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1Introduction
How did the galaxies in our Universe form? How did they evolve with time? And
how did they acquire the properties that we can observe today? A proper attempt
to tackle these questions requires a gruelling effort. The physics of galaxy forma-
tion and evolution includes highly non-linear, stochastic processes that occur on
scales spanning billions of orders of magnitude – from the accretion of gas onto
supermassive black holes (SMBHs) on scales of less than 10−6 pc in the centres of
massive galaxies, to the sizes of the largest gravitationally bound objects in the
Universe, galaxy clusters, whose radii can extend to a few Mpc. Owing to the
sheer complexity of the physics of galaxies, numerical methods provide the most
accurate approach to testing the theory of galaxy formation and validating it by
comparing the predictions of the galaxy simulations to observational data.

Due to the rapid development of computational facilities in the last several
decades, numerical simulations of galaxy formation have been undergoing strik-
ing growth ever since the first simulations including gas hydrodynamics and
gravity were run (e.g. Katz, 1992). Although state-of-the-art numerical models
are able to match observations for a wide range of galaxy properties, the theory
is nowhere near complete. In particular, many uncertainties exist in modelling
astrophysical processes that cannot be resolved by direct simulation, even at the
highest resolution used by the most advanced simulations.

We will now review the main aspects of the theory of galaxy formation, start-
ing at scales where the Universe appears homogeneous and isotropic, and then
‘zooming in’ – step by step – towards scales as small as the sizes of SMBHs.

1.1 Cosmological background

The spatial distribution of ≳ 106 observed galaxies inferred from large, wide-
field galaxy surveys such as the Sloan Digital Sky Survey (SDSS; e.g. Alam et al.,
2015) indicates that our Universe is statistically homogeneous on scales greater
than 100 comoving Mpc. Observations of the cosmic microwave background ra-
diation (CMB; e.g. Planck Collaboration et al., 2020) – the electromagnetic radia-
tion produced when the Universe was young and hot – show that our Universe is
isotropic (i.e. it appears statistically the same in all angular directions from us).
These observational facts form the basis of the Cosmological Principle, which
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states that the properties of the Universe are indistinguishable for all possible
(comoving) observers when averaged over large enough scales. On scales greater
than 100 comoving Mpc, the Universe can therefore be mathematically described
as homogeneous and isotropic.

Another fundamental observational fact is that our Universe is not static. In
1929, Edwin Hubble measured the radial velocities of a sample of 24 galaxies
in the local Universe and found that the observed galaxies recede from our own
Galaxy with velocities proportional to their distance (Hubble, 1929). This was the
first concrete observational evidence that our Universe is expanding with time,
which we now know with great certainty. The expansion of a homogeneous and
isotropic universe is governed by Einstein’s field equations of General Relativity,
which are the foundation of the theoretical models that describe the dynamics of
our Universe.

It appears that only ≈ 15 per cent of the matter in the Universe is observ-
able, while the remaining ≈ 85 per cent neither emits nor absorbs light and for
this reason is known as dark matter (DM). The existence of this mysterious DM,
which is thought to interact with ordinary, baryonic matter exclusively via grav-
ity, was first hypothesized almost a century ago in the work of Zwicky (1933),
who analysed the motion of galaxies in the Coma cluster. By using the virial the-
orem, Zwicky (1933) concluded that the amount of visible matter in the galaxy
cluster was insufficient to explain the observed motion of the galaxies; and to
be consistent with the observed velocity dispersion, it would require another,
invisible-to-light kind of matter to be present within the cluster. Nowadays, ev-
idence supporting the existence of DM comes from a wide spectrum of different
observational probes: from the present-day rotation curve of our own Galaxy
measured through the 21-cm line of the Hi gas (e.g. Gunn et al., 1979) to the
abundance of galaxy clusters detected in X-rays (e.g. Vikhlinin et al., 2009), and
to the spectrum of temperature anisotropies of the CMB (e.g. Planck Collabora-
tion et al., 2020), which traces the state of the Universe more than 13 Gyr ago (see
e.g. Hu & Dodelson, 2002, for more details on the CMB). Moreover, we know that
(most of) the DM needs to be cold. Here ‘cold’ means that regardless of which
fundamental particles or elements constitute DM, DM has to move with veloci-
ties low enough compared to the speed of light so that already at early times in
the Universe, DM could cluster and form gravitationally bound structures, which
would later become sites for the formation of galaxies.

An even greater puzzle is the existence of dark energy, which is an unknown
form of energy that manifests itself only on very large, intergalactic scales and
makes our Universe expand with acceleration. The fact that the expansion of the
Universe is accelerating was unknown for a long time, until Riess et al. (1998)
and Perlmutter et al. (1999) measured distances to type-Ia supernovae in distant
galaxies and showed that only the theoretical models including an accelerated
cosmic expansion could explain the observed fluxes from those objects. The most
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widely used and accepted model of dark energy is the cosmological constant Λ,
which in Einstein’s field equations is described by a constant term (multiplied by
the space-time metric tensor), physically corresponding to a space filled with a
constant-density field.

Remarkably, the theoretical model of the Universe that includes both the cos-
mological constant Λ and cold dark matter (CDM) and depends on only 6 free
parameters, has been shown to consistently reproduce an ever-growing amount
of diverse observational data (e.g. Planck Collaboration et al., 2020; Abbott et al.,
2022), coming from both the local Universe and from the early Universe. In this
model, which is known as the ΛCDMmodel, our Universe started out with a hot
big bang and has been expanding ever since, with the current age of our Universe
being ≈ 13.8 Gyr.

1.1.1 The ΛCDMmodel

The ΛCDMmodel is made up of four energy components: the cosmological con-
stant Λ; cold dark matter; ordinary matter, which is also referred to as ‘baryons’;
and radiation, comprising all relativistic forms of energy. Mathematically, the
universe in the ΛCDM model is described by the Friedmann-Robertson-Walker
(FRW) metric,

ds2 = c2dt2 − a(t)2
[
dξ2 + SK (ξ)

2dΩ2
]
, (1.1)

which assumes that the space is both homogeneous and isotropic. In the equation
above, t is the cosmic time, ξ denotes the comoving radial coordinate, c is the
speed of light, a(t) is the cosmic scale factor, and dΩ2 = dθ2 + sin(θ)2dφ2 is a
solid-angle element. It is customary to normalize the scale factor such that the
universe today has a = 1. The function SK (ξ) depends on the spatial curvature,
K , of the four-dimensional space-time,

SK (ξ) =


K−1/2 sin(

√
Kξ), if K > 0

ξ, if K = 0

(−K)−1/2 sinh(
√
−Kξ), if K < 0

. (1.2)

All distances in Eq. (1.1) scale with the cosmic scale factor a, which is itself a
function of cosmic time, meaning that a universe described by this metric is, in
general, not stationary. In the framework defined by the FRW metric, an ex-
panding universe has the time derivative ȧ > 0. If the universe has always been
expanding, which we believe is the case for our Universe, then there is a one-to-
one relation between the scale factor a and cosmic time t. This implies that one
can describe any moment in time using either a or t. Another common way to
parametrize the time evolution is through the use of (cosmological) redshift,

z =
1
a
− 1 . (1.3)
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The redshift has an advantage over a and t in that it can be directly measured
(e.g. from emission lines in galaxy spectra). The moment of today is given by
z = 0 corresponding to a = 1, while galaxies in the past had z > 0 or, equivalently,
a < 1.

By solving the equations of General Relativity for the FRW metric, one can
derive the two Friedmann equations,

( ȧ
a

)2
=
8πG
3

ρ − K c2

a2
, (1.4)

ä
a
= −4πG

3

(
ρ+

3P
c2

)
, (1.5)

where ρ is the mass density of the universe, P is the pressure, G is the gravi-
tational constant, and each dot above a represents a derivative with respect to
cosmic time t. The quantity

H ≡ ȧ
a
, (1.6)

is termed the Hubble parameter, and its value today,

H |a=1 ≡H0 ≡ h100km s−1 Mpc−1 , (1.7)

is known as the Hubble constant1, named after Edwin Hubble who first measured
it in 1929 (Hubble, 1929). Specifically, Hubble (1929) found a linear relationship
between the radial velocity of observed galaxies v (relative to our Galaxy) and the
distance to the observed galaxies d (also relative to our Galaxy), which contains
H0 as the constant of proportionality,

v =H0 d , (1.8)

and estimated H0 to be ∼ 500 km s−1 Mpc−1. The measurements of H0 from the
last decade converge to a lower value, ≈ 70 km s−1Mpc−1 (e.g. Alam et al., 2017;
Planck Collaboration et al., 2020; Khetan et al., 2021) with an average scatter
within ±4 km s−1Mpc−1 depending on the type of observational probe used to
obtain H0.

According to Eq. (1.4), in the absence of spatial curvature (K = 0), the density
of the (homogeneous) universe can be computed in a straightforward way if the
Hubble parameter is known,

ρcrit =
3H2

8πG
, (1.9)

which for the present-day Universe gives ρcrit,0 ≡ ρcrit(a = 1) ≈ 1.88 × 10−29 h2
gcm−3. We call it the critical density, ρcrit, as opposed to the density ρ that enters

1The dimensionless parameter h was originally introduced to ‘factor out’ the uncertainty on the
value of H0.
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Eqs. (1.4) and (1.5); ‘critical’ in the sense that ρcrit is the density for which the
universe is exactly flat (K = 0). Remarkably, the measurements of the CMB (e.g.
Planck Collaboration et al., 2020) together with the measurements of the baryon
acoustic oscillations (e.g. Alam et al., 2017) indicate with high certainty that our
Universe is consistent with the spatially flat FRW metric.

By writing ρ = Σiρi , we can decompose the total mass density ρ entering Eqs.
(1.4) and (1.5) into contributions from individual energy components2 that per-
meate our Universe. These are the cosmological constant Λ, CDM, baryons, and
radiation. Moreover, because the relationships between pressure P and density
ρ for non-relativistic matter (CDM and baryons), radiation, and the cosmologi-
cal constant, are, respectively, P (ρ) = 0, P (ρ) = ρc2/3, and P (ρ) = −ρc2, one can
solve the Friedmann equations for each component separately and write down
the component’s density as a function a. By introducing the dimensionless den-
sity of each energy component i, Ωi(a) = ρi(a)/ρcrit,0, we can then write,

Ωb(a) =Ωb,0 a
−3 , (1.10)

Ωcdm(a) =Ωcdm,0 a
−3 , (1.11)

Ωr(a) =Ωr,0 a
−4 , (1.12)

ΩΛ(a) =ΩΛ,0 , (1.13)

where we defined Ωi,0 ≡ ρi(a = 1)/ρcrit,0, which is the present-day mass density
of energy component i expressed in units of the critical density, and the sub-
scripts b, cdm, r, and Λ stand for, respectively, baryons, CDM, radiation, and
the cosmological constant. The combined density of baryons and CDM is com-
monly expressed as the total matter density, Ωm ≡ Ωb +Ωcdm. Nowadays, the
values ofΩi,0 are known with only a few per cent uncertainties. These values are
Ωb,0 ≈ 0.05, Ωcdm,0 ≈ 0.27, Ωr,0 ≈ 5.5 × 10−5 and ΩΛ,0 ≈ 0.68, which have been
inferred from, among others, the CMB data acquired by the big space missions in
the past decades such as WMAP (Bennett et al., 2003) and Planck (Planck Col-
laboration et al., 2014, 2020). Although the present-day value ofΩr is very small
compared to the other energy components,Ωr increases fastest with decreasing a,
meaning that at very early times (a≪ 1), the expansion of the Universe was dom-
inated by radiation. The fact that the sum ΣiΩi,0 ≈ 1 indicates that our Universe
is spatially flat or is very close to it.

1.1.2 Density perturbations and their growth in time

Of course, today’s Universe around us is far from homogeneous, and the model
discussed above is an approximation whose validity is justified only on very large

2We use the words ‘mass’ and ‘energy’ interchangeably because the energy density ε and mass
density ρ are related as ε = ρc2, where c is the speed of light.
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scales, and exclusively in the statistical sense. The theory predicts, however, that
when the Universe was very young (z ≳ 1010), it was in fact very close to be-
ing homogeneous. No galaxies existed back then; instead, the space was filled
with small, ‘primordial’ density fluctuations (δρ/ρ≪ 1), whose origin is still de-
bated. The most widely accepted explanation is the theory of cosmic inflation,
which predicts that shortly after the Big Bang, the Universe underwent a phase
of rapid, exponential expansion, which blew quantum fluctuations of space-time
to macroscopic scales. These primordial density fluctuations then became the
seeds for the structure formation that would take place in the Universe at later
times.

Mathematically, a density fluctuation can be described using the density con-
trast δ defined relative to the mean, background density of the Universe ⟨ρ⟩,
δ ≡ ρ/⟨ρ⟩ − 1. The fact that a density fluctuation is small therefore means |δ| ≪ 1.
As long as |δ| ≪ 1, one can use the linear approximation of the Euler and Pois-
son equations to describe the evolution of δ. It is easy to demonstrate that in an
expanding, matter-dominated universe a positive density fluctuation (δ > 0) will
grow in proportion to the cosmic scale factor

δ(a) ∝ a . (1.14)

If the density contrast becomes comparable to unity, linear theory is no longer ap-
plicable. Fortunately, in this regime, the equations of hydrodynamics and gravity
permit one exact analytical solution that describes the evolution of a spherically
symmetric perturbation, which is known as the spherical collapse model. In the
spherical collapse model, a spherically-symmetric, positive density fluctuation (a
sphere with a uniform density that is higher than the density of the background)
evolves in an otherwise homogeneous background. Initially, the spherical over-
density expands along with the homogeneous background but later the expan-
sion of the perturbation begins to decelerate with respect to that of the back-
ground, which is due to the force of gravity pulling the perturbation inwards.
Eventually, the expansion of the spherical overdensity halts, turns over, and the
overdensity begins to collapse onto itself. The spherically-symmetric solution
predicts that the perturbation will have collapsed into a singularity with infinite
density. In reality, however, such a scenario is not possible because density per-
turbations are neither spherical nor homogeneous. What happens instead is that
the perturbation will keep collapsing until it has reached virial equilibrium (i.e.
the kinetic energy of the perturbation becomes equal tominus half of its potential
energy). After virial equilibrium has been established, the perturbation will form
a gravitationally bound structure, whose geometry in the first approximation can
be described as spherical. We call such virialised density structures dark-matter
haloes. Using the spherical collapsemodel and virial theorem, and assuming a flat
(K = 0), matter-only universe, one can show that the mean density of a virialised,
gravitationally-bound structure is ∆ = 18π2 ≈ 178 times greater than the density
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of the homogeneous background. The (virial) mass of a spherically-symmetric
halo is then

M∆ =
∫ r∆

0
dr 4πr2ρ(r) =

4π
3
r3∆ρcrit∆ , (1.15)

where r∆ is the radius of the sphere within which the density is ∆ times greater
than the critical density of the universe. Because 18π2 is close to the round
number of 200, it became commonplace in cosmology to define the virial radius
and virial mass of haloes using ∆ = 200. In the following text, any reference to
halo mass or virial mass should be understood in the context of Eq. (1.15) with
∆ = 200, unless explicitly stated otherwise.

1.2 Baryons and galaxies

Measurements of element abundances in the early Universe, as well as the con-
straints inferred from the CMB temperature anisotropies, indicate that the energy
density of our Universe consists of approximately 4 to 5 per cent of baryons. Al-
though constituting a small fraction of the total energy density in the Universe,
baryons are an essential building block of stars and galaxies. Unlike DM, baryons
are collisional: they interact electromagnetically, experience pressure forces, and
can dissipate energy. As we will discuss later, energy dissipation is a crucial step
in creating conditions appropriate for star formation.

At very early times, the Universe was very hot, opaque, and ionized, and the
baryons were strongly coupled to the photons. However, as the Universe ex-
panded, it gradually became more dilute and its temperature decreased. At the
times when the energy density of the Universe was dominated by radiation (red-
shifts z ≳ 3000), the age of the Universe and its temperature were related as

t ≈ 1s
( T
1MeV

)−2
. (1.16)

More precisely, the temperature T in the above equation is the temperature of
the blackbody spectrum of the photons that permeated the Universe at time t.
Having energies as high as ∼ MeV when the Universe was only ∼ 1 s old, those
photons kept the Universe ionized. However, by the time the age of the Uni-
verse reached ≈ 380 kyr, corresponding to redshift z ≈ 1100, the temperature of
the photons had dropped so much that they could no longer stop the protons
and electrons from recombining into neutral particles. By the end of the recom-
bination process, the Universe turned from nearly completely ionized to nearly
completely neutral. Furthermore, this transition, in which the fraction of free
electrons dropped enormously, allowed the photons to begin propagating almost
freely through space, without undergoing regular scatterings on free electrons, as
was the case before recombination. These free-streaming photons constitute the
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cosmic microwave background that we observe today at the blackbody tempera-
ture of TCMB(z = 0) = 2.73 K. The properties of the CMB reflect the properties of
the Universe at the time when the CMB photons were released (z ≈ 1100).

Following recombination the fraction of free electrons was very low but non-
zero (Xe ∼ 10−4) because not every electron was lucky enough to find a positively-
charged particle and recombine. Although small, the free electron fraction of
Xe ∼ 10−4 was sufficient to keep the temperature of the gas of baryons coupled
to the temperature of the photons, such that the gas temperature was evolving
as Tgas(z) = TCMB(z) = 2.73(1 + z) K. However, at redshifts lower than z ≈ 150,
the density of the baryons became so low that Compton scattering was no longer
efficient at maintaining the coupling between the baryons and photons through
the residual free-electron fraction. The baryonic gas started to cool adiabatically,
which proceeded at a rate significantly faster than before, with the gas temper-
ature evolving as Tgas(z) ∝ (1 + z)2. During that epoch, no galaxies existed yet,
but DM haloes that had already formed from the collapse of density fluctuations
were growing by accreting extra DM mass and assembling into more massive
haloes through hierarchical merging (e.g. Lacey & Cole, 1993).

1.2.1 First galaxies

The formation of the first galaxies begins with the infall of gas towards the cen-
tres of DM haloes with virial mass M200 ≳ 105 M⊙3, and subsequent (molecular)
cooling inside. When the gas enters the potential well of a DM halo, it can be
shock-heated to the virial temperature of the halo, which is a measure of the
depth of the halo’s gravitational potential. Alternatively, the gas can flow into
the halo along the cosmic web’s filaments attached to the halo, in which case the
change in the gas temperature due to the variations in the gravitational potential
is more modest. Since stars are expected to form in cold, dense gas, the abil-
ity of the infalling, shock-heated gas to cool is essential in that in the absence of
cooling, the initially hot gas would not be able to dissipate its energy, condense
to the centre of the halo, and reach the high densities that are required for star
formation.

Inside the halo, the cooling gas tends to settle into rotating, disc-like struc-
tures, which are a mere consequence of the fact that the inflowing gas has a
non-zero angular momentum due to tidal torques from the nearby large-scale
structures. Clouds of gas close to the centre of the halo eventually become suf-
ficiently dense and cold, leading to the collapse initiated by their own gravity.

3The gas entering DMhaloes with lowerM200 is unable to cool and form stars. Also note that after
the photons emitted by the first galaxies re-ionized the Universe and heated the gas to temperatures
> 104 K, the halo’s minimum mass for galaxy formation increased from ∼ 105 M⊙ to ∼ 108 M⊙ (e.g.
Wise, 2019).
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Mathematically, the mass of a spherically symmetric gas cloud that is expected
to undergo a gravitational collapse has to be greater than the Jeans mass

MJ =
[

10kBT
3(γ − 1)µmpG

]3/2 ( 3
4πρ

)1/2
, (1.17)

where kB is the Boltzmann constant, µ is the mean molecular weight, mp is the
proton mass, γ is the ratio of specific heats of the gas, and T and ρ are the gas
temperature and density, respectively. If the cooling time-scale tc is much shorter
than the free-fall time-scale,

tff =

√
3π

32Gρ
, (1.18)

the collapse of the cloud can be approximated as isothermal. Eq. (1.17) then
tells that as the density inside the cloud gets higher, its Jeans mass decreases.
The latter implies that if there are some density perturbations on smaller scales
within the collapsing cloud, their actual masses may eventually exceed their
Jeans masses. The perturbations will then become gravitationally unstable and
begin to collapse on their own. The process when a large collapsing gas cloud
gets disintegrated into smaller clouds is called fragmentation.

At some later point, the inner regions of the smallest collapsing clouds reach
such high densities that the photons released by the cooling gas become trapped
inside. If the central region of a cloud is optically thick, its energy is no longer
lost, and the cloud’s further collapse can be roughly approximated as adiabatic.
For an adiabatic collapse, both the temperature and the Jeans mass increase with
the density. The moment when the Jeans mass of the optically thick core of the
cloud exceeds the core’s gravitational mass, the collapse of the core halts, with
the core entering a hydrostatic equilibrium. From that moment on, such cores
are known as protostars. The collapse is not stopped completely, however. While
the density and temperature of the collapsing clouds increase towards the cen-
tre, their outskirts remain relatively cool and optically thin. As the surface of
the hotter core radiates energy and the core accretes more matter from the out-
skirts, the core’s (slow) contraction has to continue. The further contraction is
accompanied by a further temperature increase in the centre. When the central
temperature reaches a threshold of ≈ 107 K, hydrogen fusion begins, and the pro-
tostar becomes a zero-age main-sequence star. The stars that are born from the
fragmented gas that fell into the halo, together with all gas in between the stars,
can be loosely defined as a galaxy.

1.2.2 Basics of stellar nucleosynthesis

Stars support themselves against gravitational collapse through nuclear fusion.
The process of burning lighter elements into heavier ones releases energy, which
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provides the necessary pressure support against gravity. To ignite a nuclear re-
action, the stellar core has to reach a certain minimum temperature. Fusion of
heavier elements generally requires higher temperatures and proceeds on shorter
time-scales. When an element constituting the nuclear fuel is used up, gravity
starts to dominate, which forces the star to contract and heat up. The contraction
stops when the temperature of the core rises to a level that allows the burning of
the heavier element, which is the product of the previous reaction(s).

Through the process of nuclear fusion, hydrogen is burnt into helium, and,
subsequently, helium into carbon and oxygen. Because the maximum attainable
temperature in the stellar core increases with the initial mass of the star, the
cores of the stars that are less massive than ≈ 8M⊙ cannot satisfy the conditions
required for the burning of carbon and oxygen, making them the heaviest el-
ements produced in these stars. On the other hand, stars with initial masses4

greater than ≈ 8M⊙ – or, for short, massive stars – do undergo further fusion,
which includes the burning of carbon, oxygen, neon, silicon, as well as several
other heavy elements. Ultimately, after a chain of nuclear-burning cycles, an
iron core is formed, which is the end product of stellar nuclear fusion in massive
stars. The fusion cannot proceed beyond iron because elements of the iron group
have the highest binding energy per nucleon among all elements in the Universe,
which means that by burning iron the star will not be able to generate energy to
counteract gravity.

1.2.3 Stellar feedback and metal enrichment

Stars not only produce heavy elements in their interiors, but they also interact
with the gas that surrounds them by emitting radiation and ejecting energy, mo-
mentum, and mass. This stellar ‘feedback’ plays a vital role in galaxy evolution.
On small scales, stellar feedback can disperse the high-density gas within giant
molecular clouds (GMCs) where the stars have originally formed; while on large,
galactic scales, the cumulative effect of stellar feedback from an ensemble of stars
may result in pushing the gas out of the galaxy, providing amechanism to balance
the cosmological accretion of gas onto the galaxy. Crucially, the impact of stellar
feedback on both small and large scales allows galaxies to stabilize and modulate
the rate at which they form stars. Indeed, observations have consistently reported
that depletion times5 in GMCs are a factor of 10 − 100 greater than the clouds’
free-fall times (e.g. Evans et al., 2009), which hints that some form of stellar feed-
back is necessary to obtain such low efficiency of star formation. Furthermore,

4The initial stellar mass is the mass of the star at the moment when the star has entered the
zero-age main sequence.

5The depletion time of a (molecular) gas cloud is estimated by dividing the cloud’s mass by its star
formation rate. Physically, it gives the characteristic time-scale on which the cloud’s mass is expected
to be converted into stars.
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multiple simulations of galaxy formation in the past decades have shown that
without stellar feedback, simulated galaxies always form way too much stellar
mass compared to observations (e.g. Schaye et al., 2010). Finally, metals in the
circumgalactic medium (CGM) and intergalactic medium (IGM) such as carbon
and oxygen are detected in absorption (e.g. Ellison et al., 2000; Tumlinson et al.,
2011), indicating that the products of stellar nucleosynthesis had to find a way to
escape the galaxy’s interstellar medium (ISM) into the CGM and then IGM, and
having stellar feedback is essential to be able to match these observed data (e.g.
Oppenheimer & Davé, 2006; Muratov et al., 2017).

We will now discuss the three feedback processes that are important before
the final stages of stellar evolution, starting shortly after the moment when the
stars have reached the zero-age main sequence.

• When the radiation produced in the stellar interior is absorbed by metals in
the outer layers of stars, it exerts an outward acceleration onto the absorb-
ing gas, which – if strong enough – can cause the removal of stellar mass
from the outer layers, thus creating a stellar wind (e.g. Cassinelli, 1979). Be-
cause of the very steep dependence of stellar luminosity on stellar mass,
stellar winds are most important for the evolution of massive stars. De-
pending on the initial stellar mass, metallicity, and the evolutionary stage
of the star, the mass loss rate through the stellar wind can vary between vir-
tually zero and ∼ 10−3 M⊙ s−1, with post-main-sequence stars experiencing
the strongest outflows. The velocity of the wind can in certain cases reach
values as high as ∼ 3000 km s−1, but can also remain at ∼ 10 km s−1. Since
a stellar wind carries energy, mass, and momentum, it disperses and heats
the gas in the vicinity of the star. Additionally, because stellar winds can be
metal-rich, they affect the chemical composition of the gas local to the star.

• In addition to stellar winds, stars can inject momentum into the gas around
them by direct radiation pressure that is coming from the stellar photons
(e.g. Raskutti et al., 2017; Menon et al., 2023). This process is expected to
be mediated by dust grains, whose opacity is high enough for stellar radia-
tion to be frequently absorbed. The dust grains then transfer the absorbed
photons’ momentum to the nearby gas through collisions. Similar to stellar
winds, radiation pressure is more important for more massive stars.

• Finally, stars can affect the surrounding gas through photoionization and
photodissociation. This form of feedback is called Hii regions. Massive stars
generate a sizeable amount of photons with energies above 13.6 eV, which
are capable of ionizing neutral hydrogen. As a result, massive stars live
in bubbles of ionized gas, which are known as Strömgren spheres, whose
(sharp) boundary is defined by the balance between the rate of ionizing
photons produced by the massive star and the rate of recombination of pro-
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tons and electrons into neutral hydrogen. The gas within an Hii region has a
temperature of ∼ 104 K, corresponding to the sound speed of ∼ 10 km s−1.
The gas inside the ionized bubble is overpressured relative to the neutral
background, so the Hii region expands with time with a velocity compara-
ble to the sound speed.

An ample amount of energy, momentum, and mass (including metal mass),
is also released at the end of stellar evolution of massive stars, which is what we
will discuss next.

1.2.4 Core-collapse supernovae

The central density within iron cores, which develop inside massive stars by the
end of stellar nucleosynthesis, exceeds 109 g cm−3. At such high densities, a gas
of free electrons is degenerate. Thanks to the Pauli exclusion principle, these
free electrons produce (quantum) pressure support that stabilizes the iron core
against gravitational collapse even in the absence of nuclear fusion. However, a
system that is powered solely by degeneracy pressure cannot remain in equilib-
rium indefinitely. First, because the mass of the iron core is close to the Chan-
drasekhar mass6, MCh ≈ 1.4 M⊙, which means any extra layer of mass accreted
to the outer boundary of the iron core can potentially destabilize the core. And
second, because at densities≳ 109 g cm−3 the inverse β process becomes efficient,
through which free electrons are readily captured by iron nuclei. This leads to a
diminishing number of free electrons, which weakens the electron pressure and
further destabilizes the core. As a result of these two effects, the core begins to
contract, which is accompanied by an increase in the core’s temperature. When
the central temperature reaches 1010 K, photons become so energetic that they
start to disintegrate iron into helium nuclei. The process of disintegration con-
sumes energy, rather than releasing it, which expedites the contraction andmakes
the core even more unstable. Ultimately, the core collapses onto itself, with the
whole process taking less than a second to complete.

The core collapse triggers a massive explosion of the star, during which more
than 1053 erg of (gravitational binding) energy is released in different forms.
Around 99 per cent is liberated via neutrinos. About one per cent of energy is
released kinetically, and the remainder, a fraction of less than one per cent, goes
into radiation. The exploding star reaches a peak luminosity comparable to that
of a moderate-mass galaxy (L ∼ 109L⊙). This explosion is known as a core-collapse
supernova (CC SN).

A CC SN releases ∼ 10 M⊙ of mass back into the ISM in the form of a blast-
wave, and is expected to leave behind a remnant: a neutron star or a black hole

6The Chandrasekhar mass marks the maximummass of a self-gravitating object at zero tempera-
ture that can be supported by the degeneracy pressure of its electrons.



1

1.2. Baryons and galaxies 13

(BH). Due to the high kinetic energy, the blastwave made of CC SN ejecta initially
moves ballistically. The velocities that are developed during this stage reach 104

km s−1. Since the typical temperature in the ISM is 104 K corresponding to the
sound speed of ≈ 10 km s−1, the ejecta moving at 104 km s−1 generate a strong
shock. Geometrically, the SN ejecta resemble a bubble whose radius is given by
the front of the (forward) shock and whose centre coincides with the position of
the stellar remnant. This bubble expands with time, shocking, compressing, and
sweeping up the ISM gas in front of it. Eventually (∼ 1 kyr since the SN explosion;
the exact time depends on the ISM density and composition), the amount of the
ISM gas entrained within the blastwave becomes comparable to the initial mass
of the SN ejecta. This is the moment when the blastwave begins to slow down,
and its kinematic evolution needs to be described by the energy-conserving solu-
tion, as opposed to the ballistic solution. Taylor (1950) and Sedov (1959) showed
that during the energy-conserving phase, the evolution of the bubble – the bub-
ble’s radius R as a function of time since the SN explosion t – depends solely on
the explosion’s kinetic energy, ESN, and the density of the ISM, ρ,

r(t) = α0

(
ESNt

2

ρ

)1/5
= 8.45 pc

(
ESN

1051 erg

)1/5 ( ρ

0.1mp cm−3

)−1/5 (
t

1 kyr

)2/5
,

(1.19)
where the order-of-unity dimensionless constant α0 = 1.15167 for the specific-
heat ratio of γ = 5/37. Most of the ISM material that is swept up by the propagat-
ing shock is concentrated in a thin layer immediately behind the shock front. As
more and more material is being swept up, the gas behind the shock eventually
gets very dense leading to significant radiative cooling. In consequence, the SN
blastwave begins to lose its energy and move slower than predicted by Eq. (1.19).
The evolution of the SN bubble is then described by the (radial) momentum-
conserving solution, r(t) ∝ t1/4. Finally, the SN blastwave merges with the ISM
when its radial velocity becomes comparable to the sound speed in the ISM.

Similar to stellar winds and radiation pressure feedback, the energy and mo-
mentum injected into the ISM by (numerous) CC SNe provide a way to stabilize
the galaxy ISM and regulate star formation therein. However, the energies in-
volved in CC SNe are in general greater than in the feedback processes discussed
before, making CC SNe the dominant form of stellar feedback8. Indeed, theo-
retical models and numerical simulations have consistently shown that it is the
cumulative effect of CC SN feedback from massive stars that is responsible for
building up the hot phase of the ISM and generating highly mass-loaded galac-

7The Sedov-Taylor solution assumes that (i) the ISM is homogeneous, (ii) the gas in the ISM has
negligible pressure, and (iii) the SN bubble is spherically symmetric.

8The high efficiency of CC SN feedback can be partly attributed to stellar winds and radiation
pressure, which start dispersing high-density clumps within GMCs before the first CC SN goes off,
thereby mitigating radiative energy losses in subsequent SN explosions (e.g. Agertz et al., 2013).
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tic winds in relatively low- and moderate-mass galaxies (e.g. McKee & Ostriker,
1977; Scannapieco et al., 2008; Naab & Ostriker, 2017). Furthermore, because
prior to the explosion, the interior of massive stars contains numerous products
of nuclear fusion, ranging from He to Fe, feedback from CC SNe is important for
the chemical enrichment of the gas, both within the ISM and beyond (e.g. Nomoto
et al., 2006). Finally, SN remnants are major sources of cosmic rays, which can
provide additional pressure support and heating mechanism for the gas within
the galaxy, and may help drive galactic-scale winds (e.g. Pakmor et al., 2016).

1.2.5 Type-Ia supernovae

Stars with initial masses of less than ≈ 8M⊙ cannot ignite carbon because their
cores have insufficient mass to reach the required minimum temperature for car-
bon burning (T ≈ 5× 108 K). As a consequence, such stars do not evolve towards
SNe triggered by the collapse of the iron core9. Instead, they leave a compact
remnant behind without an explosion after they have exhausted their nuclear
reservoir and expelled their outer envelopes. These compact remnants are known
as white dwarfs. White dwarfs have masses of ∼ 1 M⊙ and – similar to iron cores
formed in massive stars – are supported against gravitational collapse by degen-
eracy pressure provided by free electrons. No white dwarf can exist with a mass
greater than the Chandrasekhar mass, MCh ≈ 1.4 M⊙.

Because a substantial fraction of stars are part of binary systems, white dwarfs
commonly accrete matter from their companion stars, provided the separation
between the companion stars and white dwarfs is small enough. If the accre-
tion onto the white dwarf is substantial, the extra weight of the accreted matter
exerted on the outer layers of the white dwarf will make it contract and heat
up, such that eventually the conditions in the white dwarf’s core may become
favourable for carbon burning. If the carbon is ignited, the energy liberated from
the carbon nuclear fusion will continue heating up the remnant. Yet, because the
pressure of a degenerate gas is independent of temperature, the white dwarf will
be unable to adapt to the released energy by expanding and cooling. It is impor-
tant that the mass of the white dwarf is close to the Chandrasekhar mass, so that
even at temperatures approaching 1010 K, the white dwarf remains degenerate.
As a result, the thermonuclear fusion of carbon will proceed in a runaway fash-
ion, ultimately leading to the explosion of the remnant10. Explosions of white

9More precisely, stars with initial masses in the transition mass range between massive and
intermediate-mass stars, ≈ 8 − 10 M⊙, might not form an iron core either. However, they can still
evolve toward an SN explosion by capturing free electrons onto their degenerate O+Ne+Mg cores.
SNe triggered by the electron-capture reactions are known as electron-capture SNe.

10An alternative scenario that may lead to a thermonuclear explosion of a white dwarf is the
merger of two white dwarfs that belong to the same binary system. The two white dwarfs should
gradually coalesce and merge because of the loss of their orbital energy through gravitational waves.
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dwarfs due to a thermonuclear runaway collapse are known as type-Ia supernovae
(type-Ia SNe).

Similar to CC SNe, the kinetic energy that is received by the gas surrounding
the exploded white dwarf is of the order of 1051 erg. However, different from
CC SNe, a type-Ia SN can detonate on time-scales from ∼ 102 Myr to up to many
Gyr since the progenitor star was born. In contrast, massive stars that result in
CC SNe explode on time-scales between ≈ 3 and 40 Myr since their birth, and for
this reason, are predominantly found in galaxies that are actively forming stars.
Besides energy feedback, type-Ia SNe also enrich gas with metals. In particular,
type-Ia SNe produce about 50 per cent of iron in the Universe (e.g. Maoz & Graur,
2017).

1.2.6 Black holes

It is now widely accepted that galaxies harbour SMBHs in their centres. One of
the strongest pieces of evidence in favour of their existence is the kinematics of
stars around galaxy centres (e.g. Kormendy &Ho, 2013). Measuring the velocities
of stars from their spectra in nearby, massive galaxies reveals that a gravitational
mass greater than ∼ 107 M⊙, which does not emit light, has to be concentrated
within ≲ 0.1 pc. No objects composed of ordinary matter, like gas or stars, are
currently known that can constitute such a highmass density. In contrast, SMBHs
– which are a solution of the equations of General Relativity, have sizes much
less than 0.1 pc, and can theoretically reach masses as high as 1010 M⊙ – are
perfect candidates to explain the high mass concentrations found in the centres
of massive galaxies.

With the advent of the Event Horizon Telescope and its first two images of two
SMBHs – first at the centre of the M87 galaxy in 2019 (Event Horizon Telescope
Collaboration et al., 2019), and then at the centre of our own Galaxy in 2022
(Event Horizon Telescope Collaboration et al., 2022) – the consensus that most
galaxies contain SMBHs has only solidified.

The formation of SMBHs is not yet well understood. Several theories exist
that can explain the origin of BHs with masses of ∼ 102 − 105 M⊙ (e.g. Madau &
Rees, 2001; Devecchi & Volonteri, 2009; Shang et al., 2010), which are usually re-
ferred to as ‘seeds for SMBHs’. These seeds are expected to then grow into more
massive BHs via merging with other BHs and/or by accreting surrounding gas.
One possible route for creating seeds for SMBHs is the end products of Popula-
tion III stars. Population III stars are the first stars that formed in the Universe.
Because no metal enrichment had taken place prior to their birth (apart from an
insignificant amount of metals produced during Big Bang Nucleosynthesis), the
composition of their parent gas clouds was extremely metal-poor, which made
the Population III stars more massive and more short-lived than typical massive
stars observed in the present-day Universe. As a result, Population III stars are
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expected to have left behind more massive BH remnants (MBH ∼ 102−103M⊙), as
opposed to theMBH ∼ 10M⊙ BHs expected frommassive stars born in the current
epoch. An alternative to this first scenario is a direct collapse scenario in which
a dense, metal-free gas cloud in the centre of a ≳ 108M⊙-mass halo undergoes a
direct collapse into a ∼ 104−105M⊙ BH. A third possibility for creating BH seeds
is stellar collisions in star clusters proceeding in a runaway fashion, helped by
the enhanced merging rates of BHs from individual stars in such dense environ-
ments. This scenario can explain the formation of ∼ 102 − 104 M⊙ BH seeds.

1.2.7 Active galactic nuclei

Compact (r ≲ 0.1 kpc) regions in the centres of Milky Way-mass and more mas-
sive galaxies may occasionally appear unusually bright in various spectral bands,
from radio to γ-ray energies. In the literature, centres of galaxies that appear
too luminous to be explained by the stellar population alone, have received the
name active galactic nuclei (AGN). The general consensus is that AGNs are caused
by enormous releases of gravitational energy when the gas is being accreted onto
SMBHs. It is also generally agreed that while stellar feedback regulates the evo-
lution of low- and intermediate-mass galaxies, the evolution of massive galaxies
is dominated by the energy feedback from AGN. In particular, AGN feedback
provides a way to keep massive galaxies quenched, which allows models to re-
produce the observed galaxy luminosity and mass functions (e.g. Bower et al.,
2006); and is a critical heating mechanism that offsets gas cooling in the cen-
tral regions of galaxy clusters, which is necessary to explain and reproduce the
clusters’ observed X-ray emission (e.g. Mittal et al., 2009).

The radiation emitted by AGNs is distinguished by (i) highly broad-band
spectrum, spanning many orders of magnitude in frequencies; (ii) extremely
broadened spectral lines, with line widths up to ∼ 104 km s−1 (e.g. Kollatschny
& Zetzl, 2013); and (iii) high bolometric luminosities, reaching values up to 1048

erg s−1 (e.g. Fiore et al., 2017). These and other features of AGN emission are
produced by a combination of various physical phenomena operating together:

• SMBHs are surrounded by rapidly orbiting gas clouds, which can move
with velocities as high as ∼ 104 km s−1. The Doppler effect applied to the
velocity dispersion from these individual clouds leads to the lines’ broad
spectral widths observed in AGN spectra.

• SMBHs are expected to launch two collimated, relativistic jets when they
accrete matter at a relatively low rate, with the jet efficiency increasing
with the SMBH spin (e.g. Tchekhovskoy et al., 2010). Although the jets
are created in the very compact region around the SMBH (whose size is
comparable to the SMBH’s gravitational radius, ≪ 1 pc), they may extend
out to distances as large as hundreds of kpc. Thanks to their prominent
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synchrotron emission in the radio band, the jets form one of the strongest
observational lines of evidence for AGN (e.g. Marshall et al., 2001).

• The AGN radiation at (ultra-)high frequencies is thought to be generated
via inverse Compton scattering, whereby the ambient photons near the
SMBH gain energy by interacting with relativistic jets of magnetized
plasma ejected from the SMBH (e.g. Blandford et al., 2019).

• SMBHs are encircled by gaseous accretion discs formed from the inflowing
gas that cannot easily lose its angular momentum. The inner edge of the
accretion disc is located very close to the SMBH (just a few times the BH’s
gravitational radius). The emission from the accretion disc spans the optical
and UV parts of AGN spectra. The properties and geometry of the accretion
disc change depending on the rate with which the gas is being accreted onto
the SMBH, which has consequences for the properties of AGN feedback. We
will discuss this in more detail in §1.4.8.

1.3 Numerical simulations of galaxy formation

In the previous section, we reviewed the essential processes involved in the
physics of galaxy formation and evolution. We will next discuss the motivation
behind running numerical simulations of galaxy formation (§1.3.1), as well
as touch upon the resolution and box size requirements for such simulations
(§1.3.2). We will then review the numerical methods that are commonly em-
ployed to run simulations of galaxy formation (§1.3.3 and §1.3.4). Finally, in
Section 1.4, we will describe the popular numerical algorithms for implementing
essential astrophysical processes in a simulation of galaxy formation.

1.3.1 Motivation

Numerical simulations of galaxy formation provide us with a unique ability to
test and improve our theoretical understanding of how galaxies form, interact,
and evolve. They are of paramount importance because they give us the most
accurate way of modelling non-linear galaxy evolution and the most reliable way
to compare theory to observations. Unlike empirical or semi-analytical models
of galaxy formation, which are also used to test galaxy formation physics (e.g.
Lacey et al., 2016; Behroozi et al., 2019), numerical simulations rely on a much
smaller number of (crude) approximations within the galaxy formation physics
and, for this reason, are able to trace the highly non-linear dynamics and inter-
actions of gas and stars in much more detail. The downside is, however, that
numerical simulations are very expensive to run, and it is far from obvious how
to tune the numerical model so that the simulated galaxies appear realistic and
have properties matching observational data.
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Numerical simulations can be exploited in various ways. If the simulation
adopting a certainmodel of galaxy formation is unable to reproduce fundamental
galaxy properties such as the galaxy stellar mass function and/or star formation
main sequence, then the model can be ruled out and the physics underlying the
model constrained. Conversely, for models that result in a realistic galaxy pop-
ulation, the simulated galaxies and their evolution can be thoroughly explored,
providing insights into the physics of galaxy formation that cannot be inferred
from observations or calculated analytically.

To give a few concrete examples: having a simulation with a series of outputs
at consecutive redshifts, one can accurately trace the simulated galaxies through-
out cosmic time to study the impact of galaxy-galaxy merges on the activity of
AGN feedback (e.g. McAlpine et al., 2020), investigate how the properties of
backsplash galaxies evolve during their passage through a galaxy cluster (e.g.
Borrow et al., 2023), or determine the right conditions for cosmic gas accretion
under which Milky Way-mass galaxies are likely to form stellar discs (e.g. Hafen
et al., 2022; Semenov et al., 2023). These three examples constitute only a tiny
fraction of the full list of applications of galaxy simulations. In principle, any
aspect of galaxy formation and evolution physics can be tested with the use of
numerical simulations.

Simulations of galaxy formation can constrain not only the galaxy formation
physics but also the underlying cosmological model, on which the galaxy simu-
lation is built. Specifically, if the simulated volume is sufficiently large, one can
study the X-ray emission of hot gas in galaxy clusters, the effects of baryonic feed-
back on the large-scale structure, galaxy clustering, cosmic shear, the Sunyaev-
Zel’dovich signal in the CMB maps, the equation of state of the dark energy (e.g.
assuming that dark energy is not simply described by the cosmological constant
Λ), alternative models of DM (e.g. assuming that DM particles can self-interact;
see e.g. Correa et al., 2022), and even theories of modified gravity (i.e. beyond
the theory of General Relativity; see e.g. Arnold et al., 2019).

Another notable application of numerical simulations is the development of a
better understanding of individual physical processes that are incorporated into
a galaxy formationmodel. This task can be accomplished by running two or more
numerical simulations for the same initial conditions but with different values of
some of the parameters of themodel. Any systematic differences in the properties
of the galaxy populations from the different simulations can then be attributed
to the difference in the model parameters. Variations in model parameters may
include (i) switching on and off AGN feedback, (ii) increasing or decreasing the
strength of CC SN feedback, (iii) changing the form of the initial stellar mass
function, or (iv) varying the seed mass of SMBHs (e.g. Schaye et al., 2010; Crain
et al., 2015; Kugel et al., 2023).
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1.3.2 Resolution and volume requirements

Ideally, in any simulation of galaxy formation, one would desire (i) to simulate
volumes that are large enough to be statistically representative and (ii) to reach
spatial resolutions high enough to resolve most of the baryonic processes that are
essential for galaxy formation physics.

• In order to be statistically representative, many applications of galaxy sim-
ulations require that the simulated volume covers at least ∼ 50 − 100 co-
moving Mpc per dimension11, which is of the order of the scale at which
the Universe starts to appear statistically homogeneous.

• For the resolution requirements, an example of a small-scale baryonic pro-
cess that is crucial for galaxy evolution is gas accretion onto an SMBH (see
§1.2.7). Given a non-rotating SMBH with a typical mass of M = 107 M⊙,
the inner edge of its accretion disc can be approximated by the radius of
the innermost stable circular orbit,

risco = 6
GM

c2
≈ 3× 10−6pc

(
M

107M⊙

)
, (1.20)

which, as can be seen, turns out to be more than 10 orders of magnitude smaller
than the scale above which the Universe starts to appear homogeneous.

Simulating a cosmological volume of (hundreds of cMpc)3 at sub-pc resolu-
tion is currently not feasible. First, running such a simulation on the largest
supercomputer to date would take years in the best-case scenario to reach the
redshifts of scientific interest. Second, the number of resolution elements would
be so large that the simulation would not fit in the supercomputer’s RAM.

At the present time, among the existing cosmological hydrodynamic simula-
tions that have statistically representative volumes (∼ 1003 cMpc3), have rela-
tively well-resolved galaxy internal structure, and were successfully run to red-
shift z = 0, the most numerically demanding ones are made up of [(1− 2)× 103]3
resolution elements for baryons and a similar number for DM (e.g. Dubois et al.,
2014; Schaye et al., 2015; Pillepich et al., 2018; Davé et al., 2019). These numbers
translate12 into a mass resolution of ∼ 106 − 107 M⊙ or, equivalently13, a spatial
resolution of ∼ 102 − 103 pc, which is clearly not sufficient to resolve individual
stars, let alone accretion discs around SMBHs.

11For example, one of such applications can be to build a representative sample of relatively mas-
sive (with z = 0 stellar mass of M∗ ≳ 1010.5M⊙) galaxies to investigate how the star formation rate in
these galaxies is tied to the AGN activity of their SMBHs.

12The (average) mass of resolution elements representing baryons is obtained by dividing the total
baryonic mass contained in the simulated volume (based on the value of Ωb) by the number of gas
resolution elements in the simulation.

13See §1.3.4 and equation (1.32) for howmass and spatial resolutions of Lagrangian hydrodynamic
schemes can be converted into one another.
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Figure 1.1: Distribution of dark matter in a simulation of galaxy formation at
redshift z = 0. The size of the volume is (100 cMpc)3. The colour shows the log
of the projected mass surface density of DM in a 10 cMpc-thick slab. Brighter
colours correspond to higher densities.

Fig. 1.1 illustrates the typical scales in a modern simulation of galaxy forma-
tion; the volume of the simulation is equal to (100 cMpc)3. Shown is the distri-
bution of DM at redshift z = 0, with the colour indicating the log of the projected
mass surface density of DM in a slab of 10-cMpc width. Brighter colours cor-
respond to higher surface densities of DM. DM haloes appear as the brightest,
yellow spots, moderately bright elongated structures correspond to cosmic fila-
ments, and the darkest regions indicate cosmic voids.

1.3.3 Simulating dark matter using gravity solvers

Because of the lack of high-performance computing machines ∼ 40 years ago, the
earliest simulations of galaxies did not model gas at all and only solved for the
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evolution of DM, which was represented by just ∼ 103 resolution elements (e.g.
White, 1976; Aarseth et al., 1979). Since DM is collisionless, evolving DMwithout
(explicitly) accounting for the baryons can tremendously simplify and expedite
the calculations, and this was the only feasible approach at that time. Because the
spatial distribution and dynamics of the large-scale structure are dictated largely
by DM, while the effects of baryons start to dominate only at sub-Mpc scales,
DM-only simulations have many important (cosmological) applications despite
lacking the baryonic component. Nowadays, DM-only simulations are still pop-
ular, but are run in much bigger volumes than ∼ 40 years ago (e.g. Springel et al.,
2005b; Angulo et al., 2012).

Evolution in time

The evolution of non-relativistic matter that is collisionless and interacts exclu-
sively via gravity is governed by the Poisson equation,

∇2φ = 4πGρ, (1.21)

which relates the gravitational potential of the matter φ to the density of the
matter ρ. The solution for a point mass m at some position in space r0 – with the
density field given by ρ(r) = mδ(|r − r0|) where δ(x) is the Dirac delta function –
is the well-known, Newtonian potential, φ(r) = −Gm/ |r − r0|. To solve an arbi-
trarily complex gravitational problem, it is thus possible to discretize the mass
density field into N ≫ 1 point-like particles of massesmi and write down the ap-
proximate solution to the Poisson equation as a superposition of the individual
particles’ potentials,

φ(r) =
N∑
i=1

φi(r) ≡
N∑
i=1

−Gmi

|r − ri |
. (1.22)

In order to advance a continuous distribution of collisionless matter, ρ(r), in time,
one, in general, has to solve the collisionless Boltzmann equation, which is never
an easy task. However, for the case ofN discrete particles representing the matter
field ρ(r), the particles’ velocities vi and positions ri can be updated in a more
straightforward way, 

dvi
dt

= −
N∑
j,i

∇iφj (ri) ,

dri
dt

= vi .

(1.23)

Note that by discretizing the original, continuous density field into N particles,
we implicitly adopted the Lagrangian approach to solving the equations of mo-
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tion. Indeed, Eqs. (1.23) are the Euler-Lagrange equations for the Lagrangian

L(r,v) = 1
2

N∑
i=1

miv
2
i −

∑
1≤i<j≤N

miφj (ri) . (1.24)

There are different ways to time-discretize and time-integrate Eqs. (1.23). The
most common ones are the second-order leapfrog integrator and higher-order
Hermite integrators (for more details, see e.g. Dehnen & Read, 2011). Crucially,
integrating these equations numerically introduces a finite time-step ∆t, which
characterizes the time resolution of the simulation. On the other hand, the (av-
erage) mass of the particles, by which the continuous density field is sampled,
characterizes the mass resolution of the simulation (and, indirectly, the simula-
tion’s adaptive spatial resolution).

Solving Eqs. (1.23) numerically will inevitably lead to the 1/ |ri − rj |2 diver-
gence when the distance between two interacting particles, |ri − rj |, becomes very
small. To prevent this numerical divergence, a gravitational softening parameter
εsoft is added to the gravitational potential sourced by all particles in the system:
the exact potential of some particle i, φi , is replaced with its softened version,

φi,soft(r) =
−Gmi

(|r − ri |2 + ε2soft)
1/2

. (1.25)

When |r−ri | ≫ εsoft, φi,soft(r) asymptotes to the Newtonian, unsoftened potential,
while at |r − ri | ≪ εsoft, φi,soft(r) converges to a finite value given by −Gmi /εsoft.

Another problem with the above algorithm is that solving Eqs. (1.23) requires
O(N2) evaluations of the potential (there are N particles in the system and the
potential is evaluated N − 1 times for each particle), which might become a bot-
tleneck if the number of particles N is very large. For this reason, to solve the
Poisson equation, modern simulations of galaxy formation employ a more effi-
cient Fast Multipole Method (FMM) (Greengard & Rokhlin, 1987), in which the
number of evaluations of the potential is reduced from O(N2) to O(N ) (for more
details, see e.g. Schaller et al., 2023).

Boundary conditions

Cosmological simulations of galaxy formation (both DM-only simulations and
ones including baryons) are run with periodic boundary conditions. The effects
of periodicity are captured when solving the Poisson equation, which is com-
monly done by splitting the gravitational potential into two components: one
for the short-range forces and the other for the long-range ones. The short-range
component can be solved using the FMM method as explained above, while the
long-range one, which captures the periodic effects, is solved using the Fourier
transform. More specifically: (i) the N particles are first projected onto a peri-
odic grid in real space; (ii) the Fast Fourier Transform (FFT) algorithm is used
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to construct the density field in Fourier space; (iii) the Poisson equation for long-
range forces is then solved in Fourier space, where it has a simple, algebraic form;
(iv) finally, an inverse FFT is used to transform the solution of the Poisson equa-
tion from Fourier space back to the real space. The FFT algorithm automatically
accounts for periodic effects.

Initial conditions

Initial conditions for modern cosmological simulations are generated at high red-
shift (z ∼ 100) using a high-order Lagrangian perturbation theory (e.g. Hahn
et al., 2021), which is more accurate than the linear Zel’dovich (1970) approxima-
tion. At z≫ 10, perturbation theory provides a very accurate solution for the evo-
lution of density perturbations because the density contrast remains small (see
§1.1.2). Inflation models predict that the post-inflation matter density field can
be described by a Gaussian field with high accuracy, or in other words, the prop-
erties of the matter density field can be completely characterized by the field’s
power spectrum in Fourier space, P (|k|), where k is the wave vector. Perturbation
theory is used to advance the matter density field to the initial redshift of the sim-
ulation. Individual particles are created at this redshift and positioned within the
simulation domain such that the power spectrum of the discrete matter field they
represent is equal to that predicted by perturbation theory14. Perturbation the-
ory is also used to assign peculiar velocities to the created particles. After the
simulation has started, the positions and velocities of the particles are continu-
ously updated in time by solving Eqs. (1.23) for a long series of time-steps, until
the simulation has reached the desired redshift. Modern simulations of galaxy
formation require millions of time-steps to reach z = 0.

1.3.4 Simulating baryons using smoothed particle hydrodynamics

Simulating galaxy formation necessitates simulating baryons. Because baryons
are collisional, to model the evolution of baryons it is necessary to solve the equa-
tions of hydrodynamics alongside the Poisson equation.

The equations of hydrodynamics are the Euler equations for the evolution of
the density ρ, velocity v, and internal energy u of an ideal gas,

14We note that discreetness errors in the power spectrum can be suppressed by perturbing particle
masses rather than particle positions, to match P (|k|) predicted by perturbation theory (e.g. Hahn
et al., 2021).
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Dρ

Dt
= −ρ (∇ · v)

Dv
Dt

= −∇P
ρ

Du
Dt

= −P
ρ
(∇ · v) ,

(1.26)

where D/Dt = ∂/∂t + (v · ∇) is the Lagrangian derivative, and P is the gas pres-
sure. To simplify this review, in the system of equations above, we neglected the
gravity- and viscosity-related terms as well as the terms with the radiative cool-
ing and heating rates, all of which are important for astrophysical gases and thus
need to be accounted for in numerical simulations that evolve baryons. Without
these extra terms, the entropy of the system does not change, and the internal
energy u and pressure P are related as

P = Aργ = (γ − 1)ρu, (1.27)

where A is the adiabatic constant and γ is the adiabatic index.

One of the popular numerical methods to solve the equations of hydrody-
namics is smoothed particle hydrodynamics15 (SPH; for reviews, see e.g. Monaghan,
2005; Springel, 2010a). Similar to gravity solvers, the astrophysical gas is mod-
elled as a collection of discrete particles. These gas particles represent fluid el-
ements of constant mass16 and move along with the fluid, making SPH a La-
grangian method. However, unlike gravity solvers, hydrodynamics requires con-
tinuity in order to estimate the density, velocity and pressure gradients that enter
the hydrodynamic equations. The SPH methods handle this by introducing the
kernel function W (r,h), which allows ‘interpolating’ any field stored in SPH par-
ticles to any point in space. The kernel function W needs to be normalized to
unity, be spherically symmetric, and monotonically decrease with increasing dis-
tance from its centre. The simplest example of a kernel function is a Gaussian:
W (|r|,h) = 1/(

√
πh)3 exp(−|r|2/h2). The parameter h defines the characteristic size

of the kernel and is called the smoothing length.
By applying an SPH kernel to a discrete set of particles, it becomes straight-

forward to compute the density at any location in the simulation r, which is done
as follows,

15Although in this thesis we exclusively use SPH, we note that there are good alternatives to SPH
such as meshless solvers (e.g. Hopkins, 2015) and moving-mesh solvers (e.g. Springel, 2010b). In the
case of mesh codes, the gas is discretized into cells, as opposed to particles used in SPH.

16The mass of individual fluid elements is constant in time only in the absence of astrophysical
processes that redistribute the mass in the simulation between gas, stars and/or BHs, such as stellar
chemical enrichment and gas accretion onto SMBHs.
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ρ(r) =
N∑
i=1

miW (|r − ri |,h) , (1.28)

where the sum is computed over the SPH particles representing the gas, which
have positions ri and masses mi . Although correct, summing over all particles
in the simulation in Eq. (1.28) would be numerically inefficient when N is very
large. The solution is to choose an SPH kernel function W (|r|,h) that has finite
support (i.e. W (|r|,h) becomes zero for sufficiently large but finite |r|). Numerical
simulations of galaxy formation usually adopt such SPH parameters that each
gas particle ‘sees’ on average the ∼ 50 gas particles that are closest to it17.

Interpolation of any quantity A other than density (e.g. gas pressure or veloc-
ity) can be constructed with the help of the density field,

A(r) =
∑
i

Ai
mi

ρi
W (|r − ri |,h) , (1.29)

where we dropped the summation limits and introduced the short-hand notation
ρi = ρ(ri) and Ai = A(ri). Using the interpolated versions of the gas density, ve-
locity, and pressure, one can show that in SPH, the system of equations (1.26)
acquires the form 

Dρi
Dt

=
∑
j

mj (vi − vj ) · ∇iW (|ri − rj |,h)

Dvi
Dt

= −
∑
j

mj

 Piρ2i +
Pj

ρ2j

 ∇iW (|ri − rj |,h)

Dui
Dt

=
Pi
ρ2i

∑
j

mj (vi − vj ) · ∇iW (|ri − rj |,h) ,

(1.30)

which, despite discretization, exactly conserves mass, momentum, and energy.
The conservation properties hold thanks to the Lagrangian nature of SPH, and
are one of the attractive features of the method.

The above SPH equations are written for the case of constant entropy, whereas
in reality entropy may increase – e.g. within shocks produced by SN explosions.
In other words, Eqs. (1.30) are unable to capture the effects of shocks, which are
of high importance in astrophysics. To circumvent this problem, an artificial vis-
cosity term is added to the SPH equations for momentum and energy (Monaghan
& Gingold, 1983; Monaghan, 1992, 1997), by means of which kinetic energy can
be converted into heat, thus increasing the entropy. However, the added artificial
viscosity has to vanish outside shocks or any other natural dissipative processes,

17The gas particles that are within an SPH kernel of some other particle i, are often referred to as
‘(SPH) neighbours of particle i’.
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so that the entropy does not rise where there is no need for it. In SPH, this is
realized by a switch function that makes use of the gas velocity divergence and
curl to control the value of the artificial viscosity (for more details, see e.g. Cullen
& Dehnen, 2010).

Eqs. (1.30) assume that the smoothing length h is the same for all particles
in the system. This is a very restrictive requirement and numerical simulations
abandoned it a long time ago. Instead, they require that each SPH particle’s ker-
nel contains the same mass. If the desired mass to be inside the kernel is ⟨Mngb⟩
– where the subscript ‘ngb’ stands for the ‘neighbouring gas particles’ that con-
stitute this mass – then the smoothing length of some particle i, hi , is related to
⟨Mngb⟩ as

4πρih
3
i

3
= ⟨Mngb⟩ , (1.31)

where ρi is the density estimated within the particle’s kernel. This constraint
yields naturally adaptive spatial resolution in SPH, which increases (decreases)
in regions of higher (lower) density. The smoothing length becomes a function
of density and can vary from particle to particle, which introduces extra terms to
Eqs. (1.30) that depend on the smoothing length and density (e.g. Price, 2012).

One can employ equation (1.31) to relate the (fixed) mass resolution and
(adaptive) spatial resolution of an SPH scheme. The mass resolution is given
by the average particle mass in the simulation, ⟨m⟩, while the spatial resolu-
tion can be approximated by the size of the smoothing length h. If gas particles
have on average ⟨Nngb⟩ gas neighbours inside their kernels, then the desired mass
within the kernel, ⟨Mngb⟩, and the average gas particle mass, ⟨m⟩, are related as
⟨m⟩ = ⟨Mngb⟩/⟨Nngb⟩. Then, at a given density ρ, the spatial resolution h can be
calculated from the mass resolution ⟨m⟩ as,

h =
(
3
4π

⟨Nngb⟩⟨m⟩
ρ

) 1
3

= 0.36kpc
(
⟨m⟩

106M⊙

) 1
3
( ⟨Nngb⟩

48

) 1
3
(

ρ

10mpcm−3

)− 1
3

. (1.32)

When integrating the system of equations (1.30) forward in time, it is essential
to choose an appropriate size of the time-step ∆t. The choice is made based on
the Courant-Friedrichs-Lewy (CFL) condition, which limits the time-step ∆t to
be no greater than

∆tCFL = CCFL
h

csound
, (1.33)

where csound is the speed of sound18 and CCFL is a dimensionless parameter,
which in most applications of SPH is of the order of 0.1. Physically, limiting

18In practice, in SPH schemes, csound is replaced with the signal velocity, which is a linear com-
bination of csound and the relative (bulk) velocity between the particle to which the CFL criterion is
applied and its SPH neighbours.
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the time-step ∆t by ∆tCFL means that a sound wave takes 1/CCFL ∼ 10 time-steps
to travel across the particle kernel. This ensures that the hydrodynamical reac-
tion of the gas to any external or internal disturbance is always well-resolved in
time, which is crucial for the numerical stability and accuracy of the simulation.

1.4 Subgrid physics in simulations of galaxy for-
mation

Modelling galaxy formation requires the implementation of a list of essential as-
trophysical processes on top of the hydrodynamics and gravity in the cosmolog-
ical framework. Given the typical spatial resolution of state-of-the-art galaxy
simulations (∼ 0.5 kpc), many of these processes will be unresolved. Unresolved
processes are implemented using so-called subgrid models. The goal of a sub-
grid model applied to a certain astrophysical process is to reproduce its effects
on larger, resolved scales, even though the process itself may not be (adequately)
resolved in the simulation. An example of a process modelled in the subgrid way
is star formation, which occurs on unresolved, sub-pc scales but results in the
distribution of stellar mass in massive haloes that may extend over tens of kpc.
Subgrid models can be constructed either empirically or from first principles,
and often depend on a number of free parameters that account for the numeri-
cal effects and need to be calibrated to produce a realistic galaxy population (e.g.
Kugel et al., 2023).

An example of a galaxy produced by a simulation with a calibrated subgrid
model is given in Fig. 1.2. The figure shows a simulated Milky Way-mass galaxy
at z = 0, which is taken from the high-resolution simulation with the colibre

galaxy formation model. The mass resolution for gas is mgas = 2.3× 105 M⊙. The
galaxy resides in aM200 = 1.4×1012-M⊙ halo and its stellar mass and stellar half-
mass radius are equal to, respectively,Mstar = 2.9×1010 M⊙ and 6 kpc. The figure
displays the mass-weighted gas temperature (left column), gas mass surface den-
sity (middle column), and stellar mass surface density (right column). The top
row shows the distributions of the three fields around and within the galactic
halo, whose virial radius is indicated by the white dashed circle, while the bot-
tom row shows a zoom-in onto the galaxy, which is located in the centre of the
top panels. All fields are calculated in a slab with a width of 2 Mpc (top row) and
60 kpc (bottom row). The galaxy exhibits a prominent gaseous disc with spiral
arms. The distribution of the stellar mass appears round and smooth because it
is based on stellar particles of all ages, both young and old.

The implementation of the physical processes that are essential for simulating
galaxies is described next.
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Figure 1.2: A Milky Way-mass galaxy at redshift z = 0 in a simulation of galaxy
formation with a mass resolution of 2.3× 105 M⊙. Shown are the mass-weighted
gas temperature (left column), gas mass surface density (middle column), and stel-
lar mass surface density (right column). All fields are computed in a slab with
a width of 2 Mpc (top row) and 60 kpc (bottom row). The bottom row shows a
zoom-in region from the central part of the image in the top row, as illustrated by
the pink circle and dashed lines. The white dashed circle in the top row indicates
the virial radius of the halo. See text for details.

1.4.1 Simulating radiative cooling and heating processes

The prescription for radiative cooling and heating incorporates fundamental
atomic and molecular processes. These do not depend on the numerical
resolution and are implemented exactly as predicted by the theory. Specifically,

• The primary cooling channels that are followed in modern numerical sim-
ulations include (i) thermal bremsstrahlung, which has the dominant con-
tribution to the cooling rates at temperatures T ≳ 107 K; (ii) collisional
ionization (followed by radiative recombination) and excitation of both pri-
mordial elements and metals, which are important at intermediate temper-
atures, 104 ≲ T ≲ 107 K; (iii) inverse Compton cooling off the CMB photons,
which becomes relevant in gases that are ionized; and – if the simulation
includes the gas in the cold phase – collisionally excited rotational and vi-
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brational levels of molecules, such as H2O and CO, which start to dominate
at temperatures below ∼ 103 K.

• The total heating rate includes contributions from processes such as (i) pho-
toionization heating from the cosmic UV and X-ray background, (ii) pho-
toelectric heating on dust grains, (iii) heating due to photodissociation of
molecules, and (iv) heating by cosmic rays.

The total cooling and heating rates due to these processes are added to the right-
hand side of the energy and momentum equations (1.30); the cooling (heating) as
a consequence of adiabatic expansion (contraction) of gas is already incorporated
into these hydrodynamic equations; and the heating due to hydrodynamic shocks
is captured via the extra terms that depend on the artificial viscosity, which also
need to be added to Eqs. (1.30). The gas is normally assumed to be in ioniza-
tion equilibrium in the presence of a redshift-dependent, spatially uniform X-
ray and UV cosmic background that is expected from active galactic nuclei and
star-forming galaxies (e.g. Faucher-Giguère, 2020). Under the assumption of ion-
ization equilibrium, the ionization degrees of individual elements are computed
using algebraic equations, as opposed to solving the taxing system of partial dif-
ferential equations.

In modern galaxy simulations, it is becoming customary to compute the cool-
ing and heating rates based on individual elements’ abundances. This approach
is, unsurprisingly, more accurate than scaling the rates with only the mass frac-
tions of hydrogen, helium, and the total metallicity of the gas. Modern simula-
tions trace 10 − 15 individual elements whose contributions to the cooling rates
are most significant. These include H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe.
The rates are calculated prior to running the simulation, by using a photoioniza-
tion code. One of the most widely used photoionization codes is cloudy (Ferland
et al., 2017), which incorporates a rich number of atomic and molecular pro-
cesses and can compute the ionization, chemical, and thermal state of a gas cloud
under various initial and boundary conditions. The standard input to cloudy

includes gas density, composition, and, if present, the spectrum of the radiation
background. By using cloudy, one can tabulate the cooling and heating rates
of the gas as a function of density, temperature, metallicity, and redshift (e.g.
Wiersma et al., 2009a; Ploeckinger & Schaye, 2020). The resulting tables are then
loaded and interpolated at the start of the simulation. During the simulation, the
correct rate is fetched for the given values of the four input parameters. Nearly
all simulations of galaxy formation make use of pre-computed, look-up cooling
tables (e.g. Schaye et al., 2015; Pillepich et al., 2018; Hopkins et al., 2018b; Davé
et al., 2019) because of the high numerical efficiency combined with reasonable
accuracy of this method.

While most simulations of galaxy formation follow more-or-less the same ap-
proach to modelling gas cooling rates at temperatures above T ∼ 104 K, gas cool-
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ing below T ∼ 104 K may differ dramatically. The reason for this is twofold.
First, modelling the cold phase requires incorporating a greater number of phys-
ical processes, among which are the (self-)shielding of gas, fine structure-line
cooling, the formation of molecules and their effect on the cooling function, and
the formation and evolution of dust and its interaction with the gas phase. Sec-
ond, the cold phase is very dense, which leads to highly non-linear gas dynamics
and very short time-steps reached in the simulation, resulting in a much greater
computational expense. For these reasons, the developers of many previous cos-
mological simulations opted to not explicitly model the cold, dense gas. Instead,
they imposed a so-called effective equation of state, P (ρ) ∝ ργ , where P and ρ are,
respectively, the gas pressure and density, and γ is the polytropic index, usually
set to 4/3 (see e.g. Schaye & Dalla Vecchia, 2008, for details). The justification
of this approach is that physically, one expects cold, dense clouds to be in (local)
pressure equilibrium with the hot, volume-filling phase of the ISM (e.g. Springel
& Hernquist, 2003), so that the average ISM pressure can be approximated as a
function of density only. Only recently have attempts been made to abandon the
effective equation of state and begin modelling the gas cold phase more directly
(e.g. Dubois et al., 2021; Feldmann et al., 2023).

1.4.2 Simulating star formation

The current state-of-the-art cosmological simulations lack the numerical resolu-
tion to follow the fragmentation of GMCs down to small scales at which stars are
expected to form, ≲ 0.1 kpc. This implies that the physics taking place on these
scales is not resolved either. In order words, the process of star formation in a
numerical simulation has to be implemented as a subgrid model.

Resolution elements representing stellar mass – which are standardly referred
to as star particles or stellar particles – normally have the same mass as the gas par-
ticles. Clearly, a stellar particle with an (initial) mass of 106 M⊙, which is typical
for simulations of galaxy formation, is far more massive than the most massive
stars in the Universe (≲ 103 M⊙). Therefore, such a stellar particle physically
represents a population of stars, as opposed to an individual star. In most galaxy
simulations, a stellar particle is characterized by a single age, single metallicity,
and initial stellar mass function. While ages and metallicities differ from par-
ticle to particle, the initial stellar mass function is in most cases assumed to be
universal and is thus fixed throughout the simulation.

The numerical algorithm for star formation can be split into three parts: (i) a
criterion for star formation that determines which gas in the simulation is eligible
to be star-forming, (ii) how gas resolution elements that are star-forming compute
their star formation rates, and (iii) how stellar particles are created from the star-
forming gas.

(i) Physically, only cold and dense enough gas should be star-forming. So the
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most basic criterion for star formation can be constructed by considering
gas resolution elements whose temperatures are below a certain threshold
temperature (e.g. T ∼ 103 K) and/or whose densities are above some thresh-
old density (e.g. ρ ∼ 102mpcm−3). In the case of a threshold density, one
also needs to keep in mind that the matter density of the Universe evolves
with redshift as (1 + z)3. Thus, in order to not have star formation in inter-
galactic gas at z≫ 10, which would be unphysical, an additional constraint
should be added, ensuring that only gas elements with sufficient density
contrast (relative to the critical density of the Universe) can be star-forming.
Other common classes of star-formation criteria include the gravitational
instability criterion, in which gas elements become star-forming if half of
(the absolute value of) their gravitational potential energy is greater than
their kinetic energy due to thermal and turbulent motions; and the Jeans-
instability criteria, in which a gas element is labelled as ‘star-forming’ if its
mass is greater than the (thermal) Jeans mass given by Eq. (1.17).

(ii) As long as a gas element satisfies the star-formation criterion, it is assigned
a star-formation rate. The most widely used algorithm to compute the star
formation rate of a gas element is through the Schmidt (1959) law

ṁsf = εsf
mgas

tff
, (1.34)

in whichmgas is the mass of the gas element, the free-fall time tff is given by
Eq. (1.18), and εsf is the star formation efficiency parameter. Observations
of star formation in GMCs suggest that εsf is of the order of 1 per cent
(e.g. Krumholz & Tan, 2007; Lee et al., 2016), so in numerical simulations
εsf = 0.01 is often the choice.

(iii) Owing to low resolution, many numerical simulations adopt a stochastic
approach to creating stellar particles from the gas. One of the ways to im-
plement stochastic star formation is as follows: given a star formation rate
of a gas element, ṁsf, and time-step ∆t, one computes the probability that
the gas element will be converted into a stellar particle in the time-step ∆t
as

probsf =min
(
1,

ṁsf

mgas
∆t

)
, (1.35)

where mgas is the mass of the gas element. After the value of probsf has
been calculated, a random number is drawn from a uniform distribution
between 0 and 1, and if it is smaller than probsf, then a stellar particle is
formed with an initial mass equal to mgas, while the parent gas element
is removed from the simulation domain. The stellar particle will have the
same position, peculiar velocity, and composition as the parent gas element.
Note that since probsf≪ 1 for any reasonable time-step, the chance of a gas
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element being converted into a stellar particle is very small at any given
time-step, but gets higher at higher densities ρ because the free-fall time-
scale scales with density as tff ∝ 1/

√
ρ.

1.4.3 Simulating stellar mass loss

Models for chemical enrichment determine how much mass of various chemical
elements are produced by stars and what fraction of this mass is returned to the
ISM.

Numerically, chemical enrichment is realized by specifying how the mass
ejected by stellar particles depends on their internal properties, and how the
ejected mass is subsequently distributed within the gas surrounding the stel-
lar particles. The usual approach to determining the amount of ejected mass
is through look-up tables, which is similar to how numerical simulations deal
with gas cooling/heating rates. The tables for chemical enrichment provide net
stellar yields per unit stellar mass for all individual elements that are traced in
the simulation. These yields depend on the stellar age and metallicity. The tables
themselves are generated based on separate, detailed calculations of the evolu-
tion of single stars for various initial masses and metallicities (e.g. Fishlock et al.,
2014).

The tables from modern galaxy simulations normally include three channels
of chemical enrichment:

• Chemical enrichment due to stellar mass loss in the asymptotic giant
branch phase, which is relevant for stars with initial masses between
approximately 1 and 8 M⊙.

• Primordial elements andmetals produced and ejected by massive stars (≳ 8
M⊙) in stellar winds and CC SNe.

• Primordial elements and metals produced and ejected in the thermonu-
clear collapse of white dwarfs: type-Ia SNe. The initial masses of stars that
become white dwarfs are ≲ 8 M⊙.

For more details, see e.g. Wiersma et al. (2009b) and references therein.
At the start of a simulation, the tables are loaded and interpolated across stel-

lar age and metallicity, and adjusted for the initial stellar mass function that is
used in the simulation. For a stellar particle with a given age and metallicity
at some time-step ∆t, the tables determine how much mass this stellar particle
will release in this time-step. The ejected mass is distributed among the Nngb gas
particles closest to the stellar particle. The value of Nngb may vary strongly from
simulation to simulation, depending on the scheme used to solve the gas hydro-
dynamics equations. For SPH methods (see §1.3.4), the typical average value of
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Nngb is between ≈ 50 and 100, depending on the form and extent of the SPH ker-
nel (e.g. Price, 2012). If the masses of some chemical element ‘elem’ (e.g. hydro-
gen, carbon, oxygen, or iron) carried by the Nngb closest gas particles are melem,i

at the beginning of the time-step, and the star particle releases somemass ∆melem
of this element, then during the time-step the masses melem,i can be updated as

m′elem,i =melem,i +∆melem
W (|ri |,h)∑Nngb

k=1 W (|rk |,h)
, (1.36)

where i is the index of the gas neighbour, W is the SPH kernel positioned at the
stellar particle, ri indicates the distance between the gas particle i and the stellar
particle, and h is the SPH smoothing length carried by the stellar particle19.

Note that in Eq. (1.36), we split the ejected mass ∆melem among the gas neigh-

bours using the weights wi = W (|ri |,h)/
∑Nngb

k=1 W (|rk |,h) that have the property∑Nngb

k=1 wk = 1, ensuring that the ejected mass is conserved. Although all numer-
ical simulations tend to normalize the weights such that the mass in chemical
enrichment is conserved (i.e. if a stellar particle loses ∆m of its mass, the mass
of the ambient ISM should increase by ∆m), the exact form of the weights may
differ between different simulations.

1.4.4 Simulating energy feedback from core-collapse supernovae

CC SNe release on average ≈ 1051 erg of energy in one event (e.g. Koo et al., 2020),
which for a reasonable initial stellar mass function can be translated to ≈ 1051 erg
per every ∼ 100 M⊙ of stellar mass.

By assuming that each CC SN in a simulation releases 1051 erg of energy and
all stars with zero-age main-sequence masses from mmin to mmax explode as CC
SNe, one can calculate the total SN energy released by a stellar particle of initial
mass m∗ as

ESN,tot = 1051 ergm∗

∫ mmax

mmin

Φ(m)dm, (1.37)

where Φ(m) is the initial stellar mass function. For the Chabrier (2003) initial
stellar mass function integrated within (mmin,mmax) = (8,100) M⊙, the total CC
SN energy budget for each stellar particle is

ESN,tot = 1.18× 1055 erg
(

m∗
106M⊙

)
. (1.38)

Each stellar particle in the simulation can then inject this energy into the gas sur-
rounding it, which can be carried out either continuously (in multiple time-steps)

19Although stellar particles do not take part in hydrodynamics, they may still compute their SPH
smoothing lengths based on the distribution of gas around them. The same algorithm is also suitable
for BH particles, which we will discuss in §1.4.6.
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or all at once (in a single time-step). The times when the SN energy injection takes
place are counted from the moment when the star particle is born and normally
fall into the time-interval from ≈ 3 to ≈ 40 Myr corresponding to the average
lifetimes of ∼ 102- and 10-M⊙ stars, respectively. The SN energy can be injected
either in thermal form (by increasing the internal energies of the gas particles),
in kinetic form (by modifying the peculiar velocities of the gas particles), or both
(e.g. Smith et al., 2018).

It might be tempting to distribute ESN,tot among the gas neighbours in a way
similar to how it is often done for chemical enrichment, using a weighting scheme
similar to the one from Eq. (1.36). However, if the energy is injected thermally,
at the typical resolution of galaxy simulations, this approach will lead to very in-
efficient SN feedback. This is because the injected energy will be smoothed over
too much gas mass, leading to only a modest temperature increase and, conse-
quently, a cooling rate that is unrealistically high (e.g. Dalla Vecchia & Schaye,
2012). As a consequence, the galaxies will form too much stellar mass and their
morphologies will be implausible. In the literature, the aforementioned, numeri-
cally induced weakness of SN feedback is referred to as the ‘overcooling problem’
(e.g. Katz et al., 1996). The commonly used solutions are to inject (a part of) the
SN energy kinetically (e.g. Hopkins et al., 2018a), distribute the energy within
fewer gas neighbours, and/or inject the energy with a lower frequency in time
but a higher amount per injection event (e.g. Dalla Vecchia & Schaye, 2012)

Additionally, many simulations boost the energy given by Eq. (1.38) by
a factor between 1 and 4 in order to improve the agreement with observed
galaxy properties such as the galaxy stellar mass function (e.g. Roca-Fàbrega
et al., 2021). The use of the boost can be seen as a way to account for (i) the
high energy losses due to enhanced cooling rates that are unavoidable at the
typical resolution of galaxy simulations, (ii) the lack or underestimation of the
effects of clustering of individual SNe in space and time, which otherwise – if
well-resolved – would boost the SN momentum output (e.g. Gentry et al., 2017),
and (iii) the presence of more-energetic hypernovae whose kinetic energies can
be ∼ 10 times greater than in normal CC SNe.

1.4.5 Simulating other forms of feedback from stars

The numerical implementation of the other forms of stellar feedback, such as
feedback from type-Ia SNe, stellar winds, and radiation pressure, is not very dif-
ferent from that of CC SN feedback.

Namely, for a given feedback process, one derives how much energy and/or
momentum should be released per unit mass and per unit time based on some
theoretical and observational constraints (e.g. Gatto et al., 2017; Keller et al.,
2022). The specific energy and/or momentum rate from the feedback process,
which in general is a function of stellar age, metallicity, and initial stellar mass
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function, is then scaled with the mass of the stellar particle that does the feed-
back (see Eq. 1.38 for how this is done for CC SN feedback), and with the size
of the time-step during which the feedback is taking place. If the feedback is
momentum-driven, the resulting momentum is injected into the gas phase by
‘kicking’ gas elements that are close to the stellar particle (i.e. modifying their
peculiar velocities). If the feedback is energy-driven, then the choice has to be
made whether the resulting energy is injected thermally and/or kinetically, sim-
ilarly to how it is handled in the numerical implementation of CC SN feedback.

1.4.6 Seeding of supermassive black holes in galaxy simulations

In numerical galaxy formation, SMBHs are represented by black hole particles.
The most common algorithm for creating (seeding) BH particles in galaxy simu-
lations can be described as follows. At a given redshift z,

(i) Identify all haloes in the simulation that contain some minimum number
of particles using the friends-of-friends finder20;

(ii) For each identified halo whose mass is greater than a certain threshold mass
(usually in the range from ∼ 108 to 1011 M⊙), find the gas resolution ele-
ment with the deepest gravitational potential (or highest density);

(iii) If the halo does not yet harbour a BH particle, convert the gas element iden-
tified in step (ii) into a BH particle.

BH particles inherit most properties of their parent gas elements, including posi-
tion, peculiar velocity, and mass. However, the inherited mass is used exclusively
in gravity calculations, while the processes that are internal to the BHs, such
as gas accretion onto BHs, are coupled to a different, initially much lower mass,
which is called the subgrid mass (e.g. Springel et al., 2005c; Booth & Schaye, 2009).
Using the subgrid mass in addition to the inherited gas-particle mass opens the
possibility of modelling the initial stages of BH evolution even when the resolu-
tion of the simulation corresponds to the masses of SMBHs (≳ 106 M⊙). In other
words, without a BH subgrid mass, all BH particles would become supermassive
as soon as they are seeded, which would be unrealistic. The initial value of the
BH subgrid mass is called the seed mass. In most simulations, the seed mass is
a free parameter that needs to be calibrated such that the AGN feedback in the
simulation is neither too strong nor too weak.

1.4.7 Simulating mass growth of supermassive black holes

BHs are collisionless particles: if we neglect AGN feedback, BH particles interact
with the gas and stars exclusively via gravity. Once BHs have been seeded, they

20The friends-of-friends finder is a commonly used tool for identifying groups of particles repre-
senting haloes and galaxies in a numerical simulation.
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start growing in mass. There are two primary channels through which BHs can
acquire more mass. The first one is merging with other BH particles. Two BH
particles can merge into a new, single BH particle if certain criteria are satisfied.
The two common criteria that need to be satisfied simultaneously are:

• The separation between the two merging BH particles needs to be smaller
than a certain threshold distance. The threshold distance is usually set to
be of the order of the gravitational softening length (see §1.3.3 for details
on the softening length).

• The smaller of the two BH particles has to be under a sufficiently strong
gravitational influence of the more massive particle. This can be confirmed
by comparing the relative velocity between the two BHs to the escape ve-
locity from the larger BH, evaluated at the separation of the two particles.

When two BH particles merge, the properties of the more massive particle are
updated, while the less massive particle is removed from the simulation.

The other channel of BH growth is the accretion of gas. BH particles accrete
matter based on their instantaneous accretion rates, which are computed using
the properties of the gas particles near the BHs. One of the standard ways to
compute the accretion rate is to use the Bondi-Hoyle-Lyttleton formula,

ṀBH = 4πG2 M2
BHρgas

(v2 + c2sound)
3/2

, (1.39)

where MBH is the (subgrid) mass of the accreting BH particle, ρgas is the mass
density of the gas around the BH, v is the relative velocity between the gas and
BH, and csound is the local speed of sound. The above equation assumes that the
gas flow onto an SMBH is spherically-symmetric, adiabatic, and in a steady state,
and that the BH itself is a point-like particle. Some simulations in the past used
to multiply the rate given by Eq. (1.39) by an ad-hoc factor α ≫ 1 (e.g. Springel
et al., 2005a; Booth & Schaye, 2009; Vogelsberger et al., 2014), motivating it by
the need to compensate for their low resolution, which did not allow to resolve
the cold, high-density gas that BHs are expected to accrete.

For a given mass accretion rate, ṀBH, one can compute the AGN bolometric
luminosity, Lbol, if the radiative efficiency parameter εr is known,

Lbol = εr ṀBH c2 . (1.40)

Physically, εr denotes the fraction of the accreted matter that escapes the gas
surrounding the BH as radiation – as opposed to ‘being swallowed’ by the BH.
The luminosity Lbol can be compared to the Eddington luminosity,

LEdd =
4πGMBHmpc

σT
, (1.41)
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which is the maximum luminosity the BH can attain assuming a spherically-
symmetric accretion, and where σT is the Thompson cross section for electron
scattering. For Lbol greater than LEdd, the radiation pressure on the accreted gas
from the photons escaping the BH would be stronger than the gravitational force
driving the gas inwards, toward the BH, which would slow down the accretion
and reduce Lbol back to LEdd. For this reason, many simulations do not allow
the BH accretion rate, ṀBH, given by Eq. (1.39) to exceed the accretion at the
Eddington luminosity,

ṀEdd =
LEdd
εr c2

=
4πGMBHmp

εrσTc
. (1.42)

To guarantee that BH particles have the correct mass growth, they need to
reside close to the minimum of the gravitational potential of the host galaxy. In
the real Universe, this can happen naturally because SMBHs experience a gravi-
tational drag force (also commonly referred to as ‘dynamical friction’) as they tra-
verse the medium filled with background particles of much smaller mass (such
as stars and putative DM), which causes the SMBHs to lose their energy and spi-
ral in towards the centre of the galaxy (e.g. Ostriker, 1999). However, at the
typical resolution of galaxy simulations (∼ 106M⊙), the masses of many SMBHs
will be comparable to the masses of background particles, which will strongly
suppress the effects of dynamical friction. The common solution to help BH par-
ticles migrate towards the minimum of the galaxy’s potential is as follows: every
time-step, each BH particle in the simulation identifies the neighbouring particle
within its kernel that has the lowest gravitational potential and repositions on
top of this particle if the particle’s potential is lower than at the location of the
SMBH (e.g. Springel et al., 2005c; Booth & Schaye, 2009; Bahé et al., 2022).

1.4.8 Simulating AGN feedback

From both observational and theoretical perspectives, it is customary to separate
energy feedback from BHs into two classes: the quasar (also known as ‘thermal’
and ‘radiative’) mode and radio (also known as ‘kinetic’ and ‘jet’) mode (e.g. Rus-
sell et al., 2013; Mocz et al., 2013). The quasar mode manifests itself when the BH
is undergoing rapid growth by accreting gas at a high rate (≳ 0.01ṀEdd), while
the kinetic jet mode features at low accretion rates (≲ 0.01ṀEdd). Many numeri-
cal simulations implement both modes of AGN feedback (e.g. Vogelsberger et al.,
2013; Dubois et al., 2014; Kaviraj et al., 2017; Pillepich et al., 2018; Davé et al.,
2019), but some limit the AGN feedback to just one mode (e.g. Schaye et al., 2015,
2023), motivating it by the lack of numerical resolution to distinguish between
the different modes and by the aim to reduce the overall complexity of the sub-
grid model for AGN feedback.
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Theoretical models predict that at high accretion rates, the accretion disc
around the BH can be approximated by a geometrically thin, optically thick disc
that efficiently dissipates its energy in the form of radiation, with the radiative
efficiency εr being of the order of 10 per cent (Shakura & Sunyaev, 1973). The
radiation emitted by the disc exerts pressure on the nearby gas and dust, which
can drive a strong wind. The wind will counteract the further supply of gas
onto the BH, leading to self-regulation of the mass growth of the BH. On galactic
scales, AGN-driven winds are observed to have velocities as high as a few 103 km
s−1 in different phases (e.g. Rupke & Veilleux, 2013; Speranza et al., 2022); they
can propagate to distances far beyond the host galaxy, ejecting the gas there-
from. When powerful enough, they can not only disrupt the ambient ISM but
also quench the star formation in the host galaxy altogether.

Numerically, the quasar mode of AGN feedback can be implemented as fol-
lows. If a BH particle has a time-step ∆t and its mass accretion rate is ṀBH, then
the energy that will be received by the gas around the BH in this time-step is

∆EAGN = εfLbol∆t , (1.43)

where the AGN bolometric luminosity Lbol is computed from ṀBH using Eq.
(1.40) with a reasonable value of the radiative efficiency in the quasar mode (typ-
ically εr ∼ 0.1). The parameter εf indicates the fraction of the energy radiated
around the SMBH that is coupled to the gas. In most cases, the coupling ef-
ficiency εf is set to around 0.1, which provides a good match to the observed
scaling between masses of SMBHs and masses (or velocity dispersion) of stel-
lar bulges (e.g. Booth & Schaye, 2009). Similarly to the implementation of energy
feedback fromCC SNe, numerical implementations of the radiativemode of AGN
feedback have to assume how the AGN energy, ∆EAGN, is distributed within the
gas phase. One of the common approaches is to inject the energy thermally by
heating gas elements within a certain radial distance from the accreting BH (e.g.
Sijacki et al., 2007). In order to ensure that thermal AGN feedback remains effi-
cient at most gas densities, gas particles should always receive ample amounts of
energy from the AGN. Similar to the CC SN feedback discussed in §1.4.4, possible
solutions include reducing the number of gas neighbours over which the energy
is distributed in one time-step and/or performing energy injections at a lower fre-
quency in time but with more energy accumulated into a single AGN-feedback
event (e.g. Booth & Schaye, 2009). The critical parameter here is the ratio of the
cooling time-scale of a heated gas element to the sound-crossing time-scale across
the gas element. The ratio should be relatively high (≳ 10) to prevent the injected
energy from being quickly radiated away (e.g. Dalla Vecchia & Schaye, 2012).

At low accretion rates, the accretion of gas onto a BH can be described by
a radiatively inefficient accretion flow or advection-dominated accretion flow
(Narayan & Yi, 1995; Yuan & Narayan, 2014). In this case, the energy is liber-
ated in terms of two collimated, relativistic jets, which are powered by the spin
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of the SMBH. The jets inflate hot, buoyantly rising bubbles, and can extend in size
to as far as hundreds of kpc. Their direction is often aligned with the spin of the
BH’s accretion disc, which in numerical simulations can be approximated by the
average angular momentum of the gas elements close to the BH (e.g. Dubois et al.,
2010; Davé et al., 2019). Alternatively, one can align the jets with the spin of the
BH itself if the subgrid model computes the evolution of the BH spin (e.g. Huško
et al., 2022). Numerically, jets are produced by applying a strong (∼ 103−104 km
s−1) velocity kick to gas elements around the BH within a sphere of a certain ra-
dius (e.g. Davé et al., 2019) or within a cylinder parallel to the spin of the BH (e.g.
Dubois et al., 2010). The number of such discrete kick events per time-step de-
pends on the jet power, which in most simulations is assumed to be proportional
to the BH accretion rate ṀBH.

1.5 Simulations of galaxy formation. Current sta-
tus and future steps

Modern simulations of galaxies can be roughly split into four distinct groups:
(i) simulations of individual galaxies in isolated environments, (ii) zoom-in sim-
ulations of individual haloes in a cosmological environment; (iii) large volume
(∼ 0.5−1 cGpc)3, low-resolution cosmological simulations; and (iv) cosmological
simulations in moderate but statistically significant volumes (∼ 25− 100 cMpc)3

with a resolution high enough to enable studying properties of the ISM in indi-
vidual galaxies.

(i) Simulations of individual galaxies in isolated environments are the most
controlled tests of galaxy formation physics. Their main purpose is to test
certain aspects of galaxy formationmodels: for instance, star formation and
stellar feedback (e.g. Springel, 2000; Stinson et al., 2006; Marinacci et al.,
2019; Smith et al., 2024). Unlike the other three categories of galaxy sim-
ulations, initial conditions for isolated-galaxy runs are non-cosmological.
Such simulations do not commence at high redshifts (z ∼ 100) where the
gas density field is nearly homogeneous and no galaxies exist; instead, their
initial conditions already contain a well-defined galaxy, which usually con-
sists of rotationally supported discs of gas and stars, and, optionally, a stel-
lar bulge. It is up to the simulation developer to decide the exact form for
the initial morphology of the simulated object. Normally, the simulation
domain contains only one galaxy21, with the galaxy’s dark-matter halo rep-
resented by an analytic gravitational potential (e.g. Springel et al., 2005a)
that follows either Hernquist (1990) or Navarro, Frenk &White (1996) pro-
file. The virial mass of the halo, as well as its spin parameter, needs to be

21A notable exception is the simulations of galaxy mergers in isolated environments (e.g. Springel
et al., 2005a).
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assumed before the start of the simulation. Other initial parameters include
the mass of the stellar disc (and stellar bulge), the initial gas fraction, the
initial gas metallicity, and the scale height of the stellar disc. In most cases,
the simulation is run for ∼ 0.5−1 Gyr, assuming a fixed redshift at all times
(usually z = 0) and ignoring all cosmological effects.

(ii) Zoom-in simulations model the formation and evolution of the central
galaxy in a single halo as well as its satellites. The basic structure of
a zoom-in simulation is a high-resolution, zoomed-in, spherical region
submerged into a low-resolution cosmological background. The zoomed-in
region is positioned at the centre of the halo of interest, with its radius
extending to a few times the z = 0 virial radius of the halo. Because only one
(central) halo is modelled at a time, the resolution of zoom-in simulations
is usually much higher than in any large cosmological-volume simulation,
unless the zoomed-in halo is very massive (the virial mass M200 ≳ 1014

M⊙). Since for a fixed number of resolution elements, a smaller virial
mass of the simulated halo implies higher resolution, zoom-in simulations
applied to dwarf galaxies can be of particularly high resolution. Needless
to say, this gain in numerical resolution is one of the most attractive
features of zoom-in simulations, together with a more refined control over
the initial conditions (compared to cosmological simulations from groups
iii and iv). For instance, the fire2 simulations (Hopkins et al., 2018b)
consist of zoom-in simulations of haloes with z = 0 virial masses from
∼ 109 to 1012 M⊙, corresponding to a gas-particle mass from 0.25 × 103
to 7 × 103 M⊙. Besides fire2, the past decade has been rich with many
other successful high-resolution zoom-in simulations of dwarf and Milky
Way-mass galaxies; these include nihao (Wang et al., 2015), Auriga (Grand
et al., 2017), NewHorizon (Dubois et al., 2021), and lyra (Gutcke et al.,
2022).

(iii) The third group of simulations targets large cosmological volumes (∼ 0.5−1
cGpc)3 at low spatial resolution. Although the internal structure of galax-
ies in such simulations is largely unresolved, they provide valuable infor-
mation about the properties and evolution of the large-scale structure of
the Universe, including a copious number of galaxy clusters that are found
in such big volumes and that can thus be studied in detail. The largest
hydrodynamical simulations from this group that were run to z = 0 are
Magneticum (Bocquet et al., 2016), bahamas (McCarthy et al., 2017), Mil-
leniumTNG (Pakmor et al., 2023), and flamingo (Schaye et al., 2023).

(iv) Arguably themost numerically challenging is the fourth group, which com-
prises simulations at relatively high numerical resolution (resolution ele-
ment masses of ∼ 105−107 M⊙ for gas) in somewhat smaller but still cosmo-
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logically representative volumes (∼ 25−100 cMpc)3. In essence, this group
is a compromise between the second and third groups. The list of recent
notable simulations from this group includes, among others,HorizonAGN

(Dubois et al., 2014), Illustris (Vogelsberger et al., 2014), eagle (Schaye
et al., 2015), MassiveBlack-II (Khandai et al., 2015), romulus25 (Tremmel
et al., 2017), IllustrisTNG (Pillepich et al., 2018), and Simba (Davé et al.,
2019). Furthermore, very recently the first ever cosmological-volume sim-
ulation with the explicit modelling of a multiphase ISM was run to z = 0
(FIREbox; Feldmann et al., 2023). Because of the relatively high resolution
(6× 104 M⊙ for gas) and small time-steps readily reached in the dense gas,
the simulated volume of FIREbox was limited to ≈ (22 cMpc)3.

1.5.1 Comparisons between simulated galaxies and observational
data

The above simulations have been shown to reproduce a wide spectrum of galaxy
properties and statistics that are observed directly and indirectly. These include

• Fundamental observables such as the galaxy stellar mass function and lu-
minosity function at various redshifts;

• Galaxy morphology indicators such as the galaxy stellar mass-size relation
and Hi size versus Hi mass relation;

• Mass-kinematics scaling relations such as the Tully-Fisher relation and the
Magorrian relation;

• Galaxy chemical enrichment diagnostics such as galaxy stellar mass versus
stellar metallicity and versus metallicity of the gas phase of the ISM;

• Properties of galaxy clusters such as radial profiles of gas temperature,
pressure, metallicity, and X-ray luminosity;

• Diagnostics of galaxy evolution across cosmic time such as the cosmic star
formation rate density as a function of redshift.

As an example, Fig. 1.3 illustrates how well modern simulations of galaxy
formation can reproduce observational data for some of the properties from the
above list. The simulation data are taken from the suite of eagle simulations
(Schaye et al., 2015), where the curves and points coloured dark-blue, red, and
green correspond to different simulations from the eagle set. The shaded regions
highlight the scatter in the simulations. The observational data are displayed
as filled and hollow grey data points, some of which have error bars. The left
and right top panels show, respectively, the z = 0.1 galaxy stellar mass function
(GSMF), and the specific star formation rate (sSFR) versus stellar mass for active
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Figure 1.3: Comparison between the predictions of simulations (curves and
points in dark-blue, red, and green) and observational data (grey data points).
The simulation data are taken from the suite of eagle simulations (Schaye et al.,
2015). Shown are the galaxy stellar mass function (top left), specific star forma-
tion rates versus stellar mass of active galaxies (top right), the maximum stellar
rotational velocity versus galaxy stellar mass (bottom left), and stellar metallicity
versus stellar mass (bottom right). All plots are shown at z = 0.1 and in all of them
the eagle simulations exhibit good agreement with the observational data. See
Schaye et al. (2015) for details.
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galaxies at z = 0.1. The bottom panels show the maximum stellar rotational ve-
locity (left) and stellar metallicity (right), both plotted versus galaxy stellar mass
at z = 0.1. In all panels, we see good agreement between the predictions from the
eagle simulations and the observational data. For further details on this compar-
ison and discussion, see Schaye et al. (2015), from which Fig. 1.3 compiled.

Some of this agreement should not be considered unexpected because all
models of galaxy formation contain free parameters and many of these free pa-
rameters are tuned such that the simulation matches a given set of observational
data. For instance, by increasing the energy released per each CC SN explosion,
one can reduce the average cosmic star formation rate, leading to a lower aver-
age stellar mass formed in the simulation by redshift z = 0. The true predictions
of the simulation are therefore only those galaxy properties that have not been
considered during the tuning of the subgrid parameters. For example, the eagle
model was calibrated to reproduce the galaxy stellar mass function, galaxy sizes,
and BH masses, all at z ∼ 0 (Crain et al., 2015), which implies that in Fig. 1.3, all
panels but the top left show the true predictions of eagle.

1.5.2 Challenges in numerical galaxy formation

Despite the tremendous success of numerical galaxy formation in the past
decades, there are daunting issues and uncertainties that need to be addressed
and resolved in the future with better numerical models and more powerful
computational facilities:

• Arguably the biggest outstanding issue is the overall uncertainty in the sub-
grid modelling of all the intricate processes that are important for galaxy
evolution but manifest themselves on numerically unresolved scales (e.g.,
star formation and energy feedback from stars and SMBHs). Ideally, one
would desire to devise a subgrid model that is derived from the fundamen-
tal physics laws, has as few free parameters as possible, and yields a galaxy
population whose properties not only reach an agreement with observa-
tional data but also converge when the numerical resolution is sufficiently
high. Currently, all subgrid models are rather far from this ideal scenario,
so there is a constant need to keep improving the subgrid models. The
complexity of the subgrid models may be alleviated by the increase in nu-
merical resolution, as it will make the treatment of the subgrid processes
more direct.

• Another serious concern is the modelling of the ISM. As discussed in §1.4.1,
most simulations of galaxy formation that have been run so far did not (di-
rectly) model the cold phase of the ISM. To our knowledge, the only two
fairly large high-resolution simulations [simulated volume of (∼ 20 cMpc)3]



1

44 Chapter 1. Introduction

that did include the cold ISM are NewHorizon (Dubois et al., 2021) and
FIREbox (Feldmann et al., 2023).

• In most galaxy simulations, radiative cooling and heating rates are calcu-
lated under the assumption of (collisional) ionization equilibrium (e.g. Vo-
gelsberger et al., 2013; Schaye et al., 2015; Hopkins et al., 2018b; Dubois
et al., 2021; Feldmann et al., 2023), for metals and/or primordial species.
However, this assumption can break down if the ionization (or recombina-
tion) time-scale of a species exceeds the radiative cooling time-scale (e.g.
Oppenheimer & Schaye, 2013), which is particularly important at gas tem-
peratures T ∼ 105 − 106 K where radiative cooling is the fastest. Further-
more, the effects of non-equilibrium cooling may alter, among others, the
properties of galactic-scale molecular outflows and CO emission therefrom
(e.g. Richings & Schaye, 2016).

• Finally, several processes that may play an important role under certain
astrophysical conditions are often completely neglected in numerical simu-
lations. This includes modelling the evolution and effects of magnetic fields
as well as the injection and transport of cosmic rays. Both can be dynami-
cally important and have an impact on the properties of the gas in the ISM
and CGM (e.g. Pakmor & Springel, 2013; Salem et al., 2016; Hopkins et al.,
2020).

1.6 This thesis

This thesis is built around the development of a new model of galaxy formation:
colibre. The colibre simulations will be run in a broad range of volumes, from
∼ 503 to ∼ 4003 cMpc3, and spanning a wide range of gas resolutions, from ∼ 105

to ∼ 107 M⊙ per particle. Compared to many previous simulations at similar
resolutions and in similar volumes, the colibre model takes a big step forward
by (i) directly modelling the multiphase structure of the ISM, allowing the gas
to cool to as low as 10 K; (ii) treating the radiative cooling due to hydrogen and
helium in non-equilibrium; (iii) increasing the number of dark matter particles
by a factor of 4 relative to the initial number of gas particles22; and (iv) having
more realistic subgrid models of numerous unresolved astrophysical processes,
among which are star formation, the formation and evolution of dust, chemical
enrichment, and feedback from CC SNe and AGN.

All simulations in this thesis were run with the astrophysical code swift

(Schaller et al., 2023) and used the SPH scheme Sphenix (Borrow et al., 2022)

22The increase in the number of dark matter particles will improve the stellar kinematics and
structural properties of simulated galaxies that are sampled with less than ∼ 103 stellar particles (e.g.
Ludlow et al., 2023).
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to solve the equations of hydrodynamics. Each chapter of this thesis can be
regarded as a step in the development of the colibre model, with a particular
focus on CC SN feedback in Chapters 3 and 4.

• In Chapter 2, we simulate isolated SN explosions in a homogeneous
medium at ∼ 1 pc resolution. These high-resolution hydrodynamic tests
were created during the development of the algorithms for CC SN feedback
that are employed in the colibre model, but here we use them to solve a
problem that is slightly outside the scope of the colibre project. Specif-
ically, using our high-resolution simulations, we show that the non-zero
concentration of the radioactive isotope 60Fe that has been consistently
detected by different groups in samples from the surface of the Moon and
from a ferromanganese crust on Earth, is very likely to have an SN origin.
We demonstrate that the observed 60Fe signal can be explained by two SNe
detonated in the past 10 Myr within 100 pc from the Solar System, and
that the velocity of the Solar System relative to the ISM is important for the
interpretation of the signal.

• In Chapter 3, we run simulations of an isolated MilkyWay-mass galaxy and
small cosmological volumes to study different ways of selecting gas resolu-
tion elements for energy injection in CC SN feedback. We show that dif-
ferent algorithms for deciding which gas element receives the energy from
the stellar particle in CC SN feedback, result in significant variations in
galaxy star formation histories, morphologies, and mass outflow rates. Ad-
ditionally, we introduce an isotropic algorithm for distributing energy in
SN feedback around stellar particles, which is used in the next two chap-
ters.

• In Chapter 4, we present a new thermal-kinetic model for CC SN feedback
designed for cosmological simulations of galaxy formation that (may) in-
clude a cold ISM phase. The feedback model manifestly conserves energy,
linear momentum, and angular momentum, and distributes SN energy in
a statistically isotropic manner. We run simulations of isolated Milky Way-
mass and dwarf galaxies to test and validate the model. We study the dif-
ferences between the thermal and kinetic channels of energy injection and
demonstrate that using the two channels together produces galaxies whose
spatially resolved properties are closest to observations.

• Finally, in Chapter 5, we present the calibration of the colibre model of
galaxy formation. The prescriptions for SN and AGN feedback in the col-

ibre model are based on the results from Chapters 3 and 4. We show how
various galaxy properties – such as galaxy stellar mass, size, and star for-
mation rate – are affected by the choice of parameters of the colibre pre-
scriptions for AGN and SN feedback. We find the best-fitting values for
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these parameters by computing the galaxy stellar mass function and size-
stellar mass relation of simulated galaxies at z = 0 and matching them to
observations, for which we use a machine-learning method. We show that
the calibrated colibre model not only reproduces the observed data used
in the calibration, but also agrees with many other properties of observed
galaxies to which the model was not calibrated, including the properties of
cold gas.
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