
Learning from small samples
Kocaman, V.

Citation
Kocaman, V. (2024, February 20). Learning from small samples. Retrieved
from https://hdl.handle.net/1887/3719613
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3719613
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3719613


Chapter 3

Dealing with Small Data in
Machine Learning

In this chapter, we embark on a critical exploration of the myriad approaches to
address the unique challenges posed by small sample sizes in machine learning.
The genesis of this chapter lies in my quest to find more effective means of training
predictive models capable of learning efficiently from limited data. My journey
began with an in-depth exploration of batch normalization and gradually evolved
into an extensive study of Self-Supervised Learning (SSL), culminating in several
papers ([1], [2], [3]) on these subjects.

Realizing a gap that there wasn’t a single, consolidated source summarizing the
myriad methods and historical perspectives on learning from small samples led
to the creation of this chapter; a chapter that started as a necessity for my work
but grew into something much larger—a detailed survey and review chapter. This
chapter, therefore, is more than just a narrative thread in my dissertation; it is a
compilation of a journey, an exploration, and a guide, setting the stage for the deeper
and more focused explorations while laying the foundational groundwork, essential
for understanding the advanced techniques and specific applications discussed in
subsequent chapters.

15



3.1. Introduction

In the following sections, we navigate through the complexities of overfitting and
generalization, and how these are magnified in small data contexts. The chap-
ter then unravels a comprehensive suite of approaches, encompassing techniques
like ensemble methods, transfer learning, parameter initialization, loss function
reformulation, and regularization techniques. We also discuss innovative methods
such as data augmentation, synthetic data generation, and various optimization
techniques, all tailored to enhance learning from small datasets. The exploration
extends to cutting-edge concepts like physics-informed neural networks, unsuper-
vised, semi-supervised, and self-supervised learning, along with zero-shot, one-shot,
and few-shot learning, metalearning, and the harnessing of model uncertainty.
Furthermore, we delve into the realms of active learning, self-learning, multi-task
learning, symbolic learning, hierarchical learning, and knowledge distillation-based
learning, each offering unique insights and solutions to the small data challenge.

Additionally, this chapter addresses specific challenges such as dealing with imbal-
anced data and anomaly detection as a small data problem, further illustrating the
multifaceted nature of these challenges in machine learning. These methods serve as
the building blocks for the sophisticated approaches examined in Chapters 4 and 5,
specifically focusing on imbalanced data and the impact of self-supervised learning.
By the end of this chapter, readers will gain a comprehensive understanding of the
fundamental principles and techniques that are pivotal in harnessing the power of
small datasets for machine learning.

In sum, this chapter is not an isolated exploration but a vital piece of the puzzle,
intricately linked to the advanced techniques and case studies elaborated in Chapters
4 and 5. Therefore, it serves as a narrative thread that weaves through the entire
dissertation, setting the stage for a deeper dive into specific applications and
methodologies in machine learning when confronted with limited data.

3.1 Introduction

Recent advances in implementing deep learning (DL) techniques have demonstrated
that modern algorithms and complex architectures can enable machines to perform
tasks with a level of proficiency similar to that of humans. However, it is also
evident that a large amount of training data plays a crucial role in the success of

16



Chapter 3. Dealing with Small Data in Machine Learning

DL models.

It is a well known argument, both theoretically and empirically, that for a given
problem, with a large enough dataset, different algorithms tend to perform similarly.
It is important to note that this large dataset should contain meaningful information
rather than noise, in order for the model to effectively learn from it. The access
to large datasets has contributed to the dominance of companies such as Google,
Meta, Apple and many more in AI research and product development. Although
traditional machine learning (ML) typically requires less data than deep learning,
the performance of both traditional ML and DL models is similarly impacted by
the availability of large datasets. Figure 3.1 illustrates the performance gap of
traditional ML to DL models, with the increasingly growing amounts of data, and
proposes a qualitative estimation of the gap between large to small companies.
Figure 3.1 basically says that with limited data, traditional algorithms exhibit
marginally superior performance over deep learning. As the volume of data increases,
deep learning outperforms traditional methods significantly.

Figure 3.1: A qualitative estimation of performance comparison between traditional ML
and deep learning, as well as the performance gap between large to small companies [25].
With limited data, traditional algorithms exhibit marginally superior performance over
DL. As the volume of data increases, DL outperforms traditional methods significantly.
The red line in this chart indicates the performance of traditional ML algorithms as the
amount of data increases. It shows that traditional algorithms start off with a higher
performance than DL with small data sizes, but their performance improvement plateaus
as the amount of data grows, unlike DL which continues to improve.

Unlike traditional machine learning, human beings are capable of learning about
new objects with just a few examples using various approaches, such as relying

17



3.1. Introduction

on prior experience, comparing known and unlabeled examples, and internalizing
semantic descriptions of the object in question. The human learning process, even
at early stages, is of particular interest for machine learning, as a ML model initially
lacks any prior experience [26]. If we can develop ML models that learn in a
similar way, we may be able to approximate human-like learning with small data.
Many ML techniques for handling small data are inspired by the human approach,
such as data-driven approaches that use prior experience for low-shot problems or
learn how to learn tasks, or approaches that replicate human recognition of objects
with a few examples through human labeling or semantic description.

The distinction between small and large datasets can be examined further within
the context of the Probably Approximately Correct (PAC) model [27]. The PAC
model aids in determining the probable characteristics that an algorithm can learn,
taking into consideration factors such as sample complexity, time complexity, and
space complexity for the algorithm.

PAC basically links the sample size to error rates and to the general success
probability, and says that given data X, we expect our algorithm A to output a
correct (up to error ✏) classification hypothesis with probability of at least 1� �

(� : failure probability, well-distributed over X). The sample complexity then
becomes a function of ✏ and � : m(✏, �) = S (required examples). This means that
for arbitrarily high probability and low error (arbitrarily small � and ✏), we can
always find a learning algorithm A and a sample size S that achieves that high
probability and low error.

The distinction between small and large datasets in the PAC framework is thus
related to the model’s success probability and error rates in generalizing from
the training data to new, unseen data. The distinction between small and large
datasets is a critical factor to consider in the design of PAC models, as it affects
the generalization performance of the model and the amount of data required to
train it. In the PAC framework, a model is considered to have “learned” a concept
if it can correctly (up to an acceptable error rate) classify unseen examples with
high probability, under certain assumptions about the distribution of the data.
Importantly, the PAC framework provides explicit bounds for the sample sizing as
a function of the learner’s success probability as well as the expected error rate.

18



Chapter 3. Dealing with Small Data in Machine Learning

Altogether, if the problem is learnable, then satisfying the PAC’s bounds on the
sample sizing would guarantee the learner’s convergence (an event with a certain
probability) to a hypothesis that (approximately) classifies the data.

In other words, if the concept is simple and there is a large amount of data available,
then a smaller sample size may be sufficient for the model to generalize accurately.
However, if the concept is complex and there is a small amount of data, a larger
sample size may be required for the model to generalize accurately.

3.2 Handling Small Data

One crucial question that is often overlooked is why we need for ML to address
the problem at hand. Consider a scenario where we want to predict the distance
a ball will travel when thrown with a velocity (v) at an angle (✓). Using the
principles of projectile motion from high-school physics, we can use the equations
to precisely determine the pathway of the ball. In this case, the equation can be
considered the model or representation for the task, with the variables v , ✓, and
g (the gravitational acceleration) serving as important features. In situations in
which exist a few features and a clear understanding of their impact on the task, it
is possible to develop a precise analytical model and solve it instantly (mostly by
hand).

Now consider a different scenario in which we want to predict a stock price of
a company we would like to invest in. In this case, it is difficult to grasp the
full range of factors that might influence stock prices. Without a true model, we
can use historical stock prices and various other features, other stock prices, and
market sentiment, to discover the latent relationships using a ML algorithm. This
illustrates a situation where it can be challenging for humans to understand the
intricate relationships between a large number of features, but machines can easily
capture them by exploring large amounts of data.

In order to build an effective model, it is generally desirable to minimize both
bias and variance. This involves creating a model that not only fits the training
data well, but also generalizes well to test or validation data. There are various
techniques that can be used to achieve this goal wherein training with a larger

19



3.2. Handling Small Data

dataset is usually the first one.

Imagine a dataset with a distribution resembling a sinusoidal wave. The chart at
the upper left corner of Figure 3.2 shows that there are multiple models that are
able to fit the data points well. However, many of these models overfit and do not
generalize well to the entire dataset.

In DL, overfitting refers to a situation where a model has learned the training data
too well, to the point where it memorizes the data and is not able to generalize
to new, unseen data. In other words, the model has a high accuracy on the
training data, but poor accuracy on the test data. This occurs because the model
is too complex and has too many parameters, so it captures the noise and random
variations in the training data.

On the other hand, generalization refers to the ability of a model to accurately
make predictions on new, unseen data that is drawn from the same distribution as
the training data. It is a key aspect of ML, as the goal is to build models that can
generalize to new data, rather than just memorizing the training data.

As the amount of data increases, as shown in the charts in Figure 3.2, the number
of models that can fit the data decreases. As the number of data points continues to
increase, the true distribution of the data is captured more accurately. This example
illustrates how a larger dataset can help a model uncover the true underlying
relationships.

Another example of a complex task that is challenging for humans but can be easily
tackled by ML algorithms is identifying spam emails. Manually developing rules
and heuristics to distinguish spam emails can be time-consuming and difficult to
maintain. In contrast, ML algorithms can easily learn these relationships from the
data and perform the task more accurately and efficiently. This ability to learn
relationships from data rather than relying on explicit rules has contributed to the
widespread adoption of ML in a variety of fields and industries.

Deep neural networks have millions of parameters to learn and this means we need
a lot of iterations before we find the optimal values. If we have small data, running
a large number of iterations can result in overfitting. Large dataset helps us avoid

20



Chapter 3. Dealing with Small Data in Machine Learning

Figure 3.2: Any model can “fit” a single data point (as seen in the upper left corner).
As we have more points, less and less models can reasonably explain them altogether. The
more data points we have, the better the model capacity to uncover the true underlying
relationships; hence less hypotheses we need. As the number of data points continues to
increase, the true distribution of the data is captured more accurately (source: [28]).

overfitting and generalizes better as it captures the inherent data distribution
more effectively. Due to close relationship of overfitting (caused by the small size
of dataset) with the strategies to overcome the lack of enough sample of data
points, we will elaborate on the techniques to reduce overfitting (thus enabling
generalization) in the following section.

3.2.1 Overfitting and Generalization

The utilization of deep neural networks requires the learning of a vast number of
parameters, thus requiring a substantial number of iterations for the optimization
course of these parameters. However, in instances where the amount of data that
a ML model is trained on is limited, it is more prone to overfitting (especially

21



3.2. Handling Small Data

when subject to a high number of iterations). This is because there is less feature
information to learn from, so the model may end up fitting to the noise or random
fluctuations in the training data rather than the underlying pattern. Conversely,
utilizing a dataset of ample size can aid in preventing overfitting and yield better
generalization by effectively capturing the underlying distribution of the data. As a
result, the model may perform well on the training data but poorly on new, unseen
data (i.e., when tested/validated).

Reducing overfitting is a crucial step in the training of neural networks as it ensures
that the model generalizes well to unseen data. Overfitting can occur when a model
is too complex and has seen too little data. To combat this issue, there are several
techniques that can be employed from both a dataset perspective and a model
perspective.

From a dataset perspective, one effective technique for reducing overfitting is to
acquire more labeled data. The more data the model is trained on, the more
robust it will be to overfitting. Another technique is to use Data Augmentation
and generate synthetic data [29]. This technique allows for the creation of new
data points from existing ones, which helps to diversify the training set and reduce
overfitting. Additionally, using labeled data from related domains for pretraining
via Transfer Learning [30] can be beneficial. By using a model pre-trained on
related data, the model will have a better “understanding” of the underlying data
distribution, reducing overfitting. Lastly, leveraging unlabeled data for pretraining
via Self-Supervised Learning [31] can be a useful technique. By training the model
on unlabeled data, the model can learn useful representations of the data, which
can be fine-tuned on the labeled data, thus reducing overfitting.

From a model perspective, reducing overfitting can also be achieved by adding
regularization to reduce complexity [32]. L2 penalty, weight decay, dropout, and
early stopping are all techniques that can be used to reduce model complexity
and prevent overfitting [33]. Another technique is to use smaller models, such
as the lottery ticket hypothesis [34] and knowledge distillation or to use simpler
models that require fewer data points. Lastly, building ensemble models can also
be an effective technique for reducing overfitting. Ensemble models [35] combine
the predictions of multiple models, which can help to smooth out any overfitting

22



Chapter 3. Dealing with Small Data in Machine Learning

that may have occurred in individual models (see 3.3.4 for more details regarding
ensemble techniques).

In conclusion, reducing overfitting is a crucial step in the training of neural
networks, and there are several techniques that can be employed from both a
dataset perspective and a model perspective to achieve this goal. We will cover the
techniques to reduce overfitting in detail in the following sections.

Recent research [36] has been studying the effect of pruning on generalization
performance and the findings are intriguing. Pruning is a technique to combat
overfitting, which is when a model learns the training data too well, including
its noise and outliers, to the detriment of its performance on unseen data. By
removing some of the weights, pruning simplifies the model, which can help it to
generalize better to new data. It has been known for some time that pruning,
or producing smaller models, can boost generalization performance. However,
other studies have shown that larger, overparameterized models can also improve
generalization performance, as seen in double descent and grokking studies. This
raises the question of how to reconcile these seemingly contradictory observations.

[36] have found that the reduction of overfitting due to pruning can be partly
explained by the improved training process. Pruning involves more extended
training periods and a replay of learning rate schedules which can contribute to
improved generalization performance. Figure 3.3 illustrates that a pruned model
can achieve better generalization performance, not only because of its reduced
complexity but also due to the improved training dynamics such as extended
training periods and learning rate adjustments. This effect is enhanced in the
presence of noisy data, where pruning helps the model to ignore the noise and
focus on the underlying patterns, leading to a better generalization on the test
data. Additionally, when applied to noisy datasets, the generalization performance
improvements due to pruning can be explained by a larger loss on noisy training
examples.

Setting larger loss function values on noisy training examples is beneficial because
pruned models don’t try to fit these noisy examples, which adds a regularizing
effect. This is somewhat similar to reducing the width of the layers. This is a new

23



3.2. Handling Small Data

Figure 3.3: Improved training caused by prunning might be responsible for better
generalization performance (source: [36]). The blue line represents the pruned model
which initially shows improved generalization (lower test error). The retraining and
learning rate adjustments during pruning help the model to perform better on test data.
The orange line (dense) remains flat across the pruning strength, indicating that the
unpruned model’s performance does not change with respect to the percentage of weights
remaining, as it is not subjected to pruning. The dotted line shows that an improved
training procedure can mimic the effects of pruning, leading to a similar generalization
performance without actually reducing the model’s complexity. This suggests that it’s
not just the act of pruning that improves performance, but also the associated training
techniques. The augmented area suggests that there may be additional methods or data
augmentation techniques at play that further improve the generalization performance
beyond just pruning.

research area and the findings are very promising, and it will be interesting to see
how the research on this subject progresses in the future.

Model averaging is another technique that can be used to mitigate the risk of
overfitting and improve generalization performance by combining multiple models.
This is achieved by taking the mean or weighted average of the prediction output
of each model. While this approach has been shown to be effective in reducing
variance and improving generalization, it is important to consider the potential
drawbacks, such as the need to maintain and evaluate a large collection of models,
which can be computationally expensive and challenging to deploy in a production
system.

24



Chapter 3. Dealing with Small Data in Machine Learning

In terms of generalization, [37] demonstrates that when training neural networks on
small synthetically-generated datasets (commonly referred to as algorithmic datasets
– a collection of data specifically designed to evaluate the performance of neural
networks on tasks that involve symbolic and algorithmic reasoning), unexpected
patterns of generalization occur more frequently and drastically compared to
datasets obtained from natural sources, even when the performance on the training
set is not affected. In [37], as seen in Figure 3.4, the authors show that long after
severely overfitting, validation accuracy can sometimes begin to suddenly increase
from “chance” level toward perfect generalization, leading to a phenomenon called
grokking by the authors.

Figure 3.4: A dramatic example of generalization far after overfitting on an algorithmic
dataset (a collection of data specifically designed to evaluate the performance of neural
networks on tasks that involve symbolic and algorithmic reasoning). The red curves show
training accuracy and the green ones show validation accuracy. Training accuracy becomes
close to perfect at < 103 optimization steps, but it takes close to 106 steps for validation
accuracy to reach that level, and we see very little evidence of any generalization until
105 steps (source: [37]).

Another technique to combat overfitting caused by small datasets is regularization,
that works by adding a penalty term to the model’s cost function that discourages
large weights [38]. This helps to constrain the model and make it simpler, which
can prevent it from fitting to the noise in the training data (see 3.3.8 for more
details on regularization).

25



3.3. Approaches to tackle small data problems

We will cover some of these techniques in detail, mostly the ones from a (small)
dataset perspective, in the following sections.

3.3 Approaches to tackle small data problems

Small data refers to datasets with a small number of instances, labels, features,
or altogether. Dealing with small data poses a challenge in ML as it can lead to
overfitting, underfitting, and poor generalization. However, despite the demanding
theoretical bounds (e.g., PAC), there are various pragmatic approaches that can
be employed to address this challenge and improve the performance of ML models
on small data in practice.

Small data can manifest itself in various forms. In some cases, small amount of
data that is mostly labelled or unlabelled can be regarded as small data, while in
other cases large amount of data that is mostly unlabelled or the number of target
classes is partially known (anomaly/ outlier detection) can also be regarded as a
small data problem. One of the major challenges of working with small datasets is
that the samples may not accurately reflect the underlying distribution of data in
the population, leading to difficulties in generalizing the model’s performance to
new, unseen data.

A small and largely unlabeled dataset is the most infamous version of small data
problem wherein both the size of data itself and the labels are not enough to build
a reliable model. This situation can pose significant challenges for ML models. The
limited amount of data may not provide sufficient information for the model to
accurately learn the underlying relationships and patterns in the data. Additionally,
the lack of labels can make it difficult for the model to learn from the data, as it
lacks the guidance provided by explicit class assignments. This can lead to poor
generalization performance on unseen data, as the model may overfit to the limited
and potentially noisy examples in the dataset. To mitigate these issues, it may
be necessary to carefully select and preprocess the available data, and potentially
incorporate additional sources of information, such as domain knowledge.

In summary, there are several approaches that can be employed to deal with
small data in machine learning, including regularization, cross-validation, transfer

26



Chapter 3. Dealing with Small Data in Machine Learning

learning, and data augmentation. Each approach has its own strengths and
limitations, and the most appropriate approach will depend on the specific context
and goals of the ML task. In the following sections, a few potential approaches
that may be useful in this situation will be elaborated.

3.3.1 Data selection and preprocessing

Carefully selecting and preprocessing the available data can help to ensure that the
model is able to learn from the most relevant and informative examples. This may
involve removing noisy or irrelevant data points, or aggregating or synthesizing
additional data to augment the available dataset.

Outliers can have a huge impact on the model and should be identified and removed
carefully – overall, it is argued removing the impact of outliers is essential for
getting a sensible model with a small dataset. In some cases, outliers could even
assist rather than harm the model trained with small datasets [39].

It is hard to avoid overfitting with a small number of observations and a large
number of predictors. There are several approaches to feature selection, including
analysis of correlation with a target variable, importance analysis, and recursive
elimination. It is also worth noting that feature selection will always benefit from
domain expertise.

In some cases, the dataset at hand may not exhibit the “small dataset effect”,
despite its size, if its impact on the learning task is good enough. After all, not all
the examples (observations) are equally important and helpful for the model to
learn the pattern and generalize over unseen data. Finding the most useful portion
of a larger dataset, also known as coresets, is another active research area called
dataset prunning, in which identifying coresets that allow training to approximately
the same accuracy as attainable with the original data.

When aiming to achieve a specific target model performance with a limited training
data, the question arises: What should be the size of the training subset to achieve
a certain performance ? There are a number of different methods (including a prior
distribution in Bayesian and frequentist methods that focus on estimation rather
than testing) proposed to determine meet this data size requirements [40] [41].

27



3.3. Approaches to tackle small data problems

In a similar context, [42] proposed a simple and effective sample size prediction
algorithm that conducts weighted fitting of learning curves.

These works attempt to identify examples that provably guarantee a small gap in
training error on the full dataset [43]. In this context [44] proposed a scoring
method that can be used to identify important and difficult examples early in
training, and prune the training dataset with insignificant decline in test accuracy
(the examples that can be removed from the training data without hampering
accuracy). [44] found out that even at initialization, 50% of the examples can be
prunned from the CIFAR-10 dataset without affecting accuracy, while on the more
challenging CIFAR-100 dataset, 25% of examples can be prunned resulting in only
a 1% drop in accuracy.

3.3.2 Incorporating domain, prior and context knowledge

Human conceptual knowledge has proven difficult for machine systems to replicate
in two ways. Firstly, humans are capable of learning new concepts from only a few
examples, whereas ML algorithms typically require significantly more examples
to perform similarly. This one-shot learning ability allows humans to easily grasp
the boundaries of new concepts and make meaningful generalizations, even in
the case of children. In contrast, many ML approaches, particularly DL models,
require large amounts of data to achieve high levels of performance on tasks such
as object and speech recognition. Secondly, human conceptual knowledge tends to
be more complex and versatile than that of machines, allowing for the creation of
new exemplars, the parsing of objects into parts and relations, and the creation of
abstract categories based on existing ones.

One of the key challenges in artificial intelligence and ML is replicating the ability
of humans to learn new concepts from just a few examples and to develop abstract,
flexible representations. While current ML approaches often require large amounts
of data, especially in the case of deep learning, humans are able to learn new concepts
and create abstract categories with relatively minimal exposure. Additionally,
human learning produces rich representations that can be applied to a wide range
of functions, including generating new exemplars and parsing objects into parts
and relations, while ML approaches often do not have this capability. A central

28



Chapter 3. Dealing with Small Data in Machine Learning

question in this field is how to explain these differences in learning between humans
and machines, and how to bring the two approaches closer together, particularly
given the trade-off between the complexity of a model and the amount of data
required for good generalization.

Given this context, Artificial General Intelligence (AGI) may be seen as a potential
solution to bridge the gap between human and ML by finding a balance between
model complexity and data requirement. AGI [45] refers to a field of AI research
that aims to develop algorithms that can perform a wide range of cognitive tasks
that are typically performed by humans, including perception, reasoning, learning,
and problem solving. The goal of AGI is to create machines that can learn and
generalize to new situations, similar to how humans can. The trade-off between the
complexity of a model and the amount of data required for good generalization is
one of the challenges in achieving AGI. In order to bring the two approaches closer
together, researchers are exploring various methods, including developing more
sophisticated algorithms, increasing the amount of data available, and improving
the interpretability of AI models. AGI has the potential to play a significant role in
bridging this gap by enabling algorithms to learn and generalize more like humans.

If there is domain knowledge available that could be used to inform the model’s
learning process, it may be beneficial to incorporate this information into the model’s
training. For example, this could involve providing the model with additional
constraints or regularization terms to help guide its learning. One way to address
the issue of data scarcity is to utilize domain knowledge to restrict the inputs to
the model, thereby reducing dimensionality.

Another naive approach would be using rule-based learning, wherein we define rules
to arrive conclusions rather than training a model on historical data points. It is
also one of the most practical approach to inject weak supervision to the learning
process, especially while labelling additional data points (e.g. domain experts
write labeling functions that express arbitrary heuristics, which can have unknown
accuracies and correlations [46]). Moreover, in order to alleviate the labor-intensive
process of manually collecting ground truth labels for ML applications, aggregating
multiple sources of weak supervision that is powered by rule based learning reducing
the data-labeling bottleneck [47].

29



3.3. Approaches to tackle small data problems

Creating rules for labeling data that accurately reflect the characteristics of the
data being analyzed usually involves several steps. We start with generating a
hypothesis about what the rules should be based on the characteristics of the data
(e.g., if the patient’s fever is above x and oxygen level is below y, the patient is
diagnosed as z). Next, we observe the data to validate the hypothesis and ensure
that it accurately reflects the characteristics of the data (using the small sample of
observation to validate the rules). Then, we start with simple rules based on the
observations made during this process. Finally, we improve the rules over time as
more data becomes available and the rules are refined.

The same approach can also be used to reduce false negatives (e.g., choose positive
labels when two models disagree) in scenarios such as predicting whether a patient
has cancer (it is better to make a mistake telling patients that they have cancer
than to fail to detect cancer). Similarly, in order to reduce false positives, choosing
negative labels when two models disagree can also be used.

Incorporating domain knowledge through rule-based models have certain limitations.
One such limitation is the inability to generalize to unseen data, which can make it
difficult to apply these models to new situations. Additionally, it can be challenging
to create rules for complex data, and there is no feedback loop to continuously
improve the model. Therefore, combining a rule-based model with a ML model may
be a more effective approach for data labeling, as it allows for the incorporation of
domain expertise while also leveraging the ability of ML models to improve and
scale with new data. In order to balance the trade-off between false negatives and
false positives, we can decide which type of error to prioritize when combining
these two models as briefly mentioned above.

Similarly to context injection, a method of incorporating metadata or contextual
information into a ML model in order to improve its accuracy on a specific problem,
can also be applied. This approach involves augmenting traditional ML models
with contextual information that may be available in the data and can be applied
to a wide range of problems, and can be particularly effective when metadata or
contextual information is available that is relevant to the task being addressed. The
incorporation of contextual information can be achieved through various methods
including training a model from scratch with context as an input, using end-to-end

30



Chapter 3. Dealing with Small Data in Machine Learning

approaches that consider context, or augmenting a pre-trained model by combining
context and prediction distributions to make a final prediction.

In another approach called Bayesian program learning (BPL) [48], applying human-
level concept learning through probabilistic program induction, the authors con-
struct a model that builds concepts from parts by leveraging prior knowledge in the
process. This led to human-level performance and outperforms the DL approaches.

Implicit or explicit sources of domain-knowledge, represented either as logical or
numeric constraints (often provided with the help of modification to a loss function)
can also be used at the model-construction stage by DNNs as explored in detail by
[49]. Implicit Composite Kernel (ICK) [50] is another flexible method that can be
used to include prior information or known properties (e.g., seasonality) in neural
networks.

3.3.3 Picking the right approach

Deep learning approaches often require a large amount of data to be trained,
whereas shallower neural networks and traditional ML methods may require less
data and can outperform deep neural networks in scenarios with limited data. In
machine learning, small data sets often require models with low complexity or
high bias to prevent overfitting. In addition to Support Vector Machines (SVM),
decision trees and Gaussian processes (GP), Bayesian methods such as the naive
Bayes classifier and ridge regression, are often the best choice for very small data
sets, although the results may depend on the choice of prior knowledge. SVM has a
particularly good generalization performance in the case of high-dimensional data
and a small set of training patterns, without using non-kernel methods [51].

The Naive Bayes algorithm, which is based on the assumption of conditional
independence between features given the class variable, is a simple classifier that
performs well on small data sets. Linear models and decision trees (or ensembles of
them, also known as random forests), which also have a relatively small number of
parameters, can also be effective on small data sets. In general, models that have
fewer parameters or strong prior assumptions are more suitable for small data sets.

Bayesian neural networks (BNNs, Bayesian NNs) also offer a probabilistic inter-

31



3.3. Approaches to tackle small data problems

pretation of DL models by inferring distributions over the models’ weights. The
model offers robustness to over-fitting, uncertainty estimates, and can easily learn
from small datasets [52]. As it is the case with Naive Bayes algorithm, Bayesian
algorithms naturally incorporate a form of regularization (the prior), hence less
prone to over-fitting the small dataset.

Another study, Modern Neural Networks Generalize on Small Data Sets [53],
utilizes a linear program to decompose fitted neural networks into ensembles of
low-bias sub-networks, which are found to be relatively uncorrelated. This process,
similar to a random forest, leads to an internal regularization effect that contributes
to the surprising resistance of neural networks to overfitting, even when trained on
a small number of examples. In experiments that contain a much smaller number
of training examples, deep neural nets are shown to achieve superior accuracy
without overfitting. This study argues that building your networks deep enough
would let you take advantage of this ensemble effect on small datasets.

In another study [54], there has been some success using stacked autoencoders
to pre-train a network with more optimal starting weights, which helps avoiding
local optima and other pitfalls of a bad initialization. The same study also claims
that fully connected DNN that consists of 3 or more hidden layers shows its
advantage over shallow neural network and support vector machine by achieving
higher prediction accuracy and better generalization performance.

[55] empirically shows that, by issuing set-valued classifications, Naive Credal
Classifier-2 (NCC2) is able to isolate and properly deal with instances that are
hard to classify in low data regimes (on which naive Bayes’ accuracy considerably
drops), and to perform as well as naive Bayes on the other instances.

In a nutshell, altering the architecture of the model can potentially improve its
ability to learn from a limited amount of data.

3.3.4 Ensemble methods

Combining the predictions of multiple models, either by averaging or through a
voting process, can often improve the overall performance of the model. This can
be particularly useful in the case of small and largely unlabeled datasets, where

32



Chapter 3. Dealing with Small Data in Machine Learning

individual models may be prone to overfitting or underfitting.

Ensemble techniques [35], which involve aggregating the predictions of multiple
models, can often result in improved accuracy and reduced variance compared to
individual models. This can be achieved through various methods such as weighting
the predictions of different models or using different values of hyperparameters for
the same model. Such techniques can be particularly useful in situations where
data is limited, as they can help mitigate overfitting and increase generalizability.
It is also advisable to seek input from domain experts when implementing ensemble
methods, as they may be able to provide valuable insights on the appropriate
weighting of different models or the selection of suitable hyperparameters.

In ensemble learning, multiple models are combined to make a final prediction.
Two common approaches in ensemble learning are bagging and boosting. Bagging
(bootstrap aggregation) involves generating random samples of the training dataset
with replacement, running a learning algorithm on each sample, and then taking
the mean of all predictions. Boosting is an iterative method that adjusts the weight
of each observation based on the previous classification. This approach aims to
reduce bias error and build strong predictive models.

3.3.5 Transfer learning

If there are similar tasks or datasets for which labeled data is available, it may be
possible to leverage this data to improve the performance of the model on the small
and largely unlabeled dataset. This can be done through transfer learning, where
a pre-trained model is fine-tuned on the new dataset. Transfer learning [30], also
known as domain adaptation, is basically the leveraging the knowledge of a neural
network learned by training on one task to apply it for another task (Figure 3.5).
The learned weights of a model that was pre-trained on one dataset are used to
‘bootstrap’ training of early or all but the final layer of a modified version of the
model applied to a different dataset.

In transfer learning, the knowledge gained from a source task is utilized to facilitate
and accelerate the learning process for a new target task. This technique allows
faster training, whereby the model just learns the weights of the last fully connected
layers, then applies a low learning rate with finely tuned adjustment to the entire

33



3.3. Approaches to tackle small data problems

Figure 3.5: In traditional approaches, a separate model is created for each task,
as illustrated in the figure on the left where three distinct models are used for three
different tasks. In contrast, transfer learning utilizes knowledge acquired from source
tasks to enhance the performance of the target task, as depicted in the figure on the right
(source: [56]).

model’s weights. This is achieved by two main concepts: Freezing and fine-tuning.
It is a common strategy to freeze the layers in neural-networks that are supposed to
be leveraged from the pre-trained model ‘as is’, and no weight updates are expected
on these layers. Freezing the weights for the initial layers of the network usually
gives better results on the smaller target set classes. [57] states that freezing the
first two to three layers of features results in a significant performance boost over
the baseline score, especially for smaller target set sizes under a thousand instances
per class.

In transfer learning, it is important to ensure that the weights trained on the source
task are relevant to the target task. If the weights are not relevant, transfer learning
may not be effective. It has been observed that the benefit of a pre-trained network
greatly decreases as the task the network was trained on diverges from the target
task [58]. For example, if the source task involves classifying horses and zebras
and the target task involves detecting benign and malign tumors, the weights from
the source task may not be useful for the target task. In order to obtain good
results, it is important to initialize the network with pre-trained weights that are
relevant to the target task.

One of the key challenges in using transfer learning techniques is to ensure that
the knowledge acquired from a source task is effectively transferred to a target

34



Chapter 3. Dealing with Small Data in Machine Learning

task, while avoiding negative transfer between tasks that are not closely related.
Removing layers from a pre-trained model may also have negative effects, as it
can alter the architecture of the model and potentially result in overfitting. It is
therefore important to carefully consider the number of layers to include in the
model.

In computer vision, deep neural networks trained on a large-scale image classification
dataset such as ImageNet have proven to be excellent feature extractors for a broad
range of visual tasks such as image classification and object detection. The sample
illustration of transfer learning and details of a typical CNN architecture for image
recognition can be seen at Figure 3.6.

Another important observation is that the performance of ImageNet architectures
and the power of transferability across different datasets may differ given the type
of the network (e.g., VGG-19, ResNet) and the nature of the dataset (see Figure 3.7
for more details).

There are different forms of transfer learning:

Inductive transfer learning refers to the use of knowledge learned from one
task to improve the performance of another task with the same structure, but
with different data. It is commonly used in real-world settings and is effective
at improving the performance of the target task. This type of transfer learning
may involve multitask learning, in which the model is trained on multiple related
tasks, or self-taught learning, in which the model is trained on a large amount of
unlabeled data and then fine-tuned on a small labeled dataset [56].

Inductive transfer learning is particularly useful when the target task has a limited
number of labeled samples, as it allows the model to make use of the larger labeled
dataset in the source domain (labeled data from both source and target domains are
available for training). In order to induce the knowledge from the source domain,
it is necessary to have labels available in the target domain. Inductive transfer
learning is commonly used in real-world settings and is effective at improving the
performance of the target task.

In a recent study, entitled Simplified Transfer Learning for Chest Radiography

35



3.3. Approaches to tackle small data problems

Figure 3.6: Schematic representation of a Convolutional Neural Network (CNN)
architecture for image recognition [59]. The process begins with the input image, which
undergoes a series of convolutional layers with applied activation functions, followed by
max pooling layers to reduce dimensionality while retaining important features. This
sequence forms the convolutional backbone, which is crucial for feature extraction. The
extracted features are then flattened and fed into a dense hidden layer. The network
concludes with a classifier head, consisting of additional dense layers with ReLU activation
and a final SoftMax layer for output class probabilities. Each step in the architecture is
designed to progressively abstract and condense the image information into a form that
the model can use to make accurate classifications.

Models Using Less Data [61], the authors proposed an approach called supervised
contrastive (SupCon), and compared with transfer learning from a nonmedical
dataset. The models using the pretrained weights reduced label requirements
up to 688-fold and improved the area under the receiver operating characteristic

36



Chapter 3. Dealing with Small Data in Machine Learning

Figure 3.7: The performance of modern CNN architectures on popular datasets differ
based on the nature of the datasets and whether the network is initialized from the
ImageNet checkpoints (finetuned) or trained from scratch with random initialization
(source: [60]).

curve (AUC) at matching dataset sizes. At the extreme low-data regimen, training
small nonlinear models by using only 45 chest radiographs yielded an AUC of
0.95 (non-inferior to radiologist performance) in classifying microbiology-confirmed
tuberculosis in external validation (see Figure 3.8 for more details).

Unsupervised transfer learning involves transferring knowledge between tasks
that are similar, but with different data, and in which both the source and target
tasks have unlabeled data. In some case, transfer learning without any labeled
data from the target domain is also known as unsupervised transfer learning.
Unsupervised transfer learning often involves techniques such as dimensionality

37



3.3. Approaches to tackle small data problems

Figure 3.8: Efficacy of CXR (chest X-Ray) specific networks utilizing supervised
contrastive (SupCon) learning compared to standard transfer learning from a non-medical
dataset (red), with a control group using a generic pretrained network (blue). Perfor-
mance is measured by the area under the receiver operating characteristic curve (AUC)
for detecting various Chest X-Ray (CXR) abnormalities (left graph) and specifically
tuberculosis (right graph). The SupCon approach, requiring significantly fewer labels,
matches or surpasses the performance of the transfer learning model at equivalent dataset
sizes, demonstrating up to a 688-fold reduction in label requirements. Notably, small
nonlinear models trained on as few as 45 chest radiographs achieved an AUC of 0.95,
comparable to radiologist assessment in identifying confirmed tuberculosis cases. Figures
are taken from [61].

reduction and clustering to identify patterns in the data. In order to achieve that,
we usually assume the existence of a common structure between source and target
and leverage this information to perform the transfer [62].

Transductive transfer learning (also known as domain adaptation) refers to
transferring knowledge between tasks with similar structure, but in which the
source and target tasks have different data and the source task has a large amount
of labeled data, while the target task has no labeled data (and usually following
different distributions). In another term, the source and target domains have the
same feature space while they can originate from different distributions. That is,
the learning algorithm knows exactly on which examples it will be evaluated after
training without any labelled samples in the target domain. This can become a
great advantage to the algorithm, allowing it to shape its decision function to match
and exploit the properties seen in the test set [63]. In this case, the model may
use domain adaptation techniques to align the distribution discrepancy between
domains in order to generalize the trained model to the domain of interest (adjust

38



Chapter 3. Dealing with Small Data in Machine Learning

to the different data distribution in the target task).

3.3.6 Parameter initialization

Initialization of neural network weights is an important factor that can impact the
performance of a model during training. There are various methods for initializing
weights, such as using constant values, sampling from a distribution, or using more
sophisticated schemes like the so-called Xavier Initialization [64]. The authors
of [64] demonstrated that networks initialized with Xavier achieved substantially
quicker convergence and higher accuracy on the CIFAR-10 image classification
task.

The choice of initialization method can affect the reproducibility and convergence
speed of the neural network. The selection of initial values for the parameters of a
neural network can significantly influence its performance. Inadequate initialization,
such as random initialization of weights, may result in non-reproducibility and
inferior performance, while initializing with constant values may delay convergence.
Careful initialization can aid in learning with limited data, improve reproducibility,
and optimize the training.

In a study comparing the effects of different weight initialization strategies on the
performance of a CNN (Figure 3.9), it was found that initializing weights with
values drawn from normal distributions with variances inversely proportional to
the number of inputs into each neuron resulted in the best performance. The
network achieved a validation accuracy of over 99% and a final loss two orders of
magnitude smaller than networks initialized with weights set to zero (left plot on
Figure 3.9) or drawn from normal distributions with a standard deviation of 0.4
(middle plot on Figure 3.9). These results suggest that careful weight initialization
can significantly boost the convergence and performance of a neural network.

The effectiveness of transfer learning in dealing with small data problems can partly
be attributed to parameter initialization since we basically try to pick the right
initialization (initial checkpoints) pretrained on a similar but larger dataset. Hence
we can state that the initial state of the parameters can significantly impact the
optimization process, potentially leading to issues such as divergence, getting stuck
at saddle points or local minima, and requiring a larger amount of training data

39



3.3. Approaches to tackle small data problems

Figure 3.9: Comparative visualization of training loss trajectories using different weight
initialization strategies for a CNN on the MNIST dataset. Each subplot displays the
10-batch rolling average of the loss incurred during the training of a basic CNN on the
MNIST dataset, which consists of 60000 images of handwritten digits. The network
was trained for a total of 12 epochs with a batch size of 128 images for each weight
initialization strategy. The left plot shows the model with weights initialized to zero,
exhibiting high variability and poor convergence. The middle plot illustrates weights
initialized from a normal distribution with a standard deviation of 0.4, showing better,
yet suboptimal performance. The right plot demonstrates the superior performance of
weights initialized from a normal distribution with variance scaled inversely with the
number of neuron inputs, yielding the most stable convergence and significantly lower
loss. This strategy led to a network achieving over 99% validation accuracy and a notably
smaller final loss compared to the other two methods, underscoring the importance of
proper weight initialization in neural network training.(source: [65]).

for successful training. It is therefore important to carefully consider the initial
parameter values chosen for a model.

3.3.7 Loss function reformulation

In modern DL research, the categorical cross-entropy loss after softmax activation
is the method of choice for classification, that has not been questioned well enough.
A recent paper, DL on Small Datasets without Pre-Training using Cosine Loss
[66], claims to obtain around 30% increase in accuracy for small datasets when
switching the loss function from categorical cross-entropy loss to a cosine loss (1 —
cosine similarity) for classification problems.

The Cosine Loss function, which maximizes the cosine similarity between the
output of a neural network and one-hot vectors [67] indicating the true class,
has been found to be an effective method for learning from small datasets. This
method has been shown to be superior to cross-entropy loss, possibly due to the
inclusion of L2 normalization, which acts as a regularizer without the need for

40



Chapter 3. Dealing with Small Data in Machine Learning

additional hyperparameters. Experiments have demonstrated the effectiveness of
this approach in small dataset scenarios (Figure 3.10).

Figure 3.10: Test accuracy comparison between different loss functions on two datasets:
(a) CUB (Caltech UCSD Birds) and (b) CIFAR-100. The graphs contrast the performance
of softmax with cross-entropy loss and cosine loss with variants one-hot and semantic
cross-entropy. The cosine loss, particularly with semantic cross-entropy, shows improved
learning efficiency on the CUB dataset, a small dataset scenario, highlighting its advantage
in scenarios with fewer samples per class. However, the performance gains are less distinct
in larger datasets like CIFAR-100, indicating the loss function’s relative impact based on
dataset size. These findings suggest that cosine loss, due to L2 normalization acting as an
implicit regularizer, is a robust choice for small datasets, outperforming the traditional
cross-entropy loss in such contexts (source: [66]).

The Hinge loss function [68] has also been demonstrated to be effective in situations
where resources are limited, allowing for the training of models on small datasets.
In particular, the squared Hinge loss has been found to have faster convergence and
improved performance compared to other variants of the Hinge loss. Additionally,
it has been shown to be more resistant to noise in both the training set labels and
the input space [69], [70].

3.3.8 Regularization techniques

Since the ML model trained with small data are prone to overfitting, regularization
techniques can be considered an effective way of dealing with limited data in
machine learning. Regularization is a technique used in ML to constrain the model
fitting process and reduce the effective number of degrees of freedom without
decreasing the actual number of parameters in the model. It is a popular method

41



3.3. Approaches to tackle small data problems

to penalize overly complex models and prevent overfitting (penalizes the coefficients
that cause the overfitting of the model), thus improving the generalizability of a
model.

The penalty term is based on the magnitude of the model parameters, and its
purpose is to discourage the model from fitting too closely to the training data. In
the context of linear regression, regularization involves adding a penalty term to
the cost function that is proportional to the magnitude of the coefficients. This
forces the model to prefer solutions with smaller coefficients, which can help to
mitigate overfitting and improve the model’s ability to generalize to unseen data.

L1 Norm (Lasso) and L2 Norm (Ridge) regularization are two popular regulariza-
tion techniques. In L1 regularization, the penalty term added to the cost function
is the summation of absolute values of the coefficients, making the models with
fewer non-zero parameters, which can be beneficial for the interpretability of model
performance in a production setting. On the other hand, in L2 regularization, the
penalty term added to the cost function is the summation of the squared value of
coefficients, making the models with more conservative (closer to zero) parameters,
which is similar to applying strong zero-centered priors to the parameters in a
Bayesian framework. Generally, L2 regularization is more effective for improving
prediction accuracy compared to L1 regularization.

Dropout [71] is a another method of regularization in which activations of
randomly selected neurons are set to zero during the training process. This
technique helps the network learn more robust features and reduces its reliance
on the predictive power of a small group of neurons. [72] applied this concept
to CNNs through the use of Spatial Dropout, in which entire feature maps are
dropped out instead of individual neurons.

Weight decay (with AdamW - Adam with decoupled weight decay [73]), explained
briefly in 3.3.12, is also one of the powerful techniques in regularization in which
proper weight decay tuning help validation accuracy sometimes suddenly begins to
increase from chance level toward perfect generalization, even long after severely
overfitting on small datasets.

Batch normalization [74] can also be regarded as a regularization method that

42



Chapter 3. Dealing with Small Data in Machine Learning

normalizes the activations in a layer by subtracting the batch mean and dividing by
the batch standard deviation. This technique is commonly used in the preprocessing
of pixel values and has been demonstrated to improve the performance of CNNs. In
addition to its regularization properties, batch normalization can also help stabilize
the training process and reduce the sensitivity of the network to the choice of
initialization parameters. [1] and [2] illustrated the impact of BN layer empirically
under various settings and showed that the final BN layer, when placed before
the softmax output layer, has a considerable impact in highly imbalanced image
classification problems as well as undermines the role of the softmax outputs as an
uncertainty measure. The impact of batch normalization on various settings will
be explored in detail in Chapter 4.

3.3.9 Data augmentation

Data augmentation (DA) is a common technique used to virtually increase the size
of a dataset by applying modifications to color, brightness, contrast, or adding
noise to the existing data [75]. While this technique can be effective in improving
the performance of ML models, it has the limitation of presenting the same samples
in different forms to the model, which may not have a significant impact on
generalization. Nevertheless, this can help to reduce overfitting. Due to its impact
on by providing more stable and smoother response to various variations of input
data, DA can even be considered as part of a broad set of regularization techniques
aimed at improving model performance [76].

It is widely accepted in the field of ML that increasing the amount of data available,
even if the quality is not optimal, can lead to improved model performance. Data
augmentation can be effective because it incorporates prior knowledge into the
dataset. The use of Generative Adversarial Networks (GANs) [77] and paired
samples [78] are also being explored as methods for data augmentation.

DA techniques can be divided into two categories: data warping (basic image
manipulations) and oversampling (Figure 3.11). Data warping techniques preserve
the label of the original data and include transformations such as geometric and
color manipulations, random erasing, adversarial training, and neural style transfer.
Oversampling techniques, on the other hand, create synthetic instances and add

43



3.3. Approaches to tackle small data problems

them to the training set. Examples of oversampling techniques include mixing
images, feature space augmentations, and the use of GANs. It is worth noting that
these categories are not mutually exclusive, and it is possible to combine techniques
such as GAN sampling with data warping methods like random cropping to further
increase the size of the training dataset [75].

Figure 3.11: Image augmentation techniques (source: [75]).

GANs take random noise from a latent space and produce unique images that
mimic the feature distribution of the original dataset. The model, based on image
conditional GANs, takes data from a source domain and learns to take any data
item and generalise it to generate other within-class data items. As this generative
process does not depend on the classes themselves, it can be applied to novel unseen
classes of data. There are a plethora of different types of GANs in the literature
that can be used to generate synthetic data [79]. The comparison of basic image
transformations and GAN-based augmentation can be seen at Figure 3.12.

44



Chapter 3. Dealing with Small Data in Machine Learning

Figure 3.12: Basic image transformations [80] and GAN-based augmentation methods
[81].

Paired sample is a surprisingly effective data augmentation technique for image
classification tasks. In this technique, called SamplePairing [78], a new sample
from one image is synthesized by overlaying another image randomly chosen from
the training data (i.e., taking an average of two images for each pixel). This
simple data augmentation technique significantly improved classification accuracy
in various benchmark datasets .

DA can bring several benefits to ML models. One of the main advantages is the
improvement of model prediction accuracy. By increasing the amount of training
data available, models can be more robust and less prone to overfitting. Moreover,
data augmentation can help mitigate data scarcity, which can be particularly
useful in scenarios where data collection and labeling are costly. Additionally, data
augmentation can also help address class imbalance issues in classification tasks
by generating synthetic samples that help balance the distribution of classes in
the dataset. Overall, data augmentation can increase the generalization ability of
models, leading to better performance on unseen data.

As a result, DA can be used to address certain types of biases present in a small
dataset. However, it is not a comprehensive solution and cannot create new cate-
gories of data that are not already represented in the dataset. Nevertheless, it can
be effective in mitigating biases related to factors such as lighting, occlusion, scale,
and background. Additionally, DA can help to prevent overfitting by artificially
increasing the size and diversity of the dataset, which can have characteristics
similar to those of a larger dataset. This can be particularly useful when working
with limited data, as it can allow for the development of more robust models.

45



3.3. Approaches to tackle small data problems

With the majority of DA techniques being manually created, recently there are
various method developed to automate DA processes such as AutoAugment [82]
and Trivial Augment [83] that achieve significant improvements on benchmark
datasets.

3.3.10 Synthetic data generation

Synthetic data refers to artificially generated data that is designed to mimic
real-world data. It can be used in a variety of contexts to preserve privacy in
sensitive domains, such as medical and transactional data. Synthetic data can
also be generated using a small amount of well-labeled data, and there are various
techniques, such as SMOTE (Synthetic Minority Over-sampling Technique) [84],
ADASYN (Adaptive Synthetic Sampling Approach) [85], Variational AutoEncoders
(VAEs) [86], and the aforementioned GANs, that can be used to generate synthetic
data. The use of synthetic data can facilitate the processing of large amounts of
real-world data and accelerate the time and energy required for such processes.

SMOTE: One approach to addressing the issue of imbalanced data is generating
synthetic data, which can be accomplished through techniques such as Synthetic
Minority Over-sampling Technique (SMOTE) and Modified-SMOTE [87]. These
methods generate new data points by taking the minority class data points and
creating new points that lie between two nearest data points joined by a straight
line in the feature space. The number of nearest neighbors used for data generation
can be adjusted as a hyper-parameter based on the requirements of the problem.
However, it is important to note that generating synthetic data can increase the
risk of overfitting due to the presence of duplicate data.

One of the advantages of using SMOTE is that it mitigates the problem of overfitting
caused by random oversampling, as synthetic examples are generated rather than
replications of instances. Additionally, SMOTE does not result in the loss of
useful information. However, a disadvantage of using SMOTE is that it does not
take into consideration neighboring examples from other classes, which can result
in an increase in overlapping of classes and the introduction of additional noise.
Additionally, SMOTE may not be effective for high dimensional data (i.e. a dataset
with large number of attributes or features). According to [88], high-dimensional
problems are problems where the number of targeted features p is much larger

46



Chapter 3. Dealing with Small Data in Machine Learning

than the number of observations N , often written p � N .

The M-SMOTE algorithm is a modified version of the SMOTE method [87], which
takes into account the underlying distribution of the minority class when generating
synthetic data. This approach involves classifying minority class samples into three
categories: security or safe samples, border samples, and latent noise samples.
Security samples refer to those data points that have the potential to improve the
performance of a classifier, while noise samples are those that may decrease the
performance of the classifier. Data points that are difficult to categorize into either
category are referred to as border samples. These categories are determined by
calculating the distances between minority class samples and the training data.
M-SMOTE then randomly selects a data point from the k nearest neighbors for
security samples, selects the nearest neighbor for border samples, and does not
generate synthetic data for latent noise samples.

Generative Adversarial Networks (GANs): Generative adversarial networks
(GANs) are a class of neural networks [89] that consist of two sub-networks:
a generator and a discriminator. The generator is responsible for synthesizing
output data, while the discriminator is responsible for distinguishing between the
synthesized data and real data. The generator and discriminator are trained to
compete against each other, with the generator attempting to generate outputs
that are indistinguishable from real data, and the discriminator trying to accurately
identify whether an output is real or synthesized. Through this process, GANs are
able to produce outputs that are highly realistic in appearance.

The use of GANs in data augmentation has received considerable attention due
to their ability to generate new training data that leads to improved classification
model performance. For instance, [90] used a large CT image database and trained a
GAN to transform contrast CT images into non-contrast images; and then used the
trained model to augment their training using these synthetic non-contrast images,
and managed to reduce manual segmentation effort and cost in CT (computer
tomograpght) imaging. In another study, [91] utilized public datasets and created
synthetic versions using various GAN models. The effectiveness of these synthetic
datasets as training data was evaluated through two methods. First, by comparing
the accuracy, precision, and recall of a decision tree classifier trained on the original

47



3.3. Approaches to tackle small data problems

data and one trained on the synthetic data. Surprisingly, in some instances, the
classifier trained on synthetic data performed better than the one trained on
the original data, indicating that GAN-based data augmentation can be a useful
strategy to prevent overfitting. [92] applied GAN to approximate the true data
distribution and generate data for the minority class of various imbalanced datasets
and compared the performance of GAN with multiple standard oversampling
algorithms.

[92] also argued that traditional methods such as zooming, cropping, and rotating
are effective for object classification but are not applicable in cases like time
series data presented in images where there is no singular object to classify. To
enhance the classification accuracy through the deep neural network’s capability to
handle intricate data, the authors proposed a GAN-CNN classifier combination
that showed a superior accuracy compared to the other ML methods [93].

The original GAN architecture, which utilizes multilayer perceptron networks in
the generator and discriminator networks, is able to generate acceptable images for
simple datasets like MNIST handwritten digits, but is not effective for producing
high quality results for more complex, high resolution datasets. There have been
numerous studies that have modified the GAN framework, including through the
use of alternative network architectures, loss functions, and evolutionary methods,
among others. These modifications have led to improvements in the quality of
samples generated by GANs. Several new GAN architectures, including DCGANs
[94], StackGAN [95], Progressively-Growing GANs [96], CycleGANs [97], and
Conditional GANs [98], have been proposed and have been found to have potential
applications in data augmentation.

3.3.11 Problem reduction

Problem reduction refers to the process of transforming a new or unknown problem
into a known problem that can be easily solved using existing techniques. This
approach has been demonstrated to be effective in scenarios where limited datasets
are available. For instance, sound classification problem can be transformed into
image classification by converting the voice clips into images (spectograms), which
can then be addressed using state-of-the-art computer vision architectures and

48



Chapter 3. Dealing with Small Data in Machine Learning

techniques such as transfer learning. Research has shown that this approach can
produce satisfactory results even with small datasets [99].

Another example would be transforming the image classification problem into
two-stage problem such as object detection to extract patches and then image
classification problem to classify the patches into target classes. This approach can
be highly effective when there is not enough labelled images for the classification
problems. Imagine we are trying to detect if a solar panel array (a group of solar
panels that are connected together, collectively converting solar radiation into
electricity) is defect or not; and the dataset is composed of a list of solar panel
arrays each of which has only one class. Using problem reduction approach, rather
than classifying the entire array into a single class, we can do the followings:

1. Crop the panels from the array using image processing and segmentation
algorithms (Figure 3.13).

2. Using the original defect coordinates, assign positive defect label to the panel
that contains these coordinates; and assign negative class (no defect) to all the
other panels (now we have i, the number of defected panels, as the positively
labelled panels, versus (n� i), the complementary number of panels in an
array, as the negatively labelled panels) (Figure 3.14).

3. Train a classifier on this dataset to find out defect panels.

4. In inference time, run segmentation algorithm at first to isolate the panels
and then crop them.

5. Send each segmented panel into the classifier to detect if a panel has defect
or not.

Another advantage of using this approach is reducing the problem complexity by
filtering out the irrelevant portions of an image and only showing the useful parts.
The learning capacity of a model trained on cropped patches is usually much higher
compared to the one trained with entire images having many irrelevant parts and
background noises.

49



3.3. Approaches to tackle small data problems

Figure 3.13: Segmenting and cropping the panels from solar array. Left: Global
Contrast based Salient Region Detection (SGD) [100], middle: Enhanced line segment
drawing (ELSED) [101], right: Detecting twenty-thousand classes using image-level
supervision (DETIC) [102]. Images are taken from NORCE-PV dataset mentioned in
[3].

3.3.12 Optimization techniques

The optimization of neural networks using gradient descent algorithms is signifi-
cantly impacted by the size of the training dataset. While using smaller training
sets, such as in the case of stochastic gradient descent, can result in faster training
processes, updates may exhibit larger fluctuations. Conversely, training with larger
datasets can be computationally expensive and slow. Therefore, the selection of the
appropriate training dataset size is an important consideration in the optimization
of neural networks.

Gradient descent (sometimes called batch gradient descent) is an example of an
algorithm that performs better (in terms of computation speed) when the dataset
is small, because it computes the gradients on the whole dataset in each iteration,
as opposed to stochastic gradient descent which uses only a small part of the data
in each iteration.

In the context of few-labelled samples, gradient-based optimization algorithms
have been shown to be less effective due to two main reasons. Firstly, these
optimization algorithms, such as momentum, AdaGrad, AdaDelta, and ADAM, are
not specifically designed to perform well under the constraint of a limited number
of updates. When applied to non-convex optimization problems, these algorithms
do not provide strong guarantees of convergence speed, and may require a large
number of iterations to reach a good solution. Secondly, the network must be

50



Chapter 3. Dealing with Small Data in Machine Learning

Figure 3.14: The solar panel array on the left image has 9 visible panels and only
one of them is labelled as a defect. Rather than using this entire image in a ’solar array
classification task„ segmenting & cropping the relevant panel at first (middle image), then
each cell within a panel and then assigning a defect status labels (0 = no_defect, 1 =
defect) for each cell (image on the right), and then sending these 9x60 = 540 patches to
’solar cell classification’ task would result in a better performance as we will be ending up
more data points to help the model learn better. The image on the right indicates the
solar panel marked with yellow bounding box on the other images (left and middle). The
original image is taken from NORCE-PV dataset mentioned in [3].

initialized with random parameters for each separate dataset, which hinders its
ability to converge to a good solution after a few updates. Overall, these factors
make it difficult for gradient-based optimization to effectively learn from small
datasets [103].

In another study [37] that investigates the impact of optimization methods that
work well under small data regimes, the authors show that long after severely
overfitting, validation accuracy could suddenly begin to increase from random level
toward perfect generalization (see Figure 3.4).

Normally, when using a supervised learning approach, reducing the amount of
training data leads to a decrease in the model’s ability to generalize when the
optimization process is able to fit the training data perfectly. However, [37] found
a different outcome: the model’s performance remains constant at 100% within
a certain range of training dataset sizes, but the time needed for optimization
increases rapidly as the dataset size is reduced. They show empirically that different
optimization algorithms lead to different amounts of generalization and the amount
of optimization required for generalization quickly increases as the dataset size
decreases. They compare various optimization details to measure their impact on
data efficiency and find that weight decay with AdamW (Adam with decoupled

51



3.3. Approaches to tackle small data problems

weight decay [73]) is particularly effective at improving generalization on the tasks
they studied (see Figure 3.15). [73] illustrates that Adam generalizes substantially
better with decoupled weight decay than with L2 regularization, achieving 15%
relative improvement in test error on several image benchmark datasets.

Figure 3.15: Different optimization algorithms lead to different amounts of generaliza-
tion within an optimization budget of 105 steps. Weight decay (with AdamW) improves
generalization the most, but some generalization happens even with full batch optimizers
and models without weight or activation noise at high percentages of training data.
Suboptimal choice hyperparameters severely limit generalization (source: [37]).

In another study [104] investigating the best hyperparameter settings to couple
self-supervised learning paradigms with semi-supervised techniques in low data
regimes, the authors empirically demonstrate that weight decay is usually among
the most important hyperparameters to tune while training deep neural networks,
no matter what the size of the dataset is as depicted in Figure 3.16.

The "hypersweep curves" in Figure 3.16 depict the performance of a supervised
baseline model on a fraction of the ILSVRC-2012 dataset, illustrating the impact
of varying hyperparameters on model accuracy. The curves represent the sorting of
models by accuracy with a fixed hyperparameter. For both figures, the rightmost
point on each curve indicates the peak performance for that hyperparameter value.
The spread between curves at these points reflects the sensitivity of the model to
the hyperparameter, while the overall shape and proximity of the curves suggest

52



Chapter 3. Dealing with Small Data in Machine Learning

the robustness and interdependence of the hyperparameter values. The chart on
the left uses the full custom validation set, whereas the other chart employs a
reduced validation set with one image per class, which is shown to be sufficient for
hyperparameter evaluation. Notably, the experiments reveal that weight decay and
the number of training epochs significantly influence model training on limited data.
Contrary to common belief, reducing model capacity by decreasing depth or width
does not enhance performance; instead, deeper and wider models demonstrate
superior performance and robustness, even with limited training data. These
findings challenge prevailing assumptions and support recent observations that
wider models can facilitate optimization.

Figure 3.16: Performance impact of hyperparameter variation on a baseline model
trained with a subset (10% on the left and 1% on the right) of the ILSVRC-2012 dataset.
The curves demonstrate model accuracy against fixed hyperparameter values, with the
largest spread between curves illustrating the pronounced effect of weight decay on model
performance. These results underscore the significance of weight decay in training with
limited data and challenge the notion that reduced model capacity benefits small dataset
performance as well as indicating that weight decay is usually among the most important
hyperparameters to tune while training deep neural networks as it may give the largest
boost in validation accuracy compared to other hyperparameters (source: [104]).

53



3.3. Approaches to tackle small data problems

3.3.13 Using physics-informed neural networks

The incorporating existing physical principles into ML can be a useful approach
for modeling small data problems and developing more powerful models that learn
from data and build upon our existing scientific knowledge. With the growth of
ML and the availability of large amounts of scientific data, data-driven approaches
have become increasingly prevalent in scientific research, including information
science, mathematics, medical science, materials science, geoscience, life science,
physics, and chemistry [105]. These approaches, also known as scientific ML
(SciML) [106], do not require an existing theory and allow for the use of ML
algorithms to analyze scientific problems solely based on data. This shift in the
scientific method represents a departure from the traditional method of designing
a well-defined theory and refining it through experimentation and analysis to make
new predictions.

The physics-informed neural network (PINN) is a deep learning method that
bridges the gap between machine learning and scientific computing by incorporating
physical principles into ML. PINN has superior approximation and generalization
capabilities, which made it gain popularity in solving high-dimensional partial
differential equations (PDEs) [107], and has been used in various applications such
as weather modeling, healthcare, and manufacturing.

PINN is able to predict the solution far away from the experimental data points,
and thus performs much better than the naive network. PINNs can be easily
applied to many other types of differential equations too, and are a general-purpose
tool for incorporating physics into machine learning. The idea is adding the
known differential equations directly into the loss function when training the neural
network. This additional “physics loss” in the loss function tries to ensure that the
solution learned by the network is consistent with the known physics [108].

Similarly, [109] also used a deep neural network to learn solutions of the wave
equation, using the wave equation and a boundary condition as direct constraints
in the loss function when training the network. By using the physics constraint
in the loss function the network is able to solve for the wavefield far outside of
its boundary training data, offering a way to reduce the generalisation issues of

54



Chapter 3. Dealing with Small Data in Machine Learning

existing DL approaches.

Figure 3.17 shows the effect of incorporating the harmonic oscillator formula into a
scientific task to find a model that is able to accurately predict new experimental
measurements given the first few measurements (observations). The problem is,
using a purely data-driven approach (looking only at the actual values of the
unknown physical process) cannot generalize beyond the observations. Once we
incorporate the underlying physics formula into loss function, the model is able to
generalize further beyond training dataset without using additional data points.

Figure 3.17: The physics-informed neural network is able to predict the solution far
away from the experimental data points, and thus performs much better than the naive
network. On the left hand side, even though the neural network can accurately model
the physical process within the vicinity of the experimental data, it fails to generalise
away from this training data. Once we incorporate the underlying physics formula into
loss function, on the right hand side, the physics-informed network is able to generalize
further beyond training dataset without using additional data points. Figures are taken
from [110].

In short, PINN is a deep learning method that bridges the gap between machine
learning and scientific computing by incorporating physical principles into ML.
PINN has superior approximation and generalization capabilities, which made it
gain popularity in solving high-dimensional partial differential equations (PDEs),
and has been used in various applications such as weather modeling, healthcare,
and manufacturing.

55



3.3. Approaches to tackle small data problems

3.3.14 Unsupervised learning techniques

Unsupervised learning is a ML approach that aims to learn patterns in data without
the use of labels. It relies on the model learning the structure of the input data
based on the features present in the data. Feature extraction, which involves
identifying and extracting relevant characteristics from the raw data, can often
improve the performance of unsupervised learning approaches [111].

Common techniques used in unsupervised learning include clustering, which groups
data points based on shared features, anomaly detection, which identifies data
points that do not fit the distribution of existing examples, and manifold learning, a
neural network approach that reduces the complexity of the data by learning latent
variables such as Principal Component Analysis (PCA). Unsupervised learning can
be applied to various types of data, including numerical and categorical data.

In the absence of labeled data, unsupervised learning techniques can be used to try
to extract useful information from the dataset. For example, clustering algorithms
can be used to group similar examples together, and dimensionality reduction
techniques can be used to identify patterns and relationships within the data.

3.3.15 Semi-supervised learning

As the name suggests, Semi-supervised learning (SeSL) lies between the two
extremes of supervised and unsupervised learning in terms of the availability of
labeled data. In SeSL, the task is performed by utilizing both labeled and unlabeled
datasets, with the aim of gaining a deeper understanding of the underlying data
structure. Typically, SeSL is performed using a small labeled dataset and a
relatively larger unlabeled dataset. The ultimate goal of this approach is to develop
a predictor that can accurately predict future test data, surpassing the performance
of predictors learned from labeled training data alone [112].

The application of SeSL techniques allows for the leveraging of labeled data, while
also deriving structure from unlabeled data to improve the overall performance of
the task. This is particularly beneficial in scenarios where the size of the labeled
dataset is small. In such cases, traditional supervised learning algorithms are often
prone to overfitting. However, by incorporating the understanding of structure

56



Chapter 3. Dealing with Small Data in Machine Learning

derived from unlabeled data during the training process, SSL effectively alleviates
this issue. Additionally, SeSL methods provide an alternative solution to the
challenge of building large labeled datasets for learning a task. These techniques
are a step closer to mimicking the way humans learn, providing a more efficient
and effective approach.

In recent literature, it has been shown that popular approaches to SeSL involve
the introduction of a new loss term during training in a typical supervised learning
setting. There are three main concepts that are typically used to achieve SeSL,
namely Consistency Regularization, Entropy Minimization and Pseudo Labeling
that allow SeSL to improve the performance of a supervised learning task when
dealing with limited labeled data. Additionally, using generative models and
graph-based methods in semi-supervised learning can be found in [113].

Consistency Regularization is a technique that aims to train a model that is
robust to various data augmentations [114]. It enforces that the output of the
predictor should not significantly change when realistic perturbations are made
to the data points. This is achieved by minimizing the difference between the
prediction on the original input and the prediction on the perturbed version of
that input (decreasing the distances between features from differently augmented
images). The idea behind this approach is to leverage the unlabeled data to find
a smooth manifold on which the dataset lies. By achieving invariance to various
data augmentations, the model can achieve robustness and generalize better to
unseen data.

The most notable examples of Consistency Regularization include temporal ensem-
bling (pi-model) [115], mean teachers (weight-averaged consistency targets) [116]
and virtual adversarial training (VAT) [117] methods. Recently, Fan et al. [114]
proposed a new perspective on the concept of consistency regularization, suggesting
that instead of training a model that is invariant to all types of augmentations,
it could be more beneficial to focus on improving equivariance on strongly aug-
mented images, a simple yet effective technique, known as Feature Distance Loss
(FeatDistLoss) that is designed to improve data-augmentation-based consistency
regularization.

57



3.3. Approaches to tackle small data problems

Entropy minimization [118] aims to encourage more confident predictions on
unlabeled data. The model is trained to have low entropy predictions, regardless of
the ground truth. Additionally, the confidence for all classes for an input example
should sum to 1. This objective encourages the model to give high confidence
predictions, and discourage the decision boundary from passing near data points
where it would otherwise be forced to produce a low-confidence prediction.

The field of learning theory has traditionally focused on the two extremes of
the statistical paradigm: parametric statistics, where examples are known to
be generated from a known class of distribution, and distribution-free Probably
Approximately Correct (PAC) [27] frameworks. However, Semi-supervised learning,
which involves the use of both labeled and unlabeled data, does not fit neatly into
these frameworks. This is because the usefulness of unlabeled data depends on
the underlying distribution of the data, and no positive statement can be made
without making distributional assumptions since unlabeled data coming from some
distributions might be non-informative. This means that generalizing from labeled
and unlabeled data may differ from transductive inference [118].

In this regard, the entropy minimization framework proposes an estimation principle
applicable to any probabilistic classifier, aiming at making the most of unlabeled
data when they are beneficial, while providing a control on their contribution
to provide robustness to the learning scheme. This framework also shows that
unlabeled examples are mostly beneficial when classes have small overlap, and
provides a means to control the weight of unlabeled examples, and thus to depart
from optimism when unlabeled data tend to hamper classification.

Pseudo-Labeling is a simple yet effective approach to achieve SeSL, and also
known as proxy-labelling, self-training or co-training [119]. The method involves
training a model on a labeled dataset, then using it (and based on some heuristics)
to make predictions on unlabeled data. The examples from the unlabeled dataset
where the model’s prediction is confident (above a predefined threshold) are then
selected and the predictions are considered as pseudo-labels. This pseudo-labeled
dataset is then added to the original labeled dataset and the model is retrained on
the expanded labeled dataset. This process can be repeated multiple times. Some
examples of such methods are Self-training, Co-training and Multi-View Learning

58



Chapter 3. Dealing with Small Data in Machine Learning

[120].

Pseudo-Labeling is closely related to self-training, where the model is trained
using its own predictions as labels. This approach allows for the efficient use of
unlabeled data, as it can boost the performance of the model without the need
for manual annotation. This technique is easy to implement and can be used in
various applications where labeled data is scarce.

Recently, SeSL algorithms based on deep neural networks have been successful in
achieving good results on standard benchmark tasks. However, it is argued that
these benchmarks do not fully reflect the challenges that SeSL algorithms would
face in real-world applications. In order to address this, [121] created a unified
re-implementation of various widely-used SeSL techniques and tested in a suite of
experiments. The results of these experiments indicate that the performance of
simple baselines which do not use unlabeled data is often under-reported in the
literature (see Figure 3.18).

Figure 3.18: In the “two-moons” dataset, virtual adversarial training (VAT) and
temporal ensembling (pi-model) methods were able to learn a highly accurate decision
boundary with a relatively small amount of labeled data, specifically 6 data points depicted
as large white and black circles in this figure. In contrast, Pseudo-Labeling was found
to be inadequate in this context, resulting in the learning of a linear decision boundary.
This highlights the limitations of Pseudo-Labeling as compared to VAT and pi-model in
this specific dataset (source: [121]).

Additionally, the results show that different SeSL methods have varying sensitivity
to the amount of labeled and unlabeled data. Moreover, the performance of these
methods can degrade substantially when the unlabeled dataset contains examples
that are out-of-distribution. These findings highlight the importance of rigorous

59



3.3. Approaches to tackle small data problems

testing and evaluation of SeSL algorithms in real-world scenarios, in order to fully
understand their capabilities and limitations [121].

In another study, [122] propose a new SeSL method called DP-SSL that adopts
an innovative data programming (DP) scheme to generate probabilistic labels for
unlabeled data. Different from existing DP methods that rely on human experts to
provide initial labeling functions (LFs), they developed a multiple-choice learning
(MCL) based approach to automatically generate LFs from scratch in SeSL style.

As a a result, it is essential to exercise caution when utilizing the technique of
pseudo-labeling, as it has been observed that the model predictions can be fallacious
at times. Furthermore, the model may generate several erroneous predictions for
unlabeled data, leading to a detrimental feedback loop that may exacerbate the
deterioration of performance. The same study also suggests that SeSL could be
preferred by practitioners when there are no high-quality labeled datasets, labeled
data is collected by sampling i.i.d. from the pool of unlabeled data and when the
labeled dataset is large enough to accurately estimate validation accuracy.

For a detailed and comprehensive review of SeSL, the reader is referred to the
Semi-Supervised Learning Book [112].

3.3.16 Self-supervised learning

Self-supervised learning (SSL) is a subcategory of unsupervised learning that
utilizes unlabeled data to learn the representation of the data. This process is
accomplished through a three-step process: generating input data and labels from
the unlabeled data based on an understanding of the data, pre-training the model
with the generated data and labels, and fine-tuning the pre-trained model for
specific tasks of interest. In SSL, the objective is to learn generalizable and robust
representations that can be applied to a variety of tasks and datasets, rather than
simply learning high-level features.

Through self-supervised learning, it is possible to generate pre-trained backbone
networks to extract features from domain-specific images and convert them into
numerical vectors known as embeddings. This allows for the creation of models
with fewer data and computational resources within that particular domain. In

60



Chapter 3. Dealing with Small Data in Machine Learning

some cases, even with less labelled data, this approach has enabled performance
comparable to state-of-the-art DL models across various prediction tasks.

The most salient similarity between self-supervised and semi-supervised learning is
that both approaches do not rely entirely on manually labeled data. However, this
is where the similarity ends in broader terms. Self-supervised learning relies on
the inherent structure of the data to make predictions, and does not require any
labeled data (the system learns to predict part of its input from other parts of it).
In contrast, semi-supervised learning still utilizes a limited amount of labeled data
to guide the model’s learning process.

Self-supervised learning is a primary component of this dissertation and will be
elaborated in detail in Chapter 5.

3.3.17 Zero-shot, one-shot and few-shot learning

Zero-shot learning (ZSL) is a ML method in which a model is able to complete
a task (classify and predict the class of an unseen sample, or detect an unseen
object) without having received any training examples. It is a variant of transfer
learning, where the model is trained on a set of classes and is able to generalize
to unseen classes by leveraging additional knowledge about those classes, such
as their textual descriptions or attributes. Unlike transfer learning, ZSL involves
transferring knowledge between disparate feature and label spaces.

ZSL can be particularly useful when the number of classes in a dataset is large and
obtaining labeled data for all classes is infeasible or impractical. It has garnered
significant attention in recent years due to its ability to perform classification tasks
with limited annotated data. This approach has been applied to various domains,
including healthcare for medical imaging and COVID-19 diagnosis using chest
x-rays, as well as unknown object detection in autonomous vehicles. As research
continues to focus on methods that utilize minimal data with minimal annotation,
the potential applications for zero-shot learning will likely expand.

In ZSL, when no labeled instances of the target classes are present in the training
data, auxiliary information is utilized to facilitate the classification of unseen
classes. This auxiliary information may take the form of class descriptions, known

61



3.3. Approaches to tackle small data problems

attributes, semantic information, or word embeddings, and is necessary in order
to effectively solve the ZSL problem. Through this process, ZSL techniques are
intended to learn intermediate semantic layers and their properties, then apply
them to predict a new class of data at inference time. For example, if we have a
model that has been trained on images of horses and is presented with an image
of a zebra, it might be able to recognize the zebra as a novel class based on its
similarity to the known class of horses and the additional information that zebras
have black and white stripes.

In ZSL, a labeled training set of seen classes and knowledge about the semantic
relationships between seen and unseen classes is used to classify instances belonging
to unseen classes. This is achieved through the use of a high-dimensional vector
space, called the semantic space, in which the knowledge from seen classes can
be transferred to unseen classes. The process of ZSL typically involves learning
a joint embedding space in which both semantic vectors (prototypes) and visual
feature vectors can be projected, and using nearest neighbor search to match the
projection of an image feature vector with that of an unseen class prototype in this
space [123].

Few-shot learning, also known as low-shot learning, on the other hand, is a method
for classification when there are only a few examples per class. It is typically
implemented in the form of N-way k-shot problems, where there are N classes and
k labeled examples for each class. This approach utilizes meta-learning across a
range of classification tasks in order to quickly adapt to a new task. The meta-
learning model is trained on a large set of N-way k-shot tasks drawn from a similar
dataset. Few-shot learning is simply an extension of ZSL, but with a few examples
to further train the model.

Similarly, one-shot learning involves the use of only one instance or example of
data for training, as humans have the ability to learn even with a single example
and are still able to distinguish new objects with high precision. This approach is
particularly useful in tasks such as identifying an image of a person in identification
documents, where a large dataset may not be available. One approach to address
this challenge is to modify the loss function to be more sensitive to subtle differences
in the data and learn a better representation of it. Siamese networks are a commonly

62



Chapter 3. Dealing with Small Data in Machine Learning

used method for image verification in one-shot learning.

3.3.18 Meta learning

Meta-learning, also known as learning to learn, is a ML approach that aims to
learn how a ML model learns and use this knowledge to improve the training
process. By being trained on a variety of similar tasks, a meta-learner can learn the
most effective way to learn an unseen task. Meta-learning has the potential to be
particularly useful for limited data problems, as it can enable the rapid adaptation
to a new environment and generalization to unseen tasks with only a few examples.
This is achieved by learning a high-level representation of the learning process
itself, allowing the model to adapt to new tasks more efficiently.

Meta learning algorithms can achieve superior generalization performance compared
to non-meta learning algorithms, even in the presence of small data. However,
meta-learning requires a large number of tasks from a similar dataset for meta-
training. Once the meta-model is trained, it can be applied to learn an unseen task
with a small amount of data, and can also support lifelong learning by continuously
improving as it is being used.

In meta-learning, the aim is to learn the learning process itself, rather than simply
recognizing patterns in training data and generalizing to unseen data, as is the goal
in conventional supervised learning. During the meta-training phase, the algorithm
learns to identify similarities and differences between examples from different
classes in the training set. In each iteration, a support set containing n labeled
examples from k classes is used along with a query set consisting of previously
unseen examples from unknown classes. During training, the loss function assesses
the performance on the query set, based on knowledge gained from its support set
and will backpropagate through these errors.

One of the most successful meta-learning algorithms that is designed to work well
with limited data is known as Model-Agnostic Meta-Learning (MAML). The key
idea underlying this method is to train the model’s initial parameters such that
the model has maximal performance on a new task after the parameters have been
updated through one or more gradient steps computed with a small amount of
data from that new task [124].

63



3.3. Approaches to tackle small data problems

Meta-learning can be conceptualized as an optimization problem, where a second
network is used to predict the parameters for a given task, or where an initialization
for a neural network is learned. Additionally, meta-learning can be approached
through the use of similarity among features in examples, by embedding these
examples into a vector space and using a metric for classification. Finally, meta-
learning can also be achieved through the incorporation of prior knowledge about
the structure of naturally occurring tasks, in order to improve model performance.

3.3.19 Harnessing model uncertainty

In ML and statistics, traditional methods for modeling uncertainty rely on prob-
ability theory. However, it has been argued that conventional approaches to
probabilistic modeling, which capture knowledge in terms of a single probability
distribution, fail to distinguish between two distinct sources of uncertainty, referred
to as aleatoric and epistemic uncertainty. Aleatoric uncertainty, also known as
statistical uncertainty, refers to the notion of randomness, or the variability in the
outcome of an experiment that is due to inherently random effects. An example of
this type of uncertainty is coin flipping, where the data-generating process has a
stochastic component that cannot be reduced by any additional source of infor-
mation. In contrast, epistemic uncertainty, also known as systematic uncertainty,
refers to uncertainty caused by a lack of knowledge (about the best model). This
type of uncertainty is caused by ignorance of the agent or decision maker, and can
in principle be reduced on the basis of additional information [125]. Knowing the
type of uncertainty during model development is a crucial component and helps
the modeler avoid seeking more data if it is an aleatoric uncertainty in which the
uncertainty is irreducible even if more data is provided.

In other words, epistemic uncertainty refers to the reducible part of the total
uncertainty, whereas aleatoric uncertainty refers to the irreducible part. Recognizing
and distinguishing between these two types of uncertainty allows for more nuanced
and accurate modeling of uncertainty in a wide range of applications. In some
cases, both aleatoric and epistemic uncertainties might be present, but it can be
challenging to determine which type of uncertainty should be associated with a
specific phenomenon during the modeling phase. This distinction is important
as it affects the way we model the uncertainty and model, while it’s not always

64



Chapter 3. Dealing with Small Data in Machine Learning

well defined. In some cases, it may be necessary to gather more data or perform
additional experiments to accurately categorize the source of uncertainty [126].

When the sample size is small, specifying the right model class is not an easy task,
so the model uncertainty will typically be high due to the lack of evidence in favor
of any class (an inherent problem especially with semi-supervised learning wherein
we need to define a threshold that decides to which class a data point belongs).

In an ideal scenario, even with powerful models that can generalize effectively beyond
test sets, it is expected that a degree of uncertainty would exist for samples that
are entirely unknown. This uncertainty can be leveraged to estimate areas in which
the model may not have sufficient knowledge. This is particularly important in low
data regimes, where it is plausible that not all parts of the distribution are equally
represented. In such cases, it is important that the model’s predictions for unseen
samples return a degree of uncertainty that can be utilized for various purposes,
such as reducing false positive rates, identifying predictions that require human
intervention, or as a threshold in semi-supervised or active learning approaches.

Thus, it is important to understand and model the uncertainty present in the
problem in order to know when the model’s predictions can be trusted. One
important aspect of this is considering the confidence of the predictions made by
the model in addition to the predictions themselves. To achieve this, generating
confidence intervals for evaluation metrics when comparing different models can be
helpful in preventing erroneous conclusions from being drawn.

This is particularly important when working with small datasets, as certain regions
of the feature space may be underrepresented. In such cases, it is better to predict
with a margin of error, rather than point estimates. Although models on small
data will have large confidence intervals, being aware of the range of predictions
can be beneficial when making actionable decisions. By taking into account the
uncertainty present in the problem, we can make more informed decisions about
the trustworthiness of the model’s predictions.

There are two other important and relevant (tangential) issues with deep learning.
First, the model might be overconfident even if it is gravely wrong. Second, the
model may still try to assign a confidence score to out-of-distribution samples. For

65



3.3. Approaches to tackle small data problems

example, if a user feeds an image of a healthy chest X-ray to a Covid classifier model,
the model should return a prediction with a high level of confidence. However,
when a user uploads an image of head CT and asks the model to predict the Covid
status, the model is faced with a situation of out-of-distribution test data. The
model has been trained on images of X-rays, but has never seen a head CT before.
The image of the head CT lies outside of the distribution of data the model was
trained on.

This example can be extended other settings, such as MRI scans with structures
that a diagnostic system has never observed before, or scenes that an autonomous
car steering system has never been trained on. In such cases, a desirable behavior
for the model would be to return a prediction, but also to convey that the point lies
outside of the data distribution and therefore, the model possesses some quantity
conveying a high level of uncertainty with such inputs [52].

Understanding the model uncertainty also plays a crucial role in an active learning
framework. By recognizing which unlabelled data points would be the most
beneficial to learn from, the model can make informed decisions on which data
points to request labels for from an external resource such as a human annotator.
These data points are selected using an acquisition function, which evaluates the
potential value of each point for learning. Various acquisition functions exist, many
of which factor in the model’s uncertainty about the unlabelled data to make these
decisions. By utilizing this approach, it allows for a more efficient use of limited
labelled data, resulting in a more robust model [127].

3.3.20 Active learning

Active learning is a semi-supervised approach that can be leveraged when large
amounts of data are present but obtaining labeled data is costly. Instead of
randomly labeling data, active learning allows teams to strategically select the
data points that will have the greatest impact on the performance of the model.
In other words, the key idea behind active learning is that a ML algorithm can
achieve greater accuracy with fewer training labels if it is allowed to choose the
data from which it learns (i.e. with a limited number of training labels by actively
selecting data for learning). The process is outlined in the active learning loop

66



Chapter 3. Dealing with Small Data in Machine Learning

in Figure3.19. In each iteration, the ML model is trained with a growing dataset
created by labeling new data selected from a pool of unlabeled data.

Figure 3.19: The Active learning loop diagram depicts the process of incrementally
increasing the training dataset through selective labeling. In each iteration, the query
step utilizes a scoring function and sampling strategy to determine which images should
be added to the training dataset for further training after being labeled (source: [128]).

One way to implement active learning is by utilizing ML models for conducting
preliminary tasks. These models can identify samples that are hard to classify,
and then a human annotator can focus on labeling only those samples (selecting
the next best data points to label). This way, the model can learn from the most
informative data points, leading to more accurate predictions.

To further illustrate the concept of active learning, consider the analogy of a teacher
and a student. Passive learning is like a student sitting in a class, listening to the
teacher’s lecture without engaging. On the other hand, active learning is when
the student is an active participant, asking questions and collaborating with the
teacher. The teacher in this scenario, focuses on the student’s needs and spends
more time on the concepts that are hard for the student to grasp. In this way,
both the student and teacher are actively engaged in the learning process.

Similarly, in ML development, active learning is a collaborative process between
the annotator and the modeler. The annotator provides a small labeled dataset,
and the modeler uses it to train the model. The model then generates feedback on
which data points should be labeled next. These models can identify samples that

67



3.3. Approaches to tackle small data problems

are hard to classify, and then a human annotator can focus on labeling only those
samples. This way, the model can learn from the most informative data points,
leading to more accurate predictions. Through several iterations, the team can
develop a more accurate model and a labeled gold training set.

Active learning is a training strategy that aims to reduce the amount of data that
requires human labeling by intelligently (actively) selecting the most informative
examples for labeling [129] where the learning algorithm is provided with a large
pool of unlabeled data points, with the ability to request the labeling of any given
examples from the unlabeled set in an interactive manner. This is accomplished
through the use of a query strategy, which is applied to a ML model that has
been initially trained on a small number of seed labeled examples. The process of
labeling additional examples and updating the model is then repeated until the
model is adequately trained. Active learning has been applied to a variety of ML
tasks, including classification, detection, segmentation, and regression.

This approach is different from classical passive learning, where examples to be
labeled are chosen randomly from the unlabeled pool. Instead, active learning aims
to carefully choose the examples to be labeled in order to achieve a higher accuracy
while using as few requests as possible, thereby minimizing the cost of obtaining
labeled data. This approach is of particular interest in problems where data may
be abundant, but labels are scarce or expensive to obtain. By carefully selecting
the examples to be labeled, active learning allows to make the most of the available
data while minimizing the cost of obtaining labeled data (keeping the annotation
efforts at a minimum), making it useful in various real-world applications where
labeled data is scarce and expensive [113].

In order to effectively identify difficult data points in active learning, a various
combinations of methods are used to select the most informative samples for
annotation (i.e. the process of identifying the most valuable examples to label next).
These methods include classification uncertainty sampling, margin uncertainty,
entropy sampling, disagreement-based sampling, information density, and business
value [129]. An example of such a method can be found in the object detection
problem. In this context, [128] proposed an image level scoring function that
evaluates the usefulness of each unlabeled image for training. The selected images,

68



Chapter 3. Dealing with Small Data in Machine Learning

after being labeled, are then added to the training set. The experiments demonstrate
the effectiveness of this approach, with up to 4 times relative mean average precision
improvement compared to manual selection by experts.

Classification uncertainty sampling involves selecting the samples with the
highest uncertainty, or the data points that the model knows the least about. By
labeling these samples, the model becomes more knowledgeable and its performance
improves [130].

Margin uncertainty, on the other hand, involves selecting the samples with the
smallest margin. These are data points that the model knows about but is not
confident enough to make good classifications. Labeling these examples increases
the model’s accuracy [131].

Diversity sampling aims to gather a representative sample of the entire data
distribution, recognizing the significance of diversity as the model should perform
well on any data encountered, not just a limited subset. The selected samples
should reflect the underlying distribution. Common methods frequently depend on
measuring the relationship between samples [132].

Entropy sampling uses entropy as a measure of uncertainty, which is proportional
to the average number of guesses one has to make to find the true class. In this
approach, we pick the samples with the highest entropy [130].

Disagreement-based sampling focuses on those samples where different al-
gorithms disagree (asking annotators to label the examples on which classifiers
disagree) [133]. For measuring the level of disagreement, there are several ap-
proaches used such as Kullback-Leibler (KL) divergence [134] and Jensen-Shannon
divergence [135].

The information density method focuses on a denser region of data and select
few points in each dense region. Labeling these data points help the model classify
large number of data points around these points [136].

Lastly, the business value method focuses on labeling the data points that have
higher business value than the others. This approach helps to prioritize labeling

69



3.3. Approaches to tackle small data problems

the samples that are most important for the specific use-case and improve the
model performance in real-world scenarios [137].

In active learning, the most informative examples are the ones that the classifier
is the least certain about (a model has the least certainty are often the most
challenging examples to classify). These examples are typically located near the
class boundaries, and as a result, provide valuable information about the boundary
between different classes.

In the field of ML, it is commonly understood that examples for which a model
has the least certainty are often the most challenging examples to classify. These
examples are typically located near the class boundaries, and as a result, provide
valuable information about the boundary between different classes.

For instance, consider a binary classification problem in the medical domain where
the task is to differentiate between benign and malignant tumors. The model
may have a high level of certainty when presented with a clear and well-defined
benign tumor, but may struggle to classify a malignant tumor that has similar
features to a benign one. In this scenario, the model is uncertain about the correct
classification of the example, as it lies near the class boundary between benign and
malignant tumors. By observing this difficult example, the model can gain valuable
information about the features that distinguish benign and malignant tumors and
improve its performance on similar examples in the future.

Furthermore, research [129] has shown that models that are trained on a diverse
set of examples, including difficult examples near class boundaries, tend to perform
better on unseen data compared to models that are trained on a more homogeneous
set of examples. Thus, it is crucial for the learning algorithm to identify and observe
the difficult examples in order to gain a deeper understanding of the underlying
data distribution and improve its overall performance.

In summary, the intuition behind the importance of difficult examples in ML is
that they provide valuable information about the class boundaries and improve
the performance of the model on unseen data. It is essential for the learning
algorithm to identify and observe these difficult examples in order to gain a deeper
understanding of the underlying data features.

70



Chapter 3. Dealing with Small Data in Machine Learning

Detailed overview of active learning concepts and methods can be found at [129].

3.3.21 Self-learning

Self-learning is a method that lies between semi-supervised and weakly supervised
learning [138], utilizing an existing classifier to generate pseudo-labels for unlabeled
data to train a new model. It operates by iteratively learning a classifier by
assigning pseudo-labels to a subset of unlabeled training data with a margin greater
than a set threshold. These pseudo-labeled samples are then combined with labeled
training data to train a new classifier. The goal of pseudo-labeling is to generate
labels for unlabeled data and improve the model’s training with more information
than before [139].

In contrast to self-supervised learning, where the model relies on the underlying
structure of data to predict outcome (does not utilize labeled data), self-learning
use both labeled and unlabeled data allowing the model (or models) to learn from
themselves (or each other).

Another type of self-learning is called two-classifier self-training, which is similar
to pseudo-labeling but utilizes two classifiers instead of one. The process involves
training a classifier on the available data, then making predictions on the next
batch of new data, alternating the classifier being used several times. This approach
aims to improve the model’s robustness by continuously feeding the output of one
classifier as input to the other (i.e. each model learns on the output of the other )
[140].

3.3.22 Multi-task learning

Multi-Task Learning (MTL) is a ML technique that leverages information from
related tasks to improve performance on a primary task by training a model with
multiple losses to perform well on multiple tasks (i.e., more than one loss function
is optimized) [141].

In traditional ML, a single model or ensemble of models is trained to optimize for a
specific metric, such as a benchmark score or a business KPI. However, by focusing
solely on this single task, valuable information from related tasks is ignored. MTL

71



3.3. Approaches to tackle small data problems

aims to overcome this limitation by sharing representations between related tasks,
resulting in better generalization on the primary task.

For instance, in healthcare, a model trained to predict multiple medical conditions
based on patient data can utilize information from related tasks, such as identifying
risk factors, to improve predictions for each condition. Likewise, in agriculture, a
model trained to predict crop yields for multiple crops can share representations
between tasks, such as identifying soil characteristics, to improve predictions for
each crop.

From a biological perspective, MTL can be considered modeled after human learning.
In this context, when we learn new tasks, we tend to utilize the skills we have
gained from related tasks. For instance, a baby starts by developing the ability to
recognize faces and then applies that skill to identifying other objects.

MTL works effectively by incorporating two important concepts: Implicit data
augmentation and Attention focusing [141].

Implicit data augmentation refers to the idea that by training a model on
multiple tasks simultaneously, the model is effectively exposed to a larger sample
size, leading to a better generalization of the model. This is because different tasks
often have different patterns of noise, and training a model on multiple tasks helps
average out these patterns and learn a more general representation.

Attention focusing is another advantage of multi-task learning. In limited and
high-dimensional datasets or noisy tasks, it can be difficult for a model to identify
relevant features. By training on multiple tasks, the model is able to focus its
attention on important features as the additional tasks provide evidence for the
relevance or irrelevance of these features.

When labeled data for the desired task is not present, an alternative approach in
MTL is to utilize a task that is opposite of the goal. This can be accomplished
through an adversarial loss that maximizes training error by using a gradient
reversal layer. The adversarial task is predicting the input’s domain, and by
maximizing the adversarial task loss through gradient reversal, the model is forced
to learn representations that are indifferent to the domains, which altogether

72



Chapter 3. Dealing with Small Data in Machine Learning

benefits the main task [141].

In summary, MTL provides a way for a model to learn more general representations
and focus on important features that might not be easy to learn just using the
original task, hence leading to improved performance on multiple tasks.

3.3.23 Symbolic learning

Symbolic learning is a form of ML that leverages symbolic representations of
knowledge to make predictions with limited training data. By incorporating
human-curated information into the learning process, this approach can effectively
minimize the amount of training data required while enhancing the reliability
and robustness of the ML system. This integration of human knowledge and
ML capability also enables the creation of explainable ML systems, providing an
opportunity to leverage a wealth of human knowledge to achieve performance
outcomes that were not previously possible. Furthermore, this type of ML enhances
the interaction between humans and ML systems by making ML’s decisions more
understandable to humans [142].

Symbolic models are fusing a representation of contextual knowledge into ML
algorithms to improve algorithm performance [143]. These models utilize a repre-
sentation of knowledge, often human-curated, such as an ontology, database, or
contextual information. Traditional ML algorithms can be viewed as learning a rep-
resentation of the features in the classes; in contrast, the symbolic model approach
aims to reduce the amount of data required by introducing a human-constructed
representation (knowledge).

Here are some examples:

• Diagnosing diseases: Imagine a patient presents with symptoms such as a
cough, fever, and fatigue. A doctor might use his/her knowledge of common
diseases to diagnose the patient with a respiratory infection. Similarly,
symbolic learning algorithms can use information from medical ontologies
or databases to diagnose diseases based on symptoms and other contextual
information.

73



3.3. Approaches to tackle small data problems

• Predicting drug interactions: When a patient is prescribed multiple
medications, it is important to ensure that they do not interact in harmful
ways. A pharmacist might use their knowledge of common drug interactions
to determine the safety of a particular combination of drugs. Symbolic
learning algorithms can be trained on data from drug databases to predict
potential drug interactions and suggest alternatives if necessary.

• Identifying risk factors for chronic diseases Chronic diseases such as
diabetes and heart disease are often the result of multiple risk factors, such
as obesity, lack of exercise, and smoking. A doctor might use their knowledge
of these risk factors to predict a patient’s likelihood of developing a chronic
disease. Symbolic learning algorithms can be trained on data from medical
studies to identify and rank the most important risk factors for various chronic
diseases.

• Detecting plant diseases: Diseases can significantly reduce crop yields
and have a major impact on agriculture. Symbolic learning algorithms can
be trained on data from plant disease databases to detect the presence of
specific diseases based on symptoms such as discoloration of leaves or wilting
of stems.

In each of these examples, symbolic learning is used to combine the strengths of
ML algorithms and human knowledge to improve the accuracy and efficiency of
decisions.

The selection of training samples is essential to any symbolic modelling efforts
and not all data samples are equally informative: some carry unique information
about the system, while others are redundant. To that end, [144] proposed an
approach for constructing compact training data sets that serve as an input to a
model learning method. For model learning, symbolic regression is chosen due to
its ability to construct accurate models in the form of analytic equations even from
small data sets as it, symbolic regression, outperforms other models for small data
sets [145].

In summary, symbolic learning leverages human-curated information to perform
limited data learning tasks and reduce the amount of data required for training. It

74



Chapter 3. Dealing with Small Data in Machine Learning

is a way of combining the strengths of traditional machine learning algorithms and
human knowledge to improve the accuracy of predictions.

3.3.24 Hierarchical learning

Hierarchical learning is a ML approach that takes advantage of the hierarchical
structure of real-world categories and taxonomies (i.e. using a taxonomy rep-
resenting the relationship between objects and higher level classes) [146]. The
hierarchical learning concept involves building a series of classification models
that are structured based on a predefined hierarchy. The method utilizes transfer
learning to build subsequent models, where the output of one model serves as input
for the following. For instance, in healthcare, we can use hierarchical learning to
diagnose diseases based on symptoms. A patient with a headache and nausea could
be diagnosed with a migraine, but the model can also express uncertainty about
the specific type of migraine (e.g., menstrual migraine or vestibular migraine). The
hierarchical structure helps to make more accurate diagnoses based on limited data.
In agriculture, hierarchical learning can be used to identify and classify different
types of crops. For example, a model can classify a plant as a type of fruit, and
then further classify it as an apple or a pear based on the shape, color, and other
attributes of the fruit. This hierarchical structure helps to manage uncertainty in
the classification process and makes it possible to train classifiers even when there
is limited data available for certain types of crops.

[147] proposed a two-step framework using hierarchy transfer learning to build
deep learning models for disease detection and classification, which achieved high
accuracy and improved performance compared to other training approaches. The
framework was extended to handle multiple input images and improved accuracy was
achieved using a stacking ensembled method, leading to an improved performance
even with a limited number of images.

3.3.25 Knowledge distillation based learning

Knowledge Distillation is a technique utilized to transfer the knowledge acquired
by a complex model to a simpler model, with the goal of achieving similar or
better performance on unseen data [148]. One of the key advantages of Knowledge
Distillation is its ability to compress the knowledge of an ensemble of large base

75



3.4. Dealing with imbalanced data

models into a single, simpler model. This is particularly useful in situations where
the storage and computational resources required by the ensemble of models is
prohibitive. By distilling the knowledge of the complex model into a smaller, more
tailored model, the efficiency and effectiveness of the model can be improved.

For example, when using a model trained on a dataset such as ImageNet, which
contains 14 billion images and 100 classes, as a binary classifier for cats and dogs
in a specific application, the computational resources required would be excessive.
However, by using this model as a teacher and distilling its knowledge into a simpler
model specifically designed for this task, the efficiency and effectiveness can be
greatly improved.

To effectively transfer knowledge, it is important to examine the data used to
train the network as it focuses on a specific area instead of the entire input space.
However, access to this data may be restricted due to privacy concerns in various
industries such as medicine, military, and industrial. In order to address this issue,
[149] suggested KEGNET (Knowledge Extraction with Generative Networks), a new
approach for knowledge distillation that does not require access to the original data.
KEGNET learns the relationship between data points through training generator
and decoder networks and generates artificial data to estimate the missing data on
the manifold. At the same time, [150] argues that Knowledge Distillation is not as
effective as widely believed, as there is often a significant gap between the teacher
and student’s predictive distributions, even when the student has the ability to
exactly imitate the teacher.

3.4 Dealing with imbalanced data

In the scientific literature, data imbalance refers to the situation in which the number
of observations in one class significantly exceeds those in other classes. This issue
is often encountered in tasks such as detecting anomalies in electricity usage or
identifying rare diseases, where the minority class (anomalies or rare cases) is of
particular interest. If conventional ML algorithms are applied to imbalanced data
without addressing this issue, the resulting models may be biased and inaccurate,
as these algorithms are typically designed to minimize error assuming the class
distribution is well-representing and unbiased. Examples of business problems

76



Chapter 3. Dealing with Small Data in Machine Learning

with imbalanced datasets include detecting rare diseases in medical diagnostics,
identifying customer churn in the telecommunications industry, and predicting
natural disasters such as earthquakes.

The problem of unbalanced data, in which the frequency of minority class obser-
vations is significantly lower than that of the majority class, can be addressed by
balancing the data through sampling techniques. This can be achieved through
increasing the frequency of the minority class (oversampling) or decreasing the
frequency of the majority class (undersampling). The choice of oversampling ver-
sus undersampling and random versus clustered sampling depends on the size of
the overall dataset and the distribution of the data. In general, oversampling is
preferred when the dataset is small, while undersampling is more suitable when the
dataset is large. Similarly, the decision between random and clustered sampling is
influenced by the distribution of the data.

Oversampling (up-sampling): One approach to addressing imbalanced data is
over-sampling, which involves increasing the number of instances in the minority
class by randomly replicating them in order to present a higher representation of
the minority class in the sample. This method has the advantage of not leading to
information loss, and it has been shown to outperform under-sampling. However,
it also has the disadvantage of increasing the likelihood of overfitting due to the
replication of minority class events.

Another up-sampling technique is K-means clustering that is independently applied
to minority and majority class instances. This approach involves identifying clusters
in the dataset and oversampling each cluster such that all clusters of the same class
have an equal number of instances and all classes have the same size. While this
technique has the advantage of addressing both inter- and intra-class imbalances,
it also carries the risk of overfitting the training data. Overall, K-means clustering
is a useful method for addressing imbalanced data, but it should be used with
caution to avoid compromising the generalizability of the model.

Undersampling (down-sampling): In the context of addressing imbalanced
data, undersampling involves randomly eliminating majority class examples in
order to balance the class distribution. While this technique can be useful for
improving run time and storage issues when dealing with large training datasets,

77



3.5. Anomaly Detection as a Small Data Problem

it is also important to consider its potential drawbacks, such as the potential for
discarding potentially useful information and the risk of introducing bias through
the random selection of samples. Additionally, the resulting sample may not
accurately represent the overall population, leading to potentially inaccurate results
when applied to the actual test dataset.

There are other techniques to allow the model learn under extreme imbalanced
datasets. A concrete technique that adds a final batch normalization layer is one
of this work’s contributions and will be explored in detail in Chapter 4.

3.5 Anomaly Detection as a Small Data Problem

Anomaly detection, also known as outlier detection or novelty detection, is the task
of identifying unusual or abnormal data points in a dataset. It is a crucial task in
a wide range of applications, including fraud detection, cybersecurity, and quality
control.

Detecting anomalies that are hardly distinguishable from the majority of observa-
tions is a challenging task that often requires strong learning capabilities. Since
anomalies appear scarcely, and in instances of diverse nature, a labeled dataset
representative of all forms is typically unattainable. In some cases, such as working
with underrepresented populations or studying rare medical conditions, only limited
data are available [61].

Despite tremendous advances in computer vision and object recognition algorithms,
their effectiveness remains strongly dependent upon the size and distribution of
the training set. Real-world settings dictate hard limitations on training sets of
rarely recorded events in Agriculture or Healthcare, e.g., early stages of certain
crop diseases or premature malignant tumors in humans.

Anomaly detection is mostly concerned with hard classification problems at early-
stages of abnormalities in certain domains (i.e. crop, human diseases, chip manu-
facturing), which suffer from lack of data instances, and whose effective treatment
would make a dramatic impact in these domains. For instance, fungus’ visual cues
on crops in agriculture or early-stage malignant tumors in the medical domain are
hardly detectable in the relevant time-window, while the highly infectious nature

78



Chapter 3. Dealing with Small Data in Machine Learning

leads rapidly to devastation in a large scale. Other examples include detecting
the faults in chip manufacturing industry, automated insulation defect detection
with thermography data, assessments of installed solar capacity based on earth
observation data, and nature reserve monitoring with remote sensing and deep
learning. However, class imbalance poses an obstacle when addressing each of these
applications.

In Precision Agriculture, and particularly in Precision Crop Protection [151], certain
visual cues must be recognized with high accuracy in early stages of infectious
diseases’ development. A renowned use-case is the Potato Late Blight, with
dramatic historical and economical impacts [152], whose early detection in field
settings remains an open challenge (despite progress achieved in related learning
tasks; see, e.g., [153]). The hard challenge stems from the actual nature of the visual
cues (which resemble soil stains and are hardly distinguishable), but primarily from
the fact that well-recording those early-stage indications is a rare event.

In the case of highly imbalanced datasets, such as those involving fraud or machine
failure, it may be worth considering whether these examples can be classified as
anomalies. If the problem meets the criteria for anomaly detection, techniques such
as OneClassSVM, clustering methods, or Gaussian anomaly detection methods
may be employed. These approaches involve considering the minority class as the
outlier class, potentially providing new ways to classify and differentiate. Change
detection is a similar concept to anomaly detection, but focuses on identifying
changes or differences rather than anomalies. Examples of this include changes in
user behavior as indicated by usage patterns or bank transactions.

In recent years, reliable models capable of learning from small samples have been
obtained through various approaches, such as autoencoders [154], class-balanced
loss (CBL) to find the effective number of samples required [155], fine tuning with
transfer learning [156], data augmentation [75], cosine loss utilizing (replacing
categorical cross entropy) [66], or prior knowledge [48].

79



3.6. Conclusion

3.6 Conclusion

As we conclude Chapter 3, our exploration through the diverse landscape of strate-
gies and methodologies essential for effective learning from small datasets has been
both comprehensive and insightful. This journey has armed us with a robust toolkit,
encompassing a broad spectrum of techniques ranging from data augmentation,
ensemble methods, and transfer learning to more intricate strategies like parameter
initialization, loss function reformulation, and regularization techniques. We have
also ventured into advanced realms such as synthetic data generation, physics-
informed neural networks, and various forms of learning including unsupervised,
semi-supervised, self-supervised, zero-shot, one-shot, few-shot, metalearning, and
beyond. These techniques, together with insights into tackling specific challenges
like imbalanced data and anomaly detection, form a crucial foundation for the
focused applications and advanced methods explored in the subsequent chapters.

In Chapter 4 and 5, we build directly upon this foundation, delving into the
nuances of learning from imbalanced datasets and exploiting the potential of self-
supervised learning in scenarios of limited data. We have laid the groundwork
for understanding how each of these advanced techniques and strategies can be
effectively applied to real-world problems where data scarcity is a significant
challenge. This chapter, therefore, acts as a pivotal link in our dissertation,
ensuring a seamless and cohesive narrative that underscores the importance of
mastering small data learning. Ultimately, the insights and methodologies discussed
here contribute to the development of more robust and efficient machine learning
models, capable of addressing the complex challenges presented by small datasets
in various domains.

As we draw Chapter 3 to a close, we reflect on the extensive exploration of
foundational concepts and methodologies critical for learning effectively from small
datasets. The techniques and insights garnered here, from data augmentation to
transfer learning and beyond, are not just theoretical constructs but essential tools
that underpin the advanced topics in Chapters 4 and 5. The upcoming chapters
build upon this bedrock, delving into the nuances of learning from imbalanced
datasets (Chapter 4) and exploring the potential of self-supervised learning with
salient image segmentation (Chapter 5), both of which hinge on the principles

80



Chapter 3. Dealing with Small Data in Machine Learning

established in this chapter. By connecting these concepts, we ensure a seamless
transition into the intricacies of batch normalization and the dynamics of image
segmentation in self-supervised learning. This chapter, thus, is a bridge that not
only links but also enriches the narrative flow of the dissertation, ensuring that the
journey from foundational principles to advanced applications in machine learning
is both cohesive and comprehensive.

81



3.6. Conclusion

82


