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Abstract

Supernova (SN) feedback plays a crucial role in simulations of galaxy for-
mation. Because blastwaves from individual SNe occur on scales that remain
unresolved in modern cosmological simulations, SN feedback must be im-
plemented as a subgrid model. Differences in the manner in which SN en-
ergy is coupled to the local interstellar medium and in which excessive ra-
diative losses are prevented have resulted in a zoo of models used by differ-
ent groups. However, the importance of the selection of resolution elements
around young stellar particles for SN feedback has largely been overlooked.
In this work, we examine various selection methods using the smoothed par-
ticle hydrodynamics code swift. We run a suite of isolated disc galaxy simu-
lations of a Milky Way-mass galaxy and small cosmological volumes, all with
the thermal stochastic SN feedback model used in the eagle simulations. We
complement the original mass-weighted neighbour selection with a novel al-
gorithm guaranteeing that the SN energy distribution is as close to isotropic
as possible. Additionally, we consider algorithms where the energy is injected
into the closest, least dense, or most dense neighbour. We show that differ-
ent neighbour-selection strategies cause significant variations in star forma-
tion rates, gas densities, wind mass loading factors, and galaxy morphology.
The isotropic method results in more efficient feedback than the conventional
mass-weighted selection. We conclude that the manner in which the feedback
energy is distributed among the resolution elements surrounding a feedback
event is as important as changing the amount of energy by factors of a few.
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3.1 Introduction

Supernova (SN) feedback plays a vital role in galaxy formation and evolution.
Without SN feedback, star formation occurs on a free-fall time-scale in a run-
away fashion and galaxies are produced with too large stellar masses, both of
which contradict observations (e.g. White & Frenk, 1991; Krumholz et al., 2012;
Leroy et al., 2017). Conversely, the inclusion of SN feedback enables galaxies to
self-regulate, form stars at an expected rate, and maintain realistic morphologies
throughout cosmic time (e.g. Schaye et al., 2015; Dubois et al., 2015; Pillepich
et al., 2018; Hopkins et al., 2018b). SN feedback is crucial for enriching the in-
terstellar medium (ISM) with metals (e.g. Aguirre et al., 2001; Wiersma et al.,
2011) as well as maintaining the multiphase structure of the ISM (e.g. McKee &
Ostriker, 1977).

SNe inject energy and momentum into the ISM on a scale of ∼ 10 − 102 pc
(e.g. Kim & Ostriker, 2015). Although such scales can be probed in idealized
simulations of dwarf galaxies (e.g. Hu et al., 2017; Fielding et al., 2017; Gutcke
et al., 2021), in large cosmological simulations they remain significantly below
the current resolution limit, which in state-of-the-art cosmological simulations
of representative volumes is typically ∼ 102 − 103 pc (e.g. Schaye et al., 2015;
Pillepich et al., 2018). In the latter case, the evolution of SN remnants cannot
be accurately followed either in time or in space - instead, a subgrid model for
SN feedback is adopted. Such subgrid models normally have one or several free
parameters, which require calibration in order to produce a realistic galaxy pop-
ulation (e.g. Crain et al., 2015). Although at ∼ 10 pc and higher resolution all
‘good’ SN subgrid models are expected to converge to the same answer1 (e.g.
Smith et al., 2018), the degree of uncertainty as to which model is most suitable
for simulations at much lower resolution remains very high (e.g. Rosdahl et al.,
2017) and generally depends on the problem being studied.

In the classic and arguably simplest subgrid model for SN feedback imple-
mented in a smoothed particle hydrodynamics (SPH) code, the canonical 1051 erg
of energy per SN event is directly injected into the gas neighbours of the stellar
particle in thermal form (Katz, 1992). At the resolution of cosmological simula-
tions, this approach always leads to SN feedback that is too inefficient because
the injected energy is smoothed over too much mass and is inevitably radiated
away too quickly. The aforementioned failure of SN feedback has been known
for several decades under the name ‘overcooling problem’ (e.g. Katz et al., 1996).

Alternatively, the energy from SNe can be injected into the gas elements in ki-
netic form (e.g. Navarro &White, 1993; Kawata, 2001) where the desired amount
of momentum from the SN blast is added to the gas by applying ‘a kick’ to the gas
neighbours (usually in a direction away from the stellar particle). By kicking gas

1This is because the Sedov-Taylor phase of the SN blast evolution becomes well-resolved at most
gas densities in the simulation(s).
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particles with sufficiently high velocities, one can reduce the energy losses due to
overcooling: for higher kick velocities, a larger fraction of the injected (kinetic)
energy will fuel galactic winds and less energy will be thermalized and subse-
quently lost to radiation. The kinetic model is often complemented by temporar-
ily switching off hydrodynamic forces for the kicked particles (Springel & Hern-
quist, 2003; Oppenheimer & Davé, 2006), which can dramatically strengthen the
feedback (Dalla Vecchia & Schaye, 2008), can improve convergence with resolu-
tion, and allows one to attain desired galaxy-scale wind mass loading factors by
construction. The wind particles are recoupled to the hydrodynamics after they
have escaped the dense, star-forming phase, which is estimated by the moment
when their local density falls below a certain value or a maximum travel time has
been reached (Springel & Hernquist, 2003; Vogelsberger et al., 2013). Drawbacks
of decoupled winds are that they may implicitly use much more energy than is
specified and that they cannot generate turbulence or blow bubbles in the ISM.

The second common approach to make SN feedback efficient is to keep inject-
ing energy in thermal form but manually disable radiative cooling of the heated
gas particles for a certain period of time (Stinson et al., 2006; Teyssier et al.,
2013; Dubois et al., 2015). The use of such ‘delayed cooling’ models is sometimes
justified by noting that some of the SN energy should in reality be attributed
to (non-thermal) processes with (much) longer cooling time-scales that cannot
be resolved in numerical simulations due to the lack of physics and resolution.
Drawbacks of delayed cooling are that it tends to result in excessive amounts of
gas with short cooling times, and hence may predict excessive emission and ab-
sorption by commonly observed species, and that there is no clear separation in
scale between subgrid and resolved processes. Similar by nature are multiphase
medium SN models (e.g. Scannapieco et al., 2006; Keller et al., 2014). Briefly, in
such models, the hot and cold ISM phases are traced separately; storing (part of)
the SN energy in the hot, tenuous phase within a resolution element reduces the
cooling losses. Drawbacks of this approach are that one requires a semi-analytic
model of the multiphase gas and that this model will even be active at resolved
densities.

Another important class of SN subgrid models is that based on the evolution
of the SN blast itself. It is well known that the blast momentum increases by
more than an order of magnitude during the energy conserving phase (e.g. Kim
& Ostriker, 2015). If this phase cannot be resolved, a boost to the momentum
can be applied by hand to obtain the value expected from theory. Such models
are calledmechanical (Kimm & Cen, 2014; Hopkins et al., 2018a; Marinacci et al.,
2019). A drawback is that such models do not correct for excessive cooling losses
downstream, e.g. when different bubbles collide, and therefore tend to require
higher resolution (or more energy) than alternative approaches.

Lastly, one can inject thermal SN energy stochastically (Dalla Vecchia &
Schaye 2012, from henceforth DVS12). In this model, the amount of energy
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released per single SN feedback event is a free parameter, which allows one
to reduce the radiation losses as much as needed by increasing the energy per
feedback event. Such models are referred to as stochastic in the sense that for
large energies per feedback event, the decision on whether a gas neighbour
receives this energy or not is probabilistic. In particular, in the DVS12 model, a
stellar particle heats its gas neighbours to a predefined temperature ∆T with the
probability inversely proportional to ∆T . The heating temperature ∆T is usually
quite high, to overcome numerical overcooling: in the eagle simulation (Schaye
et al., 2015), for example, it was set to 107.5 K. The drawback is then that the
wind may be overly hot and the bubbles too large, at least close to the resolution
limit (e.g. Bahé et al., 2016).

The evolution of galaxies in numerical simulations is affected not only by the
internal design choices of SN subgrid models discussed above, but also by the as-
sumed delay between star formation and feedback (e.g. Keller & Kruijssen, 2022)
and the degree of clustering of SNe (e.g. Sharma et al., 2014; Gentry et al., 2017),
all of which are generally resolution dependent. Moreover, there is uncertainty in
how gas elements that receive the feedback energy are selected, which can affect
the densities at which the explosion energy is deposited; the environment where
SNe go off largely determines the structure of the ISM (e.g. Gatto et al., 2015;
Girichidis et al., 2016).

Generally, it is desirable for any SN feedbackmodel to be statistically isotropic
(e.g. Hopkins et al., 2018a; Hu, 2019). Failing to satisfy this requirement might
generate unphysical shells sweeping up most of the ISM gas in disc galaxies and
destroying their otherwise stable discs (Smith et al., 2018). In simulations with
SPH codes, SN energy is often distributed proportionally to the kernel func-
tion of the stellar particle that does feedback, evaluated at the separation be-
tween the star and its gas neighbours (e.g. Scannapieco et al., 2006; Stinson et al.,
2006, 2013). Such weighting schemes can be viewed asmass-weighted rather than
isotropic; that is because solid angles with more gas particles (and hence more
mass) on average collect more energy. Although extensive research has been done
comparing different prescriptions for SN subgrid models (e.g. Schaye et al., 2010;
Scannapieco et al., 2012; Rosdahl et al., 2017; Valentini et al., 2017; Smith et al.,
2018; Gentry et al., 2020; Roca-Fàbrega et al., 2021), no systematic work exists
on addressing the impact of choices of gas-element selection for SN feedback.

In this work, we quantify the importance of the way in which gas elements are
selected for the injection of SN energy, and study how strongly galaxy properties
are affected by the variations in gas-element-selection models. We run isolated
disc galaxy simulations as well as simulations of small cosmological volumes. To
the best of our knowledge, this is the first work focused on studying the effects
of gas-neighbour selection. To minimize the number of free parameters, we keep
the internal design of the SN feedback model fixed: in all our tests, we use the
DVS12 thermal stochastic model with a fixed heating temperature and energy,
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and only vary the way in which gas elements are selected for SN feedback. In
Section 3.2, we describe five algorithms – including the original one from DVS12
– of how gas particles can be chosen for receiving SN energy. In Section 3.3,
we describe the numerical simulations used in this work. Finally, in Section 3.4,
we present the results of the simulations, which is followed by the discussion
(Section 3.5) and conclusions (Section 3.6).

3.2 Neighbour selection

In this section, we consider a common situation when modelling SN feedback
where, in a given time-step, a star particle with Nngb gas elements in its ker-
nel does SN feedback by injecting energy into the surrounding gas in Ninj equal
chucks, each of energy∆Einj. We introduce five neighbour-selection prescriptions
whose purpose is to determine how the Ninj energy injections will be distributed
among the Nngb gas neighbours.

3.2.1 Mass-weighted method

In SPH, the most straightforward and most commonly used method for neigh-
bour selection is to give all gas neighbours equal probabilities to be selected for SN
energy injection. If there is a density gradient inside the stellar kernel, this im-
plies that more gas neighbours will be selected for SN feedback from the denser
region than from the other parts of the kernel’s volume. That is because the
denser region is made up of a greater number of gas elements, which is a direct
consequence of the fact that SPH is a Lagrangian method. As a result, most of the
SN energy will be received by the denser gas, even though this denser gas may
only comprise a small fraction of the kernel’s total volume.

From here on we will refer to this neighbour-selection method as the mass-

weighted method. We also note that this is the method that was used by DVS12.

3.2.2 Isotropic method

To resolve the density bias outlined in §3.2.1, we now introduce a new neighbour-
selection algorithm ensuring that the SN energy injections are statistically dis-
tributed isotropically as seen by the star2.

Given a stellar particle with Nngb gas neighbours that injects SN energy Ninj
times, where each injection event is of energy ∆Einj, we take the following steps:

2Here isotropicmeans that the probability density distributions of the polar angleφ and the cosine
of the azimuthal angle θ in spherical coordinates, centred on the position of the stellar particle that
does SN feedback, are uniform in the limit of an infinite number of gas neighbours in the kernel.
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(i) We cast Nrays rays in different, randomly chosen (i.e. uniform probability
in φ and cosθ in spherical coordinates) directions from the position of the
star;

(ii) For each of the Nrays rays, we calculate great-circle distances on a unit
sphere between the ray and each of the Nngb gas neighbours by using the
haversine formula

Ωij = 2arcsin

√
sin2

(
θj −θi

2

)
+ cos(θi)cos(θj )sin

2
(φj −φi

2

)
, (3.1)

which uses the latitude and longitude coordinates of the ray i and of the gas
particle j that are defined in the reference frame positioned at the stellar
particle;

(iii) For each ray, we find the gas particle for which the arc length Ωij is mini-
mum;

(iv) If the stellar particle does Ninj energy injections, where Ninj ≤ Nrays, we
randomly choose Ninj rays out of Nrays rays and inject the energy into the
corresponding gas particles3. If Ninj > Nrays, we increase ∆Einj by Ninj/Nrays
and inject the particles corresponding to all Nrays rays with the updated
value of ∆Einj.

3.2.3 Minimum distance method

Another plausible neighbour-selection model to consider is theminimum distance
model (henceforth,min_distance), motivated by the idea that SN feedback needs
to be as local as possible to the star. In this prescription, we sort gas neighbours
according to their separations from the stellar particle. If a stellar particle has
Ninj energy-injection events, then the Ninj closest gas particles will partake in the
SN feedback.

Similar to the isotropic selection, the selection of the closest neighbour for
SN feedback is expected to reduce the density bias seen in the mass-weighted

method, albeit not always. If Ninj and Nrays are comparable to (or greater than)
the number of particles in the stellar kernel, the min_distance method will turn
into themass-weightedmethod, while the isotropicmethod will remain isotropic
regardless of the value of Ninj.

3Since a gas particle is not forbidden to have multiple rays with which it was found to have the
smallest arc length, the number of particles in which the energy is injected is always less than or
equal to min(Ninj, Nrays). Generally, if a gas particle receives N rays in a given time-step, where
0 < N ≤ Nrays, the total SN energy injected into this particle is N ∆Einj. This property holds only for
the isotropic model; in the other neighbour-selection models, a gas particle can only be bound to a
single ray.
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Max density Mass-weighted Min distance

Isotropic Min density

Figure 3.1: Five methods of gas-neighbour selection for energy injection in SN
feedback, implemented in an SPH scheme. The shaded circular regions represent
an SPH kernel of the stellar particle depicted by the blue star in the centre. Its gas
neighbours are shown as yellow (and red) circles, whereas white circles represent
gas particles outside the kernel. The size of the circles increases with decreasing
density of the corresponding gas particles. We assume that the stellar particle
does SN feedback by injecting four times a fixed amount of SN energy into its
gas neighbours. The gas neighbours that receive this energy are coloured red
(otherwise they remain yellow). Depending on the neighbour-selection method,
different gas neighbours will be selected to receive the energy. We consider five
cases: max_density, mass-weighted, min_distance, isotropic, and min_density

(see text for details). The black arc lengths in the isotropic case (bottom left) are
shown for clarity.
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3.2.4 Minimum and maximum density methods

Finally, we will examine two extreme models: minimum and maximum density
(from here on, min_density and max_density). Although they are not physically
motivated, in our work they will serve as an estimate of the maximum possible
variation in galaxy properties due to the neighbour selection strategy. The imple-
mentation of these two density-based models is the same as in the min_distance

model but in place of distance we sort gas neighbours according to their den-
sities. In the min_density (max_density) method, if a stellar particle has Ninj
energy-injection events, then the Ninj least (most) dense gas particles will receive
the energy.

The five neighbour-selection algorithms that we have introduced in this sec-
tion are illustrated in Fig. 3.1. There we show five possible realizations of dis-
tributing four energy injections among the gas particles in the stellar kernel –
one realization for each neighbour-selection model. We note that in our simula-
tions the probability of having a number of energy injections greater than one in
a given time-step is much smaller than unity (see §3.3.3 for more details), and in
Fig. 3.1 the value of four is chosen only to highlight the differences between the
models.

3.3 Numerical simulations

3.3.1 Code and setup

To test the five neighbour-selection models described in §3.2, we use the
smoothed particle hydrodynamics astrophysical code swift

4 (Schaller et al.,
2016, 2018), using the density-energy SPH scheme Sphenix (Borrow et al., 2022)
to solve the hydrodynamical equations. The Sphenix scheme is designed for
cosmological simulations and has been demonstrated to perform well on various
hydrodynamical tests on different scales (Borrow et al., 2022). We use the same
SPH parameter values as in Borrow et al. (2022), including the quartic spline for
the SPH kernel and the Courant-Friedrichs-Lewy parameter CCFL = 0.2, which
sets the time-steps of gas particles. Furthermore, we do not allow the ratio
between time-steps of any two neighbouring gas particles to be greater than
4. The target SPH smoothing length in our simulations is set to 1.2348 times
the local inter-particle separation, which corresponds to an expected weighted
number of gas neighbours in the kernel Nngb = 64.91 for a quartic-spline kernel.

4
swift is publicly available at http://www.swiftsim.com.

http://www.swiftsim.com
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3.3.2 Initial conditions

Isolated disc galaxy

The initial conditions for the distributions of gas and stars in the galaxy are
taken from Springel et al. (2005). Our model for a Milky Way-mass galaxy com-
prises a dark matter halo with a Hernquist (1990) potential, a total mass M200 =
1.37 × 1012M⊙, concentration c = 9.0 and spin parameter λ = 0.033. The dark-
matter halo is implemented as an analytic potential (for details see Nobels et al.,
in preparation) with virial velocity v200 and radius R200 equal to 163 km s−1 and
223 kpc, respectively. In this halo, we place an exponential disc of stars and
gas with the total mass of Mdisc = 0.04M200 = 5.48 × 1010M⊙. The initial gas
fraction in the disc is set to 30 per cent and the gas initially has solar metallicity,
Z⊙ = 0.0134 (Asplund et al., 2009). The vertical distribution of the stellar disc has
a constant scale height, which is equal to 10 per cent of the radial scale length.

The gas particle mass at our fiducial resolution is mgas = 105 M⊙, correspond-
ing to a Plummer-equivalent gravitational softening length of 0.2 kpc. To inves-
tigate the dependence of our results on resolution, we also ran simulations of the
same galaxy at resolutions of mgas = 1.25 × 104 M⊙ and mgas = 8 × 105 M⊙. The
former corresponds to a softening of 0.1 kpc, and the latter to 0.4 kpc.

In order to increase the stability of the disc in the first ≈ 0.1 Gyr of the sim-
ulations, we assigned a distribution of stellar ages to the stellar particles present
in the initial conditions assuming a constant star formation rate of 10M⊙ yr−1,
which is a typical value for a young, star-forming Milky Way-mass galaxy. In this
process, we only considered stellar particles whose cylindrical radius (in the disc
plane) is less than 10 kpc from the disc centre.

Cosmological simulations

We ran a set of cosmological simulations in a periodic comoving volume of
size (6.25 comoving Mpc)3. The initial phases for this volume were taken
from the public multiscale Gaussian white noise field Panphasia (Jenkins,
2013) and are described in Schaye et al. (2015) in table B1. All cosmo-
logical simulations were started at redshift z = 127. We use the Planck-13
cosmology (Planck Collaboration et al., 2014): (Ωm,0,ΩΛ,0,Ωb,0,h,σ8,ns) =
(0.307,0.693,0.04825,0.6777,0.8288,0.9611), whereΩm,0,Ωb,0, andΩΛ,0 are the
current density parameters of matter, baryons, and the dark energy, respectively;
h is the dimensionless Hubble constant; σ8 is a linear z = 0 rms value of Gaussian
density fluctuations within 8 h−1Mpc spheres; and ns is the spectral index of
primordial fluctuations.
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Table 3.1: Numerical simulations used in this work. Column (1) contains the names of the simulations; (2) Npart is the number
of SPH particles in the simulation (gas + stars); (3) mgas is the initial gas-particle mass; (4) mdm is the mass of dark-matter
particles (only in cosmological simulations); (5) εsoft,gas is the Plummer-equivalent gravitational softening length for baryons;
column (6) indicates whether the simulation uses an equation of state (i.e. an effective pressure floor); column (7) shows the
algorithm for neighbour selection in SN feedback used in the simulation.

Name Npart mgas [M⊙] mdm [M⊙] εsoft,gas EOS SN feedback

IG_M5_isotropic 823 105 – 0.2 pkpc No Isotropic
IG_M5_mass_weighted 823 105 – 0.2 pkpc No Mass-weighted
IG_M5_min_distance 823 105 – 0.2 pkpc No Minimum distance
IG_M5_min_density 823 105 – 0.2 pkpc No Minimum density
IG_M5_max_density 823 105 – 0.2 pkpc No Maximum density
IG_M5_isotropic_eos 823 105 – 0.2 pkpc Yes Isotropic
IG_M5_mass_weighted_eos 823 105 – 0.2 pkpc Yes Mass-weighted
IG_M6_isotropic 413 8× 105 – 0.4 pkpc No Isotropic
IG_M6_mass_weighted 413 8× 105 – 0.4 pkpc No Mass-weighted
IG_M4_isotropic 1643 1.25× 104 – 0.1 pkpc No Isotropic
IG_M4_mass_weighted 1643 1.25× 104 – 0.1 pkpc No Mass-weighted
COS_M5_isotropic 1883 2.26× 105 1.21× 106 min(0.89 ckpc, 0.35 pkpc) No Isotropic
COS_M5_mass_weighted 1883 2.26× 105 1.21× 106 min(0.89 ckpc, 0.35 pkpc) No Mass-weighted
COS_M5_min_distance 1883 2.26× 105 1.21× 106 min(0.89 ckpc, 0.35 pkpc) No Minimum distance
COS_M5_min_density 1883 2.26× 105 1.21× 106 min(0.89 ckpc, 0.35 pkpc) No Minimum density
COS_M5_max_density 1883 2.26× 105 1.21× 106 min(0.89 ckpc, 0.35 pkpc) No Maximum density
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The initial numbers of gas and dark matter particles are both equal to 1883.
The gas-particle mass is mgas = 2.26 × 105M⊙ and the dark-matter particle mass
mdm = (Ωm,0/Ωb,0 − 1)mgas = 1.21 × 106M⊙. The Plummer-equivalent gravita-
tional softening length of baryons was set to the minimum of 0.89 comoving kpc
and 0.35 proper kpc. The softening of dark matter was set to that of the baryons
multiplied by (Ωm,0/Ωb,0)1/3. The simulations do not include supermassive black
holes.

In this work, we only present results at z = 0. To identify haloes in the
z = 0 snapshots, we used the publicly available structure finder VELOCIraptor

5

(Cañas et al., 2019; Elahi et al., 2019).

3.3.3 Subgrid model for galaxy evolution

Cooling and heating

Radiative gas cooling and heating are modelled using pre-computed tables from
Ploeckinger & Schaye (2020)6 generated with the photoionization code cloudy

(Ferland et al., 2017). The model of Ploeckinger & Schaye (2020) assumes the
gas to be in ionization equilibrium in the presence of a modified version of the
redshift-dependent, ultraviolet/X-ray background of Faucher-Giguère (2020),
cosmic rays, and a local interstellar radiation field. The interstellar radiation
field, the dust-to-metals ratio and the shielding length all depend on the density
and temperature of the gas.

In our fiducial model for the ISM in cosmological and isolated galaxy simu-
lations, gas particles are allowed to cool down to temperatures as low as 10 K.
Additionally, as one of the variations, we consider a case with a constant Jeans
mass pressure floor as in Schaye & Dalla Vecchia (2008), Peos ∝ ρ4/3gas , normalized
to temperature T = 8× 103K at density nH = 0.1cm−3. We include this variation
to show that our results are not a mere consequence of the very high density gra-
dients caused by the lack of pressure floor, and because it is common practice to
include a pressure floor in simulations of galaxy formation at these resolutions.

Star formation

To decide whether a gas particle is star-forming or not, we use a temperature-
density criterion. The cold (T ≪ 104 K ) interstellar gas phase is expected to be
unstable to star formation (e.g. Schaye, 2004). Therefore, we allow gas particles
to be star-forming if their temperature T < 103 K or their density7, expressed

5https://velociraptor-stf.readthedocs.io/en/latest/
6We use the fiducial version of the cooling tables, UVB_dust1_CR1_G1_shield1 (for the naming

convention and more details we refer the reader to table 5 in Ploeckinger & Schaye 2020).
7In the runs with an effective pressure floor, we use the subgrid temperature to decide whether

a gas particle is star forming. The subgrid temperature is computed assuming thermal and pressure

https://velociraptor-stf.readthedocs.io/en/latest/
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in units of hydrogen particles per cubic cm, nH, exceeds 102 cm−3. The latter
condition is essential for cosmological simulations at high redshifts where low-
metallicity gas may not be able to cool below ∼ 104 K at resolved densities.

In ourmodel, star formation occurs stochastically: if a gas particle satisfies the
temperature-density criterion, its star formation rate, ṁsf, is computed following
the Schmidt (1959) law

ṁsf = ε
mgas

tff
, (3.2)

where tff = [3π/(32Gρ)]1/2 is the free-fall time and ε = 0.01 is the efficiency of
star formation per free fall time. We then compute the probability of this gas
particle turning into a stellar particle by multiplying ṁsf by the particle’s current
time-step and dividing by its mass mgas.

SN feedback

For SN (type-II) feedback, we adopt the thermal stochastic subgrid model of
DVS12 and use it in combination with the original, mass-weighted method or
one of the four new neighbour-selection methods from §3.2.

In simulations of galaxies withmass resolution as in our work, stellar particles
represent populations of stars with a certain age, metallicity, and initial mass
function (IMF) Φ(m). Given the stellar IMF, the total number of stars ending
their lives as core-collapse SNe per unit stellar mass can be computed as

nSN =
∫ mmax

mmin

Φ(m)dm, (3.3)

where mmin and mmax are the minimum and maximum mass of stars that die
as core-collapse SNe, respectively. For the Chabrier (2003) IMF with the lower
and upper mass limits of mmin = 8M⊙ and mmax = 100M⊙, this gives nSN =
1.18×10−2M−1⊙ . The SN energy budget per stellar particle of massm∗ can thus be
written as

ESN,tot

1051 erg
= nSN fE m∗ = fE1.18 × 102

(
m∗

104M⊙

)
, (3.4)

where the free parameter fE controls how much SN energy is liberated per single
SN, in units of 1051 erg. DVS12 showed that in order to minimize the overcooling
losses in SN thermal feedback, gas elements need to be heated to a temperature T
for which the cooling time-scale tc (of the heated gas element) is roughly a factor
of 10 greater than the sound-crossing time-scale ts (across the heated element).
More precisely, they showed that assuming (i) the gas cooling rate is dominated

equilibrium between the unresolved cold gas phase and the effective pressure given by the floor (for
details see Ploeckinger et al., in preparation).



3

3.3. Numerical simulations 103

by bremsstrahlung (ii) and the gas is fully ionized and has a primordial composi-
tion with the hydrogen mass fraction X = 0.752, the ratio ft ≡ tc/ts can be written
in the form

ft ≡
tc
ts

= 68
( nH
1cm−3

)−2/3 ( T

107.5K

)( mngb

107M⊙

)−1/3
, (3.5)

where nH is the (hydrogen) number density of the local gas and mngb is the total
mass in the gas elements neighbouring the stellar particle (if the star has Nngb
gas neighbours, all of which are of massmgas, thenmngb =Nngbmgas). The energy
corresponding to a temperature increase ∆T of one such element (a particle or
cell) of mass mgas is

∆Einj(mgas,∆T ) =
kB∆T
(γ − 1)

mgas

µmp

= 1.3× 1053 erg
(

mgas

104M⊙

)(
∆T

107.5K

)
, (3.6)

where γ = 5/3 is the ratio of specific heats for an ideal monatomic gas, kB is the
Boltzmann constant, mp is the proton mass, and µ = 0.6 is the mean molecular
weight of fully ionized gas. If a stellar particle injects its neighbours with energy
∆Einj and all gas elements have mass mgas, then on average this stellar particle
will have

⟨Ninj,tot⟩(m∗, fE,mgas,∆T ) =
ESN,tot(m∗, fE)
∆Einj(mgas,∆T )

= 0.91fE

(
m∗
mgas

) (
∆T

107.5K

)−1
, (3.7)

energy injections over its lifetime8. Based on equations (3.5) and (3.7), DVS12
concluded that the optimal heating temperature should be around ∆T = 107.5 K:
making ∆T lower will decrease ft resulting in a weaker SN feedback and stronger
overcooling losses, while making ∆T significantly higher will cause undersam-
pling of SNe feedback events (on average much less than one heating event per
stellar particle).

The probability that a star particle of age tj heats a particular gas neighbour
in a time interval from tj to tj +∆tj can be written as

pheat(mngb,∆T ,tj ,∆tj ) =
∆ESN,j (tj ,∆tj )

∆Einj(mngb,∆T )
, (3.8)

where ∆ESN,j is the SN energy released during the time interval of length ∆tj
and ∆Einj(mngb,∆T ) is the energy needed to heat the total gas mass in the stellar

8The numerical prefactor in the above equation is slightly lower than in DVS12 because we are
using different integration limits for the stellar initial mass function: mmin = 8M⊙ instead of 6M⊙.
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kernel, mngb, by a temperature ∆T . The energy ∆ESN,j is related to the total SN
energy budget carried by the star particle ESN,tot via

ESN,tot = 1051 ergfE m∗
∑
j

∫ md(tj )

md(tj+∆tj )
Φ(m)dm ≡

∑
j

∆ESN,j , (3.9)

where the function md(t) gives the mass of the star(s) dying as core-collapse SNe
at age t and in this work is computed using the metallicity-dependent stellar-
lifetime tables from Portinari et al. (1998). The values of the function md(t) are
limited to the range mmin ≤md(t) < mmax, which is a consequence of the adopted
IMF. As a result, the integral in the sum in equation (3.9) is non-zero only when
the stellar age tj is roughly within 3Myr ≤ tj < 40Myr, where the two numbers are
the (rounded) lifetimes of stars with initial masses ofmmax andmmin, respectively.
The number of terms in the sum in equation (3.9) depends on the size of star
particles’ time-steps.

Finally, to compute the number of thermal energy injection events Ninj in this
time-step, the following algorithm is employed:

(i) For a given stellar particle with available energy ∆ESN,j
9 and Nngb gas

neighbours comprising a total mass mngb, the heating probability pheat is
calculated following equation (3.8)10 and Ninj is initialized with 0;

(ii) For each gas neighbour out of Nngb, a random number is drawn from a
uniform distribution 0 ≤ r < 1;

(iii) If the random number is smaller than pheat, then the value of Ninj is incre-
mented by one.

After having computed Ninj, we pass it to the neighbour-selection algorithm
used in the simulation and follow the remaining steps as described in §3.2 for
the selected algorithm. We always use an SN energy fraction fE = 2.0 , which
corresponds to 2 × 1051 erg per SN, and the target heating temperature ∆TSN =
107.5 K. According to equation (3.7), with such parameters the expected number
of thermal-injection events over the lifetime of a stellar particle is ≈ 1.8 (and per
time-step the expected number of events is ≪ 1). We therefore use a maximum
number of Nrays = 5 rays per stellar particle in order to never run out of rays even
in the most unlikely scenarios. By running additional tests (not presented here),
we verified that as long as the average number of heating events per time step

9Note that in place of sampling energy ∆ESN,j every time-step, DVS12 compute the heating prob-
ability just once using the total energy budged ESN,tot when a stellar-particle’s age becomes greater
than 30 Myr.

10If pheat > 1, then the heating temperature ∆T is increased such that the new value of pheat is
equal to one.
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per particle remains below or similar to one, our results also remain valid for a
factor-of-a-few higher and lower values of fE and ∆TSN.

Besides heating gas to high temperatures, massive stars also enrich their sur-
roundings with metals. In our simulations, the enrichment is done continuously
following Wiersma et al. (2009) and Schaye et al. (2015).

For simplicity, we do not include SN type-Ia-related processes (energy feed-
back and metal enrichment), which would have negligible impact on our results.

Early stellar feedback

We use bpass (Eldridge et al., 2017; Stanway & Eldridge, 2018) version 2.2.1 with
a Chabrier (2003) initial mass function as stellar evolution model for all early
feedback processes. The minimum and maximum stellar masses are 0.1M⊙ and
100M⊙, respectively. The early stellar-feedback processes we include in the sim-
ulations are stellar winds, radiation pressure, and Hii regions.

The implementation and effects of these three early feedback processes will
be described in detail in Ploeckinger et al. (in preparation). Briefly, stellar winds
inject cumulative momentum following the bpass tables. This wind feedback is
implemented as stochastic kicks of gas particles with a kick velocity of 50 km
s−1. Radiation pressure is implemented in the same way as stellar winds and is
based on the bpass photon energy spectrum and the optical depth computed fol-
lowing Ploeckinger & Schaye (2020). Finally, young star particles stochastically
ionize and heat neighbouring gas particles to T = 104 K where the probability of
becoming an Hii region is a function of the gas density and bpass ionizing photon
flux. Gas particles tagged as Hii regions are not allowed to form stars.

3.3.4 Runs

All runs presented in this work are summarized in Table 3.1. Names of isolated
galaxy runs and of cosmological runs begin with a prefix IG and COS, respec-
tively. The name also indicates which neighbour selection model (from §3.2) is
used: isotropic,min_distance,mass-weighted,min_density, ormax_density. If a
run uses an effective pressure floor, we add the suffix _EOS to its name. The reso-
lution of the isolated galaxy runs is indicated in the names via _M4, _M5, and _M6

corresponding to the gas-particle mass of mgas = 1.25 × 104M⊙, mgas = 105M⊙,
and mgas = 8×105M⊙, respectively. Finally, in the cosmological runs, _M5 stands
for mgas = 2.26× 105M⊙, which is the only resolution we explore.
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t = 0.5 Gyr

IG M5 max density IG M5 mass weighted IG M5 min distance IG M5 isotropic

10 kpc

IG M5 min density

−0.5 0.0 0.5 1.0 1.5 2.0
log Σg [M� pc−2]

Figure 3.2: The distribution of gas in the isolated galaxy simulations with res-
olution mgas = 105M⊙ shown face-on (top) and edge-on (bottom) at time t = 0.5
Gyr, for five methods of selecting gas particles neighbouring young stellar parti-
cles for SN feedback. The colour indicates gas surface density. The efficiency of
SN feedback – which differs solely due to the variations in the neighbour selec-
tion approach – increases from left to right. In the runs with more efficient SN
feedback, the gas is more dispersed and the gas surface densities are on average
lower.

3.4 Results

3.4.1 Isolated galaxy simulations

We first show the results from the isolated galaxy simulations. Unless stated
otherwise, all runs presented here have a particle mass of mgas = 105M⊙ and
do not use an effective pressure floor. We mainly focus on the three neighbour-
selection methods: isotropic, min_distance, and mass-weighted. Additionally,
we make use of the two more extreme methods, min_density and max_density.
These two density-based methods together provide an estimate of the maximum
variations in galaxy properties due to the neighbour selection for SN feedback.

Morphology

Fig. 3.2 shows the distribution of gas in the isolated galaxy simulations at time
t = 0.5 Gyr, colour-coded by gas surface density. The five galaxies seen in the plot
were evolved with our five neighbour-selection methods for SN feedback (from
left to right,max_density,mass-weighted,min_distance, isotropic,min_density)
and are shown face-on (top panels) and edge-on (bottom panels). The panels
are arranged such that the runs with more efficient SN feedback (i.e. producing
galaxies with less dense gas) – solely due to the differences in the neighbour-
selection algorithms – are closer to the right of the plot. The neighbour-selection
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Figure 3.3: Star formation histories in the isolated galaxy simulations with res-
olution mgas = 105M⊙ with isotropic (black), min_distance (orange) and mass-

weighted (blue) neighbour-selection methods for SN feedback. The hatched
grey area provides an estimate of the maximum variation in the star formation
rate due to the neighbour-selection strategy: its boundaries are defined by the
star formation rates in the runs with the most and least efficient SN feedback:
IG_M5_min_density (dashed) and IG_M5_max_density (dash-dotted), respectively.

methods yielding more efficient SN feedback (min_distance, 3rd panel; isotropic,
4th panel; min_density, 5th panel) produce galaxies with more dispersed gas. In
contrast, the gas in the galaxies evolved with less efficient methods (max_density,
1st panel; mass-weighted, 2nd panel) is more concentrated, with the gas surface
densities in the centre and within spiral arms typically exceeding 102M⊙pc−2.

Star formation rates

Fig. 3.3 displays the star formation histories for the isolated galaxy simu-
lations with the three main neighbour-selection methods: isotropic (black),
min_distance (orange), and mass-weighted (blue). For reference, we also show
the runs with the two extreme models, min_density and max_density, shown as
the upper and lower boundaries of the grey area. The star formation histories
in IG_M5_min_density and IG_M5_max_density are further highlighted by the
brown dashed and dash-dotted curves, respectively, to better distinguish the
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two runs. The star formation history in the IG_M5_max_density run initially
(t ≲ 0.15 Gyr) defines the lower boundary of the grey area, but at all later times
(t ≳ 0.15 Gyr) it corresponds to the upper boundary. The opposite is true for the
IG_M5_min_density run.

All three main runs experience an initial burst of star formation, which ends
at t ≈ 0.15 Gyr. The star formation rates in the isotropic and min_distance mod-
els are very much alike at all times and are systematically lower than in the
mass-weighted model after the initial burst. At time t = 0.5 Gyr, the ratio of
the star formation rate in the mass-weighted model to that in the isotropic (or
min_distance) is ≈ 2.0, which increases to ≈ 2.5 by t = 1.0 Gyr. The stars in
the IG_M5_mass_weighted run form at a higher rate because the mass-weighted

method is biased towards heating gas at higher densities, where the injected SN
energy dissipates faster, making the SN feedback less efficient at suppressing star
formation.

Comparing all five runs together, we find that star formation rates can differ
by more than a factor of 5 depending on the method of neighbour selection. The
max_density model is initially the most effective at suppressing star formation.
That is because it targets the densest gas, where the majority of the stars form.
This, however, only lasts while t ≲ 0.15 Gyr after which the method becomes the
least effective at preventing star formation. This is a consequence of the strongly
enhanced radiative cooling losses in the densest gas where most of the SN energy
is injected. The run IG_M5_min_density has the opposite behaviour: SN feedback
in this run is least inefficient at suppressing the initial star formation (t ≲ 0.15
Gyr), because SNe heat the least dense gas where not many stars form, but later it
becomes most efficient owing to having the smallest radiative losses amongst the
5 considered runs.

Stellar birth densities and SN feedback densities

In Fig. 3.4, we display the cumulative distributions of stellar birth gas densities
(top panel) and of SN feedback gas densities (bottom panel), which correspond,
respectively, to the gas density at the time the star particle was formed and at the
time the SN energy was injected. The stellar birth density distributions include
all stars formed at times 0.4 < t < 0.6 Gyr. For the SN gas density distributions, we
used a tracer field carried by each gas particle in the simulation that would record
the gas particle’s density when it was last heated by SNe; we then collected the
data from all gas particles that were heated by SNe at times 0.4 < t < 0.6 Gyr. The
curves again show the results for the three main neighbour-selection methods,
while the shaded region for min_density and max_density.

Both stellar birth densities and SN feedback gas densities are sensitive to the
neighbour selection, though the latter varies more significantly. In the isotropic

and min_distance models, the gas turns into stars at nearly identical gas densi-
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Figure 3.4: The cumulative distribution of stellar birth gas densities (top panel)
and SN feedback gas densities (bottom panel) recorded at times 0.4 < t < 0.6
Gyr, in the isolated galaxy simulations with resolution mgas = 105M⊙ with
isotropic (black), min_distance (orange) and mass-weighted (blue) neighbour-
selection methods for SN feedback. The hatched grey area is constructed in the
same way as in Fig. 3.3 (i.e. using the min_density and max_density methods).
Both stellar birth densities and SN feedback densities are sensitive to the method
of neighbour selection.

ties, which are lower than in the mass-weighted model by roughly a factor of 2.
Similarly, the distributions of SN feedback gas densities look statistically identi-
cal for isotropic and min_distance and the SN densities are lower than for mass-

weighted by approximately a factor of 4. The differences between min_density

andmax_density are more dramatic: the stellar birth densities vary by more than
an order of magnitude and the feedback densities by more than two orders of
magnitude.

Next, in Fig. 3.5, we show how median SN feedback densities are correlated
with stellar birth densities. For this, we made each star particle record not only
the gas density at which it was born, but also the density of the gas particle it
heated in its most recent SN event. Here we consider all stellar particles that had
at least one SN feedback event by the end of the simulation (1 Gyr).

At low gas densities (nH ≲ 1cm−3), the dynamical evolution of the gas is rel-
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Figure 3.5: The median SN feedback densities versus stellar birth gas densities
recorded at times t < 1 Gyr, in the isolated galaxy simulations with resolution
mgas = 105M⊙ with isotropic (black), min_distance (orange) and mass-weighted

(blue) neighbour-selection methods. The hatched grey area is constructed using
the min_density and max_density methods. The diagonal dashed line gives the
x = y relation. At a fixed stellar birth density, the median SN feedback density
can vary by more than two orders of magnitude depending on the method of
neighbour selection.

atively slow and the density coherence length is relatively large, so that SNe go
off in the ISM of roughly the same density as when the stars were formed. At
higher gas densities (nH ≳ 10cm−3), the situation is different: the relation be-
tween stellar birth and SN feedback densities begins to flatten, which happens
because high-density clumps are short-lived and/or compact. In this case, stellar
particles form in clusters, which means that before a given stellar particle has its
first SN thermal injection, the parent gas cloud can already be dispersed by an SN
blast originated from another stellar particle. Alternatively, a star particle may
move out of its birth cloud before injecting SN feedback, which will result in a
lower gas density at the time of SN feedback.

The trends for the isotropic, min_distance, and mass-weighted methods con-
verge for nH,birth ≲ 0.1cm−3, which is a consequence of (i) little dynamical evo-
lution of the gas between stellar-birth times and SN-feedback times, and (ii)
the lack of steep density gradients at such low densities. However, at higher
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Figure 3.6: Gas wind mass loading factors at height d = 10±0.1 kpc above/below
the galactic disc plotted versus time, in the isolated galaxy simulations with res-
olution mgas = 105M⊙ with isotropic (black), min_distance (orange) and mass-

weighted (blue) neighbour-selection methods. The hatched grey area is con-
structed using the min_density and max_density methods. The highest mass
loading factors are attained in themin_density, isotropic andmin_distancemod-
els, followed by the intermediate mass loading factors inmass-weighted, and the
lowest in max_density.

densities, the mass-weighted model begins to diverge from the isotropic and
min_distance, which themselves again show a high degree of resemblance. At the
stellar birth density of nH,birth = 103 cm−3, the median SN density in the isotropic
andmin_distancemodels is only nH,SN ≈ 10cm−3, whereas in themass-weighted

it is nH,SN ≈ 102 cm−3. These SN densities are bracketed by the two more ex-
treme models, which at nH,birth = 103 cm−3 have nH,SN ≈ 2cm−3 (min_density)
and nH,SN ≈ 3× 103 cm−3 (max_density).

Wind mass loading factors

Differences in the selection of gas neighbours also impact how effective SN feed-
back is at pushing gas out of the galaxy. To characterize the strength of gas out-
flows in isolated galaxies, we define the wind mass loading factor η at time t and
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0.4 < t < 0.6 Gyr
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Figure 3.7: SN heated gas in the isolated galaxy simulations shown edge-on at
0.6 Gyr. The colour scale indicates the mass fraction of the gas that was heated
by SNe at times between 0.4 and 0.6 Gyr. Each panel corresponds to one of the
five neighbour-selection methods for SN feedback. The black dashed contours
are defined by the mass fraction of 5× 10−6 and are shown to guide the eye. The
efficiency of SN feedback and, hence, gas outflows – which differs solely due to
variations in neighbour selection – increases from left to right.

at (absolute) height d from the disc plane as

η(t,d,∆d) =
1

ṁsf,tot

∑
|zi±d|<∆d/2

mgas,i |vz,i |
∆d

, (3.10)

where ṁsf,tot is the galaxy total star formation rate at time t, vz,i is the velocity
z component of particle i, mgas,i is the mass of particle i, zi is the z coordinate
(height) of particle i relative to the galactic disc, and the sum is computed over
all outflowing (i.e. vertically moving away from the disc) gas particles whose
heights are within d ±∆d/2 from the disc (the disc plane extends in the x and y
directions).

Fig. 3.6 shows the temporal evolution of the mass loading factor computed
at height d = 10 kpc in a height window ∆d = 0.1 kpc, for the same runs as
in the previous figures. It reveals that models with less (more) efficient SN
feedback produce weaker (stronger) outflows, as expected. The isotropic (black
curve) and min_distance (orange curve) models have a more-or-less constant
mass loading factor η ≈ 4. In the mass-weighted model (blue curve), the mass
loading is systematically lower, η ≈ 2. Furthermore, we see that in the isotropic

and min_distance models, η fluctuates around the grey area’s upper boundary,
which corresponds to the IG_M5_min_density run. In other words, isotropic and
min_distance methods generate galactic winds with the mass loading that is on
average as high as in the run with the most efficient SN feedback. Conversely,
in IG_M5_max_density, which defines the lower boundary of the grey area, SN
feedback is so weak that η ≲ 1 at all times.

To better understand the differences in η, we show in Fig. 3.7 the galaxy edge-
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Figure 3.8: The average cosine of the angle between the vector from the star par-
ticle to the heated gas particle and the z normal vector as a function of the height
at which SN feedback occurred (see §3.4.1 for details and equation 3.11 for the
definition). If stars distributed the SN energy isotropically, then we would find
⟨cosθ⟩ = 0. A negative slope of ⟨cosθ⟩ with z indicates a bias towards the disc.
The results are shown for the isotropic (black), min_distance (orange) and mass-

weighted (blue) methods. The hatched grey area is constructed usingmin_density

and max_density. Only the gas particles that were last heated by SNe between
t = 0.1 and 1.0 Gyr are considered. Among the five methods, isotropic gives the
most isotropic distribution of the azimuthal angles, as expected.

on at time 0.6 Gyr, colour-coded by the mass fraction of the gas heated by SNe
between 0.4 and 0.6 Gyr. Each panel corresponds to one of the five neighbour-
selection models. The panels are arranged such that the efficiency of SN feedback
(and, hence, the strength of outflows) increases from left to right. This plot is
consistent with Fig. 3.6, confirming that in runs with less (more) efficient SN
feedback, the gas is less (more) outflowing. The two extreme cases are a galactic
fountain-like outflow, operating at distances |z| ≲ 10 kpc from the disc, in the
leftmost panel (IG_M5_max_density); and the strong, stable wind, propagating
beyond |z| ≈ 30 kpc, in the rightmost panel (IG_M5_min_density).

Degree of isotropy of the SN feedback

Our next step is to characterize the isotropy of the SN feedback. Because the
galaxy has an exponentially declining density along the z direction, the density
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gradients in this direction are particularly steep. We are interested in knowing
how much better our isotropic model performs in distributing SN energy
isotropically under such highly inhomogeneous conditions, compared to the
other neighbour-selection algorithms.

Fig. 3.8 shows the average cosine of the angle between the vector from the
star particle to the heated gas particle and the z normal vector, as a function of
the height at which SN feedback events take place. More precisely, for a given
z−coordinate bin with the two edges z −∆z/2 and z +∆z/2, the average cosine is
computed as

⟨cosθ⟩(z) = 1
Ntot

∑
|rstar,i ·nz−z|<∆z/2

(rgas,i − rstar,i) ·nz
|rgas,i − rstar,i |

(3.11)

whereNtot is the number of particles satisfying the condition |rstar,i ·nz−z| < ∆z/2,
rgas,i is the coordinate of the ith gas particle at the time when it was heated by
SNe11, rstar,i is the coordinate of the stellar particle that heated the ith gas particle,
also recorded at the time of the SN feedback event; and nz is the unit vector
pointing in the z direction, perpendicular to the disc plane.

The results are shown for the isolated galaxy simulations with resolution
mgas = 105M⊙ with the isotropic (black), min_distance (orange) and mass-

weighted (blue) neighbour-selection algorithms; and the grey shaded region is
again defined using the IG_M5_min_density and IG_M5_max_density runs. We
only consider those gas particles that were last heated by SNe between t = 0.1
Gyr and 1.0 Gyr; we do not include the initial evolutionary stage (t < 0.1 Gyr)
because the galaxy at such early times has a dearth of gas particles below and
above the disc and because we have seen that this phase is strongly affected by
the initial set-up.

An ideal isotropic distribution would yield ⟨cosθ⟩(z) = 0.0, while a negative
slope with z indicates a bias towards the disc. We see that among the three main
runs, the isotropicmodel is closest to the ideal scenario, while themass-weighted

is farthest. The reason that the isotropic model also gives a slightly biased distri-
bution is numerical sampling: if certain angular directions lack gas neighbours,
there is no way that SN energy is injected there. In Appendix 3.A we show that
the isotropicmodel approaches the ideal isotropic distribution even more closely
with increasing resolution (and, hence, better sampling).

It should not be surprising that the distribution of the azimuthal angles in
the min_distance model is also not too far off from ⟨cosθ⟩(z) = 0.0. By always se-
lecting the closest gas neighbour for SN heating, we reduce the impact of density
gradients within the SPH kernel, and hence the bias towards excessively inject-
ing SN energy at higher densities. This reduction in the bias increases the like-
lihood that the closest neighbour can exist in any angular direction (relative to

11If the particle has never been heated by SN, it does not contribute to the sum.
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Figure 3.9: Star formation histories in the isolated galaxy simulations with the
isotropic (black) andmass-weighted (blue) methods of neighbour selection shown
at three resolutions: mgas = 1.25 × 104M⊙ (M4, short-dashed), mgas = 105M⊙
(M5, solid), and mgas = 8 × 105M⊙ (M6, long-dashed). The differences in the
star formation history between the isotropic andmass-weightedmodels increase
with higher resolution. The isotropic and mass-weighted methods both show
good convergence at our fiducial resolution M5, with the isotropic method being
slightly better at times t ≳ 0.5 Gyr.

the star particle), which makes the model look more isotropic. This is also partly
the reason why in the previous plots, the differences between min_distance and
isotropic were much smaller than between mass-weighted and isotropic. One
of the statistics where min_distance does (by construction) stand out from both
isotropic and mass-weighted is the distribution of distances between star parti-
cles and their heated gas neighbours (see Appendix 3.B).

Resolution effects

In Fig. 3.9, we explore the impact of resolution on the variations in star for-
mation rates caused by the differences in the adopted neighbour-selection algo-
rithm. For clarity, we compare only the isotropic andmass-weightedmodels (the
min_distance model is again nearly indistinguishable from isotropic). We vary
the resolution in the simulations by increasing and decreasing the gas-particle
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Figure 3.10: Star formation histories for the isolated galaxy simulations at resolu-
tion mgas = 105M⊙ with the isotropic (black) and mass-weighted (blue) methods,
with (dashed) and without (solid) the effective pressure floor. While the inclusion
of a pressure floor slightly decreases the differences, the effect of the neighbour
selection algorithm remains similar.

mass by a factor of 8 relative to its fiducial value of mgas = 105M⊙.
The difference in the star formation histories between the isotropic andmass-

weighted methods decreases with decreasing resolution and nearly disappears
for mgas = 8×105M⊙. This is a direct consequence of the overall smoother distri-
bution of gas at the lower resolution. The isotropic and mass-weighted methods
both exhibit good convergence at our fiducial resolution mgas = 105M⊙ (relative
to the higher, mgas = 1.25×104M⊙ resolution), although the isotropicmodel con-
verges slightly better at late times, t ≳ 0.5 Gyr.

Impact of an effective pressure floor

In Fig. 3.10, we show the impact of including an effective pressure floor Peos ∝
ρ4/3gas , which is normalized at density nH = 0.1cm−3 to a temperature T = 8×103K.
We plot galaxy star formation rates versus time, with (dashed) andwithout (solid)
the effective pressure floor for the isotropic (black) and mass-weighted (blue)
neighbour-selection methods (4 runs in total).

The differences in galaxy star formation rates between the isotropic andmass-
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weighted models are similar in the two cases, though they are slightly smaller if
the pressure floor is included. Compared to runs without a pressure floor, the
two runs with the pressure floor have smoother star formation histories and lack
an initial burst of star formation. All these differences are due to the pressure
floor yielding a smoother gas distribution. By the end of the simulations, the star
formation rate in the isotropic model is a factor of 2 lower than for the mass-

weighted model, nearly independent of the presence or absence of the pressure
floor.

3.4.2 Cosmological simulations

We complete our analysis with the results from (6.25 cMpc)3 cosmological vol-
umes, at a gas mass resolution of mgas = 2.2 × 105M⊙. In essence, these confirm
that our findings from the isolated galaxy runs presented above also apply to
cosmological simulations.

The left panel of Fig. 3.11 displays stellar-to-halo mass ratios for the four
most massive central galaxies at z = 0 versus halo mass, for the cosmological
simulations with five neighbour-selection methods: isotropic (black triangles),
min_distance (orange squares), mass-weighted (blue stars), min_density (brown
circles), and max_density (light-grey diamonds). For the halo masses we use the
definition of the virial mass from Bryan & Norman (1998); our stellar masses
are computed in 3D apertures of radius 30 kpc. For reference, we also show
the median z = 0 stellar-to-halo mass ratio taken from the empirical model of
Behroozi et al. (2019), with the error bars denoting the 16th and 84th percentiles.

Among the five runs, all galaxies – regardless of their halo mass – have the
smallest (largest) stellar mass in themin_density (max_density) model, while the
min_distance and isotropic methods yield very similar stellar masses. These re-
sults are consistent with those from our isolated galaxy runs. Furthermore, the
stellar masses of all four galaxies in the mass-weighted model are higher than
those in the isotropic and min_distance models by a factor of a few level, which
is thus certainly not negligible. A similar shift in stellar masses is achieved by
varying the SN energy budget by a factor of a few (see, e.g. Crain et al., 2015).

In the four right, smaller panels in the right-hand half of Fig. 3.11, we show
the cumulative distributions of stellar birth gas densities (solid) and SN feed-
back densities (dashed), in the four most massive galaxies from the left panel.
The colour coding is the same as in the left panel. We see that the run with the
min_density (max_density) algorithm, shown in brown (light-grey), has the low-
est (highest) SN feedback densities in all four galaxies. As a result, SN feedback
is most (least) effective in the simulation with the min_density (max_density)
method and the galaxies in this model have the lowest (highest) star formation
rates and, consequently, the lowest (highest) z = 0 stellar masses. The feedback
densities in themass-weightedmodel are higher than those inmin_distance and
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Figure 3.11: Left: Stellar-to-halo mass ratio versus halo mass shown for the four most massive central galaxies at z = 0 in
cosmological simulations of (6.25 cMpc)3 volume at a gas mass resolution mgas = 2.2 × 105M⊙, with five different ways of
selecting gas particles that receive SN energy (colour-coded). The relation from the empirical model of Behroozi et al. (2019)
is shown for reference only. Right: Each smaller panel shows the cumulative distributions of stellar birth densities (solid)
and SN feedback densities (dashed) for one of the four most massive galaxies from the left panel, for the same five methods
of neighbour selection (colour-coding is the same as in the left panel). Consistently, the min_density (max_density) method
yields the lowest (highest) stellar masses and the lowest (highest) feedback densities.
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isotropic in all four galaxies. All these results are in line with our findings for the
isolated galaxy runs (see Fig. 3.4).

3.5 Discussion

3.5.1 Comparison with previous work

As discussed in §3.1, drastically different implementations of SN feedback are
used by different research groups, including the so-called thermal, kinetic, de-
coupled, mechanical, stochastic, delayed-cooling and multiphase subgrid mod-
els. Possibly because of the large differences in the internal design of the model,
the effects of gas-neighbour selection in SN feedback have largely been over-
looked so far. Only recently has this issue begun to receive some attention (Hop-
kins et al., 2018a; Smith et al., 2018; Hu, 2019).

Hopkins et al. (2018a) designed an algorithm to ensure statistical isotropy for
their mechanical SN feedback model. In their algorithm, SN energy and momen-
tum are distributed among gas elements neighbouring the stellar particle in pro-
portion to the solid angles subtended by these elements, as seen by the star. The
solid angles are estimated based on the effective surface areas shared by the star
with its neighbours. Hopkins et al. (2018a) ran zoom-in simulations of a Milky
Way-like galaxy at gas-mass resolutionmgas = 7×103M⊙ using the mesh-free, La-
grangian code gizmo (Hopkins, 2015) in its finite-mass mode; they compared the
isotropic algorithm to a naive, grid-aligned one, typical for Cartesian grid-based
codes. They found that in the latter case, the galaxy has a different morphology,
with a disc that is significantly more compact, and attributed this effect to the
removal of angular momentum from recycling material due to the (forced) grid
alignment.

Smith et al. (2018) implemented a mechanical subgrid model for SN feedback
alongside the Hopkins et al. (2018a) isotropic algorithm in the moving-mesh,
quasi-Lagrangian code arepo (Springel, 2010) and ran simulations of an isolated
galaxy with a total mass of 1010M⊙. They showed that at a resolution of mgas =
2×103M⊙, choice of the SPH kernel weighting instead of the isotropic algorithm
can result in unphysical shells propagating through the galaxy disc, sweeping up
most of its gas mass. This is because if the SPH kernel weighting is used, most
of the SN momentum is injected into the disc – the region where most of the gas
neighbours are – rather than perpendicular to the disc.

Hu (2019) ran simulations of dwarf galaxies at much higher resolution (mgas =
1M⊙) and used a mechanical feedback model together with the healpix tessella-
tion library (Górski et al., 2005), which makes the injection of SN energy and
momentum isotropic. In Hu (2019), the 4π solid angle was split into 12 healpix

pixels; within each pixel, they looked for 8 gas particles in which SN energy and
momentum would be injected, therefore guaranteeing that the distribution of
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SN energy and momentum is isotropic at the pixel level for all possible distri-
butions of gas neighbours. They found that the type of the injection scheme –
isotropic (with healpix) or naive (without healpix) – makes negligible difference
for their dwarf galaxies. Such an outcome is not necessarily in conflict with our
findings (and the results from the other works) because the Hu (2019) simula-
tions had much higher resolution allowing the adiabatic phase of SN blastwaves
to be fully resolved. Additionally, compared to the Milky Way-mass galaxy used
in our work, in dwarf galaxies such as one used in Hu (2019), gradients in the
gas density field are generally lower and the distribution of gas particles is gen-
erally smoother and more isotropic. Under such ‘less extreme’ conditions, we
expect the effects of neighbour selection to be less significant than those found
in our work for the Milky Way-mass galaxy. Indeed, we have run simulations
of a dwarf galaxy (not shown here) with M200 = 1.37 × 1010M⊙, c = 14.0, and
mgas = 1.6×103M⊙ for the five models of neighbour selection and found that the
effects of neighbour selection are strongly suppressed.

We note that our isotropic algorithm is fundamentally different from those in
Hopkins et al. (2018a) and Hu (2019) because our method is based on rays, not
on surface areas, healpix pixels, or solid angles; and because it is used together
with the stochastic subgrid model where gas neighbours are heated individually,
not with the mechanical model where all gas neighbours partake in feedback
events. We emphasize that the Hopkins et al. (2018a) and Hu (2019) isotropic
algorithms are superior to ours when used together with SN subgrid models like
the mechanical model, in which the feedback energy is distributed among many
(N ≫ 1) gas neighbours and in all angular directions. This is mainly because our
isotropic method is designed for a different class of SN models – the models such
as the Schaye &Dalla Vecchia (2008) kinetic model and the DVS12 thermal model
where large amounts of energy are injected into one or a handful of gas neigh-
bours. When applied to SN models distributing feedback energy among many
neighbours, our method will be subject to substantial noise due to the stochastic
sampling of angular directions by the finite number of rays.

Another potential weakness of our isotropic method is that it may fail when
certain angular directions lack gas neighbours, which is not the case in Hu (2019).
This potential problem can be seen in Fig. 3.8 where our isotropic method is un-
able to produce a fully isotropic distribution of the feedback energies, ⟨cosθ⟩(z) =
0, though it closely approaches it. The chance of lacking gas neighbours can be
reduced by increasing the effective number of gas neighbours within the kernel or
by adopting the neighbour finding strategy from Hopkins et al. (2018a) where a
star particle is allowed to inject SN energy not only into the neighbours within its
own kernel but also into those gas elements that are outside the stellar kernel but
whose (larger) kernels contain the star particle. Both improvements will come,
however, with a certain computational cost and at low resolution may cause the
SN energy to be distributed over unphysically large distances.
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3.5.2 Extension to other hydro solvers than SPH

So far all discussion and results in this work have been presented in the context
of SPH. In principle, our isotropic, ray-based algorithm from §3.2.2 can also be
implemented in meshless codes like gizmo or moving-mesh codes like arepo. In
the former, like in SPH solvers, the minimum arc length (equation 3.1) should
be computed between the rays and gas particles residing in the stellar kernel. In
the latter, the arc length should be computed between the rays and the mesh-
generation points of the neighbouring gas cells. We expect the qualitative results
of this work to apply equally to these two set-ups. We also expect our isotropic
model to look ‘more isotropic’ than in this work if the average number of neigh-
bouring gas elements is set to be greater than the value we use (≈ 65). That is
because more neighbouring elements increases the probability of finding a parti-
cle close to the ray, resulting in a relatively better statistical isotropy of the model.

3.5.3 Extension to other subgrid feedback models

The neighbour-selection methods explored in this work can be used in combina-
tion with subgrid models for SN feedback other than the DVS12 thermal stochas-
tic model. We expect the choice of the neighbour-selection algorithm to become
less important if the subgrid model is less prone to radiative cooling losses. For
example, in the subgrid models that inject SN energy in kinetic form and tem-
porarily disable hydrodynamical forces acting on the kicked gas elements, the
impact of the neighbour-selection strategy should be smaller than what we find
here. This is because the kicked gas elements will freely escape from the ISM
– without suffering any energy losses – regardless of the density of the gas they
originate from. Conversely, in kinetic subgrid models for SN feedback where
the kicked gas neighbours do lose energy to radiation and where the kick direc-
tions depend on the positions of the kicked gas particles with respect to the stars,
the effect of neighbour selection may be even stronger than in our tests. This is
because, depending on the adopted neighbour-selection method, not only the av-
erage densities of the kicked gas particles will differ, but also the paths that these
particles will follow.

We emphasize that in the tests of Smith et al. (2018), it is the difference in
the kick directions that dominates the changes in galaxy properties due to the
injection scheme. In contrast, the effects of neighbour selection in our work are
dominated by the differences in the densities at which SN energy is deposited.
Because our SN feedback is thermal and stochastic, once a large amount of energy
has been injected into a given gas neighbour, it will exert an isotropic pressure
and the subsequent evolution of this energy will be governed by the hydro solver,
which holds regardless of the neighbour selection method used in the simulation.
We note also that for hydrodynamics schemes that do not smooth the gas density
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locally, changes in the method of neighbour selection may be more impactful
than found for the density-energy SPH used in this work.

Finally, all neighbour-selection methods from §3.2 can be applied not only to
subgrid models for SN type-II feedback but also to subgrid models for SN type-Ia
feedback; subgrid models for stellar early feedback including Hii regions, radi-
ation pressure and AGB winds; and subgrid models for active galactic nucleus
feedback from supermassive black holes.

3.6 Conclusions

Although the role of supernova feedback in simulations of galaxy formation has
been studied for many years, little attention has been given to the selection of the
gas elements into which the SN energy is injected. In this work, we compared
five methods of gas-element selection for SN feedback using isolated disc galaxy
simulations as well as cosmological simulations. We focused on investigating
the impact of the choice of the gas neighbours into which the SN energy is in-
jected and kept all other aspects of the feedback model constant. We considered
the (conventional) mass-weighted neighbour-selection method, a new isotropic

method, and approaches where the SN energy is injected either into the closest,
most dense, or least dense gas element. We kept the SN subgrid model itself
fixed and used the stochastic thermal prescription from DVS12, who originally
used mass weighting to select the gas particles to heat. Our main findings are as
follows:

• In the presence of density gradients, the mass-weighted neighbour-
selection algorithm used in DVS12 is biased towards heating gas at higher
densities, which is due to the mass-weighted nature of SPH solvers. This
bias is suppressed with our new algorithm, where the SN energy is dis-
tributed among gas elements as isotropically as the numerical resolution
allows (Fig. 3.8).

• Using isolated galaxy simulations, we showed that changes in the way that
gas neighbours are selected for SN feedback lead to significant variations in
the galaxy star formation rates (Fig. 3.3), stellar birth densities (Fig. 3.4),
and windmass loading factors (Fig. 3.6). These variations are mostly driven
by the efficiency of SN feedback: this depends on the densities at which the
gas is heated by SNe, which in turn is sensitive to the neighbour-selection
method (Fig. 3.5).

• The most (least) efficient SN feedback model is the one using the
min_density (max_density) algorithm, where SNe heat the least (most)
dense gas, which suffers the least (most) from radiative cooling losses. The
three main models – isotropic, min_distance, and mass-weighted – are all
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bracketed by these two extreme cases. Among the main models, mass-

weighted feedback is consistently less efficient than isotropic feedback,
while min_distance feedback is similarly efficient (e.g. Fig. 3.3, 3.6).

• The differences in the galaxy properties caused by the usage of different
neighbour-selection algorithms increase with increasing resolution. The
mass-weighted and isotropic models both show good convergence at our
fiducial resolution, with the isotropic method leading to a slightly better
convergence at late times (Fig. 3.9).

• The above results are not sensitive to whether or not a pressure floor is used
in the simulation. We confirmed that our results remain valid if we impose
an equation of state, Peos ∝ ρ4/3gas , normalized to temperature T = 8×103K at
density nH = 0.1cm−3 (Fig. 3.10).

• The results from the isolated galaxy simulations remain valid in cosmo-
logical simulations. In the cosmological simulations, the highest (lowest)
z = 0 galaxy stellar masses are reached with themax_density (min_density)
methods, while the stellar masses in the isotropic andmin_distancemodels
are very similar and are consistently lower than those inmass-weighted by
up to a factor of a few (Fig. 3.11).

• Our results are broadly in line with the findings of Hopkins et al. (2018a)
and Smith et al. (2018) for higher-resolution simulations.

We conclude that the effects of isotropy in the SN feedback (and the choice
of the element selection algorithm in general) are very important for simulations
of galaxy formation and should be given at least equal consideration as other
elements of the SN feedback model.

In closing, we note that if the locality of the SN feedback is important, the
min_distancemethod can be the preferred option, especially in light of its nearly
equally good isotropic character as the (explicitly) ‘isotropic’ method. However,
in the test cases presented here the number of neighbours that receive SN energy
is small. From additional experiments (not presented here) we found that, as
expected, the differences between isotropic and min_distance increase when the
number of energy-injection events per star particle per time-step increases, with
isotropic yielding more efficient feedback than min_distance. Finally, we do not
advocate using the min_density and max_density methods as these are extreme
choices without a good physical motivation.
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Appendix

3.A Degree of isotropy as a function of resolution

In Fig. 3.12 we show the average cosine of the azimuthal angle in SN feedback
defined in equation (3.11), plotted against the height above the disc at which SN
feedback events occur. The data is taken from the isolated galaxy simulations
at three different resolutions, mgas = 1.25× 104M⊙ (short-dashed), mgas = 105M⊙
(solid), andmgas = 8×105M⊙ (long-dashed) for two neighbour-selection methods,
isotropic (black) and mass-weighted (blue).

As expected, the isotropic model yields a more isotropic distribution than
the mass-weighted model, at all three resolutions. Moreover, the higher the
resolution, the closer the isotropic model is to the ideal isotropic distribution
⟨cosθ⟩(z) = 0. This trend is caused by the better sampling of the gas density field
with SPH particles when the resolution increases.

3.B Distribution of distances between stars and
their heated gas neighbours

In Fig. 3.13 we show the probability density distribution of the distances be-
tween stellar particles and the gas neighbours they heated in their last super-
nova event, in the isolated galaxy simulations with resolutionmgas = 105M⊙ with
isotropic (black), min_distance (orange) and mass-weighted (blue) neighbour-
selection methods. The distances are normalized by the stellar particles SPH
smoothing length at the moment of SN feedback. The SN events are selected
from the time interval 0.1 < t < 1.0 Gyr. For reference, we also show the proba-
bility density distribution of the form f (x) ∝ x2 (grey dashed).

We find that the probability density distributions for isotropic and mass-

weighted are both very close to the shape f (x) ∝ x2. This is expected because the
SPH kernel is of spherical shape so that the (average) number of gas neighbours
increases as r2 where r is the distance from the kernel’s centre. The difference
between mass-weighted and isotropic is only in how gas neighbours are selected
based on their spherical angular coordinates. In contrast (but also as expected),
themin_distancemodel heats gas particles at much smaller distances. The prob-
ability density distribution for min_distance peaks at the distance between stars
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Figure 3.12: As Fig. 3.8 but for the isolated galaxy simulations with the isotropic
(black) and mass-weighted (blue) neighbour selection at three different resolu-
tions: mgas = 1.25 × 104M⊙ (short-dashed), mgas = 105M⊙ (solid), and mgas =
8× 105M⊙ (long-dashed). The isotropic model approaches the ideal isotropic dis-
tribution ⟨cosθ⟩(z) = 0 with increasing resolution because of the better sampling
of the gas density field.

and gas equal to ≈ 25 per cent of the stars’ smoothing length, and goes to zero at
distances exceeding ≈ 70 per cent of the smoothing length.
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Figure 3.13: Probability density of the distances between stellar particles and
the gas neighbours they heated in their last SN event, in units of the stellar parti-
cles’ SPH smoothing length at the moment of the feedback, in the isolated galaxy
simulations with resolution mgas = 105M⊙ with isotropic (black), min_distance

(orange) and mass-weighted (blue) neighbour-selection methods. The SN events
are selected from the time interval 0.1 < t < 1.0 Gyr. The dashed grey curve gives
the probability density for f (x) ∝ x2, corresponding to a radially unbiased distri-
bution.
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