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Chapter 4

The Role of Final Batch
Normalization Layer

In highly imbalanced classification problems, which encompass complex features,
deep learning (DL) is much needed because of its strong detection capabilities. At
the same time, DL is observed in practice to favor majority over minority classes
and consequently suffer from inaccurate detection of rare events. To simulate this
scenario, in this chapter, we will artificially generate skewness (99% vs. 1%) for
certain plant types out of the PlantVillage dataset [157] as a basis for classification
of scarce visual cues through transfer learning. By randomly and unevenly picking
healthy and unhealthy samples from certain plant types to form a training set, we
consider a base experiment as fine-tuning ResNet34 and VGG19 architectures and
then testing the model performance on a balanced dataset of healthy and unhealthy
images. Then we will investigate the role of Batch Normalization (BN) layer in
modern CNN architectures to see if it would help minimize the training time and
testing error for minority classes in highly imbalanced data sets.

In this chapter we shall present the following results:

1. Utilizing an additional Batch Normalization (BN) layer before the output
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4.1. Background

layer in modern CNN architectures has a considerable impact in terms of
minimizing the training time and testing error for minority classes in highly
imbalanced data sets.

2. When the final BN is employed, minimizing the loss function may not be the
best way to assure a high F1 test score for minority classes in such problems.
That is, the network might perform better even if it is not ‘confident’ enough
while making a prediction; leading to another discussion about why softmax
output is not a good uncertainty measure for DL models.

3. The performance gain after adding the final BN layer in highly imbalanced
settings could still be achieved after removing this additional BN layer in
inference.

4. There is a certain threshold for the imbalance ratio upon which the progress
gained by the final BN layer reaches its peak.

5. The batch size also plays a role and affects the outcome of the final BN
application.

6. The impact of the BN application is also reproducible on other datasets and
when utilizing much simpler neural architectures.

7. The reported BN effect occurs only per a single majority class and multiple
minority classes – i.e., no improvements are evident when there are two
majority classes; and finally, (viii) Utilizing this BN layer with sigmoid
activation has almost no impact when dealing with a strongly imbalanced
image classification tasks.

4.1 Background

In order to better understand the novel contributions of this study, in this section,
we give some background information about the Batch Normalization [74] concept.

Training deep neural networks with dozens of layers is challenging as they can be
sensitive to the initial random weights and configuration of the learning algorithm.
One possible reason for this difficulty is that the distribution of the inputs to
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Chapter 4. The Role of Final Batch Normalization Layer

layers deep in the network may change after each mini-batch when the weights
are updated. This slows down the training by requiring lower learning rates and
careful parameter initialization, makes it notoriously hard to train models with
saturating nonlinearities [74], and can cause the learning algorithm to forever chase
a moving target. This change in the distribution of inputs to layers in the network
is referred to by the technical name “internal covariate shift” (ICS).

BN is a widely adopted technique that is designed to combat ICS and to enable
faster and more stable training of deep neural networks (DNNs). It is an operation
added to the model before activation which normalizes the inputs and then applies
learnable scale (�) and shift (�) parameters to preserve model performance. Given
m activation values x1 . . . , xm from a mini-batch B for any particular layer input
x(j) and any dimension j 2 {1, . . . , d}, the transformation uses the mini-batch
mean µB = 1/m

Pm
i=1 xi and variance �2

B = 1/m
Pm

i=1(xi � µB)2 for normalizing
the xi according to x̂i = (xi �µB)/

p
�2
B + ✏ and then applies the scale and shift to

obtain the transformed values yi = �x̂i + �. The constant ✏ > 0 assures numerical
stability of the transformation.

Typically in ML, it is common to normalize input data before passing the data to
the input layer. The reason we normalize is partly to ensure that our model can
generalize appropriately. This is achieved by ensuring that the scale of the values is
balanced, and also the range of the values are maintained and proportional despite
the scale change in the values. In a similar context, the BN operation standardizes
and normalizes the input values. The input values are then transformed through
scaling and shifting operations. BN was performed as a solution to speed up
the training phase of deep neural networks through the introduction of internal
normalization of the inputs values within the neural network layer. Normalization
is typically carried out on the input data, but it would make sense that the flow of
internal data within the network should remain normalized. So, we can say that
BN is the internal enforcer of normalization within the input values passed between
the layer of a neural network. Internal normalization limits the covariate shift that
usually occurs to the activations within the layers.

BN has the effect of stabilizing the learning process and dramatically reducing
the number of training epochs required to train deep networks; and using BN
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makes the network more stable during training. This may require the use of much
larger than normal learning rates, which in turn may further speed up the learning
process. Though BN has been around for a few years and has become common in
deep architectures, it remains one of the DL concepts that is not fully understood,
having many studies discussing why and how it works. Most notably, Santurkar
et al. [158] recently demonstrated that such distributional stability of layer inputs
has little to do with the success of BN and the relationship between ICS and BN is
tenuous. Instead, they uncovered a more fundamental impact of BN on the training
process: it makes the optimization landscape significantly smoother (Figure 4.1).
This smoothness induces a more predictive and stable behavior of the gradients,
allowing for faster training. Bjorck et al. [159] also makes similar statements that
the success of BN can be explained without ICS. They argue that being able to
use larger learning rate increases the implicit regularization of the gradient, which
improves generalization.

Figure 4.1: Analysis of the optimization landscape during training of deep linear
networks with and without BatchNorm. There is a clear improvement in each of these
measures of smoothness of the optimization landscape in networks with BatchNorm layers.
(source: [158])

Even though BN adds an overhead to each iteration (estimated as additional
30% computation [160]), the following advantages of BN outweigh the overhead
shortcoming:

• It improves gradient flow and allows training deeper models (e.g., ResNet).

• It enables using higher learning rates because it eliminates outliers activation,
hence the learning process may be accelerated using those high rates.
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• It reduces the dependency on initialization and then reduces overfitting due
to its minor regularization effect. Similarly to dropout, it adds some noise to
each hidden layer’s activation.

• Since the scale of input features would not differ significantly, the gradient
descent may reduce the oscillations when approaching the optimum and thus
converge faster.

• BN reduces the impacts of earlier layers on the following layers in DNNs.
Therefore, it takes more time to train the model to converge. However, the
use of BN can reduce the impact of earlier layers by keeping the mean and
variance fixed, which in some way makes the layers independent from each
other. Consequently, the convergence becomes faster.

The development of BN as a normalization technique was a turning point in the
development of DL models, and it enabled various networks to train and converge.
Despite its great success, BN exhibits drawbacks that are caused by its distinct
behavior of normalizing along the batch dimension. One of the major disadvantages
of BN is that it requires sufficiently large batch sizes to obtain good results. This
prevents the user from exploring higher-capacity models that would be limited by
memory. To solve this problem, several other normalization variants are developed,
such as Layer Normalization (LN) [161], Instance Normalization (IN) [162], Group
Normalization (GN) [163] and Filter Response Normalization (FRN) [164].

4.2 Related Work and Prior Art

Investigating the effect of learnable parameters of BN, scale (�) and shift (�), on
the training of various typical deep neural nets, Wang et al. [165] suggest that
there is no big difference in both training convergence and final test accuracy when
removing the BN layer following the final convolutional layer from a convolutional
neural network (CNN) for standard classification tasks. The authors claim that it
is not necessary to adjust the learnable gain and bias along the training process and
they show that the use of constant gain and bias is enough and these learneable
parameters have little effect on the performance. They also observe that without
adaptively updating learnable parameters for BN layers, it often requires less time
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for training of very deep neural nets such as ResNet-101.

Frankle et al. [166] also studied the effect of learnable BN parameters, showing
that BN’s trainable parameters alone can account for much of a network’s accuracy.
They found that, when locking all other layers at their random initial weights and
then training the network for fifty or so epochs, it will perform better than random.
As it adjusts a network’s intermediate feature representations for a given mini
batch, BN itself learns how to do so in a consistent way for all mini batches. The
researchers probed the impact of this learning by training only the BN parameters,
� and �, while setting all other parameters at random. Bjorck et al. [159] conducted
another experiment, similar to our study. They trained a ResNet that uses one
BN layer only at the very last convolutional layer of the network (removing all
the other BN layers coming after each CNN layer), normalizing the output of
the last residual block but without intermediate activation. This indicates that
after initialization, the network tends to almost always predict the same (typically
wrong) class, which is then corrected with a strong gradient update. In contrast,
the network with BN does not exhibit the same behavior; rather, positive gradients
are distributed throughout all classes. Their findings suggest that normalizing the
final layer of a deep network may be one of the most important contributions of
BN.

Zhu et al. [167] also adopted a similar idea of using the scalable version of a BN
layer to normalize the channel at the final output of the network, and improving
the classification performance of softmax without adding learnable BN parameters,
but controlling the output distribution by another scaling parameter. However,
their improvements on selected datasets were not significant (less then 0.3%).

Learning from small samples can also be regarded as out-of-distribution (OoD)
detection as the minority class represents the samples out of the distribution
of majority classes. While investigating the OoD image detection capability of
neural networks without Learning from OoD data, [168] proposed Generalised
ODIN (i.e. OoD image detection in neural networks [169]) framework that is
composed of two strategies: decomposing confidence scoring and modifying the
input pre-processing method. The original ODIN framework [169] also suggests
that temperature scaling and adding small perturbations to the input can separate
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the softmax score distributions of in- and out-of-distribution images, allowing for
more effective detection. Both of these frameworks tamper the confidence scoring
in the output layer but mentions BN layer within a regularization context.

Apart from these studies, to the best of our knowledge, there is no prior work
investigating the effect of BN utilization over imbalanced classification tasks when
set before the softmax output layer.

4.3 Implementation Details and Experimental Re-
sults

In this study, we primarily utilize the ResNet34 CNN architecture due to com-
putational requirements and a need for an iterative process to conduct a large
number of experiments. ResNet is evaluated on the ImageNet with a depth of up
to 152 layers - 8 times deeper than VGG nets but still having lower complexity.
An ensemble of these residual nets achieved a 3.57% error on the ImageNet test
set. This result won the 1st place in the ILSVRC 2015 classification task [170].

Our training process can be regarded as fine-tuning based on ImageNet checkpoints
using transfer learning. We firstly addressed the complete PlantVillage original
dataset and fine-tuned a ResNet34 model for 38 classes. Using scheduled learning
rates, we obtained 99.782% accuracy after 10 epochs – slightly improving the
PlantVillage project’s record of 99.34% using GoogleNet [171]. Having reproducing
these results, relatively easily, further boosts our confidence in selecting ResNet34
for the task.

4.3.1 Dataset Details

A prominent effort towards plant diseases’ detection is the Plant Village Disease
Classification Challenge. As part of the PlantVillage project, 54,306 images of 14
crop species with 26 diseases (including healthy, 38 classes in total) were made
publicly available [157]. The detailed distribution of the dataset and its classes can
be seen at Table 4.1.

Following the release of the PlantVillage dataset, deep learning (DL) was intensively
employed [171], with reported accuracy ranging from 85.53% to 99.34%. Without
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Table 4.1: Plant Village dataset distribution for 54,306 images of 14 crop species with
26 diseases. Each specie has certain number of unhealthy classes (e.g. apple scab and black
rot for Apple, bacterial spot and leaf mold for Tomato) and one healthy class, denoted in
Class Size column as the total number of classes.

Training Set Validation Set Class Size
Healthy Unhealthy Healthy Unhealthy

Potato 121 1600 31 400 3
Peach 288 1838 72 459 2
Cherry 684 842 170 210 2
Grape 339 2912 84 727 4
Tomato 1272 13132 318 3284 10
Pepper 1181 797 295 200 2
Corn 16 2005 5 4
Orange 0 4405 0 1102 2
Blueberry 1202 0 300 0 2
Apple 1316 1220 329 306 4
Squash 0 1448 0 365 2
Soybean 4072 0 1018 0 2
Raspberry 297 0 74 0 2
Strawberry 364 886 92 222 2
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any feature engineering, the best reported model correctly classifies crop and disease
in 993 out of 1,000 images (out of 38 possible classes). The PlantVillage dataset
is slightly imbalanced, such that accuracy is commonly used as the performance
measure.

In this study, to simulate rare events in agriculture, we capitalize on this dataset to
synthetically generate skewness and address our research question. With the first
model, using ResNet34 architecture [170] with pre-trained weights on ImageNet
and tuning the model for PlantVillage data sets, we reach 99.782% accuracy
after 10 epochs, i.e., we were able to correctly classify crop and disease from 38
possible classes in 998 out of 1,000 images. This result can be attributed to the
representation power of the ResNet architecture as well as to having a large number
of crop disease samples from different classes. Upon firstly reproducing the accuracy
rates reported in [171] on the original dataset, we considered the classification
problem under the generated imbalance.

We randomly picked 1,000 healthy and 10 unhealthy samples from a plant type for
the training set, 150 healthy and 7 unhealthy samples for the validation set, fine
tuned using the ResNet34 architecture, and then tested the model performance on
an equal number of healthy and unhealthy images (150 vs 150) in a test set. We did
this for 3 different plant types: Apple, Pepper, and Tomato. Training on just 10
samples and validating on 7 samples from minority class, we managed to correctly
predict more than 141 of 150 unhealthy images spanning over multiple anomalies
that may not exist in the training or validation set. When experimenting with
different configurations, we discovered a significant improvement of classification
performance by adding a final BN layer just before the output layer. We did more
experiments in the VGG19 framework [172] under the same settings, and managed
to correctly predict more than 143 of 150 unhealthy images, which is higher than
what we got through ResNet34: 130 out of 150.

4.3.2 Adding a Final Batch Norm Layer Before the Output
Layer

By using the imbalanced datasets for certain plant types (1,000 healthy/10 un-
healthy samples in the training set, 150/7 in the validation set and 150/150 in
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the test set), we performed several experiments with the VGG19 and ResNet34
architectures. The selected plant types were Apple, Pepper and Tomato - being
the only datasets of sufficient size to enable the 99%-1% skewness generation. We
treated unhealthy class as a minority class due to the fact that the abnormalities
are rare in the real-world as well and gathering the unhealthy images is harder
compared to healthy ones. So, we set the ratio of unhealthy images to 1% in train
set and 5% in validation set. But we created a balanced dataset for test set to test
the model performance on unseen images that are in an equal number for both
classes.

In order to fine-tune our network for the PlantVillage dataset, the final classification
layer of CNN architectures is replaced by Adaptive Average Pooling (AAP), BN,
Dropout, Dense, ReLU, BN and Dropout followed by the Dense and BN layer
again. The last layer of an image classification network is often a fully-connected
layer with a hidden size being equal to the number of labels to output the predicted
confidence scores that are normalized by the softmax operator to obtain predicted
probabilities. In our implementation, we add another 2-input BN layer after the
last dense layer (before softmax output) in addition to existing BN layers in the
tail and 4 BN layers in the head of the DL architecture (e.g., ResNet34 possesses a
BN layer after each convolutional layer, having altogether 38 BN layers given the
additional 4 in the head). A schematic outline of this architecture is provided in
Figure 4.2.

Figure 4.2: Implementation of the final BN layer in ResNet34, just before the softmax
output.

At first we run experiments with VGG19 architectures for selected plant types by
adding the final BN layer. When we train this model for 10 epochs and repeat this
for 10 times, we observed that the F1 test score is increased from 0.2942 to 0.9562
for unhealthy Apple, from 0.7237 to 0.9575 for unhealthy Pepper and from 0.5688
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to 0.9786 for unhealthy Tomato leaves. We also achieved substantial improvement
in healthy samples (being the majority in the training set). For detailed metrics
and charts, see Figure 4.3 and Table 4.2.

Figure 4.3: Averaged loss charts over 10 runs for the Apple dataset without final BN
(left), with final BN layer (right) and with WL (center) in VGG19 architecture. Without
WL, after adding the final BN layer, the test F1 score is increased from 0.2942 to 0.9562
for the minority class while the train and validation losses level off around 0.5 before
the model begins to overfit. It is also evident that the standard deviation among runs
(depicted as the shaded areas surrounding a given curve within each plot) is lower for the
latter case, as the training becomes smoother therein.

Table 4.2: Averaged F1 test set performance values over 10 runs, alongside BN’s total
improvement, using 10 epochs with VGG19, with/without BN and with Weighted Loss
(WL) without BN.

Plant Class without
final BN

with WL
(no BN)

with final BN
(no WL)

BN total
improvement

Apple Unhealthy 0.2942 0.7947 0.9562 0.1615
Healthy 0.7075 0.8596 0.9577 0.0981

Pepper Unhealthy 0.7237 0.8939 0.9575 0.0636
Healthy 0.8229 0.9121 0.9558 0.0437

Tomato Unhealthy 0.5688 0.8671 0.9786 0.1115
Healthy 0.7708 0.9121 0.9780 0.0659

In order to explain which parts of the image the network was looking at when it
made a prediction, we experimented with class-discriminative activation maps (a
generic localizable deep representation). Class activation maps [173], commonly
called CAMs, are class-discriminative saliency maps. While saliency maps give
information on the most important parts of an image for a particular class, class-
discriminative saliency maps help distinguish between classes. We run experiments
for Apple class with and wothout final BN layer using ResNet34 and visualized the
activation maps. As you can see at Figure 4.4, the model without final BN layer
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looks at the irrelevant parts of the picture and predicting wrong while it is looking
at the right parts when the final BN layer is added.

Figure 4.4: Class-discriminative activation maps of a sample prediction under two
settings (with and without final BN layer). Class-0 indicates Healthy and Class-1 indicates
Unhealthy. The first row belongs to the predictions under vanilla settings and the second
row belongs to the predictions when final BN layer is added. With final BN, the activations
for Unhealthy class is glowing over the wrong pixels and it is predicted as Healthy. The
probability of being Unhealthy is 36.5% and we see some minor activations closer to blight
areas while no activation is happening for Healthy class. On the other hand, with final BN,
the activations for Unhealthy class is glowing over the right pixels and it is predicted as
Unhealthy. The probability of being Healthy is 49.6% and we see some minor activations
closer to Healthy areas.

The highlighted parts (heatmap) basically tells us which parts of an image induced
the wrong classification. In this example, the model made the wrong prediction
because of the highlighted part.
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4.3.3 Experimentation Subject to Different Configurations

Using the following six configuration variations with two options each, we created
64 different configurations which we tested with ResNet34 (training for 10 epochs
only): Adding (X) a final BN layer just before the output layer (BN), using (X)
weighted cross-entropy loss [174] according to class imbalance (WL), using (X)
data augmentation (DA), using (X) mixup (MX) [175], unfreezing (X) or freezing
(learnable vs pre-trained weights) the previous BN layers in ResNet34 (UF), and
using (X) weight decay (WD) [176]. Checkmarks (X) and two-letter abbreviations
are used in Table 4.3 and Table 4.4 to denote configurations. When an option is
disabled across all configurations, its associated column is dropped.

Table 4.3: Best performance metrics over the Apple dataset under various configurations
using ResNet34.

Class Config
Id

Test set
precision

Test set
recall

Test set
F1-score Epoch BN DA UF WD

Unhealthy 31 0.9856 0.9133 0.9481 6 X
(class = 1) 23 0.9718 0.9200 0.9452 6 X X

20 0.9926 0.8933 0.9404 7 X X X X
Healthy 31 0.9193 0.9867 0.9518 6 X

(class = 0) 23 0.9241 0.9733 0.9481 6 X X
20 0.9030 0.9933 0.9460 7 X X X X

As shown in Table 4.3, just adding the final BN layer was enough to get the highest
F1 test score in both classes. Surprisingly, although there is already a BN layer
after each convolutional layer in the base CNN architecture, adding one more BN
layer just before the output layer boosts the test scores. Figure 4.5 shows that we
gain a boost in Test F1 score by more than double (by 1.2 times) just by adding a
final BN layer.

Notably, the 3rd best score (average score for configuration 31 in Table 4.4) is
achieved just by adding a single BN layer before the output layer, even without
unfreezing the previous BN layers. Moreover, it is evident that the additional BN
layer is never utilized among the worst performing configurations (see Table 4.4).

The model without the final BN layer is pretty confident even if it predicts falsely.
But the proposed model with the final BN layer predicts correctly even though
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Figure 4.5: The ratio of increase in Test-F1 scores per each configuration. The highest
relative gain in Test-F1 score for both classes is achieved by adding a final BN layer (only
one parameter is set to True at a time). The experiments show that the enhancement is
more than doubled just by adding a final BN layer (e.g., from 0.42 to 0.95 translates into
a (0.95-0.42)/0.42 = 1.2 gain factor).

Table 4.4: Best (top three) and worst (bottom three) performing configurations (F1
measure, for the unhealthy/minority class) when using ResNet34 for the Apple, Pepper
and Tomato datasets.

Config Id Apple Pepper Tomato Average BN DA MX UF WD

29 0.9332 0.9700 0.9866 0.9633 X X
28 0.9332 0.9566 0.9966 0.9622 X X X
31 0.9499 0.9433 0.9833 0.9588 X
49 0.6804 0.5080 0.5339 0.5741 X X X
48 0.5288 0.5638 0.5638 0.5521 X X X X
50 0.6377 0.5027 0.4528 0.5311 X X X
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it is less confident. We end up with less confident but more accurate models
in less than 10 epochs. The classification probabilities for five sample images
from the unhealthy class (class = 1) with final BN layer (right column) and
without final BN layer (left column) are shown in Table 4.5. As explained above,
without the final BN layer, these anomalies are all falsely classified (recall that
Psoftmax(class = 0) = 1� Psoftmax(class = 1)).

Table 4.5: Softmax output values (representing class probabilities) for five sample
images of unhealthy plants. Left column: Without final BN layer, softmax output values
for unhealthy, resulting in a wrong classification in each case. Right column: With final
BN layer, softmax output value for unhealthy, resulting in correct but less "confident"
classifications.

Without final BN layer With final BN layer

0.1082 0.5108
0.1464 0.6369
0.1999 0.6082
0.2725 0.6866
0.3338 0.7032

4.3.3.1 Removing the additional BN layer during inference

Since adding the final BN layer adds a small overhead (four new parameters) to the
network at each iteration, we experimented if the final BN layer could be dropped
once the training is finished so that we can avoid the cost. Dropping this final
BN layer means that training the network from end to end, and then chopping
off the final BN layer from the network before saving the weights. We tested this
hypothesis for Apple, Pepper and Tomato images from PV dataset under three
conditions with 1% imbalance ratio: Without final BN, with final BN and then
removing the final BN during testing. We observed that removing the final BN
layer in inference would still give us a considerable boost on minority class without
losing any performance gain on the majority class. The results in Table 4.6 show
that the performance gain is very close to the configuration in which we used the
final BN layer both in training and inference time. As a consequence, we confirm
an hypothesis that the final BN layer can indeed be removed in inference without
compromising the performance gain.
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Table 4.6: Training with the final BN layer, and then dropping this layer while evaluating
on the test set proved to be still useful in terms of improving the classification score on
minority classes, albeit not as much as with the final BN layer kept (imbalance ratio 0.01,
epoch 10, batch size 64).

Apple Pepper Tomoto
healthy unhealthy healthy unhealthy healthy unhealthy

with no final BN 0.71 0.22 0.74 0.45 0.74 0.46
with final BN 0.92 0.91 0.94 0.94 0.98 0.98
train with final BN 0.74 0.83 0.75 0.82 0.78 0.85
remove while testing

4.3.3.2 Impact level regarding the imbalance ratio and the batch size

In the previous sections, we empirically showed that the final BN layer, when placed
before the softmax output layer, has a considerable impact in highly imbalanced
image classification problems but they fail to explain the impact of using the final
BN layer as a function of level of imbalance in the training set. In order to find if
there is a certain ratio in which the impact is maximized, we tested this hypothesis
(H-1) over various levels of imbalance ratios and conditions explained below. In
sum, we ended up with 430 model runs, each with 10 epochs (basically tested with
5, 10, 15, .. 100 unhealthy vs 1000 healthy samples). During the experiments, we
observed that the impact of final BN on highly imbalanced settings is the most
obvious when the ratio of minority class to the majority is less than 10%; above
that almost no impact. As expected, the impact of the final BN layer is more
obvious on minority class than it is on majority class, albeit the level of impact
with respect to the imbalance ratio is almost same, and levels off around 10%. It is
mainly because of the fact that the backbone architecture (ResNet34) is already
good enough to converge faster on such data set (Plant Village) and the model
does well on both classes after 10% imbalance (having more than 100 unhealthy
with respect to 1000 healthy samples can already be handled regardless of final BN
trick). During these experiments, we also tested if unfreezing the previous layers in
the backbone CNN architecture (ResNet34) would also matter. We observed that
unfreezing the pretrained layers helps without even final BN layer, but unfreezing
adds more computation as the gradient loss will be calculated for each one of them.
After adding the final BN layer and freezing the previous pretrained layers, we
observed similar metrics and learning pattern as we did with unfreezing but not
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with final BN layer. This is another advantage of using the final BN that allow
us to freeze the previous pretrained layers. The results are displayed as charts in
Figure 4.6 and Figure 4.7.

Figure 4.6: The impact of final BN layer on the F1 test score of each class for Apple
plant. The impact is the most obvious when the ratio of minority class to the majority is
less than 0.1.

We also experimented if the batch size would also be an important parameter for
the minority class test accuracy when the final BN is added and found out that the
highest score is achieved when the batch size is around 64, whereas the accuracy
drops afterwards with larger batches. The results are exhibited in Figure 4.7.

4.3.3.3 Experimentation on the MNIST Dataset: The impact of final
BN layer in basic CNNs and FC networks

In order to reproduce equivalent results on a well known benchmark dataset when
utilizing different DL architectures, we set up two simple DL architectures: a
CNN network with five Conv2D layers and a one-layer (128-node) FC feed forward
NN. Then we sampled several pairs of digits (2 vs 8, 3 vs 8, 3 vs 5 and 5 vs 8)
from MNIST dataset that are mostly confused in a digit recognition task due
to similar patterns in the pixels. During the experiments, the ratio of minority
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Figure 4.7: The impact of batch size on the F1 test score when the final BN layer
added. The highest score is gained when the batch size is 64 and then the accuracy starts
declining.

class to majority is kept as 0.1 and experiments with the simple CNN architecture
indicates that, after adding the final BN layer, we gain ⇠ 20% boost in minority
class and ⇠ 10% in majority class. Lower standard deviations across the runs
with final BN layer also indicates the regularization effect of using the final BN
layer. As a result, we rejected a hypothesis that the performance gain through
the final BN layer can be reproduced with another dataset or with much simpler
neural architectures. Another important finding is that the final BN layer boosts
the minority class’ F1 scores only when there is a single majority class. When two
majority classes are set, no improvements are evident regardless of the usage of
the final BN layer (see 4th and 5th settings in Table 4.7). Therefore, we partially
confirm hypothesis (H-5) by showing that the performance gain through the final
BN layer can also be achieved in multi-classification settings but the number of
majority and minority classes may affect the role of the final BN layer. In the
experiments with a one-layer FC network, we enriched the scope and also tested
whether using different loss functions and output activation functions would have
an impact on model performance using final BN layer with or without another BN
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layer after the hidden layer. We observed that adding the final BN layer, softmax
output layer and categorical crossentropy (CCE) as a loss function have the highest
test F1 scores for both classes. It is also important to note that we observe no
improvement even after adding the final BN layer when we use sigmoid activation
in the output layer (Table 4.7). Accordingly, we reject hypothesis (H-6).

Table 4.7: Using the same ResNet-34 architecture and skewness (1% vs 99%) and setting
up five different configurations across various confusing classes from MNIST dataset, it is
clear that adding the final BN layer boosts the minority class F1 scores by 10% to 30%
only when there is a single majority class. When we have two majority classes, there is
no improvement observed regardless of the final BN layer is used or not. (X) indicates
minority classes.

Setting-1 Setting-2 Setting-3 Setting-4 Setting-5
3 (X) 8 2 (X) 8 3 (X) 5 3 (X) 5 8 3 (X) 5 (X) 8

without final BN 0.19 0.69 0.25 0.70 0.24 0.70 0.06 0.77 0.78 0.28 0.32 0.56
with final BN 0.55 0.76 0.50 0.74 0.54 0.76 0.00 0.77 0.78 0.58 0.59 0.69

Table 4.8: Using one-layer (128 node) NN and the 0.01 skewness ratio, with nine
different settings for 3 (minority) and 8 (majority) classes from MNIST dataset (100-
epoch). Adding the final BN layer, softmax output layer and CCE as a loss function has
the highest test F1 scores for both classes. (CCE - categorical cross entropy, BCE - binary
cross entropy, first BN - a BN layer after the hidden layer).

output
activation

loss
function

first
BN layer

final
BN layer

class-3
(minority)

class-8
(majority)

sigmoid BCE 0.17 0.67
softmax BCE 0.00 0.67
softmax BCE X 0.60 0.78
softmax CCE 0.67 0.80
sigmoid BCE X 0.05 0.67
softmax BCE X 0.85 0.88
softmax BCE X X 0.83 0.87
softmax CCE X 0.88 0.90
softmax CCE X X 0.78 0.85

4.4 Discussion

The metrics at Table 4.2 clearly indicate that after adding the final BN layer, the
F1 test score is increased from 0.2942 to 0.9562 for unhealthy Apple, from 0.7237
to 0.9575 for unhealthy Pepper and from 0.5688 to 0.9786 for unhealthy Tomato
leaves on average (10 runs). When compared to a network with WL but no final
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BN layer, the average improvement was 0.1615, 0.0636 and 0.1115 respectively.

To see what would have happened had we let the models further train, we conducted
a 100-epoch training for both models and compared the results. We observed that
the test accuracy with the model having a final BN layer quickly rises to 94%
within only 6 epochs, but then decreases steadily to 78% within a total of 100
epochs.

By adding a final BN layer just before the output, we normalize the output of
the final dense layer, and feed into the softmax layer so that we shrink the gap
between class activations (see Figure 4.8). As its name suggests, softmax will always
favor the large values when the layer outputs spread over large ranges (exponential
normalization). By applying BN to dense layer outputs, the gap between activations
is reduced (normalized) and then softmax is applied on normalized outputs, which
are centered around the mean. Therefore, we end up with centered probabilities
(around 0.5), but favoring the minority class by a small margin.

This shows that DNNs have the tendency of becoming ‘over-confident’ in their
predictions during training, and this can reduce their ability to generalize and thus
perform as well on unseen data. Actually, softmax activation leading to an over-
confident outputs is already a well-studied phenomenon and observed especially
when a neural network is trained with the cross-entropy loss as softmax classifiers
tend to output a highly confident prediction [177]. [178] sheds another light on
this topic and argues that the deep stack of non-linear layers in between the input
and the output unit of a neural network are a way for the model to encode a
non-local generalization prior over the input space and it makes output unit to
assign nonsignificant probabilities to regions of the input space that contain no
training examples in their vicinity.

In addition, large datasets can often comprise incorrectly labeled data, meaning
inherently the DNN should be a bit skeptical of the ‘correct answer’ to avoid being
overconfident on bad answers. This was the main motivation of Müller et al. [179]
for proposing the label smoothing, a loss function modification that has been shown
to be effective for training DNNs. Label smoothing encourages the activations of
the penultimate layer to be close to the template of the correct class and equally
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Figure 4.8: The x-axis represents the ground truth for all 150 healthy (0) and 150
unhealthy (1) images in the test set while red and blue lines represent final softmax
output values between 0 and 1 for each image. Top chart (without final BN): When
ground truth (black) is class = 0 (healthy), the softmax output for class = 0 is around
1.0 (blue, predicting correctly). But when ground truth (black) is class = 1 (unhealthy),
the softmax output for class = 1 (red points) changes between 0.0 and 1.0 (mostly below
0.5, NOT predicting correctly). Bottom chart (with final BN): When ground truth
(black) is class = 0 (healthy), the softmax output is between 0.5 and 0.75 (blue, predicting
correctly). When ground truth (black) is class = 1 (unhealthy), the softmax output (red
points) changes between 0.5 and 1.0 (mostly above 0.5, predicting correctly).

distant to the templates of the incorrect classes [179]. Despite its relevancy to our
research, label smoothing did not do well in our study as previously mentioned by
Kornblith et al. [180] who demonstrated that label smoothing impairs the accuracy
of transfer learning, which similarly depends on the presence of non-class-relevant
information in the final layers of the network.

Another observation is that a CNN with final BN is more calibrated when com-
pared to an equivalent network lacking that layer. The calibration principle [181]
states that the probability associated with the predicted class label should reflect
its ground truth correctness likelihood and a model is calibrated if its predicted
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outcome probabilities reflect their accuracy. Put it simply, neural networks output
"confidence" scores along with predictions in classification. Ideally, these confidence
scores should match the true correctness likelihood. For example, if we assign 80%
confidence to 100 predictions, then we’d expect that 80% of the predictions are
actually correct. If this is the case, we say that the network is calibrated. However,
this is not always being observed even in state-of-the-art neural architectures.

We tested the calibration of both networks (with and without final BN) by drawing
the reliability diagrams as suggested by Guo et al. [181] and found that when the
final BN layer is added, a network has much lower ECE (Expected Calibration
Error), i.e., ideal confidence relative to its own accuracy. In effect, a final BN
layered network is not ‘over-confident’ and as a result generalizes and performs
better on real world data. This is also confirmed by the fact that the network with
a final BN layer has a lower Brier score [182] (squared error between the predicted
probability vector and the one-hot encoded true response) than without a final BN
layer. Our calibration experiments (Figure 4.9.) show that that a network has
much lower ECE, i.e. has a more ideal confidence relative to its own accuracy. In
effect, a final BN-layered network is not ‘over-confident’ and as a result generalizes
and performs better on unseen datasets.

Figure 4.8 shows that softmax outputs level off around 0.5, as also depicted in
Figure 4.3. Since the network loss is optimized by using softmax output value and
the ground truth, focusing too much on loss minimization may not be viable when
the final BN layer is used in similar settings.

Additionally, we empirically demonstrated that the final BN layer could still be
eliminated in inference without compromising the attained performance gain. This
finding supports the assertion that adding the BN layer makes the optimization
landscape significantly smoother, which in turn renders the gradients’ behavior more
predictive and stable – as suggested by [158]. We argue that the learned parameters,
which were affected by the addition of the final BN layer under imbalanced settings,
are likely sufficiently robust to further generalization on the unseen samples, even
without normalization prior to the softmax layer.

The observation of locating a sweet spot (10%) for the imbalance ratio, at which
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Figure 4.9: The Brier score measures the mean squared difference between the predicted
probability assigned to the possible outcomes for item and the actual outcome. Therefore,
the lower the Brier score is for a set of predictions, the better the predictions are calibrated.
In this chart we see that a network without a final BN layer has a Brier score 0.349 while
the one with the final BN has 0.158, indicating a network much better calibrated.

we can utilize the final BN layer, might be explained by the fact that the backbone
ResNet architecture is already strong enough to easily generalize on the PV dataset
and the model does not need any other regularization once the number of samples
from the minority class exceeds a certain threshold. As the threshold found in our
experiments is highly related to the DL architecture and the utilized dataset, it is
clear that it may not apply to other datasets, but can be found in a similar way.

As discussed before, the BN layer calculates mean and variance to normalize
the previous outputs across the batch, whereas the accuracy of this statistical
estimation increases as the batch size grows. However, its role seems to change
under the imbalanced settings – we found out that a batch size of 64 reaches the
highest score, whereas by utilizing larger batches the score consistently drops. As a
possible explanation for this observation, we think that the larger the batches, the
higher the number of majority samples in a batch and the lesser the chances that
the minority samples are fairly represented, resulting in a deteriorated performance.

During our experiments, we expected to see similar behavior with sigmoid activation
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replacing softmax in the output layer, but, evidently, the final BN layer works
best with softmax activations. Although softmax output may not serve as a good
uncertainty measure for DNNs compared to sigmoid layer, it can still do well on
detecting the under-represented samples when used with the final BN layer.

Moreover, large datasets can often comprise incorrectly labeled data, meaning
inherently the DNN should be a bit skeptical of the ‘correct answer’ to avoid being
overconfident on bad answers. This was the main motivation of Müller et al. [179]
for proposing the label smoothing, a loss function modification that has been shown
to be effective for training DNNs. Label smoothing encourages the activations of
the penultimate layer to be close to the template of the correct class and equally
distant to the templates of the incorrect classes [179]. Despite its relevancy to our
research, label smoothing did not do well in our study as previously mentioned by
Kornblith et al. [180] who demonstrated that label smoothing impairs the accuracy
of transfer learning, which similarly depends on the presence of non-class-relevant
information in the final layers of the network.

4.4.1 Additional Experiments

In addition to the aforementioned experiments, we ran more tests to further support
our findings: Turning off the bias at the final dense layer when the final BN layer is
added, using SeLU [183] instead of BN in the last layer, freezing and unfreezing the
previous BN layers, label smoothing, training a simple CNN from scratch rather
than utilizing SOTA architectures.

Also, additional corroboration was achieved over the ISIC Skin Cancer dataset [184]
as well as the Wall Crack dataset [185] exhibiting similar patterns of behavior and
thus supporting our reported findings. These observations and the code to reproduce
the results mentioned in this paper are fully reported in the supplementary material.

4.5 Conclusions

This chapter demonstrated that regardless of freezing or unfreezing the previous
layers in the pre-trained modern CNN architectures, putting an additional BN
layer just before the softmax output layer has a considerable impact in terms
of minimizing the training time and test error for minority classes in a highly
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imbalanced dataset (especially in a setting where a high recall is desired for the
minority class). Our experiments show that using ResNet34 we can achieve an F1
test score of 0.94 in 10 epochs for the minority class while we could only achieve
0.42 without using the final BN layer. Using VGG19, the same approach increases
the F1 test score from 0.25 to 0.96 in 10 epochs. Using VGG19, the same approach
increases the F1 test score from 0.25 to 0.96 in 10 epochs. As evident from Table 4.2,
upon adding the final BN layer the F1 test score is increased from 0.2942 to 0.9562
for the unhealthy Apple minority class, from 0.7237 to 0.9575 for the unhealthy
Pepper and from 0.5688 to 0.9786 for the unhealthy Tomato when WL is not used
(all are averaged values over 10 runs). When compared to a network with WL
but without a final BN layer, the averaged improvements were 0.1615, 0.0636 and
0.1115 respectively. We showed that the highest gain in test F1 score for both
classes (majority vs. minority) is achieved just by adding a final BN layer, resulting
in a more than three-fold performance boost on some configurations.

We also argueed that trying to minimize validation and train losses may not be
an optimal way of getting a high F1 test score for minority classes. We presented
that having a higher train and validation loss but high validation accuracy would
lead to higher F1 test scores for minority classes in less time. That is, the model
might perform better even if it is not confident enough while making a prediction.
So, having a confident model (lower loss, higher accuracy) may favor the majority
class in the short run and ends up with lower F1 test scores for minority class due
to the conjecture that it learns to minimize error in majority class regardless of
class balance. Since BN (like dropout) adds stochasticity to the network, and the
network learns to be robust to this stochasticity during the entire training, it was
expected that the final BN layer would be detrimental for the network to cope with
the stochasticity right before the output [167]. However, we observed the contrary
in our experiments.

This chapter also showed that lower values in the softmax output may not necessarily
indicate ‘lower confidence level’, leading to another discussion why softmax output
may not serve as a good uncertainty measure for DNNs. In classification, predictive
probabilities obtained at the end of the pipeline (the softmax output) are often
wrongly interpreted as model confidence. As we have clearly shown, a model can
be uncertain in its predictions even when having a high softmax output [186].
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In the experiments mentioned in this chapter, we noticed that the performance
gain after adding the final BN layer in highly imbalanced settings could still be
achieved after removing this additional BN layer during inference; in turn enabling
us to get a performance boost with no additional cost in production. Then we
explored the dynamics of using the final BN layer as a function of the imbalance
ratio within the training set, and found out that the impact of final BN on highly
imbalanced settings is the most apparent when the ratio of minority class to the
majority is less than 10%; there is hardly any impact above that threshold.

We also ran similar experiments with simpler architectures, namely a basic CNN
and a single-layered FC network, when applied to the MNIST dataset under various
imbalance settings. The simple CNN experiments exhibited a gain of ⇠ 20% boost
per the minority class and ⇠ 10% per the majority class after adding the final
BN layer. In the FC network experiments, we observed improvements by 10% to
30% only when a single majority class was defined; no improvements were evident
for two majority classes, regardless of the usage of the final BN layer. While
experimenting with different activation and cost functions, we found out that using
the final BN layer with sigmoid activation had almost no impact on the task at
hand.

Overall, our study has shed light on the unexpected impact of the final BN layer
in simpler neural networks while dealing with imbalanced datasets. This discovery
presents exciting opportunities for further investigation in the future, as it requires
a more comprehensive analysis to fully understand its implications. Moving forward,
we suggest that future researchers explore the generalization of our findings to a
wide range of neural models, utilizing a combination of softmax activation or an
appropriate loss function for use in imbalanced image classification problems.

Additionally, we recommend examining the potential implications of our findings
in real-world scenarios, such as improving the accuracy of image classification in
medical diagnosis or object recognition in autonomous vehicles. We believe that
exploring these avenues will not only advance our understanding of neural networks,
but also have practical implications for a variety of fields.

To sum, the overall contributions of this chapter have been the following compo-
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nents:

• Putting an additional BN layer just before the output layer has a considerable
impact in terms of minimizing the training time and test error for minority
classes in highly imbalanced image classification tasks. Our experiments
show that the initial F1 test score increases from the 0.29-0.56 range to the
0.95-0.98 range for the minority class when we added a final BN layer just
before the softmax output layer.

• Trying to minimize validation and train losses may not be an optimal way for
getting a high F1 test score for minority classes in binary anomaly detection
problems. We illustrate that having a higher training and validation loss but
high validation accuracy leads to higher F1 test scores for minority classes in
less time and using the final BN layer has a calibration effect. That is, the
network might perform better even if it is not ‘confident’ enough while making
a prediction. We will also argue that lower values in softmax output may
not necessarily indicate ‘lower confidence level’, leading to another discussion
about why softmax output is not a good uncertainty measure for deep learning
(DL) models.

• The performance gain after adding the final BN layer in highly imbalanced
settings could still be achieved after removing this additional BN layer during
inference; in turn enabling us to get a performance boost with no additional
cost in production.

• There is a certain threshold for the ratio of the imbalance for this specific
PV dataset, upon which the progress is the most obvious after adding the
final BN layer.

• The batch size also plays a role and significantly affects the outcome.

• We replicated the similar imbalanced scenarios in MNIST dataset, reproduced
the same BN impact, and furthermore demonstrated that the final BN layer
has a considerable impact not just in modern CNN architectures but also
in simple CNNs and even in one-layered feed-forward fully connected (FC)
networks.
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• We illustrate that the performance gain occurs only when there is a single
majority class and multiple minority classes; and no improvement observed
regardless of the final BN layer when there are two majority classes.

• We argue that using the final BN layer with sigmoid activation has almost no
impact when dealing with a strongly imbalanced image classification tasks.
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