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Abstract
Geosmin may be the most familiar volatile compound, as it lends the earthy
smell to soil. The compound is a member of the largest family of natural
products, the terpenoids. The broad distribution of geosmin among bacteria
in both terrestrial and aquatic environments suggests that this compound
has an important ecological function, for example, as a signal (attractant or
repellent) or as a protective specialized metabolite against biotic and abiotic
stresses. While geosmin is part of our everyday life, scientists still do not
understand the exact biological function of this omnipresent natural product.
This minireview summarizes the current general observations regarding
geosmin in prokaryotes and introduces new insights into its biosynthesis
and regulation, as well as its biological roles in terrestrial and aquatic
environments.

INTRODUCTION

The sense of smell evokes the strongest memory of all
the senses and is largely based on the perception of vol-
atile organic compounds (VOCs). While VOCs are part
and parcel of our lives, we know very little about their
biological function. One enigmatic experience is the feel-
ing of well-being that is generated by a walk in the for-
est. That smell is caused by geosmin, a sesquiterpene
discovered in 1965, whose name is derived from the
Greek words ‘gê’—earth and ‘osmḗ’—odour. Geosmin
is abundant in nature and mainly produced by Actino-
bacteria (Gerber, 1967; Gerber & Lechevalier, 1965;
Schoeller et al., 2002) and myxobacteria (Dickschat
et al., 2004; Schulz et al., 2004; Trowitzsch et al., 1981)
in soil, and by cyanobacteria in aquatic systems
(Izaguirre et al., 1982; Safferman et al., 1967). Geosmin
also occurs in ascomycete fungi (Kikuchi et al., 1981;
Larsen & Frisvad, 1995; Mattheis & Roberts, 1992), in
Basidiomycota (Breheret et al., 1999), in amoebae
(Hayes et al., 1991), in liverwort (Spoerle et al., 1991), in

mosses (Saritas et al., 2001), in maize where it serves
as a possible attractant of the corn earworm Heliothis
zea (Flath et al., 1978), and in the defence secretions of
the polydesmid millipede Niponia nodulosa (Omura
et al., 2002). It has also been reported from different
foodstuff including beetroot (Acree et al., 1976), dry
beans (Buttery et al., 1976), rainbow trout
(Persson, 1980), molluscs (Hsieh et al., 1988) and
shrimps (Lovell & Broce, 1985), and is a constituent of
garden soil (Buttery & Garibaldi, 1976).

Geosmin is a member of the largest family of natural
compounds, the terpenoids (Avalos et al., 2022). Many
of these compounds are highly odour-active. The
human nose can detect geosmin at less than five parts
per trillion, equivalent to one teaspoon in 200 Olympic
swimming pools, yet we do not understand its exact
biological function. The widespread distribution of geos-
min synthase genes across microbial life in seemingly
unrelated microorganisms such as Actinobacteria, myx-
obacteria, cyanobacteria and fungi suggests that geos-
min has an important ecological role in their lifecycle. A
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whole-genome-based phylogenetic study on Strepto-
myces species and comparison of the distribution of
terpene synthase genes among them revealed that
geosmin synthases were the most widely distributed,
as they were present in all except one of the Streptomy-
ces species analysed (Martín-S�anchez et al., 2019).
The phylogenetic analysis of geosmin synthases were
not congruent with the phylogeny of the Streptomyces
species pointing to horizontal gene transfer as mecha-
nisms involved in the distribution of geosmin biosynthe-
sis. Geosmin also plays an important role in
biotechnology, as the smell we associate with the
pleasant smell of soil creates an off-flavour in water,
wine and freshwater fish products that producers strug-
gle to eliminate.

This minireview summarizes the current knowledge
regarding geosmin and offers new insights into its bio-
synthesis and regulation as well as its possible biologi-
cal and ecological roles in terrestrial and aquatic
environments. As mentioned above, geosmin is not only
produced by prokaryotes, but also by many other organ-
isms. This review will focus specifically on geosmin from
prokaryotic sources, whereby we will only briefly touch
on its role in the biology of other organisms.

BIOSYNTHESIS OF GEOSMIN

After its discovery (Gerber & Lechevalier, 1965) and
structural identification (Gerber, 1968), the biosynthesis
of geosmin (1, Scheme 1) was a long-standing debate.
Speculations that geosmin could be a degraded eudes-
mane sesquiterpene with a lost isopropyl group
(Gerber, 1968) were first addressed experimentally by
feeding radioactive labelled precursors to Streptomy-
ces antibioticus. While [1-14C]acetate and [2-14C]ace-
tate were incorporated into geosmin, [methyl-14C]
methionine was not, which was interpreted in favour of
an isoprenoid pathway to geosmin (Bentley &
Meganathan, 1981). Several years later, a series of
structurally related sesquiterpenes including (1(10)
E,5E)-germacradien-11-ol (3) and dihydroagarofuran
(4) were isolated from the geosmin producer Strepto-
myces citreus, culminating in a first detailed biosyn-
thetic hypothesis in which these cometabolites were
speculated to be intermediates, but neither the forma-
tion of 3 from hedycaryol (2) nor the loss of the isopro-
pyl group were explained satisfyingly (Scheme 1A,
Pollak & Berger, 1996). The terpenoid origin of geosmin
was finally confirmed by feeding of the terpene precur-
sors (5,5-2H2)-1-desoxy-D-xylulose to Streptomyces
sp. JP50 and (4,4,6,6,6-2H5)mevalolactone to the liver-
wort Fossombronia pussilla (Spiteller et al., 2002),
while feeding experiments using 13C-labelled NaHCO3

established the biogenetic origin of geosmin in the cya-
nobacterium Calothrix (Höckelmann & Jüttner, 2004).
First mechanistic proposals for the loss of the isopropyl
group suggested oxidative cleavage with formation of

acetone (Scheme 1B, Spiteller et al., 2002) or a retro-
Prins fragmentation during terpene cyclisation to the
octalin derivative 8, followed by double bond reduction
and oxidative installation of the hydroxy function
(Scheme 1C, Cane & Watt, 2003). Feeding experi-
ments with (2H10)leucine and (4,4,6,6,6-2H5)mevalolac-
tone to Myxococcus xanthus demonstrated retainment
of the bridgehead hydrogen in the octalin, in disagree-
ment with oxidative introduction of the alcohol function
in 8. Instead, geosmin biosynthesis proceeds without
redox chemistry through a typical cationic terpene cycli-
sation cascade (Dickschat et al., 2005). The cascade
proceeds through 1,10-cyclisation of FPP to cation G,
deprotionation with cyclopropanation to isolepidozene
(7), reprotonation induced ring opening with attack of
water to 3, and another reprotonation induced cyclisa-
tion to A and retro-Prins fragmentation to
8 (Scheme 1C, Cane & Watt, 2003). The downstream
steps include a sequence of protonation to H,
1,2-hydride shift to I and attack of water to yield
1 (Scheme 1D, Dickschat et al., 2005).

Gene replacement experiments in Streptomyces
coelicolor finally identified the gene for geosmin
synthase, a bifunctional two-domain terpene synthase
(Gust et al., 2003). Replacement of the N-terminal
domain abolished geosmin biosynthesis, while replace-
ment of the C-terminal domain had no apparent effect
on geosmin production. At the same time, the protein
function was established through the enzymatic con-
version of FPP in vitro, showing that the full length
geosmin synthase and also the N-terminal domain
alone yielded (1(10)E,5E)-germacradien-11-ol (3),
while the C-terminal domain initially did not show a cat-
alytic effect towards FPP (Cane & Watt, 2003). Shortly
later, incubation experiments with recombinant proteins
revealed that the geosmin synthases from S. coelicolor,
S. avermitilis and the cyanobacterium Nostoc puncti-
forme can, in fact, convert FPP into geosmin (Cane
et al., 2006; Giglio et al., 2008; Jiang et al., 2006).
Detailed investigation of the enzyme from S. coelicolor
through incubation experiments with the individual
domains of the geosmin synthase combined with site-
directed mutagenesis revealed that the N-terminal
domain converts FPP into 3, while the C-terminal
domain catalyses the downstream reaction from 3 to
1 (Jiang et al., 2007). The geosmin synthase mecha-
nism was further established by the detection of deuter-
ated acetone formed from a deuterated FPP precursor
(Jiang & Cane, 2008) and the structural verification of
octalin 8 through total synthesis (Nawrath et al., 2008).
A crystal structure of full-length geosmin synthase is
not available, but the N-terminal domain has been crys-
tallized, showing the typical α-helical fold and active
site architecture of type I terpene synthases (Harris
et al., 2015). The whole biosynthetic pathway starting
from acetic acid, including the mevalonate pathway, the
biosynthesis of FPP and its cyclisation to geosmin, has
been reconstituted in vitro (Dirkmann et al., 2018).
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While the pathway in bacteria is well established,
such detailed knowledge about geosmin biosynthesis
in other organisms is lacking. Deletion of a gene encod-
ing a cytochrome P450 in Penicillium expansum abol-
ished geosmin biosynthesis (Siddique et al., 2012), but

the direct involvement of this enzyme remains to be
demonstrated. Another recent study reported on a can-
didate fungal gene (ges1) in Tricholoma vaccinum that
encodes a terpene synthase putatively involved in
geosmin biosynthesis (Abdulsalam et al., 2021).

(A)

(B)

(C)

(D)

SCHEME 1 Biosynthesis of geosmin. (A) First hypothesis by Pollak and Berger (1996), (B) biosynthetic model by Spiteller et al. (2002)
involving oxidative side chain cleavage, (C) refined model by Cane and Watt (2003) through side chain cleavage by retro-Prins reaction and
subsequent redox transformations, and (D) biosynthetic model by Dickschat et al. (2005) proposing substitution of the redox transformations
from 8 to 1 by a cationic cascade. The today generally accepted mechanism proceeds through the steps from FPP to 8 as in (C), followed by the
steps from 8 to 1 as in (D).
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However, knockdown of ges1 through RNAi resulted in
strongly reduced gene expression levels but only
slightly lower geosmin production (Abdulsalam
et al., 2022). Further functional characterization will be
required to gain evidence for the function of ges1.
Recently, a terpene synthase for (1(10)E,5E)-germa-
cradien-11-ol (3) was discovered from Aspergillus
ustus, suggesting that this compound may also be an
intermediate in fungal geosmin biosynthesis, but the
conversion of 3 into geosmin has not been shown
(Peter et al., 2022). Taken together, the molecular
basis for geosmin biosynthesis in fungi is currently
unclear. The detection of geosmin in aseptically grown
beet roots was taken as an evidence that beet roots are
capable of endogenous geosmin biosynthesis (Lu
et al., 2003), but also for this organism characterization
of plant genes and enzymes are lacking.

A few studies have addressed the regulation of
geosmin biosynthesis. Early investigations showed an
increased geosmin production in Streptomyces albido-
flavus in the presence of copper (Dionigi, 1996). Geos-
min biosynthesis correlates to sporulation in
Streptomyces, as evidenced by the fact that non-
sporulating strains are unable to produce the com-
pound (Schoeller et al., 2002). ChIP-seq experiments
showed that the gene for geosmin synthase (geoA) in
Streptomyces venezuelae is under the direct control of
the sporulation-specific transcription factor WhiH
(Becher et al., 2020). Notably, the geosmin synthase
gene in Streptomyces peucetius is silent, but becomes
activated after deletion of the biosynthetic gene cluster
for doxorubicin (Singh et al., 2009). Doxorubicin is a
DNA-degrading compound, and its biosynthesis inhibits
development of the producer strain (Hulst et al., 2022).
Since geosmin is produced in particular during sporula-
tion, this likely explains why wild-type S. peucetius
does not produce the compound, while the well-
sporulating mutant does. In cyanobacteria, transcription
of the geosmin synthase gene is not light-dependent,
but is downregulated at the same time of growth cessa-
tion in laboratory cultures (Giglio et al., 2011).

Similar to other bacterial secondary metabolites pro-
duced by bacteria, geosmin biosynthesis is influenced
by carbon source utilization and by trace elements. For
example, mannitol as a carbon source promoted maxi-
mum geosmin production in Streptomyces halstedii,
and also the trace elements zinc, iron and copper had a
profound effect on geosmin production in the same
strain (Schrader & Blevins, 2001).

BIOLOGICAL ROLE OF GEOSMIN IN
TERRESTRIAL SYSTEMS

As an abundant chemical compound in soil, geosmin
may have an important influence on terrestrial organ-
isms. Recently, it was reported that geosmin acts as a

warning signal that repels the bacterial predator Cae-
norhabditis elegans (bacteriophagous nematode) and
reduced contact between the worms and the geosmin-
producing bacteria S. coelicolor (Zaroubi et al., 2022).
Geosmin itself was not toxic to C. elegans but reduced
grazing on S. coelicolor.

Geosmin and other terpenes may play a role in con-
trolling the activity of protists, which are known preda-
tors of soil bacteria, including Streptomyces. Geosmin
was tested as a pure compound against Tetramitus,
where the total number of protists was reduced by
observing a lower amount of inactive forms of the pro-
tist compared to the control, while the number of active
protists remained the same (Avalos, 2019). This sug-
gests a role for geosmin in inhibition of protist prolifera-
tion and as an antipredator compound.

Geosmin is important for the ecology and, in particu-
lar, the behaviour of insects. A stinging assay revealed
that geosmin strongly suppresses the defensive behav-
iour of honeybees. Interestingly, this suppression was
only observed at very low geosmin concentrations,
while the effect was not observed at high concentra-
tions (Scarano et al., 2021). Fire ants (Solenopsis
invicta) preferentially start forming new nests in
actinobacteria-rich soil, and this attraction was medi-
ated by geosmin, resulting in a higher survival rate of
the queen (Huang et al., 2020).

Geosmin may be attractive to one insect while
repellent to another. For example, in Aedes aegypti,
geosmin is a strong attractant and mediates egg-laying
site selection (Melo et al., 2020), while in the fruit fly,
Drosophila melanogaster, geosmin creates aversion,
even in the presence of compounds that by themselves
act as attractants (Stensmyr et al., 2012). The different
response of insects to geosmin could be related to their
ecological niche and lifestyle. The fruit fly, as its name
suggests, feeds on decaying or fermented fruit, a pro-
cess carried out by yeasts present in the fruit. Decaying
fruits, however, may also be inhabited by fungi and
bacteria which produce toxic compounds in addition to
geosmin. Fruit flies, thus, use geosmin to detect the
presence of harmful microbes (Stensmyr et al., 2012).
On the other hand, the larvae of the mosquito
A. aegypti feed on cyanobacteria which in turns makes
the smell of geosmin attractive to the female mosqui-
toes to lay their eggs on (Melo et al., 2020). Both
insects detect geosmin in a very sensitive manner, yet,
their response is opposite. Despite the difference, both
responses seem to be more ecologically related to the
nutrient sources needed by the two organisms and may
indicate an adaptation of the insects towards their
environment.

While these examples relate to insects that respond
to a chemical cue induced by geosmin, it is likely that,
in nature, these cues originate from a microbial source.
For example, geosmin attracts springtails to sporulating
Streptomyces colonies. Springtails are known to be
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‘omnivorous’ and can feed on a wide range of microor-
ganisms as well as plants. A recent study by Becher
et al. (2020) showed that the attraction of springtails
towards Streptomyces is mediated by the volatile ter-
pene compounds geosmin and the related
2-methylisoborneol. In Streptomyces, the production of
these molecules is correlated with the onset of sporula-
tion. The springtail feeds on the Streptomyces colonies;
however, this also results in an advantage to the bacte-
ria itself as it helps to disseminate the streptomycete
spores via the faecal pellets of the springtail and
through adherence to its hydrophobic cuticle (Becher
et al., 2020). In Streptomyces, the production of geos-
min is connected to the developmental life cycle of
these bacteria, with the peak of geosmin production
corresponding to the onset of sporulation (Becher
et al., 2020).

The production of geosmin during a specific phase
in the bacterial development has been suggested to be
a fitness benefit. In Myxococcus xanthus, geosmin con-
centration increased during the exponential phase,
peaked during the early stationary phase and
decreased thereafter (Zaroubi et al., 2022). M. xanthus
is a predatory bacterium, which suggests that geosmin
could be of help when looking for prey (Zaroubi
et al., 2022). Transcriptomics studies also showed
expression of geosmin genes during the ‘predasome’
(when the predator encounters a prey), suggesting that
this metabolite may participate in predation. The role of
geosmin as a chemical signal is becoming increasingly
evident; nevertheless, further exploration is required.

As a highly abundant terpenoid in soil, being pro-
duced by a wide range of microorganisms, it is logical
to assume that geosmin may have a direct effect on
plant physiology. The effect of geosmin was tested on
plant seed germination using 15 kinds of seeds from
the Brassicacea family. The germination of all kinds of
seeds was inhibited by geosmin, with 50% inhibition at
a concentration of 7.5 mg L�1 (Ogura et al., 2000).
Many germination inhibitors act by means of toxicity,
killing the seeds, such as cyanide, a respiratory inhibi-
tor. However, geosmin did not kill the seeds as the ger-
mination was restored once the exposure to geosmin
was removed and the seeds were stratified or treated
with the plant hormone gibberellin A. These studies
suggest that geosmin can indeed act as a plant growth-
regulating substance, primarily acting during seed ger-
mination and early plant life. Additional experiments on
the role of geosmin on plant root development and root
architecture are eagerly awaited.

GEOSMIN IN AQUATIC SYSTEMS

Cyanobacteria and Actinobacteria are often associated
with geosmin production in aquatic environments
(Clercin et al., 2021; Izaguirre & Taylor, 2004; Jüttner &

Watson, 2007; Klausen et al., 2005; Suurnäkki
et al., 2015). The marine bacterium Myxococcus fulvus,
a Deltaproteobacterium, also possesses a geosmin
synthase gene, although its ability to produce the com-
pound remains to be verified (Churro et al., 2020). Cya-
nobacteria or blue-green algae are organisms that
thrive in aquatic environments; the water bodies and
global warming result in algal blooms that cause an
unpleasant smell in water and are also associated with
toxicity because algal blooms are prolific producers of
cyanotoxins (Freeman, 2010; Graham et al., 2010).
Geosmin-producing cyanobacteria are abundantly
found in freshwater reservoirs, where geosmin odour
impacts the water quality, while only a few strains were
isolated from brackish water (Churro et al., 2020;
Persson, 1980). The limited reports of geosmin pro-
ducers from brackish water and marine environments
may be due to the low practical interest since seawater
is rarely a source of drinking water (Jüttner &
Watson, 2007).

Geosmin synthesis in aquatic producers is affected
by various factors, including light availability, water flow
and temperature (Espinosa et al., 2020; Shen
et al., 2022). It was proposed that in aquatic environ-
ments, the geosmin bioactivity level may not be efficient
in diffuse planktonic communities (Watson, 2003). After
all, aquatic geosmin producers are mainly biofilm-
forming benthos and epiphytes, and biofilm formation
may support the geosmin action at microscale levels
(Jüttner & Watson, 2007; Watson, 2003; Watson &
Ridal, 2004). Furthermore, putative actinobacterial and
cyanobacterial geosmin synthase encoding genes
could be detected in subseafloor sediment samples
(Schmidt et al., 2023).

Many questions remain on the biological and eco-
logical roles of geosmin in aquatic environments. How-
ever, several reports demonstrate that geosmin has
algicidal activity (Ikawa et al., 2001; Ozaki et al., 2008),
affects metabolism and development of higher aquatic
organisms (Nakajima et al., 1996; Zhou et al., 2020,
2023), and is released when producer cells are grazed
by zooplankton (Durrer et al., 1999). This evidence indi-
cates that geosmin may act as a repellent compound in
microbial competition and herbivore deterrence (Fink,
2007; Saha & Fink, 2022; Wang et al., 2015). The stud-
ies described often used a high concentration of geos-
min, which is unlikely to be found in a natural
environment (Nakajima et al., 1996; reviewed by Wat-
son, 2003). However, the hydrophobicity of this mole-
cule may cause it to accumulate and reach higher
concentrations in local areas where biofilms and cyano-
bacterial scums occur. Additionally, geosmin serves as
a freshwater guiding signal during glass eel migration.
Eels have a very sensitive sense of smell and seem to
perceive odours on a greater scale than what can be
measured in studies. Eel’s perception of fresh water
and possibly of geosmin is also dependent on salinity

THE CHEMICAL ECOLOGY OF THE EARTHY ODORANT GEOSMIN 1569
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gradients in the water (Kroes et al., 2020; Tosi &
Sola, 1993). Geosmin was also proposed as the attrac-
tant for Bedouins’ camels searching for freshwater
sources in the desert. The ability of African elephants to
detect geosmin was demonstrated, indicating that this
compound also serves as an olfactory cue for water
source location (Wood et al., 2022).

GEOSMIN IN WATER AND FOOD
CONTAMINATION

As mentioned above, geosmin acts as a pollutant of
water, which is mainly associated with production by
cyanobacteria, though Actinobacteria also contribute to
its accumulation. A study performed in Italy throughout
the four different seasons showed that cyanobacteria
counts were highly correlated with the increased odour
in spring and summer, while an increased count in Acti-
nobacteria correlated to a higher odour in autumn and
winter (Lanciotti et al., 2003). Since actinobacteria are
also common soil bacteria, the terrestrial production of
geosmin could end up in water sources by washing or
runoff.

A study of Oreachromis niloticus or Nile tilapia
raised in net cages in Brazilian freshwater farms
showed a high composition of cyanobacteria and Acti-
nobacteria in digesta, intestinal mucous, and on the
skin of fish as well as in the water. The study points to
the intestinal tract as the main source of geosmin-
producing bacteria (Lukassen et al., 2019).

Besides water, products such as wine and liquors
also suffer from the presence of this earthy odour. In
wines, the so-called cork taint involves the presence of
geosmin among other contaminant compounds. In Chi-
nese liquor, geosmin is found during the fermentation
process where Daqu, the fermentation starter, is used.
In both alcoholic beverages, the origin of geosmin
seems to be microbial; in wine, it is hypothesised that it
originates from microorganisms grown on the grapes,
especially if stored in humid places. In Chinese liquor,
Streptomyces strains were identified and isolated in the
Daqu (Cravero, 2020; Darriet et al., 2000; Du &
Xu, 2012).

The biotech industry has invested significantly in
approaches to remove geosmin. While geosmin is not
toxic at the concentrations found in the environment
(Burgos et al., 2014), the association of geosmin to
toxins produced by organisms such as cyanobacteria
and the low perception threshold of 5 ng/L
(Cravero, 2020) as well as the demand for clean,
odourless water, necessitates the removal of the com-
pound. Several techniques have been developed, such
as the application of powdered activated carbon, coag-
ulation, sedimentation, membrane filtration and chlori-
nation, but since geosmin is difficult to oxidize (the only
functional group is a tertiary alcohol), its full removal

from water remains challenging (Cook et al., 2001,
Mustapha et al., 2021). Biodegradation of geosmin has
also gained attention as an alternative to remove this
compound. Bacterial communities able to degrade
geosmin have been tested where bacteria belonging to
the genus Methylobacterium and also bacteria from the
family Oxalobacteraceae have shown promising results
(Xue et al., 2012). Another biological approach to the
removal of geosmin was the infection of geosmin-
producing Streptomyces with streptophages. The
infected streptomycetes were not able to produce geos-
min anymore (Jonns et al., 2017). Bioremediation is a
more natural alternative for the removal of geosmin.
However, it seems that the combination of conventional
techniques (physicochemical and biological) with
advanced oxidation processes, such as ozonation or
UV/photocatalyst, would provide a more effective solu-
tion for the removal of the odorous geosmin (Mustapha
et al., 2021).

FUTURE RESEARCH DIRECTIONS AND
OUTSTANDING QUESTIONS

The broad distribution of geosmin synthases among
bacteria in both terrestrial and aquatic environments
suggests that geosmin has an important ecological
function as a signal (strong attractant or repellent)
(Melo et al., 2020; Stensmyr et al., 2012) or as protec-
tive specialized metabolite against biotic and abiotic
stresses (Figure 1). Geosmin does not seem to be
involved in the basic cellular physiology. As discussed
above, in Streptomyces the production of geosmin is
linked to sporulation (Becher et al., 2020). However,
the deletion of geoA does not affect sporulation, and it
is therefore logical to assume that geosmin plays a
more ecological role, such as promoting spore dis-
persal. The genes encoding geosmin synthases in
myxobacteria, cyanobacteria and Actinobacteria are
homologous (Wang et al., 2015), consistent with the
idea that they may have a common ancestor. Consider-
ing the large evolutionary distance between the micro-
organisms, horizontal gene transfer likely contributed to
the spreading of the gene for geosmin synthase.

Mammals and insects can detect geosmin at
extremely low concentrations. While geosmin-sensitive
receptors are known from insects, such a receptor has
not been discovered in mammals so far, and hence we
cannot reconstruct the evolutionary history of human
sensitivity to this compound. It was proposed that geos-
min could have allowed our ancestors and other ani-
mals to find water in arid environments.

Geosmin may also provide information about water
availability to plants; however, so far, there is no study
that has explored the effect of geosmin on plants and
plant root development. Geosmin was detected in beet
but not in other root vegetables. While it was originally
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hypothesised that the geosmin in beet was of microbial
origin, recent studies suggest that geosmin is produced
by beet itself (Freidig & Goldman, 2014; Hanson
et al., 2021).

Surprisingly little is known about the biological role
of geosmin in ecological interactions. The biological
role of geosmin in all ecosystems ranges from its func-
tion as a signal to being a toxin and depends on its con-
centration. It should be noted that in studies reporting
toxic effects of geosmin the concentrations far exceed
those typically encountered in the environment (Dionigi
et al., 1993; Nakajima et al., 1996). Thus, the environ-
mental background is an important factor when consid-
ering ecological roles, since accumulated geosmin
concentrations and, as a result, actions are different at
microscale (rhizosphere, biofilms, cyanobacterial
scums) and macroscale (open water, air) levels.

In nature, geosmin is often produced together with
2-methylisoborneol (2-MIB), and it is likely that there is
interplay between the two compounds, with overlapping
or complementary biological roles in specific concentra-
tions and ratios. Future studies should aim at studying
the two compounds simultaneously, which could help
to offset gaps in our knowledge about geosmin. Still,
while nearly all streptomycetes produce geosmin, only
about a third produce 2-MIB (Martín-S�anchez

et al., 2019), strongly suggesting an independent func-
tion, and in particular that geosmin play a more critical
role in the Streptomyces life cycle than 2-MIB. To better
understand the role of geosmin in natural environ-
ments, it is also important to understand the regulation
of geosmin biosynthesis. Indeed, geosmin production
is controlled by transcription factors that regulate sporu-
lation, which suggests that geosmin may promote
spore dispersal. Studying ecological interactions, such
as microbe-microbe and microbe-plant interactions,
should help us to better understand the natural role of
geosmin.

It is currently unknown if microbes can degrade
geosmin or may serve as a ‘public good’ that can be
used by different members of the community. Such a
conserved molecule deserves more research attention
to reveal the biological role of geosmin for the organ-
isms producing it as well as to reveal receptors in
(micro)organisms sensing it.
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F I GURE 1 Ecological role of geosmin in aquatic (Left) and terrestrial (Right) environment. (Left) The main geosmin producers in aquatic
environments are cyanobacteria and Actinobacteria. Geosmin acts as a repellent or attractant. It can have algicidal activity. (Right) In terrestrial
environments, geosmin acts as an important info-chemical repellent or attractant. For example, geosmin repels fruit flies as well as predators
(nematodes and protists). Geosmin is an attractant for honeybees, ants, mosquitoes and springtails. Geosmin can act as a regulator of seed
germination and can be used as a cue by elephants for water source location.
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