
InSPECtor: an end-to-end design framework for compressive pixelated
hyperspectral instruments
Stockmans, T.A.; Snik, F.; Esposito, M.; Dijk, C. van; Keller, C.U.

Citation
Stockmans, T. A., Snik, F., Esposito, M., Dijk, C. van, & Keller, C. U. (2023). InSPECtor: an
end-to-end design framework for compressive pixelated hyperspectral instruments. Applied
Optics, 62(27), 7185-7198. doi:10.1364/AO.498021

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3719452

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3719452

Research Article Vol. 62, No. 27 / 20 September 2023 / Applied Optics 7185

InSPECtor: an end-to-end design framework for
compressive pixelated hyperspectral instruments
T. A. Stockmans,1,* F. Snik,1 M. Esposito,2 C. van Dijk,2 AND C. U. Keller1,3

1LeidenObservatory, LeidenUniversity, P.O. Box 9513, 2300 RA Leiden, TheNetherlands
2cosine Remote Sensing,Warmonderweg 14, 2171 AHSassenheim, TheNetherlands
3Lowell Observatory, 1400W.Mars Hill Rd., Flagstaff, Arizona 86001, USA
*stockmans@strw.leidenuniv.nl

Received 14 June 2023; revised 28 August 2023; accepted 28 August 2023; posted 29 August 2023; published 13 September 2023

Classic designs of hyperspectral instrumentation densely sample the spatial and spectral information of the scene
of interest. Data may be compressed after the acquisition. In this paper, we introduce a framework for the design
of an optimized, micropatterned snapshot hyperspectral imager that acquires an optimized subset of the spatial
and spectral information in the scene. The data is thereby already compressed at the sensor level but can be restored
to the full hyperspectral data cube by the jointly optimized reconstructor. This framework is implemented with
TensorFlow and makes use of its automatic differentiation for the joint optimization of the layout of the micropat-
terned filter array as well as the reconstructor. We explore the achievable compression ratio for different numbers of
filter passbands, number of scanning frames, and filter layouts using data collected by the Hyperscout instrument.
We show resulting instrument designs that take snapshot measurements without losing significant information
while reducing the data volume, acquisition time, or detector space by a factor of 40 as compared to classic, dense
sampling. The joint optimization of a compressive hyperspectral imager design and the accompanying recon-
structor provides an avenue to substantially reduce the data volume from hyperspectral imagers. © 2023 Optica

PublishingGroup

https://doi.org/10.1364/AO.498021

1. INTRODUCTION

Hyperspectral imaging combines the acquisition of two-
dimensional spatial and spectral information [1]; it is used
in a broad range of research, including–but not limited
to–remote sensing [2,3], food quality control [4,5], archae-
ology [6], astronomy [7], agriculture [8], medical imaging
[9,10], and imaging on microscales for biological and chemical
processes [11].

Hyperspectral imaging contains three dimensions of infor-
mation (two spatial and one spectral dimension), but most
detectors are two-dimensional. This requires a trade-off in the
instrument design, which often results in using time as the third
dimension. The three most common techniques for air- and
spaceborne instruments are whisk broom, push broom (line
scan), and staring [12]. In the whisk-broom imaging mode,
the system measures the full spectrum of one geometrical pixel
before stepping to the next in a track perpendicular to the flight
direction. In the push-broom mode, the system simultaneously
measures the spectrum of a line of geometrical pixels. Staring, as
opposed to the other two modes, measures the whole image in
one spectral band and then steps through the bands [12–14].

What the techniques described above all have in common is
that the acquired hyperspectral data cube is densely sampled and
therefore partially redundant [15]. This redundancy implies

that there is a representation of the data cube in which most
entries map to (approximately) zero and can be ignored. When
only measuring the nonzero entries of this representation, all
information could still be recovered while reducing detector
space, data volume, and/or measurement time. Such reductions
are particularly helpful for applications in space [16], where
mass, volume, power, and data rates are limited. A simple exam-
ple of the redundancy in hyperspectral data cubes is the success
of hyperspectral band selection where the algorithms extract
the spectral bands that contain the most information [17].
However, this is a postprocessing method that does not improve
the detector size and/or the acquisition time.

The imaging techniques that go beyond dense sampling are
typically referred to as compressed sensing (CS). Several hyper-
spectral instruments based on CS have been designed [18].
Examples include the spaceborne concepts proposed by [19,20]
and the computed tomographic imaging spectrometry (CTIS) sys-
tem [7] based on [21]. The most common compressive sensor
for hyperspectral imaging is the coded aperture snapshot spectral
imager (CASSI) and its variations [22–26], which combine
spectral dispersers and coded focal plane masks. Other designs
combine coded focal plane masks with a dispersing lens [27], a
diffuser in combination with a color filter array (CFA) [28], or a
Fourier transform spectrometer and a single-pixel detector [29].

1559-128X/23/277185-14 Journal © 2023Optica PublishingGroup

https://orcid.org/0000-0002-7914-1580
https://orcid.org/0000-0002-1368-841X
mailto:stockmans@strw.leidenuniv.nl
https://doi.org/10.1364/AO.498021
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.498021&domain=pdf&date_stamp=2023-09-13

7186 Vol. 62, No. 27 / 20 September 2023 / Applied Optics Research Article

A compressive sensor can be described mathematically by a
single matrix, H. This measurement matrix, when multiplied
with the vector representation of the measured scene, Ex , and
adding the noise, En, results in the vector representation of the
detected signal, Ey , i.e.,

Ey =HEx + En. (1)

The reconstructor estimates Ex from knowing Ey and H. This
inversion is not trivial due to the non-uniqueness of the prob-
lem, which requires the addition of constraints. Examples of
such reconstruction algorithms can be found in [30–32] and
references therein.

Some authors have optimized the instrument and thereby
the measurement matrix; they require the most accurate recon-
structions, while operating the fastest or sparsest [33–36]. The
numerical optimization of the imaging system, in light of the
needed reconstruction, resembles the definition of computa-
tional imaging (CI). This should not be surprising, since the
field of CS has been closely intertwined with the field of CI for
some time now [37]. CI has also produced efficient and rel-
evant instruments, like the one described in [38] or in [39]. An
overview of some instruments in this field that use deep learning
mostly for the reconstruction of the hyperspectral data cube
can be found in [40,41]. Finally, there is the work of Wang et al .
[42], wherein the reconstruction was jointly optimized with the
coded aperture mask of the CASSI system.

Another research field that is related to CS is called demo-
saicking [43]. It can be described within the CS framework as a
specific type of reconstructor, but this is not normally done due
to its origin and scope in red–green–blue (RGB) photography.
In most common RGB instruments, the detector is covered by
a Bayer pattern of filters [44], i.e., red, green, and blue pixels
are alternating in a 2× 2 superpixel, where the green filter
occurs twice. When a scene is imaged with a single snapshot,
the intensity of the blue and green light at the location of a red
pixel is unknown, and vice versa. Demosaicking provides an
approximation of the intensities of all the unknown colors of
each pixel, creating a fully filled RGB image. Some examples
of demosaicking algorithms for RGB imaging can be found in
[43,45–57]. Since its beginning in RGB imaging, demosaicking
has also found its way to detectors with more spectral bands than
only the RGB broadband filters. Examples of demosaicking
algorithms dealing with multispectral data cubes can be found
in [58–66].

The demosaicking algorithms we referenced above make use
of existing color filter array designs and instruments. The design
of these color filter arrays (CFAs) themselves has also undergone
development. The CFA design can be updated to enhance the
quality of the resulting processed images. For instance, in the
update of the Bayer layout for RGB imagers, we refer to [67–69]
and other references in the latter publication. Some examples
of multispectral CFA designs can be found in [70–73]. Finally,
some of the commercially available instruments for snapshot
hyperspectral imaging with a CFA include the SNAPCAM by
[74], XIMEA’s detector [75], and Silios’ detector [76]. An older,
but more general overview of snapshot spectral imagers is given
in [77].

Some authors have also directly related RGB imaging and
hyperspectral imaging, which is referred to as spectral recovery.

In this field, RGB images are transformed into hyperspectral
data cubes [78–80].

In the papers referenced above, the measurement design
(instrument) and the reconstruction algorithm are treated as
separate entities. By considering the system as a whole and
jointly optimizing the instrument design and the reconstruc-
tion algorithm together, advances have been made in RGB
imaging [81,82]. The joint optimization of instrument design
and recovering algorithm is also done by [83]. The instrument
they have optimized combines the CASSI system described
above and a multispectral filter array. The broadband encoding
stochastic (BEST) camera descibed in [84] and [85] is developed
by a neural network that designs both the spectral filters of a
hyperspectral camera and the dense neural network for the
reconstruction afterwards. Finally, most closely related to this
work is the conference paper by Li et al. [86]. They describe the
use of a reinforcement-learning-based band selection algorithm
in combination with a neural network to design the hyper-
spectral CFA and do the reconstruction afterwards. There are
three key points that make the work described here different:
(1) They do a band selection of common broadband filters. In
our described framework, the spectral properties of the filters
can be set as another optimizable parameter, which enables
larger versatility. (2) Their reconstruction network first demo-
saics the images from the CFA and then uses a separate spectral
recovery algorithm to reconstruct the hyperspectral data cube.
We combine this step in a single mapping, which reduces the
chance of error propagation between separate layers. (3) Finally,
they solely focus on snapshot imaging. The methods we describe
below also take the possibility for push-broom scanning into
account, which can push the accuracy of the instrument for
some applications far enough to make it a feasible alternative to
classical hyperspectral instruments.

In this paper, we describe a new framework that can jointly
design a spectral filter array and reconstruction function that
combine into a compressive hyperspectral imager. The papers
mentioned above either optimize only one part of these two or
are focused on a different optical design altogether. The pre-
sented framework can optimize three aspects: (1) it optimizes
the filters that contain the most spectral information; (2) it
determines the layout of these filters to optimize the estimated
spectra for all pixels; and (3) it determines a linear reconstruc-
tor that optimally demosaics the measurements into a filled
hyperspectral data cube. In the following sections, we describe
the framework in detail. Then we show the accuracy provided
by designs that vary in terms of the number of filters and the
number of push-broom scans. Finally, we present an outlook for
future applications and improvements.

2. METHODS

To design the optimal compressive measurement setup and
reconstructor, we developed the InSPECtor framework.
Currently, InSPECtor consists of two components. The first
component only takes the spectral dimension into account
and disregards the spatial dimension of a hyperspectral data
set. This component determines a given number of optimized
spectral filter passbands to reconstruct the full spectra. The
second component, however, takes both the spatial and spectral

Research Article Vol. 62, No. 27 / 20 September 2023 / Applied Optics 7187

dimensions into account. It can, for instance, decide on the
optimal layout of the filters from the first component and return
the matching reconstructor. The second component can also
be used to decide the best passbands in a specific fixed layout
and optimize a reconstructor for the resulting instrument. In
the future, the optimization of both the filters and their layout
will be combined in a single framework. Below we start with an
explanation of the merit functions used in our paper. We con-
tinue with a mathematical formulation of the two components
in a CS formulated manner. The end of this section entails the
implementation of the two components in Python code using
the TensorFlow package.

A. Merit Functions

To determine the accuracy of the resulting data cubes as com-
pared to the original ones, we calculate the mean square error
(MSE) and the peak signal-to-noise ratio (PSNR). The PSNR
is a widely used metric for spectral image comparisons [87].
We included the MSE to provide a nonlogarithmic scale of the
error for direct comparison to the spectra. The MSE is defined as
follows:

MSE=
1

M

M∑
k=0

(Yk − Pk)
2, (2)

in which Y is the true scene and P is the estimated scene and
M is the total number of entries that the scene consists of. This
scene can be either a single spectrum or the spectra of multi-
ple spatial pixels. The PSNR is closely related to the MSE in
a logarithmic inverse way. So note that a lower MSE means
a better estimation and corresponds to a higher PSNR. The
mathematical formulation of the PSNR is as follows:

PSNR= 10 log10

(
MAX2

MSE

)
, (3)

where MAX is the maximum possible value of Y . MAX differs
between applications and scenes under investigation. For exam-
ple, for an 8-bit system, MAX= 255. In this paper, we have used
MAX= 232

− 1, since the images in the training and test data
sets are 32-bit.

B. Optimal Filters Estimator

The first component of InSPECtor determines the optimal filter
passbands independent of the spatial arrangement of the filters.
The filters are implemented as a linear transformation from an
input spectrum to filtered intensity measurements, from which
a linear reconstructor estimates the input spectrum.

The linear transformation from an input spectrum to filtered
intensity measurements is mathematically equivalent to Eq. (1).
Here, Ex is the discretely sampled spectrum, Ey are the intensities
through every filter, and H can be described as

H=

 ET1
...
ETN

 , (4)

where ETn is the filter transmission at each wavelength. Here
we used a normalized Gaussian spectral filter with a central
wavelength, λn , and a full width at half-maximum, FWHMn ,
i.e.,

ETn = e

√
2 ln 2(Eλ−λn)

2

FWHM2
n . (5)

The reconstructor is described by the following equation:

REy = Êx , (6)

where R is the reconstruction matrix to obtain the
approximation of the original spectrum: Êx .

This component is visualized in Fig. 1.

C. Optimal Layout Estimator

The optimal layout estimator is similar to the optimal filters
estimator described above (see Fig. 2). It consists of a layout
of spectral filters and a linear reconstructor that carries out the
demosaicking and reconstructs the full hyperspectral data
cube. The measurements, where individual pixels see the scene
through different spectral filters, can be done either in a snap-
shot mode or in a push-broom fashion. In the former, only a
single-intensity image is acquired. In the latter, the filters are
shifted stepwise in one direction across the scene, and multi-
ple images are taken; every step corresponds to one full image
carrying different spectral information for all ground pixels.

The optimal layout estimator supports different configura-
tions, which can be grouped into two main configurations: in
the first configuration, the spectral filters are fixed and cannot
be updated by the algorithm. In the second configuration,
however, the filters can be updated as well. This will be further
explained below in Section 2.D.

Mathematically, we can again describe this component in the
compressed-sensing format, referring to Eqs. (1)–(4). However,
ETs ,m now describes the transmission of the filter focused on every
geometrical pixel of the scene in every scanning frame, instead of
every filter, as in Eq. (5). Assuming a detector with M pixels and
taking S steps, H can be written as

H=

ET11
...
ET1M
ET21
...
ETSM

. (7)

Ex is a serialized version of S times all spectra of all pixels. Ey
contains the intensities on the detector of every pixel in every
step. The linear reconstruction is the same as above in Eq. (6),
but with this different Ey .

D. TensorFlow Implementation

InSPECtor is implemented in TensorFlow, which provides rapid
optimization of all free parameters of our analytical model that is
fully differentiable [88]. Each component is implemented with
a sequence of so-called Layers. A Layer consists of an input of

7188 Vol. 62, No. 27 / 20 September 2023 / Applied Optics Research Article

Fig. 1. Schematic overview of the optimal filter estimator and the propagation of the data through its linear transformations.

Fig. 2. Schematic overview of the network and the propagation of the data through it. It starts with a scene that passes through the spectral filter
layout. Some information is being blocked by the filters, resulting in a mosaicked cube. This process is repeated for the total number of steps, which
are taken in a push-broom fashion. The detector flattens the mosaicked hyperspectral cubes into 2D intensity measurements and adds noise. The
multiplication of these 2D intensity images with the linear reconstructor results in an estimate of the original data cube.

Tensors, an output of Tensors, a differentiable function, and the

values of the variables (weights) used in this function along with

the input Tensor. Tensors are the main multidimensional data

containers of TensorFlow. The physical process represented by

each Layer is described by the function and the weights, and the

data propagate through each Layer as the inputs and outputs.

Each of these Layers can be made trainable where the values

of the weights can be updated by the optimizer, in contrast to

remaining fixed during the training phase. The optimizer uses

Research Article Vol. 62, No. 27 / 20 September 2023 / Applied Optics 7189

backpropagation to update the weights. Pieces of the train-
ing data set are fed to the network, and the resulting output is
compared to the desired result using a loss function, in our case
the MSE. The loss function is related to every parameter in the
framework in the form of a partial derivative. Using that partial
derivative, the value of each parameter is updated by the opti-
mization algorithm, to minimize the loss function. In our case,
we make use of the Adam optimizer [89] with different learning
rates. The learning rate is a hyperparameter that is found by trial
and error.

The TensorFlow model for the optimal filters estimator
consists of three sequential Layers. First is a spectral filter and
detector Layer, followed by a noise Layer and, finally, a recon-
struction Layer. The second component, the layout estimator, is
realized with three TensorFlow Layers. These are a spectral filter
layout and detector Layer, again followed by the noise Layer
and the reconstruction Layer. Each of these Layers is described
in more detail below. In addition, we discuss further possible
additions to the model, called regularizers.

1. Spectral Filters andDetector

We describe the filter of each pixel as in Eq. (5), a normalized
Gaussian profile characterized by a central wavelength and
bandwidth. These two numbers make up the weights of this
custom spectral filter Layer, which can be optimized. The single-
spectrum input is multiplied by all the filters. The detector
part is simply an integration over wavelength, resulting in an
intensity value for each filter.

The weights corresponding to the central wavelength and
bandwidth, respectively, of the spectral filter Layer are scaled to
the−1 to+1 range to accelerate training.

2. Spectral Filter Layout andDetector

This Layer is very close to the spectral filter and detector Layer
described above. However, the input is a full hyperspectral
data cube with the same spatial dimensions as the detector.
Each detector pixel has its own filter associated with it, and
the multiplication of the filter happens with the spectrum
of geometrical pixel imaged on it. Again an integration over
wavelength happens to result in one intensity image. For each
additional push-broom step; this process is repeated with the
filters shifted one pixel row with respect to the spatial sampling
points, and the detector images are concatenated into a single,
long vector.

Different configurations can be implemented with the opti-
mal filter layout estimator. Most of these configurations have
an influence on the weights of this Layer. If the configuration
contains a fixed layout, the weights of this Layer will be the λc

and FWHM of each filter of the fixed layout. However, if the
configuration does not contain a fixed layout, the weights of
this layer will be the λc and FWHM of each filter on each single
detector pixel.

3. Noise

We have added a Gaussian noise Layer, which affects the inten-
sity measurements coming from the preceding Layer. The

amplitude of this added noise is comparable to the SNR of the
input data, as noted in [90]. This Layer also ensures the robust-
ness of the design to the physical detector noise and mitigates
overfitting. Overfitting denotes fitting not only the underlying
patterns in the training data but also the random noise patterns,
which will be different and unpredictable when validating the
design with different data.

4. Reconstruction

The intensity values from the noisy detector are reconstructed
in the final Layer as either a full spectrum or as the full hyper-
spectral data cube. The reconstruction is implemented as a
linear reconstructor. This corresponds to a single Dense Layer
in TensorFlow, with as many weights as there are entries in the
reconstructed spectrum or hyperspectral cube; all bias weights
are fixed to 0, to ensure strict proportionality between the input
measurement and output data cube. This Dense Layer is initial-
ized with zeros instead of the more common random numbers
to help the network converge. To determine the spectrum of
one geometrical pixel in the optimal filter layout estimator, the
reconstruction can, in theory, make use of all the measurements
of all geometrical pixels. However, in practice, it will focus on
the connections that contain the most information, e.g., the
closest ones.

5. Regularizers

Next to the loss function described above, which compares
the output of the network with the desired output, additional
loss terms, called regularizers, can be added to the TensorFlow
model. Each added loss term must be differentiable as well for
it to be able to influence the optimization of the weights. The
regularizers can be as important as the network structure itself.
Here we apply different regularizers to limit the noise propaga-
tion in the linear reconstructor and to implement the discrete
filter selection in a differentiable manner.

The reconstruction Layer can be made less prone to over-
fitting by adding an L2 regularizer. L2 regularization adds the
L2-norm of the weights of the linear reconstructor as a loss
function and leads to a preference for smaller weights.

The second regularizer is custom-made to specifically give
preference to a fixed selection of filters described by their central
wavelengths and widths. This regularizer adds a loss for each
filter, but this loss is reduced when the filter resembles one of
the selected filters. Since there are two parameters defining each
potential passband, the central wavelength and FWHM, the
loss function is two-dimensional (2D). For each specified filter,
there is a negative 2D normalized Lorentzian function with a
global minimum at the specified filter coordinates. A Lorentzian
function is preferred over a Gaussian function due to its broader
wings, which accelerate convergence. All these Lorentzian
functions are summed to create the full loss landscape with
local minima at all specified filter coordinates. This sum of
Lorentzians is evaluated for each filter in the spectral filter Layer,
and all these values are added as the additional loss term, which
is expressed in the following equation:

7190 Vol. 62, No. 27 / 20 September 2023 / Applied Optics Research Article

L = αreg

∑
pixels

∑
filters

1

−
A2

(λ− λfilter)
2
+ (FWHM− FWHMfilter)

2
+ A2

, (8)

where A controls how fast a deviation from the desired filter
results in a big loss term. αreg determines the weight of this
regularizer with respect to the other regularizers and the global
loss function. λfilter and FWHMfilter are the central wavelength
and FWHM of the specified filter, respectively. An example
of the loss landscape for this regularizer can be seen in Fig. 3.
Note that this loss is a unitless quantity with the sole purpose of
optimization with respect to certain design constraints; it is not
related to any physics in the system.

The regularizer described above is the key link between
the two frameworks of InSPECtor: when the layout is not
fixed, it ensures that the optimal filters from the optimal filters
framework are highly preferred over all others in the layout
design.

6. Configurations of the Framework

As mentioned in Section 2.C, the filter layout estimator can be
configured in many ways. The weights in the color-filter Layer
and the reconstruction Layer can be set to be trainable or not. In
addition, the initialization of the weights of these layers and the
choice of regularizers can be selected.

A configuration of the framework is determined by the
following items:

• Determine the initialization of the filters.
• Either optimize the filters or fixate the filters to the initial-

ized values.
• Determine the initialization of the layout.
• Either optimize the layout or fixate the layout to the initial-

ized pattern.
• If both the filters and the layout need to be optimized, do

they need to be optimized simultaneously?

Throughout this paper, we will initialize the filters in the
same way. We will call this initialization “regular filters.” The
term “regular filters” represents filters with identical Gaussian
passbands, spaced in wavelength by their FWHM and spanning
the complete wavelength range of interest (450–940 nm). Two
regular filters would both have a FWHM of 245 nm and be
centered at 577.5 and 818.5 nm, respectively.

When the filters are optimized, there are two possibilities
called “best filters” and “optimized filters.” They are related to

Fig. 3. Loss that each filter adds according to its wavelength and
FWHM when the following combinations (λ, 1λ) are desired:
(460 nm, 10 nm), (580 nm, 50 nm), (850 nm, 34 nm), (900 nm,
29 nm) and (700 nm, 67 nm). These combinations were randomly
selected for display purposes.

the last item that determines the configuration: the term best
filters means that the filters are the result of the optimization
done by the “Optimal filters estimator;” see Section 2.B. The
final term, optimized filters, means that the filters are optimized
together with the layout in the “optimal layout estimator,”
described above in Section 2.C.

The layout is initialized either randomly or with a fixed pat-
tern. In the section below, the two fixed patterns that we use are
described: an LVF-like pattern and the “squarish” pattern. In
future work, more patterns could be implemented in this frame-
work as long as they are generated with a specific function that
is differentiable and not limited to certain sizes of the simulated
detector.

7. FixedPatterns

We describe two different fixed patterns in this section, an LVF-
like pattern and our own squarish pattern.

The LVF-like pattern is a repreating arrangement of the dif-
ferent filters with central wavelengths increasing in the scanning
direction, while being uniform in the other direction.

The squarish pattern can be best defined as a lattice in statisti-
cal physics, by a unit cell and two linearly independent primitive
translation vectors. We keep to the definition 12.2.1 in [91] for
a unit cell as follows: A unit cell is the repeated motif that is the
elementary building block of the periodic structure.

In our case, a unit cell contains each spectral filter at least once
in a fixed layout. For instance, if a 500-nm filter is directly to the
right of a 650-nm filter in the unit cell, all 650-nm filters in the
total layout will find a 500-nm filter to their right except for the
edges of the sensor.

The unit cell for our squarish pattern is defined to have a unit
cell that is as close as possible to a square within the square grid
graph [92]. When a perfect square is not possible, the direction
perpendicular to the scanning direction is filled first.

The primitive translation vector is the vector between the
same filter in two different unit cells. One of the primitive
translation vectors can always be defined to be perfectly aligned
perpendicular to the scanning direction. The second is then
usually fixed due to the requirement that the pattern be unin-
terrupted. There is one exception when the unit cell is a perfect
rectangle. In that case, the translation vector is chosen to never
be perfectly aligned with the scanning direction, but always
skewed by one pixel. This skew is introduced to ensure that a full
cycle of all filters is repeated in the scanning direction, instead
of a repetition of a subset, as in a Bayer pattern. (One example is
shown in Figs. 8(c) and 8(d).)

E. Training, Validation and Test Data

1. HyperscoutData

To train and validate the framework, we have made use of satel-
lite data obtained by the Hyperscout instrument [93]. We used
one of the 440 by 440-pixel images with a ground sampling
distance of 70 m. There are 40 wavelength bands spanning
450–940 nm with a spectral resolution of about 15 nm each.
The scene is shown in Fig. 4 as an RGB picture and contains
agricultural fields as well as sand, rivers, and clouds. The RGB

Research Article Vol. 62, No. 27 / 20 September 2023 / Applied Optics 7191

Fig. 4. RGB representation of the sampled scene. The red line
shows the divide between the test set on the right and the training and
validation set on the left.

picture was generated by using the Python package “colour
science” and scaling the colors to Google Maps satellite imagery.

The satellite data was separated into two different parts, as
shown in Fig. 4. Three hundred-fifty columns, 154,000 spectra,
were reserved for training (training set) and the hyperparam-
eter selection (validation set). The separate test set consisted
of the remaining 90 columns, or 39,600 spectra. This test set
was kept separated during training and the selection of the best
performing hyperparameters and was only used to present the
final results of the network noted in the sections below.

The optimal filters were determined by training and validat-
ing on 100,000 randomly selected spectra from the training and
validation part of the Hyperscout data set. The resulting filters
are subsequently tested on 10,000 randomly selected spectra
from the test set.

For the optimal layout estimator, we transformed the
Hyperscout data set into patches of 10 pixels× 10 pixels.
This size corresponds to the used detector size of 10 pixels×

10 physical pixels. The training data and validation data con-
sisted of 10,000 patches from the corresponding part of the
Hyperscout data set that were randomly augmented by mir-
roring and/or rotation by 90◦, 180◦, or 270◦. Although there
is a high likelihood that there is a partial overlap between some
different patches, exact duplicates were avoided. The test set
consisted of 1000 patches without any augmentation from the
test part of the Hyperscout data set.

To separate between the training set and validation set, we
used the inbuilt separation function of TensorFlow. This ran-
domly selected 10% for the calculation of the validation loss and
90% for the actual training of the network.

2. InformationContent of theData

The power of CS lies in using the correlations in space and
wavelength of the scene. In this section, we determine the
information content of the data used to estimate the amount
of compression that will be viable. To this end, we (1) assess
the spatial correlations at a given wavelength with a Fourier
analysis and the spatial and spectral correlations by calculating
the PSNR between pixels as a function of their distance and
(2) determine the information contained in the spectra with a
principle component analysis (PCA).

The simplest method to analyze the spatial correlations is the
power spectrum of the image at a given wavelength (see Fig. 5).
Figure 5(a) shows that the power spectrum is approximately
azimuthally symmetric, which allows us to limit ourselves to the
azimuthal average in different wavelengths [see Fig. 5(b)]. We
observe a gradual decline with increasing spatial frequency; the
data set does not show any flattening at the higher frequencies,
which indicates that the data are not dominated by white noise,
even at the highest spatial frequencies.

A flattening of the power spectrum would indicate that the
pixel binning is too high for the resolution of the optical sys-
tem, and neighboring pixels would sample the same resolution
element. In the absence of this flattening, we conclude that the
system is not spatially oversampled.

To analyze the spectral correlations in space, we determined
the average PSNR of two pixels as a function of their distance,
which is shown in Fig. 6. When pixels are close by, their spectra
are very similar (high PSNR). However, when two pixels are far
from each other, their spectra differ greatly. When the distance

Fig. 5. Fourier analysis. (a) Power spectrum of the image at a wavelength of 701 nm, tapered with a Bartlett–Hann window toward the average;
(b) azimuthal average of the power spectrum at different wavelengths.

7192 Vol. 62, No. 27 / 20 September 2023 / Applied Optics Research Article

Fig. 6. Blue points show the PSNR between the spectra of two
pixels as a function of the distance between them. The orange line is
the average of all pairs with the same distance. The green line is the
PSNR of a comparison of a pixel’s spectrum to the mean spectrum of
the whole image, averaged over all pixels. A close-up of the PSNR for
distances of 10 pixels and fewer is shown in the upper right.

exceeds 34 pixels, the spectrum of a pixel is better approximated
by the mean spectrum of the whole image than the spectrum of a
random, far, far, away pixel. This indicates the distance at which
all but the most basic correlation between pixels vanishes.

To assess the information content of the spectra, we carried
out a PCA; see Fig. 7. The drop-off in the variance of succes-
sive PCA components is very sharp, indicating that much of
the spectra can be approximated with a small number of PCA
components [see Fig. 7(a)]. The individual PCA compo-
nents shown in Fig. 7(b) seem to pick up the Vegetation Red
Edge (component 2) and water vapor absorption in the NIR
(component 4).

Finally, we have calculated the average PSNR between a
spectrum and its approximation per number of PCA compo-
nents used for this approximation. This calculation shows how
much each PCA component adds to reproducing the original
data. The number of components that results in an acceptable
approximation is related to the number of filters needed for an
acceptable reconstruction. However, since there are no negative
filters, and interference filter transmission profiles have limi-
tations, the number of PCA components cannot be converted
directly to the number of required optical filters.

From four PCA components onwards, the improvements in
approximation are minor. Our expectation is that the first PCA

component could be approximated by a filter directly. However,
for the second PCA component two filters would be necessary:
one until 700 nm and one starting at 700 nm. For the third PCA
component, we expect a filter from 500 to 600 nm and one
from 600 to 700 nm. Finally, the fourth PCA component could
be done with a single filter at 900 nm. Adding all these filters,
we expect that seven filters would be necessary to adequately
approximate the full spectrum at 40 wavelength bands.

3. RESULTS

In this section, we show the results produced by InSPECtor
as a function of number of filters and number of steps. In the
TensorFlow environment, these two variables are implemented
as hyperparameters:

• the number of push-broom steps to take, going from a
snapshot image (one step) to two or more frames

• the number of filters present in the layout, going from two
different filters up to 19

The PSNR and MSE are evaluated at all permutations of
these two hyperparameters.

We investigated five different configurations. The three best-
performing configurations out of these five will be discussed in
more detail. In order of complexity, the five different configu-
rations are: regular filters in a fixed LVF-like layout, best filters
in a fixed LVF-like layout, best filters in an optimized random
layout, regular filters in a fixed squarish layout, and finally opti-
mized filters in a fixed squarish layout. The resulting five layouts
for the case of six filters and four steps are shown in Fig. 8.

Additional hyperparameters encode the learning rate and
weight of the l2 regularizations on the linear reconstructor.
We run the framework with the different values of these two
additional hyperparameters, noted in Table 1. The resulting
validation losses are then compared to determine the optimum
design and reconstructor for each configuration. Furthermore,
the “joint” configuration is run multiple times, starting with dif-
ferent random initializations of the spectral filter Layer, which
is not necessary for the other configurations that feature a static
spectral filter layout.

Figure 9 shows the configuration that reaches the best PSNR
for a given pair of steps and filters. We can see that the squarish
pattern with optimized filters performs best in almost all cases.
When the number of filters is high, the difference between
optimized filters and just regular filters begins to diminish.

Fig. 7. PCA analysis. (a) Variances associated with each PCA component of the spectra in the image. The variances are normalized to add up to 1.
(b) PCA components of the spectra in the Hyperscout data set; (c) average PSNR between a spectrum and its approximation as a function of the num-
ber of PCA components used for this approximation.

Research Article Vol. 62, No. 27 / 20 September 2023 / Applied Optics 7193

Fig. 8. Detector layout in different configurations after convergence by the network. Note that the layout in (a)–(c) are unchanged from their ini-
tialization. (a) LVF layout, with fixed regular filters; (b) LVF layout with fixed filters separately optimized by the first component; (c) squarish layout
with fixed regular filters; (d) squarish layout with optimized filters; (e) optimized layout with fixed filters separately optimized by the first component.

Table 1. Different Possible Values of the
Hyperparameters

L2 weight 0 0.0001 0.001
Learning rate 0.0001 0.0003 0.001

Every additional push-broom step implies an additional
image that has to be acquired and transmitted by the instru-
ment. The original LVF design of the Hyperscout instrument
needs 40 push-broom steps, which requires 40 images to con-
struct the full data cube. We define compression as the number
of images that need to be taken compared to the original 40

7194 Vol. 62, No. 27 / 20 September 2023 / Applied Optics Research Article

Fig. 9. Color-coded map to indicate what setup produces the most
accurate results. In each block the best achievable PSNR is noted, with
a color corresponding to which setup has achieved this.

images. This is directly related to compression in data rate and
acquisition time, since data rate is the amount of data that has to
be downlinked, or the sum of images, and acquisition time is the
time it takes to make all the images.

Figure 10 shows the accuracy that can be achieved for a given
fraction of the data rate of the original LVF setup. The reduction
of the data rate is only related to the number of push-broom
steps, not to the number of filters. Therefore, the y axis of this
figure is the highest PSNR at each number of steps; a data rate
reduction of 95% then corresponds to two steps, i.e., taking only
two images. In Fig. 9, we can see that the highest possible PSNR
for two push-broom steps (denoted on the x axis) occurs at seven
filters (denoted on the y axis) by the squarish optimized filters
(denoted by the color purple), which corresponds to the quoted
PSNR in Fig. 10. As expected, higher compression leads to lower
accuracy. With a compression by a factor of 40 (snapshot), the
achievable PSNR is still 54.1.

Fig. 10. Reduction in data rate that can be achieved compared to
the classical LVF setup.

We could estimate the expected compression rate in
Section 2.E.2, where we showed the power spectrum and the
PCA results. The power spectrum showed spatial correlations.
We could see that most of the power is concentrated in lower
frequencies. At z> 100, the power has dropped by 4 orders
of magnitude. Removing all the information at the z> 100
frequencies would therefore only reduce the accuracy by 1%.
This corresponds with a compression of a factor 2 in both spatial
directions.

From the PCA analysis, we expected seven filters to be enough
to recover about 99% of the spectral information. Compared to
the 40 original filters, we expected a possible compression rate of
around 6 times in the spectral dimension.

Multiplying these expected compression rates, we expect to
be able to compress the data by a factor of about 24. Figure 10
indeed indicates the largest drop-off in quality occurs between
compression factors of 20 (95%) to a factor of 40 (97.5%).

In order to give a better understanding of the difference
between a PSNR of 54.1 and one of 56.5, we have included
Figs. 11 and 12. In these figures, we show the difference in spec-
tra and spatial images. At this level, the difference between how
well the reconstructions are done becomes hard to discern by eye
and the use of the figures of merit over visual inspection becomes
apparent.

4. DISCUSSION

The inSPECtor framework designs pixelated spectral filter
layouts in the focal plane along with a linear reconstructor. The
resulting instruments are expected to achieve high accuracy
while substantially reducing the data rate and/or acquisition
time.

The results noted in this paper are a proof of concept of this
framework. In the actual use of this framework, it is highly advis-
able to make use of a more diverse training set than the single
hyperspectral data cube used throughout this paper. The best
results are expected to come from a training set that contains all
the expected scenes in a balanced manner.

In some cases, the optimized configuration was outperformed
by the equivalent nonoptimized filter arrangement. This would
not be expected, since the static configurations are within the
solution space of the optimizer. If the performance of the static
cases is better than the performance of the optimized design, the
latter has not converged to its optimal solution.

However, the data-driven optimization using gradient
descent is not always able to converge to the global minimum
of the problem, as can be seen by the comparisons between
different optimization algorithms in [89]. With respect to our
results, this means that the optimized design generally converges
to a local minimum and that this minimum can be slightly worse
than either other local minima or the global minimum. Which
local minimum the network converges to depends on both the
type of gradient descent algorithm and the initialization of the
weights. When a static configuration outperforms the optimiz-
able counterpart, the layout will be at or close to one of those
better-performing local minima. However, these differences are
no more than a PSNR difference of 0.9, or an MSE difference of
a factor of 1.2.

Research Article Vol. 62, No. 27 / 20 September 2023 / Applied Optics 7195

Fig. 11. Two comparisons of the original spectrum (orange crosses) with a retrieved spectrum (blue dots) are shown for two different PSNR lev-
els. Both spectra come from the median performing data cubes from the test set after having been thrown into the design of the leftmost and rightmost
point of Fig. 10. (a) PSNR of 54.1; (b) PSNR of 56.5.

When the amount of filters becomes large, the difference
between the filters optimized by the optimal filters estimator
(Section 2.B) and the regularly spaced filters also becomes
small, and their performance becomes similar (at a maxi-
mum difference of 0.4 in PSNR). The optimal filters from the
first component were estimated without regard to the spatial
information, which could influence the best choice of filters.

What we show above is a comparison of the different results
of our framework. Comparing with the results of other papers,
we note a higher PSNR than previous joint design algorithms by
Henz et al . [82] or Chakrabarti [81]. However, they focus on a
different data product, an RGB image instead of a hyperspectral
data cube. Jacome et al . [83] look at the hyperspectral retrieval
as we do, but make use of an additional CASSI instrument. We
could compare our result of taking a snapshot image with three
filters to results from spectral recovery [79], where they start
with a snapshot image made with three filters (RGB). However,
this would only constitute a comparison of the best methods
for spectral recovery on an actual camera with a basic linear
reconstructor on a simulated detector. The linear reconstructor
is something that can be interchanged, as will be mentioned in

the future outlook section of the conclusion (Section 5), so this
would not be an informative comparison.

It is important to note that the trained reconstructor for a
given filter layout design is not the optimal reconstructor for the
actual hardware. The reconstructor that comes with the design
assumes a perfect Gaussian filter profile, a perfect match of the
filters to the detector pixels, and an ideal performance of the
detector at all wavelengths; all these assumptions will not hold
in reality. The transmission profile for the filters will tend more
towards a top-hat function, especially in the case of broader
bandwidths. The match of the filters to the detector pixels is
plagued by slight optical misalignment or other manufacturing
errors. Finally, the detector has a wavelength-dependent effi-
ciency and a nonzero background, which is not uniform over the
whole array.

However, as long as all the optical and electrical components
are still within a linear regime, where their response is linearly
related to the number of photons entering the sensor, a linear
reconstructor can still be used. When the response of the analog-
to-digital converter, for instance, does not scale linearly with the
infalling intensity of the light anymore, a linear reconstructor
should not be expected to return accurate approximations of

Fig. 12. Comparison of the 701 nm intensity images, where the reconstruction is to the left and the original to the right. The difference between
the two is in the figure underneath. Both images come from the median performing data cubes from the test set after having been thrown into the
design of the leftmost and rightmost point of Fig. 10. (a) PSNR of 54.1; (b) PSNR of 56.5.

7196 Vol. 62, No. 27 / 20 September 2023 / Applied Optics Research Article

the hyperspectral data cube. In the former case, the weights
of the linear reconstructor, however, should still be relearned
and cannot be copied from the reconstructor that came with
the design. The relearning is done by feeding intensity images
of calibrated/known sources created by the prototype into the
linear reconstructor part of the optimal filter layout estimator
and optimizing the weights for the reconstruction.

Finally, the goal of acquiring hyperspectral data goes beyond
the acquisition of the data cube itself; instead, the final data
product often requires further postprocessing like segmenta-
tion and classification [94–96]. One of the strengths of our
design tool is that these postprocessing steps can be imple-
mented right before the calculation of the loss function if they
can be described in a differentiable manner. The loss function
should then be modified to reflect the quality of the results after
postprocessing.

5. CONCLUSION

In this paper, we describe a new tool for the design of spectral
filter layouts on pixelated detectors as used for compressed,
hyperspectral imaging. The resulting filter layout makes a partial
measurement of the spectrum of every pixel. However, due to
the simultaneously optimized linear reconstructor, this partial
measurement can be used to reconstruct the full hyperspectral
data cube with high accuracy. We show that the network can
converge toward a filter layout that can recover known scenes
with a snapshot image and high accuracy. This opens possibil-
ities for extremely compact hyperspectral imagers with low data
rates and short acquisition times.

As of now, InSPECtor does not yet do a full joint optimiza-
tion, since the calculation of the optimal filters is still separate
from the calculation of the optimal layout. This could be
changed in future adaptations. Other possible additions include
making the functional form of the spectral filters variable,
so it can diverge from the Gaussian form it has now. A major
change, carrying potentially big benefits, would be to replace
the linear reconstructor with a nonlinear algorithm, such as
a neural network or one of the algorithms mentioned in the
introduction.

InSPECtor can be used to design a multitude of filter layouts
for pixelated, hyperspectral imagers. The algorithm presented
in this paper is easily adaptable to different scenes and appli-
cations, since it is a matter of optimizing InSPECtor with data
comparable to the scene of interest. These scenes can range from
remote sensing, to astronomy or defect inspection in factories.
The framework could also be adapted to go further than hyper-
spectral imagers. Additional optical components, e.g., an array
of linear polarizers [97], can be added before or after the existing
Layers if they can be mathematically described in a differentiable
and continuous manner. Finally, given known design con-
straints such as the desired data rate, minimally desired accuracy,
and filter manufacturing constraints, the framework can return
the optimal design of the filter layout.

Funding. Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO-TTW SYNOPTICS program).

Acknowledgment. This work was performed using the compute
resources from the Academic Leiden Interdisciplinary Cluster Environment
(ALICE) provided by Leiden University.

Disclosures. The authors declare that there are no conflicts of interest
related to this paper.

Data availability. Data and code underlying the results presented in
this paper are not publicly available at this time but may be obtained from the
authors upon reasonable request.

REFERENCES
1. J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, et al., “Hyperspectral

unmixing overview: geometrical, statistical, and sparse regression-
based approaches,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
5, 354–379 (2012).

2. G. Vane, R. O. Green, T. G. Chrien, et al., “The airborne visible/infrared
imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44, 127–143
(1993).

3. W. L. Barnes, X. Xiong, and V. V. Salomonson, “Status of terra MODIS
and aquamodis,” Adv. Space Res. 32, 2099–2106 (2003).

4. G. ElMasry and D.-W. Sun, “Chapter 1-Principles of hyperspectral
imaging technology,” in Hyperspectral Imaging for Food Quality
Analysis and Control, D.-W. Sun, ed. (Academic, 2010), pp. 3–43.

5. A. A. Gowen, C. P. O’Donnell, P. J. Cullen, et al., “Hyperspectral
imaging–an emerging process analytical tool for food quality and
safety control,” Trends Food Sci. Technol. 18, 590–598 (2007).

6. H. Liang, “Advances in multispectral and hyperspectral imaging
for archaeology and art conservation,” Appl. Phys. A 106, 309–323
(2012).

7. E. K. Hege, D. O’Connell, W. Johnson, et al., “Hyperspectral imaging
for astronomy and space surveillance,” Proc. SPIE 5159, 380–391
(2004).

8. T. Adão, J. Hruška, L. Pádua, et al., “Hyperspectral imaging: a review
on UAV-based sensors, data processing and applications for agricul-
ture and forestry,” Remote Sens. 9, 1110 (2017).

9. B. Fei, “Chapter 3.6-Hyperspectral imaging in medical applications,”
inData Handling in Science and Technology, J. M. Amigo, ed., Vol. 32
of Hyperspectral Imaging (Elsevier, 2020), pp. 523–565.

10. S. Ortega, M. Halicek, H. Fabelo, et al., “Hyperspectral and multi-
spectral imaging in digital and computational pathology: a systematic
review [Invited],” Biomed. Opt. Express 11, 3195–3233 (2020).

11. X. Dong, G. Tong, X. Song, et al., “DMD-based hyperspectral micros-
copy with flexible multiline parallel scanning,” Microsyst. Nanoeng. 7,
68 (2021).

12. M. T. Eismann,Hyperspectral Remote Sensing (SPIE, 2012).
13. Q. Li, X. He, Y.Wang, et al., “Review of spectral imaging technology in

biomedical engineering: achievements and challenges,” J. Biomed.
Opt. 18, 100901 (2013).

14. S. L. Ustin and E. M. Middleton, “Current and near-term advances in
earth observation for ecological applications,” Ecol. Process. 10, 1
(2021).

15. R. M. Willett, M. F. Duarte, M. A. Davenport, et al., “Sparsity and
structure in hyperspectral imaging: sensing, reconstruction, and
target detection,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).

16. D. Guzzi, G. Coluccia, D. Labate, et al., “Optical compressive sens-
ing technologies for space applications: instrumental concepts
and performance analysis,” in International Conference on Space
Optics—ICSO 2018 (2019).

17. W. Sun and Q. Du, “Hyperspectral band selection: a review,” IEEE
Geosci. Remote Sens. Mag. 7, 118–139 (2019).

18. X. Cao, T. Yue, X. Lin, et al., “Computational snapshot multispectral
cameras: toward dynamic capture of the spectral world,” IEEE Signal
Process. Mag. 33(5), 95–108 (2016).

19. G. Coluccia, C. Lastri, D. Guzzi, et al., “Optical compressive imaging
technologies for space big data,” IEEE Trans. Big Data 6, 430–442
(2020).

20. A. Barducci, D. Guzzi, C. Lastri, et al., “Compressive sensing for
hyperspectral earth observation from space,” Proc. SPIE 10563,
1056353 (2014).

21. T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral
image information,” Opt. Lett. 16, 1277–1279 (1991).

https://doi.org/10.1109/JSTARS.2012.2194696
https://doi.org/10.1016/0034-4257(93)90012-M
https://doi.org/10.1016/S0273-1177(03)90529-1
https://doi.org/10.1016/j.tifs.2007.06.001
https://doi.org/10.1007/s00339-011-6689-1
https://doi.org/10.1117/12.506426
https://doi.org/10.3390/rs9111110
https://doi.org/10.1016/B978-0-444-63977-6.00021-3
https://doi.org/10.1364/BOE.386338
https://doi.org/10.1038/s41378-021-00299-2
https://doi.org/10.1117/1.JBO.18.10.100901
https://doi.org/10.1117/1.JBO.18.10.100901
https://doi.org/10.1186/s13717-020-00255-4
https://doi.org/10.1109/MSP.2013.2279507
https://doi.org/10.1109/MGRS.2019.2911100
https://doi.org/10.1109/MGRS.2019.2911100
https://doi.org/10.1109/MSP.2016.2582378
https://doi.org/10.1109/MSP.2016.2582378
https://doi.org/10.1109/TBDATA.2019.2907135
https://doi.org/10.1117/12.2304078
https://doi.org/10.1364/OL.16.001277

Research Article Vol. 62, No. 27 / 20 September 2023 / Applied Optics 7197

22. A. Wagadarikar, R. John, R. Willett, et al., “Single disperser design for
coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51
(2008).

23. G. R. Arce, D. J. Brady, L. Carin, et al., “Compressive coded aperture
spectral imaging: an introduction,” IEEE Signal Process. Mag. 31(1),
105–115 (2014).

24. M. E. Gehm, R. John, D. J. Brady, et al., “Single-shot compressive
spectral imaging with a dual-disperser architecture,” Opt. Express
15, 14013 (2007).

25. Y. Wu, I. O. Mirza, G. R. Arce, et al., “Development of a digital-
micromirror-device-based multishot snapshot spectral imaging
system,” Opt. Lett. 36, 2692–2694 (2011).

26. Y. August, C. Vachman, Y. Rivenson, et al., “Compressive hyperspec-
tral imaging by random separable projections in both the spatial and
the spectral domains,” Appl. Opt. 52, D46–D54 (2013).

27. O. F. Kar and F. S. Oktem, “Compressive spectral imaging with
diffractive lenses,” Opt. Lett. 44, 4582–4585 (2019).

28. K. Monakhova, K. Yanny, N. Aggarwal, et al., “Spectral DiffuserCam:
lensless snapshot hyperspectral imaging with a spectral filter array,”
Optica 7, 1298–1307 (2020).

29. S. Jin, W. Hui, Y. Wang, et al., “Hyperspectral imaging using the
single-pixel Fourier transform technique,” Sci. Rep. 7, 45209 (2017).

30. J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proc. IEEE 98, 948–958 (2010).

31. L. Wang, K. Lu, and P. Liu, “Compressed sensing of a remote sens-
ing image based on the priors of the reference image,” IEEE Geosci.
Remote Sens. Lett. 12, 736–740 (2015).

32. Y. Yang, Y. Xie, X. Chen, et al., “Hyperspectral snapshot compressive
imaging with non-local spatial-spectral residual network,” Remote
Sens. 13, 1812 (2021).

33. B. Gözcü, R. K. Mahabadi, Y.-H. Li, et al., “Learning-based compres-
siveMRI,” IEEE Trans. Med. Imaging 37, 1394–1406 (2018).

34. S. Wu, A. Dimakis, S. Sanghavi, et al., “Learning a compressed sens-
ing measurement matrix via gradient unrolling,” in Proceedings of the
36th International Conference on Machine Learning (PMLR) (2019),
pp. 6828–6839.

35. Y.-H. Li and V. Cevher, “Learning data triage: linear decoding works
for compressiveMRI,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2016), pp. 4034–4038.

36. L. Baldassarre, Y.-H. Li, J. Scarlett, et al., “Learning-based compres-
sive subsampling,” IEEE J. Sel. Top. Signal Process. 10, 809–822
(2016).

37. J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,”
Adv. Opt. Photon. 10, 409 (2018).

38. L. Gao, Y. Qu, L. Wang, et al., “Computational spectrometers
enabled by nanophotonics and deep learning,” Nanophotonics
11, 2507–2529 (2022).

39. H. Arguello, J. Bacca, H. Kariyawasam, et al., “Deep optical coding
design in computational imaging,” arXiv, arXiv:2207.00164 (2022).

40. L. Huang, R. Luo, X. Liu, et al., “Spectral imaging with deep learning,”
Light Sci. Appl. 11, 61 (2022).

41. J. Bacca, E. Martinez, and H. Arguello, “Computational spec-
tral imaging: a contemporary overview,” J. Opt. Soc. Am. A 40,
C115–C125 (2023).

42. L.Wang, T. Zhang, Y. Fu, et al., “HyperReconNet: joint coded aperture
optimization and image reconstruction for compressive hyperspec-
tral imaging,” IEEE Trans. Image Process. 28, 2257–2270 (2019).

43. E. S. Kaur and V. K. Banga, “A survey of demosaicing: issues and
challenges,” Int. J. Sci. Eng. Technol. 2, 9–17 (2015).

44. B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (20 July
1976).

45. M. Gharbi, G. Chaurasia, S. Paris, et al., “Deep joint demosaicking
and denoising,” ACM Trans. Graph. 35, 1–12 (2016).

46. K. Cui, Z. Jin, and E. Steinbach, “Color image demosaicking using
a 3-stage convolutional neural network structure,” in 25th IEEE
International Conference on Image Processing (ICIP) (IEEE, 2018),
pp. 2177–2181.

47. S. Guo, Z. Liang, and L. Zhang, “Joint denoising and demosaicking
with green channel prior for real-world burst images,” IEEE Trans.
Image Process. 30, 6930–6942 (2021).

48. F.-L. He, Y.-C. F. Wang, and K.-L. Hua, “Self-learning approach
to color demosaicking via support vector regression,” in 19th
IEEE International Conference on Image Processing (2012),
pp. 2765–2768.

49. T. Heinze, M. von Löwis, and A. Polze, “Joint multi-frame demo-
saicing and super-resolution with artificial neural networks,” in 19th
International Conference on Systems, Signals and Image Processing
(IWSSIP) (2012), pp. 540–543.

50. T. Iriyama, M. Sato, H. Aomori, et al., “Deep demosaicking consid-
ering inter-channel correlation and self-similarity,” Nonlinear Theory
Appl. IEICE 12, 453–463 (2021).

51. Q. Jin, G. Facciolo, and J. M. Morel, “A review of an old dilemma:
demosaicking first, or denoising first?” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
Workshops, June 2020, pp. 2169–2179.

52. D. Kiku, Y. Monno, M. Tanaka, et al., “Beyond color difference: resid-
ual interpolation for color image demosaicking,” IEEE Trans. Image
Process. 25, 1288–1300 (2016).

53. D. Menon and G. Calvagno, “Color image demosaicking: an
overview,” Signal Process. Image Commun. 26, 518–533 (2011).

54. S. M. A. Sharif, R. Ali Naqvi, and M. Biswas, “Beyond joint demo-
saicking and denoising: an image processing pipeline for a pixel-bin
image sensor,” in IEEE/CVF Conference on Computer Vision and
Pattern RecognitionWorkshops (CVPRW) (IEEE, 2021), pp. 233–242.

55. Y.-Q. Wang, “A multilayer neural network for image demosaicking,”
in IEEE International Conference on Image Processing (ICIP) (2014),
pp. 1852–1856.

56. X. Wu, “Color demosaicking by local directional interpolation and
nonlocal adaptive thresholding,” J. Electron. Imaging 20, 023016
(2011).

57. J. Zhang, J. Shao, H. Luo, et al., “Learning a convolutional demosaic-
ing network for microgrid polarimeter imagery,” Opt. Lett. 43, 4534–
4537 (2018).

58. T. A. Habtegebrial, G. Reis, and D. Stricker, “Deep convolutional net-
works for snapshot hypercpectral demosaicking,” in 10th Workshop
on Hyperspectral Imaging and Signal Processing: Evolution in
Remote Sensing (WHISPERS) (2019), pp. 1–5.

59. K. Dijkstra, J. van de Loosdrecht, L. R. Schomaker, et al.,
“Hyperspectral demosaicking and crosstalk correction using deep
learning,” Mach. Vis. Appl. 30, 1–21 (2019).

60. P. Li, M. Ebner, P. Noonan, et al., “Deep learning approach for
hyperspectral image demosaicking, spectral correction and high-
resolution RGB reconstruction,” inMICCAI Workshop on Augmented
Environments for Computer-Assisted Interventions, Computer
Assisted and Robotic Endoscopy, and Context Aware Operating
Theaters (2022), p. 12.

61. X. Wang, J.-B. Thomas, J. Y. Hardeberg, et al., “Discrete wavelet
transform based multispectral filter array demosaicking,” in Colour
and Visual Computing Symposium (CVCS) (2013), pp. 1–6.

62. L. Zhuang, M. K. Ng, X. Fu, et al., “Hy-demosaicing: hyperspectral
blind reconstruction from spectral subsampling,” IEEE Trans. Geosci.
Remote Sens. 60, 5515815 (2022).

63. G. Tsagkatakis, M. Bloemen, B. Geelen, et al., “Graph and rank regu-
larized matrix recovery for snapshot spectral image demosaicing,”
IEEE Trans. Comput. Imaging 5, 301–316 (2019).

64. S. Mihoubi, O. Losson, B. Mathon, et al., “Multispectral demosaicing
using pseudo-panchromatic image,” IEEE Trans. Comput. Imaging 3,
982–995 (2017).

65. P. Amba, J. B. Thomas, and D. Alleysson, “N-LMMSE demo-
saicing for spectral filter arrays,” J. Imaging Sci. Technol. 61,
40407-1–40407-11 (2017).

66. B. Arad, R. Timofte, R. Yahel, et al., “NTIRE 2022 spectral demo-
saicing challenge and data set,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2022),
pp. 882–896.

67. R. Lukac and K. Plataniotis, “Color filter arrays: design and perform-
ance analysis,” IEEE Trans. Consum. Electron. 51, 1260–1267 (2005).

68. K. Hirakawa and P.Wolfe, “Spatio-spectral color filter array design for
optimal image recovery,” IEEE Trans. Image Process. 17, 1876–1890
(2008).

https://doi.org/10.1364/AO.47.000B44
https://doi.org/10.1109/MSP.2013.2278763
https://doi.org/10.1364/OE.15.014013
https://doi.org/10.1364/OL.36.002692
https://doi.org/10.1364/AO.52.000D46
https://doi.org/10.1364/OL.44.004582
https://doi.org/10.1364/OPTICA.397214
https://doi.org/10.1038/srep45209
https://doi.org/10.1109/JPROC.2010.2044010
https://doi.org/10.1109/LGRS.2014.2360457
https://doi.org/10.1109/LGRS.2014.2360457
https://doi.org/10.3390/rs13091812
https://doi.org/10.3390/rs13091812
https://doi.org/10.1109/TMI.2018.2832540
https://doi.org/10.1109/JSTSP.2016.2548442
https://doi.org/10.1364/AOP.10.000409
https://doi.org/10.1515/nanoph-2021-0636
https://doi.org/10.48550/arXiv.2207.00164
https://doi.org/10.1038/s41377-022-00743-6
https://doi.org/10.1364/JOSAA.482406
https://doi.org/10.1109/TIP.2018.2884076
https://doi.org/10.1145/2980179.2982399
https://doi.org/10.1109/TIP.2021.3100312
https://doi.org/10.1109/TIP.2021.3100312
https://doi.org/10.1587/nolta.12.453
https://doi.org/10.1587/nolta.12.453
https://doi.org/10.1109/TIP.2016.2518082
https://doi.org/10.1109/TIP.2016.2518082
https://doi.org/10.1016/j.image.2011.04.003
https://doi.org/10.1117/1.3600632
https://doi.org/10.1364/OL.43.004534
https://doi.org/10.1007/s00138-018-0965-4
https://doi.org/10.1109/TGRS.2021.3102136
https://doi.org/10.1109/TGRS.2021.3102136
https://doi.org/10.1109/TCI.2018.2888989
https://doi.org/10.1109/TCI.2017.2691553
https://doi.org/10.2352/J.ImagingSci.Technol.2017.61.4.040407
https://doi.org/10.1109/TCE.2005.1561853
https://doi.org/10.1109/TIP.2008.2002164

7198 Vol. 62, No. 27 / 20 September 2023 / Applied Optics Research Article

69. J. Li, C. Bai, Z. Lin, et al., “Optimized color filter arrays for sparse
representation-based demosaicking,” IEEE Trans. Image Process.
26, 2381–2393 (2017).

70. L. Miao and H. Qi, “The design and evaluation of a generic method for
generating mosaicked multispectral filter arrays,” IEEE Trans. Image
Process. 15, 2780–2791 (2006).

71. Y. Li, A. Majumder, H. Zhang, et al., “Optimized multi-spectral filter
array based imaging of natural scenes,” Sensors 18, 1172 (2018).

72. P. J. Lapray, X. Wang, J. B. Thomas, et al., “Multispectral fil-
ter arrays: recent advances and practical implementation,”
Sensors-Switzerland 14, 21626–21659 (2014).

73. S. Saxe, L. Sun, V. Smith, et al., “Advances in miniaturized spectral
sensors,” Proc. SPIE 10657, 106570B (2018).

74. J. Pichette, W. Charle, and A. Lambrechts, “Fast and compact inter-
nal scanning CMOS-based hyperspectral camera: the snapscan,”
Proc. SPIE 10110, 1011014 (2017).

75. S. Lemmens, T. Van Craenendonck, J. Van Eijgen, et al.,
“Combination of snapshot hyperspectral retinal imaging and optical
coherence tomography to identify alzheimer’s disease patients,” Alz.
Res. Ther. 12, 144 (2020).

76. H. Cheng, C. Deng, Y. Li, et al., “An on-line color defect detection
method for printed matter based on snapshot multispectral camera,”
Proc. SPIE 10816, 1081612 (2018).

77. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging
technologies,” Opt. Eng. 52, 090901 (2013).

78. H. Fu, L. Bian, X. Cao, et al., “Hyperspectral imaging from a raw
mosaic image with end-to-end learning,” Opt. Express 28, 314–324
(2020).

79. B. Arad, R. Timofte, R. Yahel, et al., “NTIRE 2022 spectral recovery
challenge and data set,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2022), pp. 863–881.

80. C. Tao, H. Zhu, X. Wang, et al., “Compressive single-pixel hyperspec-
tral imaging using RGB sensors,” Opt. Express 29, 11207–11220
(2021).

81. A. Chakrabarti, “Learning sensor multiplexing design through back-
propagation,” in Advances in Neural Information Processing Systems
(2016), pp. 3089–3097.

82. B. Henz, E. S. Gastal, and M. M. Oliveira, “Deep joint design of color
filter arrays and demosaicing,” Comput. Graph. Forum 37, 389–399
(2018).

83. R. Jacome, J. Bacca, and H. Arguello, “D2uf: Deep coded aper-
ture design and unrolling algorithm for compressive spectral image
fusion,” IEEE J. Sel. Top. Signal Process. 17, 502–512 (2022).

84. W. Zhang, H. Song, X. He, et al., “Deeply learned broadband encod-
ing stochastic hyperspectral imaging,” Light: Sci. Appl. 10, 108
(2021).

85. H. Song, Y. Ma, Y. Han, et al., “Deep-learned broadband encoding
stochastic filters for computational spectroscopic instruments,” Adv.
Theory Simul. 4, 2000299 (2021).

86. K. Li, D. Dai, and L. Van Gool, “Jointly learning band selection and fil-
ter array design for hyperspectral imaging,” inWinter Conference on
Applications of Computer Vision, (2023), pp. 6373–6383.

87. A. Horé and D. Ziou, “Image quality metrics: PSNR vs. SSIM,”
in 20th International Conference on Pattern Recognition (2010),
pp. 2366–2369.

88. M. Abadi, P. Barham, J. Chen, et al., “TensorFlow: a system for
large-scale machine learning,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation
(2016), p. 21.

89. D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization
(2017).

90. M. Esposito, S. S. Conticello, M. Pastena, et al., “In-orbit demon-
stration of artificial intelligence applied to hyperspectral and thermal
sensing from space,” Proc. SPIE 11131, 111310C (2019).

91. S. H. Simon, The Oxford Solid State Basics, 1st ed. (Oxford
University, 2013).

92. B. Acharya and M. Gill, “On the index of gracefulness of a graph and
the gracefulness of two-dimensional square lattice graphs,” Indian J.
Math 23, 14 (1981).

93. M. Esposito and A. Z. Marchi, “In-orbit demonstration of the first
hyperspectral imager for nanosatellites,” Proc. SPIE 11180, 1118020
(2019).

94. N. Audebert, B. Le Saux, and S. Lefevre, “Deep learning for classi-
fication of hyperspectral data: a comparative review,” IEEE Geosci.
Remote Sens. Mag. 7(2), 159–173 (2019).

95. M. Imani and H. Ghassemian, “An overview on spectral and spatial
information fusion for hyperspectral image classification: current
trends and challenges,” Inf. Fusion 59, 59–83 (2020).

96. B. Rasti, D. Hong, R. Hang, et al., “Feature extraction for hyperspec-
tral imagery: the evolution from shallow to deep: overview and tool-
box,” IEEEGeosci. Remote Sens. Mag. 8(4), 60–88 (2020).

97. T. Stockmans, F. Snik, M. Smit, et al., “End-to-end design framework
for compressed on-chip pixel-wise spectro-polarimeters,” Proc.
SPIE 12236, 122360E (2022).

https://doi.org/10.1109/TIP.2017.2679440
https://doi.org/10.1109/TIP.2006.877315
https://doi.org/10.1109/TIP.2006.877315
https://doi.org/10.3390/s18041172
https://doi.org/10.3390/s141121626
https://doi.org/10.1117/12.2304019
https://doi.org/10.1117/12.2253614
https://doi.org/10.1186/s13195-020-00715-1
https://doi.org/10.1186/s13195-020-00715-1
https://doi.org/10.1117/12.2500530
https://doi.org/10.1117/1.OE.52.9.090901
https://doi.org/10.1364/OE.372746
https://doi.org/10.1364/OE.416388
https://doi.org/10.1111/cgf.13370
https://doi.org/10.1109/JSTSP.2022.3207663
https://doi.org/10.1038/s41377-021-00545-2
https://doi.org/10.1002/adts.202000299
https://doi.org/10.1002/adts.202000299
https://doi.org/10.1109/WACV56688.2023.00632
https://doi.org/10.1109/WACV56688.2023.00632
https://doi.org/10.1117/12.2532262
https://doi.org/10.1117/12.2535991
https://doi.org/10.1109/MGRS.2019.2912563
https://doi.org/10.1109/MGRS.2019.2912563
https://doi.org/10.1016/j.inffus.2020.01.007
https://doi.org/10.1109/MGRS.2020.2979764
https://doi.org/10.1117/12.2633418
https://doi.org/10.1117/12.2633418

