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We show that quantum detector tomography can be applied to the human visual system to explore human per-
ception of photon number states. In detector tomography, instead of using very hard-to-produce photon number
states, the response of a detector to light pulses with known photon statistics of varying intensity is recorded, and
a model is fitted to the experimental outcomes, thereby inferring the detector’s photon number state response.
Generally, light pulses containing a Poisson-distributed number of photons are utilized, which are very easy to
produce in the lab. This technique has not been explored to study the human visual system before because it usually
requires a very large number of repetitions not suitable for experiments on humans. Yet, in the present study we
show that detector tomography is feasible for human experiments. Assuming a simple model for this accuracy, the
results of our simulations show that detector tomography is able to reconstruct the model using Bayesian inference
with as few as 5000 trials. We then optimize the experimental parameters in order to maximize the probability
of showing that the single-photon accuracy is above chance. As such, our study opens the road to study human
perception on the quantum level. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAA.477639

1. INTRODUCTION

With the advancement of quantum optics, detectors have been
developed that are sensitive to single photons. However, deter-
mining how sensitive the detectors are to n-photon number
states is a nontrivial problem, since a light source producing
photon number states is not available. This difficulty has been
overcome by quantum detector tomography techniques [1–3],
in which the detector’s “clicking” probability is inferred by
irradiating it with light pulses that are readily available, such as
pulses with Poissonian photon statistics from a laser.

A similar case can be made for the detection of light by the
human visual system: How well can humans perceive few-
photon states? The challenge for detecting such states is to
overcome the intrinsic noise in the visual system. To our knowl-
edge, this is the first time a quantum technique such as detector
tomography is considered for studying human perception,
although it has been proposed to use quantum biometry as a
secure identification process [4]. Since the 1940s, it has been
known from experiments by Hecht et al. that the human visual
system is sensitive to light pulses containing only a few photons
[5]. In later experiments, similar and lower limits have been
found, down to the single-photon level [6,7]. Recently, Tinsley
et al. presented evidence that humans are indeed able to detect
single photons with an accuracy above chance [8]. This is quite
remarkable, given that the overall efficiency of the human eye,
from cornea up to producing a retinal signal, is only 0.1− 0.4

[9–11], and a single photon will trigger a single rhodopsin
molecule only [4], which has to be amplified and read out in
the noisy environment of the brain. Knowing the limits of
human visual perception informs us about the boundaries of
the perceptual machinery. This, in turn, is fundamental for our
understanding of how the brain generates conscious perception.
For instance, to enable conscious awareness of just one pho-
ton, specific signal-to-noise mechanisms (e.g., without broad
averaging) seem required.

In their analysis, Hecht et al. assumed a step function:
n-photon states are either imperceivable (n < ncrit) or fully
perceivable (n ≥ ncrit), whereas Tinsley et al. only considered
the perceptibility of single photons. In the present study, we will
consider detector tomography as a solution to bridge the gap
between these two approaches and determine the perceptibility
of few-photon states. Apart from this, we can use the techniques
to optimize our experimental design, i.e., using our proposed
technique, we determine the experimental parameters necessary
to statistically demonstrate above-chance performance in a
single-photon perception task. We implement our technique in
a Bayesian modeling framework, which has a number of advan-
tages over a frequentist approach (see e.g., [12]). For the present
study, the most important reason to rely on Bayesian statistics is
that it allows quantification of all relevant hypotheses (i.e., the
null-hypothesis of chance performance and the alternative
hypothesis of above-chance performance). Using frequentist
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significance tests, it is only possible to quantify evidence against
the null-hypothesis such that the null-hypothesis can never be
confirmed. Note that despite this advantage of Bayesian statis-
tics over frequentist statistics, a Bayesian approach to hypothesis
testing has not been applied to detector tomography yet.

Our setting is the following: we consider a single test subject
that performs a two-alternative forced choice (2AFC) task (see
Section 2). During the trials, Poisson-distributed few-photon
states are sent to the subject’s eye in one of two possible intervals.
The subject has to indicate from which interval the pulse was
sent, from which the accuracy can be determined. We assume
that the pulses have a wavelength of 500 nm, at which the quan-
tum efficiency of the rods in the retina is maximal. The pulses
are sent towards the location on the retina where rods are most
abundant (16◦−23◦ away from the yellow spot [8,13,14]).

The difficulty of this setting lies in the fact that the repetition
rate of the experiment is low. Where detector tomography for,
e.g., avalanche photodiodes or superconducting photodetectors
can be collected at a rate in the range kilohertz to megahertz,
respectively [1,3], typical repetition rates for human test subjects
are 0.1−1 Hz [8,14]. Human subjects have a limited attention
span, which further decreases the data collection rate (data
collection sessions can last for presumably ∼2 h maximally).
This implies we would like to measure at a low average photon
number only, whereas ordinarily detector tomography is applied
to measurements at average photon numbers ranging from
imperceivable to always perceivable.

In this work, we show that detector tomography is fea-
sible with a human test subject by simulating the proposed
experiment. Apart from that, we determine the optimal exper-
imental parameters for excluding imperceptibility of single
photons, given that single photons can be perceived by (mod-
eled) humans with an accuracy above the chance level. First, we
explain 2AFC tasks and detector tomography with Poissonian
light pulses. In Section 4, we develop a simple visual percep-
tion model describing the n-photon accuracies, since to our
knowledge such a model has not been considered yet. Section 5
describes the computer simulation, after which we dive into
reconstruction (parameter recovery) of the model from our
simulation data. Here we apply detector tomography in the
framework of Bayesian inference. In Section 6, we show that
the reconstruction returns n-photon accuracy values in agree-
ment with our model. We continue by determining the optimal
experimental parameters for excluding imperceptibility of single
photons in Section 7. In this section, we also determine the
influence of our visual detection model and the influence of
noise on the average photon number emitted by the light source.
We discuss our results and extensions to our simulation and
reconstruction programs in Section 8, after which we conclude
in Section 9.

2. TWO-ALTERNATIVE FORCED CHOICE TASKS

In psychophysics, the quantitative study of relations between
physical and psychological events, 2AFC tasks are often
employed as a technique to determine the limits of percep-
tion [15,16]. Intuitively, the probability P of perceiving a weak
light pulse can be determined in a series of trials, in which ran-
domly the pulse is presented or not; see Fig. 1(a). For each trial,
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Fig. 1. Schematic overview of (a) a yes/no task and (b) a (time
separated) 2AFC task. In a yes/no trial, a stimulus is either present or
absent in a single interval, and the subject indicates whether a stimulus
is detected. In a 2AFC trial, a stimulus is presented in one of two
intervals, and a test subject indicates in which interval the stimulus was
presented.

subjects are asked whether a pulse was present or not, which is
referred to as a yes/no task in psychophysics.

This contrasts with the 2AFC task measuring a subject’s
accuracy A of perceiving the pulse of light. In every trial of such
tasks, subjects are presented with a pulse in one of two intervals,
whereas in the other interval no pulse is presented; see Fig. 1(b).
The interval in which the stimulus is presented is chosen ran-
domly, each with probability of 1/2. These intervals can be
separated in space (did the stimulus come from left or right?)
or in time (was the stimulus presented early or late? This is also
referred to as a two-interval forced choice (2IFC) task). After a
2AFC trial, the subjects are forced to select the interval in which
they believe the actual light pulse was presented.

P and A are—in theory—related as

A=
1

2
(1+ P ). (1)

The lower limit of A of 1/2 arises because if subjects do not
detect the stimulus, a random guess has to be made in which
interval the stimulus was presented. An accuracy in excess of
1/2 implies the test subject is able to detect the stimulus with a
nonzero probability. Finally, if subjects always detect a stimulus,
A and P both equal 1.

In practice, however, Eq. (1) does not hold necessarily.
Yes/no tasks are more susceptible to response bias. The decision
threshold to answer “yes” in such experiments is left free to the
subjects, who may choose to rate the various trials anywhere
in the range from strict to loose. Subjects may even alter their
decision threshold (un)willingly, which greatly influences the
experimental data; see e.g., [7]. Alternatively, in 2AFC tasks,
subjects rate the difference in sensory input between the two
intervals, tackling this issue. Although 2AFC experiments are
influenced by interval bias, the influence of this bias can be
minimized [17,18]. For this reason we will consider a 2AFC task
in this study.

3. DETECTOR TOMOGRAPHY WITH
POISSONIAN LIGHT PULSES

Detector tomography can be used to obtain the n-photon
accuracy of a test subject for a range of n-photon states, while
not possessing a source producing these states deterministi-
cally. Instead, one uses a source for which the photon-number
distribution is known and uses statistics to infer the n-photon
accuracies. Hence, let us consider a light source with a known
photon-number distribution. i.e., we know the probability that



Research Article Vol. 40, No. 2 / February 2023 / Journal of the Optical Society of America A 287

the source presents n = 0, 1, 2, . . . photons to the subject. In
such a case, the accuracy for some constant source setting with
known photon-number distribution is given by [3] (Note that a
similar equation would arise for a yes/no task in an experiment
measuring detection probability, in which the subject merely
notes whether a light pulse was observed.)

A(Is)=

∞∑
n=0

anρn(Is)

= 1−
∞∑

n=0

(1− an)ρn(Is)

≈ 1−
nmax∑
n=0

(1− an)ρn(Is). (2)

In this equation, Is are the parameters that determine the
photon-number distribution of the source, an is the accuracy
of the subject for exactly n photons, and ρn(Is) is the prob-
ability that the source with settings Is emits n photons. We
rewrite this equation in the second line straightforwardly to
terminate the sum in practice: When a stimulus with nmax + 1
photons is always detected (anmax+1 = 1) or when the exper-
iment is designed such that trials with nmax + 1 photons are
practically not present, whereas trials with n = 0, . . . , nmax do
occur (ρ0,...,nmax > 0, ρnmax+1 ≈ 0), the sum terminates. This is
stipulated in the third line of the equation, which introduces the
parameter nmax explicitly.

For Poissonian light sources, the photon-number
distribution is determined by

ρn = exp(−N̄)
N̄n

n!
. (3)

Here, N̄ is the average number of photons per light pulse.
Substituting Eq. (3) into Eq. (2), we arrive at an accuracy for
mean photon number N̄ of

A(N̄)= 1− exp(−N̄)
nmax∑
n=0

(1− an)
N̄n

n!
. (4)

In a 2AFC task, A(Is) is measured and ρn(Is) is known for
several Is. This allows one to reconstruct Ea = [a0, a1, . . . , anmax ]

by fitting Eq. (2) to the measured data. For light pulses with
Poissonian photon statistics, one would fit Eq. (4), of course.
Finding Ea and nmax is the goal of detector tomography, a process
which is further described in Section 5.

4. VISUAL PERCEPTION MODEL

The model describing the subject’s accuracy (for constant
source setting) A, given the source’s photon number distribu-
tion ρn presented in Eq. (2), depends heavily on the n-photon
accuracies an . Of course, a0 = 0.5 due to a lack of photons
being presented to the subject and [8] estimates a1 ≈ 0.516. To
our knowledge, however, no experimental bounds have been
obtained for a>1. Thus, in order to perform the feasibility study,
which is the main topic of this study, we need to construct a
model for Ea : the visual perception model.

In order to construct the model, let us consider a Gaussian
pulse of n photons with a wavelength of 500 nm. If such a pulse
is focused on the retina, these photons land on the retina within
an area of approximately S = πw2

0 , where the beam waist,

w0 =
λ

πneyeθ
≈ 3 µm. (5)

In this equation, neye ≈ 1.337 is the refractive index of the
eye and θ is the convergence angle of the pulse. If the pulse of
collimated light is focused by a lens with a 2 cm-radius and
a focus distance of 50 cm, θ ≈ 4× 10−2 rad. This implies
S ≈ 3× 101 µm2. From [13], we estimate that a single rod cell
covers approximately 5 µm2 of retinal area, implying the pulse
covers approximately six rod cells.

If, on the other hand, a Maxwellian view [19] is used during
the experiments, in which the pulse is focused on the eye lens
(instead of the retina) and a small area of the retina is irradi-
ated, S ≈ π(deyeθ/neye)

2
≈ 1.(6)× 106 µm2, assuming the

diameter of the eye equals 24 mm. In this case, the pulse covers
approximately 3× 105 rod cells.

We intend to use the Maxwellian view during our experi-
ments, which maximizes the number of photons from the pulse
entering the eye. Additionally, focusing the pulse on the eye
lens prevents this lens from influencing the path of the photons,
such that we do not need to take precautions fixating the focal
distance of the eye. Given that we will consider approximately
10 photons per pulse at most, the calculation presented before
implies that in this case, it is likely that all photons reach a dif-
ferent rod. If we furthermore assume that at such light levels all
rods function independently, we are led to a binomial model
for an , i.e., we set a single photon detection probability, p1, and
calculate

pn = 1− (1− p1)
n . (6)

From this equation,

an =
1

2
(1+ pn) , (7)

similar to Eq. (1), which is the final necessity to simulate an
experiment. We note that the reconstruction method that will
be discussed in Section 5 does not depend on the model we
constructed for an .

5. SIMULATION AND RECONSTRUCTION

To simulate the envisioned experiment, we have written a simu-
lation program in R [20]. In this program, we set the minimum
and maximum intensity N̄min and N̄max, which range is divided

in D equidistant data points. Together these are the ĒN inten-
sities for the Poissonian light source. Additionally, we set the
number of trials per data point d , T, and the noise of the light
source. We consider the following noise model:

N̄d = N̄d ,0 + dN̄d , (8)

where dN̄d ∼N (0, σN̄,d ), i.e., for all trials, we add a normally
distributed random deviation (0-mean, σN̄,d -standard devia-
tion) to the intended mean photon number N̄d ,0. For each of the
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data points, we calculate the theoretical accuracy by setting the
single-photon detection probability p1 and using Eqs. (6), (7),
and (4).

As a next step, we simulate the trials. For each trial for each
data point d (at source intensity N̄d ,0), we draw a source inten-
sity deviation dN̄d . Sequentially, we draw n photons from a
Poisson distribution with mean photon number N̄d . n rep-
resents the number of photons presented to the subject’s eye.
Assuming the subject to be unbiased and performing Bernoulli
trials, we draw the trial outcome from a Bernoulli distribution
with accuracy an ; see Eq. (7). This results in either a correct or
a wrong response. We sum the number of correct responses per
data point and thus obtain a one-dimensional array of length
D, which elements are the number of correct responses for data
point d at mean photon number N̄d ,0. This array we will refer to
as E6.

Using the data array with trial outcomes, our goal is to
obtain nmax and reconstruct the model accuracies Ea =
[a0, a1, . . . , anmax ] set by the user. Here we give a summary
of the methods. The interested reader may refer to Supplement
1, Section S1 for a more elaborate discussion.

For a given nmax, we perform the reconstruction of Ea under
Bayesian inference using a program written in RStan [21].
The program takes E6 as input. Apart from this array, the num-
ber of data points D, the number of trials per data point T,
nmax, and the ρ-matrix need to be specified. The latter is a
D× (nmax + 1)-matrix whose indices are given by ρd ,n =

exp(−N̄d )N̄n
d /n!, i.e., ρ contains the theoretical probabilities

for presenting n = 0, . . . , nmax photons.
Using this program, we obtain parameter estimates for Ea

by Markov chain Monte Carlo (MCMC) sampling from the
posterior distribution of these unknown parameters,

p
(
Ẽa | E6

)
∝ p

(
E6|T, Ẽa

)
p
(
Ẽa
)
, (9)

and taking the posterior mode of these samples. The resulting
Markov chains (MCs) of samples from the posterior distribution
have a length,

NMC =
Nchains

(
Niter − Nwarmup

)
Nthin

, (10)

where Nchains is the number of parallel chains evaluated (in this
study typically 3), Niter is the number of iterations (in this study
typically 15,000), Nwarmup is the number of initial iterations
discarded to ensure convergence of the sampling algorithm (in
this study typically 2500), and Nthin is the amount of thinning
in the chain decrease in the autocorrelations among the samples
(in this study typically 3).

In Eq. (9), Ẽa is the reconstruction of Ea . p(Ẽa) is the prior distri-
bution of Ẽa [which we will denote as p(Ẽa (0)) from now on] and
p( E6|T, Ẽa) is the likelihood of the data E6 given T and Ẽa . For the
posterior p(Ẽa | E6) we will use the shorthand notation p(Ẽa (1)).
Below we discuss the prior distribution and likelihood in more
detail. This technical description is added here for completeness,
but readers may skip ahead to Section 6.

For p(Ẽa (0)), we choose a prior distribution determined by a
beta(α, β)-distribution with hyper-prior shape parameters,

α ∼ halfnorm
(
1, 1/2+ nmax/2− n2

max/35
)
, (11)

β ∼ halfnorm
(
1, 12− nmax/1.8− n2

max/200
)
. (12)

As discussed in Supplement 1, Section S1.1, the beta(α, β)-
distribution for specific α and β can be seen as a prior model for
the detection probability Ẽp = 2Ẽa − 1 [Eq. (7)]. By drawing sets
of nmax samples from the prior beta-distribution, where each
set is sorted and appended to 0 (thus yielding the drawn prior
vector Ẽp (0) = [0, p̃ (0)1 , . . . , p̃ (0)nmax

] ( p̃ (0)n < p̃ (0)n+1 due to sort-

ing)) and finally transformed as Ẽa (0) = (1+ Ẽp (0))/2, we find
that the distribution p(Ẽa (0)) complies with our common sense
and current knowledge of Ea (see Supplement 1, Section S1.1):
ã (0)0 = 1/2 (0 photons are imperceivable), ã (0)n < ã (0)n+1 (the n-
photon accuracy rises with number of photons), p(ã (0)1 ) peaks
between ã (0)n = 0.5 and 0.6 as found by [8], whereas p(ã (0)>1) is
broader due to our lack of knowledge about these accuracies.
The nmax-contribution to the hyper-priors in Eq. (11) ensures
that the distribution p(Ẽa (0)) is constant, irrespective of the value
of nmax. For the posterior, we use the same transformations as
described for the prior; hence, ã (1)0 = 1/2 and ã (1)n < ã (1)n+1, as
required by common sense.

To determine the likelihood of E6 given Ẽa , we use the binomial
distribution,

p
(
E6|T, Ẽa

)
=

D∏
d=1

(
T
6d

)
Ã6d

d (1− Ãd )
T−6d , (13)

where ẼA= E1− ρ(E1− Ẽa); see Eq. (4).
In order to determine nmax, we must show that ãnmax+1 is

irrelevant for the reconstruction, hence, that p(ã (0)nmax+1)=

p(ã (1)nmax+1)—the prior equals the posterior; see Supplement
1, Section S1.2 for further details. The determination of nmax

starts with a reconstruction at a value of nmax too low (typi-
cally N̄max + 1). We add p̃ (0)nmax+1 to Ẽp (0) and multiplex the
reconstruction, i.e., we perform the reconstruction Nmult

times in parallel by mapping Ẽp (0) 7→ p̃(0), a matrix of dimen-
sions (nmax + 2)× Nmult. Accordingly, the vectors Ẽa (0) and
ẼA(0) are mapped to matrices ã(0) and Ã

(0)
with dimensions

(nmax + 2)× Nmult and D× Nmult, respectively. The ρ-
matrix is augmented to size D× (nmax + 2) to incorporate the
probability of sending nmax + 1 photons.

The likelihood of the data E6 is evaluated separately for
each of the multiplexes. For p̃nmax+1, we set a beta(2.5, 0.5)-
prior, which we transform to the domain [pmin, 1], such that
p̃ (0)nmax+1 > p̃ (0)nmax

is likely. Initially, upon starting the nmax deter-
mination, we set pmin = 0. We compare the Nmult MCs of
p̃ (0)nmax+1 and p̃ (1)nmax+1, based on which we decide whether nmax is

set to a sufficiently high value (i.e., p( p̃ (0)nmax+1) and p( p̃ (1)nmax+1)

are indiscernible). In case we find that nmax is insufficient, we
increase the value by 1 and update the value of pmin as described
in Supplement 1, Section S1.2. Then we perform the multi-
plexed reconstruction again until a sufficient value for nmax has
been determined.

https://doi.org/10.6084/m9.figshare.21740606
https://doi.org/10.6084/m9.figshare.21740606
https://doi.org/10.6084/m9.figshare.21740606
https://doi.org/10.6084/m9.figshare.21740606
https://doi.org/10.6084/m9.figshare.21740606
https://doi.org/10.6084/m9.figshare.21740606
https://doi.org/10.6084/m9.figshare.21740606
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The RStan-program returns MCs for all matrix elements

of ã(0), ã(1), and Ã
(1)

. However, because ã(1) is the multi-
plexed version of Ẽa (1) and all multiplexes have been compared
to the same data, the MCs for all multiplexes can be appended
together, i.e., we can “squeeze” the columns of ã(0), ã(1), and

Ã
(1)

back to Ẽa (0), Ẽa (1), and ẼA(1), such that the MC for each ã (0)n ,
ã (1)n , or Ãd contains Nmult · NMC samples.

From the latter MCs, we can determine the posterior statis-
tics, such as means, medians, modes, and high-density intervals
(HDIs) using the DBDA2E-utility.R-functions provided
by [22].

An example of the posterior statistics of Ẽa (1) and ẼA(1) is
discussed in the next section.

6. SINGLE SIMULATION AND
RECONSTRUCTION RESULT

Let us perform a single simulation as described in the previ-
ous section. We set N̄min = 1.0, N̄max = 3.0, and D= 5 such
that ĒN = [1.0, 1.5, 2.0, 2.5, 3.0], and σN̄,d = 0 (no noise).
For each data point we perform T = 1000 trials, i.e., we run a
total of 5000 trials equally divided over 5 data points. For the
reconstruction, we set Nmult = 7, Nchains = 3, Niter = 15000,
Nwarmup = 2500, and Nthin = 3. This yields NMC = 12500 per
multiplex and therefore 87,500 MCMC samples per ã (1)n in
total.

The reconstruction for the constant source accuracy EA, ẼA(1)

is shown in Fig. 2. Here, we plot the reconstructed values of the
experimental outcome AMLE

d =6d/T with yellow asterisks.
Indicated HDIs for each Ã(1)d are spanned by blue lines, whereas

the posterior modes of ẼA(1) are marked with a red dot, giving
an impression of the posterior distribution. As can be observed,
the reconstructed values are close to the model values, which
we obtain by direct substitution of the n-photon accuracies Ea
[Eqs. (11) and (7)] into Eq. (4). This is a direct result from the
detector tomography technique we apply.

In Fig. 3, the reconstructed values for Ea , Ẽa (1), can be observed,
obtained from the same simulation. The posterior distribu-
tions corresponding to each ã (1)n are indicated in the same
fashion as for Ã(1)d . We find good agreement between Ea and Ẽa (1).

Comparing Fig. 3 to Fig. 2, we see that Ẽa (1) “follows” ẼA(1), as
one should expect. Low (high) values for AMLE

d drags (lifts) Ẽa (1)

down (up).
From this reconstruction, we can determine whether single

photons are detected (ã (1)1 > 0.5). To this end, we estimate the
Savage–Dickey ratio [23],

rSD(0.5)= 10 log10

(
p(ã (1)1 = 0.5)

p(ã (0)1 = 0.5)

)
. (14)

This ratio allows us to exclude a value of 0.5 for ã (1)1 if the pos-
terior drops significantly below the prior, i.e., in our case, a
decreasing rSD(0.5) indicates increasing evidence that a single
photon can indeed be detected. Although other decision cri-
teria are available (see, e.g., [24]), we choose to evaluate the
Savage-Dickey ratio here because of its ease in interpretation.

Fig. 2. Reconstruction of the accuracy per data point (source
intensity) for a single simulation. EA are the model values obtained from
substituting our model for Ea [Eqs. (6) and (7)] into Eq. (4). The black
dashed line indicates Ã(1)d = Ad to guide the eye. Although the most
likely accuracy values (AMLE

d =6d/T, yellow asterisks) are different

from the model values, the reconstruction ẼA(1) (indicated by specified
HDIs and the mode) is closer to the model values as a result of the
detector tomography techniques we apply.

Fig. 3. Reconstruction of the accuracy for n-photon states for a
single simulation. The posterior distributions of ã (1)n are indicated
using specified HDIs and the distribution mode. The black dashed
line corresponds to our model values. The inset shows the prior and
posterior distributions for ã1. From this figure one may estimate the
Savage–Dickey ratio (see text), rSD, at ã1 = 0.5 as an indicator whether
the data exclude ã (1)1 = 0.5 (a single photon is undetected). For this
simulation rSD(0.5)=−4.9.

The prior and posterior distributions p(ã (0)1 ) and p(ã (1)1 ) for
the simulation under consideration in this section have been
depicted in the inset of Fig. 3. Fitting these distributions with
a logspline-function from the logspline-library [25] available
for R gives us an estimate for rSD(0.5). For this simulation,
we found rSD(0.5)=−4.9 dB, which is on the verge of being
considered substantial evidence that single photons can be
detected [26].

We can also estimate how well the higher-photon number
accuracies are reconstructed. For this purpose, we calculate the
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Fig. 4. Experimental success probability based on the Savage–Dickey ratio, p(rSD(0.5) < rSD,0), under variation of experimental and model
parameters. (a) Experimental success probability as a function of N̄max (N̄min = 1.0, T = 1000, D= 5, p1 = 0.05, and σN̄,d = 0); MCMC param-
eters as stated in text; the success probability rises linearly for low N̄max and becomes constant for N̄max > 3, irrespective of the cut-off ratio chosen
for marking a successful experiment. (b) The value for N̄min is of minor importance. For N̄min = 1.0 and 0.5, respectively, [other parameters equal to
the values in (a)], the maximum experimental success probability is hardly influenced by N̄min. The data are offset by±0.05 in their N̄max-value for
clarity. (c) Varying D while keeping D · T constant at 5000 trials shows that D is also of minor importance [N̄max = 3.0—other parameters as stated
under (a)]; (d) influence of the total number of trials by varying T [other parameters as in (a)]; it is observed that the slope in the experimental success
probability for N̄max < 3.0 decreases, while its constant value increases slightly with T. (e) Variation in the visual model value p1 [all other parame-
ters equal to those in (a)] reveals that the value of N̄max for which the experimental success probability becomes constant decreases with p1. (f ) The
reconstruction is resilient to noise in the light source. Varying σN̄ [other parameters the same as in (a)], it is observed that the experimental success
probability does not vary, except for N̄max = 1.0. Based on these results, the optimal experimental parameters seem to be N̄min = 1.0, N̄max = 4.0,
D≥ 3, and D · T ≥ 5000, while noise in the light source is not detrimental to the experiment.

mean of squared errors of mode(Ẽa (1)) relative to Ea ,

MSE(an)=
1

nmax

∑
n

(
mode(ã (1)n )− an

)2
. (15)

For the reconstruction result presented in Figs. 2 and 3, this cal-
culation evaluates to 1.66× 10−4, implying the reconstructed
mode is 1.29% off on average for the eight reconstructed
accuracies.

7. OPTIMIZATION OF EXPERIMENTAL
PARAMETERS FOR SINGLE-PHOTON
DETECTION

Using the simulation and reconstruction algorithm, we can

optimize the experimental parameters ĒN, D, and T in order to
achieve a certain goal. Apart from that, we study the influence of
the model parameters p1 and σN̄,d . Being interested in whether
single photons are detected, we consider the Savage-Dickey
ratio in this section and estimate the experimental success prob-
ability p(rSD(0.5) < rSD,0), where rSD,0 is the threshold value
below which we consider ã (1)1 = 0.5 excluded. In Supplement 1,
Section S2, we consider some other optimization goals.

p(rSD(0.5) < rSD,0) is estimated by performing 100 simu-
lations for given experimental parameters and calculating the
Savage-Dickey ratio for each. Since these simulations can be
considered as binomial trials, in which rSD(0.5) < rSD,0 implies
success, we determine the uncertainty in the success probability
by setting a beta(1, 1)-prior (flat prior) for this parameter. Then,
the posterior is a beta(k + 1, 100+ 1)-distribution, where k is
the number of simulations for which rSD(0.5) < rSD,0.

Our optimization results are presented in Fig. 4. For N̄max we
consider values up to 5.0, for which ρ1, Eq. (3), has decreased to
only 3.4%. On the other hand, since ρ1 maximizes for N̄ = 1,
we consider this value as a maximum for N̄min.

In general, we observe that the experimental success probabil-
ity shows two regimes. For lower N̄max, the success probability
is seen to rise linearly, whereas above a critical N̄max,c, it remains
constant. This behavior is apparent under variation of all other
experimental and model parameters (except D), and rSD,0.
As can be seen in Fig. 4(a), in which we plotted the success
probability for N̄min = 1.0, p1 = 0.05, D= 5, T = 1000 and
a noiseless source, N̄max,c ≈ 3.0 does not depend on rSD,0.
Taking rSD,0 =−5, it is seen that p(rSD(0.5) < rSD,0) rises to
approximately 0.7. It rises more or less to the same value if we set
N̄min = 0.5, as can be observed in Fig. 4(b). It reaches this value
for slightly higher N̄max, and in general the success probability
seems to be lower for N̄min = 0.5 than for N̄min = 1.0, except
for N̄max = 2.5. We attribute these results to the fact that ρ1

maximizes for N̄ = 1, such that for any ĒN that contains N̄ = 1,
sending one photon is most likely. Therefore, we infer that
N̄min = 1 will be optimal for our experiments.

In Fig. 4(c), we plot our results for varying D, while keeping
D · T = 5000 (N̄min = 1.0, N̄max = 3.0; other parameters
the same). Thus, it is clearly observed that it does not matter
whether we perform many trials on a few source intensities,
or rather a few trials for many source intensities. This can be
understood since the number of trials per photon number
is more or less constant for every combination of D and T if
D · T is kept constant. However, it should be noted that if one
optimizes for the smallest ã (1)1 0.95-HDI, which is performed

https://doi.org/10.6084/m9.figshare.21740606
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in Supplement 1, Section S2, D≥ 3 is a better choice. Hence,
we would still advise performing the experiment at least three
source intensities.

The final experimental parameter we consider is the total
number of trials D · T. As can be seen in Fig. 4(d), N̄max,c

does not vary with D · T [setting D= 5, other parameters
as in Fig. 4(a)]. However, with increasing D · T, the slope at
N̄max < N̄max,c decreases and the constant value that the success
probability attains increases. The latter increase, however, is
only small, from which it follows that 5000 trials (T = 1000) is
sufficient for the experiment.

Apart from the experimental parameters, we also study the
influence of the model parameters p1 and σN̄,d . In Fig. 4(e), we
plot our results for the experimental success probability while
varying p1 [other parameters the same as stated for Fig. 4(a)].
p1 = 0.03 and p1 = 0.20 correspond to the accuracies reported
by [8] averaged over all trials and high-confidence trials, respec-
tively. It is clearly observed that the success probability drops
while decreasing p1. This is, of course, due to a1 becoming
closer to 0.5, such that a difference from 0.5 is harder to detect.
Interestingly, we also observe that N̄max,c increases with decreas-
ing p1. Based on this observation, we would advise setting N̄max

to 4.0 during the actual experiment because the actual value for
p1 not well known.

Finally, we study the influence of noise on the light source.
We set σN̄,d to a constant σN̄ . Although such a model (σN̄,d
constant for all data points) would only be valid for light sources
that are linear, we expect that this simple model reveals the most
important aspects of a noisy light source. We observe in Fig. 4(f )
that the influence of noise on the experiment is minor. Only for
N̄min = N̄max = 1.0 does noise seem to be of negative influence
to the success probability. We suspect that this mainly results
from the photon number distribution being fairly constant
under influence of our noise model. This follows from the
Taylor expansion ofρn ,

ρn = exp
(
−
(
N̄d ,0 + dN̄

)) (N̄d ,0+dN̄
)n

n!

= exp
(
−N̄d ,0

) N̄n
d ,0
n!

×

1−
(

1− n
N̄d ,0

)
dN̄ +

1
2 −

n
N̄d ,0
+

(
n
2

)
N̄2

d ,0

 dN̄2
− . . .


≈ exp

(
−N̄d ,0

) N̄n
d ,0
n!

[
1−

(
1− n

N̄d ,0

)
dN̄
]

.

(16)
Upon direct comparison of the first and last line of this equa-
tion, we find that the approximation holds for dN̄ < 0.15N̄d ,0.
Since the approximation is linear in dN̄, the photon number
distribution remains more or less constant for any distribution
dN̄ symmetric around 0. From this argument, we expect that
noise on N̄d ,0 yields no problem for the experiment as long as
its distribution is symmetric and the standard deviation of N̄d is
less than 0.05N̄d ,0.

In summary, from our results we find that the experimental
success probability for detecting that ã (1)1 > 0.5 is optimized for
setting N̄min = 1.0, N̄max = 4.0, D≥ 3, and D · T ≥ 5000. The
standard deviation of the noise on the light source should be less
than 0.05N̄d ,0.

8. DISCUSSION

Throughout this study, we have made several assumptions that
influence the experiments that will be discussed below. Also,
we will compare our approach of using a light source with a
Poissonian photon number distribution to a source based on
spontaneous parametric downconversion (SPDC), as used by
[8]. Finally, we will describe how the data collected in the pro-
posed experiment can also be used to determine the n-photon
accuracies referenced to the retina.

Since this is the first time that the method of detector tomog-
raphy has been considered for the human visual system, it was
necessary to construct a model for Ea . Under the assumption that
the eye receptors function independently effectively, they receive
at most one photon per light pulse and their quantum efficiency
remains constant in time, we proposed a binomial model. Using
a Maxwellian view, in which the light pulse is spread over a rela-
tively large area of the retina (order 105 receptors), it is likely that
each receptor receives at most one photon. However, since visual
signal processing is highly nonlinear, we doubt that the assump-
tion on effective independence of receptors can be made, even at
this scale. Moreover, from [8] it is known that it is more likely to
detect single photons if the time between single-photon events
decreases. This implies the quantum efficiency of the receptors
is not constant in reality. These points are even more valid for the
case in which the light pulse is focused on the retina, implying
only order 10 receptors partake in receiving the photons. In
this case, one also cannot make the assumption any more that
each photons lands on a different receptor. These effects can be
studied experimentally by shifting the focal point of the light
pulses between the eye lens and the retina and varying the time
in between trials. Additionally, the irradiated part of the retina
can be adapted by changing the focal distance of the focusing
lens (the f = 50 cm-lens discussed in Section 4). This would
allow us to study summation effects [14,27] in the visual system
with few-photon number states.

We overcome the lack of knowledge on Ea by defining a prior
that can take into account many models for Ea , not one specific
for our model. However, since we assume ãn+1 > ãn , models for
which ãn+1 ≤ ãn are excluded. Also, although the amount of
possible models that can be described using our prior is broad,
not all possible models can be described. Therefore it remains a
question about whether a more suitable prior can be found.

Our other major assumption is that the test subject performs
Bernoulli trials. In reality, however, Ea for a subject may vary
in time (intersession and intrasession) due to, e.g., fluctua-
tions in the quantum efficiency of the receptors (as already
discussed), tiredness, or other fluctuations in attention [28].
Therefore, a beta-binomial likelihood, in which Ea is allowed to
vary in between trials, might be more suitable. If the experiment
shows that this is the case, RStan does allow to implement
the beta-binomial likelihood easily. However, performing the
reconstruction based on the binomial likelihood will return
the mean Ẽa (1), even if the beta-binomial likelihood proves to
be more suitable. Another suggestion would be to perform the
reconstruction with a hierarchical Bayesian model, in which the
data is fitted per session and which also returns a hyper-Ẽa (1) for
the subject.

https://doi.org/10.6084/m9.figshare.21740606
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The same holds when considering different test subjects
together. Because everyone’s visual system is different, one
would expect that for every subject Ea differs as well. If the data
of all subjects are pooled together, one would find the mean Ẽa (1)

for these subjects. Upon writing a hierarchical model, however,
one would obtain information about each subject individually.
It would even be possible to add two hierarchical layers, one
intersubject and another one intersession.

If hierarchy is added to the reconstruction, the amount of tri-
als rises accordingly, i.e., in case data of all participants is pooled,
5000 trials is sufficient to obtain an estimate of their mean Ẽa (1).
When intertest subject differences are taken into account, this
number rises to 5000 trials per participant, which is still a fea-
sible number of trials. For studying intratest subject effects, the
number of trials would rise to 5000 per session, which becomes
unfeasible.

In terms of the question of whether humans can detect single
photons, it is interesting to compare our approach with the
approach followed in [8] using a heralded single-photon source
based on SPDC. In that work, approximately 30,000 trials
are performed, of which about 2500 are postselected as single-
photon trials. The study resulted in a confidence interval for
the single-photon accuracy of 0.020 (with a p-value of 0.0545)
around a1 = 0.516. This value can be compared to our results,
indicating a ã (1)1 0.95-HDI length of around 0.048 (0.044)
for 5000 (10,000) trials; see Supplement 1, Section S2.2 for
N̄max = 4.0. Performing a single simulation and reconstruction
using 30,000 trials (N̄min = 1.0, N̄max = 4.0, p1 = 0.05, D= 5,
T = 6000) we find that the ã (1)1 0.95-HDI length drops to
0.036, which is still significantly above 0.020. This indicates
that using an SPDC source yields more precise results for ã (1)1 .
However, it would be interesting to apply detector tomography
as described in this study to the data obtained in [8], taking into
account all trials, or by other authors.

It should be noted that the data from the proposed experi-
ment are useful not only for determining Ea given n photons are
presented to the eye, but also for determining Earet, the accuracy
that n photons are detected given they are incident on the retina,
similar to the work presented in [3]. To this end, one could
model the cornea, eye lens, and vitreous body as an absorber
with transmission η and map N̄ 7→ ηN̄ in Eq. (4). Setting pri-
ors on η and Earet, a reconstruction can be performed using the
methods described in this work.

9. CONCLUSION

We performed a feasibility study on applying detector tomog-
raphy to the detection of few-photon number states by the
human visual system. The main challenge in such an experi-
ment is that the number of trials is limited. Assuming a light
source with Poissonian photon statistics, we simulated a 2AFC
experiment and reconstructed the photon number accuracies
Ea , for which we assumed a simple model. It was found that the
reconstruction algorithm can reconstruct Ea well. Repeating
simulations, we found the optimum experimental parameters
to detect whether single photons are detectable (given our
model): performing the experiment using at least three source
intensities bounded by a minimum average photon number

of 1.0 and a maximum average photon number of 4.0, yields
the highest chance of detecting a1 to be different from 0.5. Our
results suggest that at least 5000 trials are performed, equally
distributed over the source intensities. The noise of the light
source is expected not to be problematic for this experiment as
long as the standard deviation of the average photon number
of the source is less than 0.05N̄d ,0, 5% of the nominal mean
photon number per pulse. From this study, we conclude that
detector tomography is a feasible technique to study human
visual perception.

We note that the techniques explored in this study can be
applied in a broader perspective. First, they are not limited by
Poissonian statistics, but can in principle be applied using any
light source as long as the photon statistics of the light presented
to the eye are known. Furthermore, these techniques could
possibly also be used to study other human senses, particularly
the olfactory and gustatory system (Can humans smell/taste
few-molecule states?). As such, quantum detector tomography
opens the road to study human perception on the quantum
level.
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