day stellar
metallicities.

5.5.4 Other feedback parameter variations

In the previous section, we have shown that the colibre reference model with
the best-fitting parameter values reproduces not only the observational data it
was calibrated to (the z = 0 GSMF and SSM), but is also consistent with many
other observed relations, both at low and high z. Because the model was cali-
brated by finding the best-fitting values for the set of four subgrid parameters,
θ = (fkin,nSN,0, Pbirth,0,MBH,seed), an important question is: why were these four
parameters optimized, while other subgrid parameters describing stellar and
AGN feedback were not? To answer this question, we demonstrate in this section
that the feedback-related subgrid parameters that were held fixed during emula-
tion either have little effect on the calibrated galaxy properties or are degenerate
with the parameters already contained in θ.

Figs. 5.14 and 5.15 show how the z = 0 GSMF and SSM in the Reference

model respond to variations in ∆TSN,max, ∆TSN,min, nSN,0, fE,min, fE,max, Pbirth,0,
σP ,MBH,seed,MFOF,seed, and∆TAGN. Each figure contains 10 panels, where in each
panel, we vary one of the 10 subgrid parameters, while the other parameters are
fixed at their best-fitting values. For each variation, we run a separate simulation
(that is, what is shown in the figures are the results from actual simulations,
not from the emulators). We show the results for three different values of each
parameter: the value from the Referencemodel (light-blue), a lower value (dark-
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red), and a higher value (light-green). The values of the varied parameters are
shown in each panel’s legend.

First, we recall that the density-dependent heating temperature in the SN
thermal feedback of the Reference model depends on the model parameters
∆TSN,max, ∆TSN,min, and nSN,0 (see Eq. 5.14). The effects of varying these parame-
ters are shown in panels (a), (b), and (c). We observe that changing ∆TSN,max by
±0.5 dex has little influence on the GSMF. The galaxy sizes do not change if we
increase ∆TSN,max from 107.5 to 108 K, but begin to dip around M∗ = 1010.5M⊙ if
∆TSN,max is lowered to 107 K, which is an indication of inefficient SN feedback.
Changing ∆TSN,min by ±0.5 dex has a pronounced effect on both the GSMF and
SSM. As expected, higher (lower) ∆TSN,min makes SN thermal feedback more
(less) efficient, resulting in less (more) stellar mass formed and less (more)
centrally concentrated galaxies, moving the low mass-end of the GSMF down
(up) and moving the low mass-end of the SSM up (down). By comparing panels
(a) and (b) with panel (c), in which nSN,0 is varied, we observed that most of
the effects on the GSMF and SSM produced by variations in ∆TSN,min and/or
∆TSN,max can be captured by solely changing nSN,0. Furthermore, we recall that
∆TSN,min cannot be much lower than 106.5 K (otherwise the SN thermal feedback
will suffer from catastrophic overcooling) and ∆TSN,max cannot be much greater
than 107.5 K (otherwise the sampling of SN thermal injection events will become
too poor, see §5.2.8). Based on these arguments, we decided to refrain from
optimizing ∆TSN,min and ∆TSN,max and instead fix these parameters to 106.5 and
107.5 K, respectively.

We next move to panels (d), (e), (f), and (g), which vary the parameters of
the relation between the SN energy fE and stellar birth pressure Pbirth (Eq. 5.8).
The parameters are: fE,min, fE,max, Pbirth,0, and σP . We observe that varying the
parameters fE,min and fE,max, which specify the amount of energy injected in SN
feedback by stellar particles formed in low- and high-pressure gas environments,
respectively, can make the SN feedback weaker or stronger, resulting in more or
less stellar mass formed and more or less compact galaxies. The combined effect
on the GSMF and SSM of varying fE,min and fE,max can be well captured by solely
changing Pbirth,0 (compare panels d and e versus panel f). Based on this finding,
we decided to optimize Pbirth,0, while keeping fE,min and fE,max fixed. Because
a low value of fE,min yields slightly better galaxy sizes at low stellar mass (see
panel d in Fig. 5.15), we set fE,min to 0.1. As for fE,max, we set its value to 3.5,
which gives an average value of the energy per SN within 1 − 2 × 1051 erg. We
note that we could use a somewhat different value for fE,max by adjusting Pbirth,0
due to the degeneracy between these two parameters (panel e vs. panel f). The
remaining parameter of the relation between fE and Pbirth is σP , which is shown
in panel (g). We find that a nearly one-order-of-magnitude change in the value of
σP , which determines how steeply fE increases with Pbirth, has hardly any impact
on the simulated GSMF and SSM of galaxies that are resolved with more than
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∼ 102 particles (M∗ ≳ 2×109M⊙). Hence, we did not include this parameter in θ.
Lastly, the remaining three panels – (h), (i), and (j) – show the effect of vary-

ing AGN-related parameters: MBH,seed, MFOF,seed, and ∆TAGN. These parameters
affect the most massive galaxies in the simulation, where AGN feedback domi-
nates. First, by comparing panels (h) and (i), we find that the effect of increasing
(decreasing) MBH,seed by ≈ 0.5 dex is almost exactly the same as if we would de-
crease (increase) MFOF,seed by the same amount. In other words, it suffices to
optimize only one of these two parameters. We chose to optimizeMBH,seed, while
MFOF,seed was fixed to 1010M⊙. The impact of varying the AGN heating temper-
ature by ±0.5 dex, which is shown in panel (j), is insignificant for the GSMF but
shifts the sizes of massive objects by ≈ 0.1 dex (at a fixed stellar mass). Because
this difference is rather small and because a similar effect can be achieved by
varying MBH,seed, we opted to freeze ∆TAGN at 109 K. As we explained in §5.4.2,
we verified that ∆TAGN = 109 K yields plausible gas fractions of galaxy clusters
in the Reference model, which are sensitive to ∆TAGN (e.g. Le Brun et al., 2014;
McCarthy et al., 2017; Kugel et al., 2023).

5.6 Conclusions

We presented the calibration of a new subgrid model for cosmological hydro-
dynamical galaxy formation: colibre (Schaye et al., in preparation). colibre is
based on the eagle galaxy-formation model (Schaye et al., 2015) with a large
number of improvements and modifications. The most significant ones are: (i)
the presence of a cold interstellar gas phase; (ii) the suppression of spurious heat
transfer from dark matter to baryons by using four times more dark matter parti-
cles than baryonic particles; (iii) a model for the formation and evolution of dust,
which is coupled to the chemistry; (iv) the use of a non-equilibrium network
for the calculation of radiative cooling rates and ion and molecular fractions of
hydrogen and helium; and (v) improved prescriptions for the modelling of sub-
grid physics processes, including the prescriptions for star formation and energy
feedback from stars and SMBHs.

In order to calibrate the colibremodel, we made use of Gaussian process em-
ulators. The emulators were trained on the actual simulations. Each simulation
was run for a unique combination of values of the model’s subgrid parameters,
allowing the emulators to learn how galaxy properties vary as functions of a sub-
set of the subgrid parameters. These parameters are (i) the fraction of SN en-
ergy injected in kinetic form, fkin, (ii) the pivot density in the thermal channel
of SN feedback with a variable heating temperature, nSN,0; (iii) the pivot stellar
birth pressure in the relation between the SN energy and stellar birth pressure,
Pbirth,0; and (iv) the seed mass of SMBHs, MBH,seed. All simulations in the train-
ing set were run in a (50 comoving Mpc)3 volume at the gas-mass resolution of
1.47×107M⊙. By fitting the trained emulators to the z = 0 observed galaxy stellar
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mass function (GSMF) and to the z = 0 observed galaxy size-stellar mass relation
(SSM), we found the values of the model’s subgrid parameters that result in the
best agreement with the target observational data.

The prescription for SN feedback in the colibremodel assumes that (i) stellar
particles inject their SN energy into surrounding gas in both thermal and kinetic
forms, (ii) the heating temperature in the thermal channel, ∆TSN, is an increasing
function of the gas density (Eq. 5.14), and the energy per SN is an increasing
function of stellar birth gas pressure (Eq. 5.8). In order to demonstrate that these
assumptions are all necessary to successfully reproduce the observed GSMF and
SSM, we explored three variations of the colibre model in which the modelling
of SN feedback was significantly simplified:

(i) We first considered the Basic model, in which the energy in SN feedback is
constant and is only injected thermally, stochastically heating the gas by a
constant value of ∆TSN = 107.5 K.

(ii) Our second simplified model was ThermalKinetic, which allows some frac-
tion of the SN energy, fkin, to be injected kinetically via low-energy kicks
with the kick velocity of 50 km s−1, while the remainder is injected ther-
mally as in the Basic model.

(iii) Finally, in the third simplified model, ThermalKineticVariable∆T, the heat-
ing temperature ∆TSN increases with the density of the gas surrounding the
SNe. Compared to the Reference model, this model uses a constant energy
per SN, as opposed to the SN energy that increases with the stellar birth
pressure that is adopted in the Reference model.

These three simplified models were fit to the z = 0 observed GSMF and SSM in
the same manner as the Reference model, and for each model the best-fitting
subgrid parameter values were found. In total, we ran 163 simulations for vari-
ous combinations of the subgrid parameters and models. Our main results with
regard to the calibration are as follows:

• Owing to its naive prescription for SN feedback, the Basic model fails to
produce a good fit to the z = 0 observed GSMF (Fig. 5.2). The GSMF exhibits
a power-law shape as opposed to the observed Schechter (1976) shape. In-
creasing or decreasing the SN energy, which is described by the subgrid
parameter fE, cannot resolve this discrepancy (middle panel of Fig. 5.4).

• The ThermalKinetic model can successfully reproduce the z = 0 observed
GSMF or the observed SSM separately but cannot fit both relations simul-
taneously (Fig. 5.5). The fact that ThermalKinetic can provide a goodmatch
to the observed GSMF is a consequence of the ability to use the large energy
injections of the thermal channel of SN feedback and low-energy kicks of
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the kinetic channel (Fig. 5.4). The relative strengths of the two channels
are optimized by the emulators via the parameter fkin: the model fit to the
observed GSMF (SSM) prefers fkin ≈ 0.72 (fkin ≈ 0), while fitting to both
constraints gives an intermediate value of fkin ≈ 0.37 (Fig. 5.6).

• Adopting a density-dependent heating temperature∆TSN in the ThermalKi-

neticVariable∆T model improves the combined fit to the GSMF and SSM.
Adding a stellar birth pressure dependence of the SN energy in the Ref-

erence model results in excellent agreement with the observed GSMF and
SSM (Fig. 5.7).

Having calibrated each model to the observed GSMF and SSM, we proceeded
to compare the best-fitting versions of each model to a number of observables
that were not considered in the calibration:

• The z = 0 observed sSFR and the galaxy passive fractions are broadly
matched by the ThermalKineticVariable∆T and Reference models, but
not by Basic and ThermalKinetic (Fig. 5.9). The SN feedback with a
constant ∆TSN of 107.5 K, which is employed in the latter two models, is
overly powerful, leading to a lack of star-forming gas by z = 0 in low- and
intermediate-mass galaxies.

• The observed mass fractions of molecular and atomic gas are reproduced
by the ThermalKineticVariable∆T and Reference models at stellar masses
109 < M∗ < 1010.5M⊙ (Fig. 5.12). At higher masses, M∗ > 1010.5M⊙, the gas
fractions appear to be too low in all but the Basic model, which, however,
underpredicts the passive fraction for those stellar masses (Fig. 5.9).

• Owing to its stellar birth pressure dependence of the energy in SN feedback,
the Reference model is the only model that provides a reasonably good
match to the observed GSMF and sSFR at z = 2 (Fig. 5.11).

• Similarly, due to the pressure dependence of its SN feedback, the cosmic
star formation rate density (SFRD) in the Referencemodel is suppressed at
high z relative to the other three models (Fig. 5.10). As a result, the SFRD in
the Referencemodel has a broad peak between 1 < z < 4 and only begins to
decline steeply below z ≈ 1, which agrees with observations. In contrast, in
the other models, the SFRD is a steeply declining function of cosmic time
already after z ≈ 3.

• The observed relations between galaxy stellar mass and stellar and gas-
phase metallicities are reproduced in all four models (Fig. 5.13).

• The z = 0 masses of SMBHs, as well as their scaling with the stellar mass
of the host galaxy, are consistent with observations for all four models (Fig.
5.9).
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We then proceeded to investigate the effect of changing the model parameters
that were not optimized with the use of emulators. We confirmed that these pa-
rameters are either degenerate with the parameters that were optimized and/or
have little impact on the z = 0 GSMF and SSM (Figs. 5.14 and 5.15).

In closing, we stress that calibrating a galaxy formationmodel is a numerically
demanding process with no guarantee of success. The fact that the Reference

model fit to the z = 0 GSMF and SSM reproduces so many observed relations
(Figs. 5.9, 5.10, 5.11, 5.12, 5.13), to which it was not tuned, is an encouraging
result. In future work, we will investigate the performance of the colibre model
using larger cosmological volumes and different resolutions.
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Appendix

5.A The effect of energy feedback from type-Ia
SNe

In Fig. 5.16 we show the z = 0 GSMF and SSM relations for the Reference model
with the best-fitting parameters (light-blue) and a variation in which the energy
feedback from type-Ia SNe is turned off (magenta). By comparing the two simu-
lations, we conclude that energy feedback from type-Ia SNe has only a marginal
impact on the calibrated GSMF and SSM. This confirms that the differences in
the GSMF and SSM that are produced by varying the model parameters ∆TSN,min,
∆TSN,max, and nSN,0 (see, e.g., Figs. 5.14 and 5.15), which affect the thermal feed-
back from both CC and type-Ia SNe, are dominated by the changes in the feed-
back from CC SNe.
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Figure 5.16: The impact of energy feedback from type-Ia SNe on the calibrated
galaxy properties. Shown are the z = 0 galaxy stellar mass function (GSMF, top
panel) and z = 0 median galaxy size-stellar mass relation (SSM, bottom panel). The
style of the panels is the same as in Fig. 5.2. The light-blue curve corresponds
to the simulation with the best-fitting Reference model. The simulation shown
in magenta uses the same model parameter values as Reference but the energy
feedback from type-Ia SNe is switched off. Turning off energy feedback from
type-Ia SNe has only a marginal effect on the GSMF and SSM.
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