
Pixel super‐resolution interference pattern sensing via the aliasing
effect for laser frequency metrology
Wan, L.; Yu, T.; Zhao, d.; Löffler, W.

Citation
Wan, L., Yu, T., Zhao, D., & Löffler, W. (2023). Pixel super‐resolution interference pattern
sensing via the aliasing effect for laser frequency metrology. Laser & Photonics Reviews,
17(10). doi:10.1002/lpor.202200994
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3719366
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3719366


RESEARCH ARTICLE
www.lpr-journal.org

Pixel Super-Resolution Interference Pattern Sensing Via the
Aliasing Effect for Laser Frequency Metrology

Lipeng Wan, Tianbao Yu, Daomu Zhao, and Wolfgang Löffler*

The superposition of several optical beams with large mutual angles results in
sub-micrometer periodic patterns with a complex intensity, phase, and
polarization structure. For high-resolution imaging thereof, one often employs
optical super-resolution methods such as scanning nano-particle imaging.
Here, it is reported that by using a conventional arrayed image sensor in
combination with 2D Fourier analysis, the periodicities of light fields much
smaller than the pixel size can be resolved in a simple and compact setup,
with a resolution far beyond the Nyquist limit set by the pixel size. The ability
to resolve periodicities with spatial frequencies of ≈3 μm−1, 15 times higher
than the pixel sampling frequency of 0.188 μm−1, is demonstrated. This is
possible by analyzing high-quality Fourier aliases in the first Brillouin zone. In
order to obtain the absolute spatial frequencies of the interference patterns,
simple rotation of the image sensor is sufficient, which modulates the
effective pixel size and allows determination of the original Brillouin zone.
Based on this method, wavelength sensing with a resolving power beyond
100,000 without any special equipment is demonstrated.

1. Introduction

The precise measurement of periodicities of light fields, fringe
metrology, is essential for various metrology tasks such as high-
precision laser frequency determination, and angular and posi-
tion sensing, which is for instance crucial in nanolithography.[1]
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Also for the investigation of complex
field configurations, periodic patterns
need to be analyzed, such as for the
recently discovered bright superchiral
fields that can be synthesized by inter-
ference of several optical beams,[2] and
for exploration of more general interfer-
ence phenomena.[3] Several approaches
have been reported for high-precision
fringe metrology, using position sens-
ing detectors,[4] Fresnel zone plates,[5]

and heterodyne period measurements.[6]

Direct lens-free imaging of these fields
is, however, considered to be impossi-
ble because of the large camera pixel
size compared to the interference pat-
tern periodicities, see Figure 1. The pixel
size 𝛿 of modern charge-coupled device
(CCD) or complementary metal-oxide-
semiconductor (CMOS) image sensors is
usually at least several micrometers due
to limitations of the silicon base mate-
rial and achievable signal-to-noise ratio,[7]

resulting in a sampling frequency of fs = 1∕𝛿. The Nyquist-
Shannon sampling theorem[8,9] tells us that only structures with
spatial frequencies smaller than fs/2 can be resolved in all detail,
leading to the condition fs∕2 > fL, where fL is the spatial frequency
of the interference pattern.
Known methods for probing optical fields on scales much

smaller than usual pixel sizes include nanoparticle scanning
methods[10] near-field scanning optical microscopy (NSOM)[11,12]

and vectorial field reconstruction.[13] The spatial resolution of
these methods is ultimately limited by the size of the probe to
≈80 nm, and complex scanning equipment with nanometer pre-
cision is needed, and scanning-based methods are rather slow.
Here we report that periodic light structures can reliably be

detected with a simple arrayed image sensor such as a CCD or
CMOS camera by exploiting the aliasing effect happening for
sampling below theNyquist limit, sketched in Figure 1.We found
that in 2D fast Fourier transforms of CMOS camera images, the
“aliases” of the high-spatial-frequency interference patterns are
clearly visible. Their spatial frequencies can be determined with
remarkable precision, and also the relative phase of the beams
can be retrieved with high accuracy. We show that the ambiguity
of calculating the original spatial frequency from the measured
spatial alias frequencies can be resolved by changing the effective
image sensor pixel size simply by rotating the image sensor. This
method is fast and the setup is extremely simple since it only em-
ploys an image sensor mounted on a rotation stage and no imag-
ing optics. We demonstrate the measurement of interference
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Figure 1. a) Illustration of mapping light fields b) using a standard image sensor whose pixel size is much larger than the periodicities of the interference
pattern (a). c) In the Fourier transform of images captured by the camera, the aliases of high-spatial frequency components are clearly visible in the first
Brillouin zone indicated by the yellow box.

periodicities 15 times smaller than the pixel size. Undersampling
results in a reduction of the signal-to-noise ratio (SNR),[14] but we
find that this is not a major issue here and the dynamic range of
standard CCD or CMOS detectors is sufficient. Undersampling
is more often used in the temporal domain including in white-
light interference microscopy as a function of path delay,[15] but
no study has directly been explored in the spatial domain with an
arrayed image sensor, to our best knowledge.
We demonstrate a prototype of a high-precision wavemeter

with a resolution of 5 pm using a 5.3 μm pixel-size image sensor.
Reversely, if the laser wavelength is known, the same technique
can be used to measure the angle between two laser beams with
an accuracy of 8 µrad.

2. Theory and Arrangement

Plane-wave interference. Let us consider a superposition ofN-plane
electromagnetic waves with the same angular frequency 𝜔 = ck
and a fixed phase relation. The resulting electric field is

E = Re Ẽ = Re

(
N∑
j=1

Ẽje
i(kj ⋅r−𝜔t)

)
. (1)

Thus, the mean square of the electric field intensity is

S = 1
2
Ẽ ⋅ Ẽ∗

= 1
2

(∑N
l=1 Ẽl ⋅ Ẽ

∗
l +

∑N
j=1

∑
l≠j Ẽj ⋅ Ẽ

∗
l e

i(kj−kl)⋅r
)
,

(2)

where the first term is the zero-spatial-frequency background and
the second term describes the pairwise interference resulting in

fringes that can be described by kjl = kj − kl giving the orien-
tation of the pattern with spatial frequency fil = fL = |kjl| ∕2𝜋,
assuming that the polarizations are not orthogonal, Ẽj ⋅ Ẽ

∗
l ≠ 0.

By performing a continuous 2D Fourier transform of themean
square of the electric field, we obtain the corresponding field in
the spatial-frequency domain

S̃(f ) = 𝛼𝛿 (f ) +
N∑

j = 1

∑
l≠j

𝛾jl𝛿
(
kj − kl + 2𝜋f

)
, (3)

here, 𝛿 denotes the Dirac delta function, 𝛼 is the zero-frequency
intensity, and the weight functions |𝛾jl| and arg(𝛾jl) denote the
magnitude and phase of the spatial frequency components. The
vector f describes the frequency and direction of the interference
pattern from the plane-wave pair.
Image sensor sampling and Fourier transform. On an arrayed im-

age sensor chip with a pixel pitch of 𝛿x and 𝛿y, the intensity is
integrated over the area of each pixel in an incoherent way. The
observation of such light fields with the image sensor Ss(r) can
be written as[8]

Ss(r) =
[
S (r)⊛ Sp (r)

]
⋅ Γ (r,Δr) . (4)

Here the circled asterisk symbol stands for 2D convolution of
the superposed light fields S(r) with the pixel responsivity dis-
tribution Sp(r), which is then filtered by a comb function Γ con-
sisting of an array of Dirac delta functions characterized by the
pixel spacingΔr = (𝛿x, 𝛿y). Due to pixelation, the discrete Fourier
transform of the light pattern sampled by the sensor array be-
comes (for a detailed derivation, see Supporting Information S1)
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Figure 2. Experimental setup for pixel super-resolution interference pat-
tern sensing: HN, He-Ne laser; TL, tunable laser diode NewFocus 6224;
WM, wavemeter, HighFinesse WS6-200; RSC, rotating camera platform;
M, mirror; BS, beam splitter; WP, half waveplate; P, polarizer.

S̃s
(
fx, fy

)
=
∑
u,v

S̃p

(
fx −

u
𝛿x
, fy −

v
𝛿y

)
, (5)

where the real integers u and v characterize the order of spatial
aliasing and the complex function S̃p gives the discrete response
function

S̃p
(
fx, fy

)
= S̃

(
fx, fy

)
⋅ P̃

(
fx, fy

)
. (6)

Here P̃(fx, fy) is the Fourier transform of the two-dimensional
pixel responsivity distribution within each pixel. For simplicity,
we now assume that the image sensor has square pixels with 𝛿x
= 𝛿y = 𝛿 = 1/ fs. Equations (5) and (6) suggests that the nature
of spatial sampling results in a periodic structure of the spatial
frequency of the light fields, containing both the true spatial fre-
quency S̃p(fx, fy) and its alias S̃p(fx − ufs, fy − vfs ).

[8,16] Aliases ap-
pear if high spatial frequencies (f > fs/2) “fold back” into the first
Brillouin zone (f < fs/2), a phenomenon analogous to the “Umk-
lapp process” in solid-state physics. Thus, the real high spatial
frequency of the light fields fL at alias order n results in a differ-
entmeasured spatial frequency fm = |fL − nfs| for the 1D case and
{f mx , f my } = {|fx − ufs|, |fy − vfs|} for the 2D case.
Resolving the frequency ambiguity.—In order to determine the

original spatial frequency, one needs to determine the original
Brioullin zone number. We found that by simply rotating the
image sensor, the original Brillouin zone number can be deter-
mined and thus, the true spatial frequency of the light fields be
determined. This is because the rotation of the image sensor
around its center surface normally changes the effective image
sensor pixel dimensions and thereby the sampling frequency fs.
From the perspective of the light field, its spatial frequencies fjl
are transformed into f rjl (𝜃) = Rz (𝜃) ⋅ fjl, where Rz(𝜃) is the stan-
dard rotation matrix – in Section 3 we discuss explicit cases.
Our experimental setup is shown in Figure 2. Although it is

clear from Equation (5) that the pixel responsivity distribution of
a specific image sensor is important, our method works for all
types. Here we use a CMOS image sensor (Cinogy CMOS 1201-
nano, i.e., a 5.3 μm pixel size image sensor without protective

glass) mounted at the center of a precision rotation stage New-
port M-URM80APP controlled by a Newport ESP300 controller,
with an angular resolution of 0.001°, allowing for continuous ro-
tation of the sensor around its centered surface normal. In the
process of retrieving the periodicities of the interference fringes
of the superimposed light beams, all the necessary steps includ-
ing rotation of the image sensor chip, recording of images, and
performing fast 2D Fourier transforms (FFTs) are automated by
a computer.

3. Measurements Results

3.1. One-Dimensional Interference Patterns

We consider first two-beam superpositions. For this configura-
tion, the electric field vectors are chosen to be equal, Ẽ1,2 = [0, 1,
0] with respect to the image sensor plane, k1 = k[sin𝜓 , 0, cos𝜓 ]
and k2 = k[-sin𝜓 , 0, cos𝜓 ] with 𝜓 = 𝜋/4. From Equation (3) we
determine that the spatial frequency of the interference pattern
is 2234.85 mm−1. The Nyquist frequency of our image sensor is
94.34 mm−1, 23.7 times smaller. We record images while rotat-
ing the image sensor around its surface normally in steps of 0.1°.
Figure 3a shows raw FFT images on a logarithmic scale, next to
the strong zero-frequency peak, side peaks that are aliases of the
high-spatial frequency interference patterns are clearly visible.
During rotation of the image sensor, we first determine the

absolute frequency fm = |fm|, the result is shown in Figure 3(b),
together with numeric simulations. The pattern shows a pe-
riodicity of 90°, and mirror symmetry with symmetry axes at
45 + 𝓁 ⋅ 90◦, 𝓁 ∈ ℤ), which originates from D4 group of sym-
metry of the square shape of the pixel. We observe a good agree-
ment between the experiment and simulation (see also Support-
ing Information S2).
To gain further insight, we perform the analysis over one cycle

denoted by the orange box and analyze the x and y spatial fre-
quency components, shown in Figure 3c for x-component and
3(d) for the y-component. We observe an oscillation of the spatial
frequency components upon rotation; a cycle is again completed
after rotation over 90°. We now focus on the spatial frequency in
x direction. At 𝜃 = 0, the x-axis is aligned along the interference
fringes, where the image sensor observes zero spatial frequency
(which can hardly be determined experimentally because of the
overlap with the zero-frequency background). If the sensor is ro-
tated, the Fourier frequency increases until it reaches the Nyquist
criterion, where it is folded back and further rotation results in
a decrease in the measured (alias) spatial frequency; this process
is repeated until the x-axis is perpendicular to the fringes (𝜃 = 90
degrees). Thus, the observed oscillation pattern is in effect aman-
ifestation of folding, where the high spatial frequencies beyond
the first Brillouin zone oscillate back and forth across the positive
half of the first Brillouin zone upon rotation. From this physical
picture, the x-component of the true spatial frequencies f rx upon
rotation can be deduced to be (a detailed derivation is shown in
Supporting Information S3)

f rx
(
𝜃, fbz, f

m
x

)
=
(
m + 1

2
− 1
2
cosm𝜋

)
fbz + f mx (𝜃) cosm𝜋, (7)

where f mx is the measured x-component of the spatial frequency
upon rotation. The y-frequency component f ry exhibits a reverse
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Figure 3. Probing superposed light fields using a CMOS image sensor with a 5.3 µm pixel pitch, where the structure of the interference pattern is much
smaller than the pixel size. The image sensor is mounted on Newport M-URM80APP to form a custom-made rotating image sensor platform. a) For a
continuous rotation shows examples of captured intensity images in the space domain and the corresponding Fourier transform. Tracing the frequencies
of Fourier peak gives b) the measured trajectories of spatial frequencies; we compare numerical simulations (blue lines) to the experimental data (red
dots). The orange box denotes one cycle. Within one cycle, we disentangle and extract the individual components of trajectories of spatial frequencies
for the c) X-component and d) Y-component. From this, we calculate the real spatial frequencies of the interference patterns for the e) X-component
and f) Y-component. The inset in (e) and (f) are magnifications of the spatial frequencies near the flat regions of the trajectories. The numerical and
experimental data show good agreement.

trajectory compared to the x-frequency component, due to the
symmetry, and is

f ry
(
𝜃′, fbz, f

m
y

)
=
(
m + 1

2
− 1
2
cosm𝜋

)
fbz + f my

(
𝜃′
)
cosm𝜋, (8)

where 𝜃′ = 𝜋∕2 − 𝜃.
Figure 3e,f present the original frequency trajectories of the

physical light field retrieved using Equations (7) and (8), together
with the corresponding theoretical prediction from projection.
The image sensor rotation induces a change of the true spatial
frequency projected along the axis, where the other frequency
component disappears at the end of the rotation trajectory and
thus, the true spatial frequency of the light field is retrieved. For
themeasurements of the x component, we retrieve the spatial fre-
quency of physical light fields to be 2222.3759mm−1, in excellent
agreement with the simulation and theory. The slight deviation
in the true spatial frequency is attributed to the imperfect align-
ment of the light beams. This shows that we can simply measure
the beam half angles with very high precision using our rotation
technique, which is, in our case, 44.6811 degrees (the precision
will be discussed later). Further, we observe that the retrieved spa-
tial frequencies retrieved through the x- and y-frequency compo-
nents are in practice not equal, with the latter being 2222.7448
mm−1.We argue that a residual tilt of the image sensor, or a small
(75 pm) asymmetry of the image sensor pixels, is responsible for
this.

3.2. Probing Superposition of Multiple Coherent Beams of Light

To further demonstrate the power of our technique, we show that
the proposed method works also for multibeam superpositions,
generating rich periodic patterns.[3,17] It is clear fromEquation (2)

Table 1. Three-beam interference configuration.

j kj Ẽj

P [sin𝜓 , 0, cos𝜓 ] [-cos𝜓 cos𝜑, -sin𝜑, sin𝜓 cos𝜑]

Q [-sin𝜓 , 0, cos𝜓 ] [cos𝜓cos𝜑, sin𝜑, sin𝜓 cos𝜑]ei𝛼

R [0, sin𝜓 , cos𝜓 ] [sin𝜑, -cos𝜓cos𝜑, sin𝜓cos𝜑]ei𝛾

that every beam-pair superposition Ẽj ⋅ Ẽ
∗
l produces a patternwith

high spatial frequency that contributes to the overall superposed
light field distribution, we now explore the three waves configu-
ration shown in Figure 2. The specific parameters of this super-
position are listed in Table 1, where the mutual beam half-angle
is𝜓 = 𝜋/4, the phase𝜑= 𝜋/4, 𝛼 and 𝛾 are the relative phase of the
waves. When rotating the image sensor, we observe three distinct
Fourier peak trajectories, as expected. All these Fourier peaks
are traced simultaneously during image sensor rotation, the fre-
quency trajectories measured along the y-direction are shown in
Figure 4a, where the zone denoted by the orange box reveals a
repeating pattern which are shifted for different beam combina-
tions, containing information about their relative angles between
the beams. By using Equation (8) one can retrieve the true spatial
frequencies, whose retrieved trajectories are shown in Figure 4b.
The true spatial frequencies can then be extracted from the end of
the trajectories, where interference of the PR, PQ, and QR beam
combinations are, respectively, 1573, 2227, and 1577 mm−1. The
theoretical predictions for perfect alignment are 1580, 2235 and
1580 mm−1, the errors are thus 0.45%, 0.36%, and 0.19% which
we attribute to a small misalignment of the beams. This indicates
the high precision of our method, and that it is also applicable to
multiple-beam superpositions.

Laser Photonics Rev. 2023, 17, 2200994 2200994 (4 of 7) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 4. Resolving 3-beam light field superpositions. a) Rotation measurements in the under-sampled case showing numerical simulations (blue)
and experimental measurements (red). The orange box shows the repeating pattern that is angle-shifted for different beam combinations. b) Retrieved
spatial frequency trajectories for the 2D interference patterns. The spatial frequencies are shown in units of 1 mm−1.

Figure 5. Demonstration of phase sensing. A sawtooth signal with a frequency of 100 mHz is imposed on the piezoelectric-actuated mirror. We measure
the absolute Fourier peak phase (left) and the relative phase compared to another nonshifted beam combination (right).

4. Phase Retrieval

Having measured the spatial frequencies, we show that it is also
possible to retrieve the relative phases of the beams in super-
position using our method. From Equations (3)–(6) we see that
the phase of the Fourier peak is independent of the pixel pitch
as well as two-dimensional pixel responsivity distribution, i.e.,
the precise properties of sensor therefore play no role in the
phase of the Fourier peak of the Fourier transform. Therefore,
the relative-phase information of the superposed light beams can
be obtained, even in the undersampled case.
To prove this point, we attach a piezo chip (Thorlabs PA4HEW)

to one of the mirrors in one of the arms, this allows for finely
tuning the path difference with nanoscale precision, inducing a
shift of the fringes of the interference pattern. We apply to the
piezo a sawtooth signal with a frequency of 100 mHz, Figure 5a
shows the measured phase of the Fourier peak. We see that the
Fourier phase changes mostly linearly with the applied voltage.
Synchronously, we measure the relative phase change of this
Fourier peak compared to another Fourier peak originating from
two beams without a piezo element, shown in Figure 5b. We ob-
serve the same pattern except for a constant phase offset. This

proves our theoretical prediction, opening a new avenue to per-
form phase locking.

5. Sensitivity and Wavelength Sensing

We now demonstrate the application of our method to wave-
length sensing.
Theory.—The maximum-magnitude FFT-pixel is taken for our

spatial frequency reconstruction. Therefore, the main inaccura-
cies of the setup are the precision of the rotation angle ∆𝜃, the
spatial frequency resolution determined by the precise image
sensor dimensions, and a residual tilt of the image sensor.
The rotation angle resolution of the Newport M-URM80APP

yields an expected wavelength sensing resolution of sub-pm/sub-
fm for an angular rotation accuracy of ∆𝜃 = 0.1 deg/0.001 deg,
and we obtain the wavelength sensing resolution Δ𝜆c (see Sup-
porting Information S4 for details):

||Δ𝜆c|| = 𝜆2Δfc
2 sin𝜓 + 𝜆Δfc

, (9)

Laser Photonics Rev. 2023, 17, 2200994 2200994 (5 of 7) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 6. Demonstration of the high precision of wavelength sensing using our technique. The measured wavelength shift is indicated by red spheres
for the numerical simulation (left) and experimental data (right). The blue line is the theoretical prediction results. The error bars represent the standard
deviations corresponding to 15 independent measurements.

where ∆fc is the spatial frequency resolution and is determined
by the image size L via 1/L. The finite size of the image sensor
yields an error of 60 pm. The latter clearly appears to be the more
important limit on resolution for our demonstration experiment.
We can improve this by spatial interpolation via zero-padding,
which enables a significant increase in the resolution of the mea-
sured spatial frequencies. In our scheme, a zero-padding of up
to 218 × 210 pixels are performed for all results. To ensure a good
SNR, the interference size is relevant since it straightforwardly
influences the width of the Fourier spots and thus, the accuracy
of the measured spatial frequencies.
Measurements. Experimentally, an external-cavity semiconduc-

tor laser at ≈776.3 nm (New Focus model 6224) with a linewidth
of less than 300 kHz is coupled into our setup via a single-mode
fiber. We scan the wavelength and measure it using a Fizeau-
interferometer-based wavemeter (HighFinesse WS6-200).
Figure 6 shows our experimental results demonstrating ultra-

high wavelength resolution. Due to the stability of the tun-
able laser source and the absolute accuracy of the wavemeter
(200 MHz) the wavelength was scanned in steps of 5 pm. The
observed linear relation is in good agreement with theoretical
analysis and numerical simulation, thereby confirming the wave-
length shifts down to at least 5 pm or 2.5 GHz in frequency are
readily discernable by our method. This accuracy can easily be
improved by enlarging the interference pattern region, increas-
ing intensity, using peak fitting for the determination of the spa-
tial frequencies of the Fourier aliases, and fitting our model to
the experimental data for many rotated pictures simultaneously.
Spectral performance. We can derive the spectral resolving

power R that is equal to the ratio between the size of the zero-
padded image and the interference period (See Supporting In-
formation S5). The simplicity of the inverse relationship between
the pixel size and the half length of the first Brillouin zone 𝛿 = 1/fs
means that, once the aliasing order is established, a unique map-
ping of spatial frequencies to wavelength is possible, without the
need for postprocessing. For 𝛿 = 5.3 μm pixel size, this is equiv-
alent to a free spectral range (FSR) of Δ𝜐 = 20 THz, much larger
than the FSR of our Fizeau interferometers (WS6-200, 100 GHz)
and standard Fabry–Perot cavities (several GHz). Our calcula-
tions in Equation (12) already resulted in a predicted wavelength

accuracy below a femtometer, thus a spectral resolving power
beyond 108, bringing it to the required sensitivity for probing
the Doppler wobbles induced by exoplanets [18] or the Zeeman-
splitting of spectral lines of hydrogen and antihydrogen.[19] How-
ever, a direct proof of this theoretically achievable accuracy would
require an ultrastable, high-SNR system.
From our simple setup, it is evident that our technique could

have several major advantages over the existing wavelength sens-
ing techniques: higher resolution and experimental simplicity.
Perhaps more importantly, systems containing optical elements
such as lenses, gratings, or glass blocks (Fizeau interferometers)
cannot be used for high-energy photonswheremedia are strongly
absorbing. Our technique is therefore suited for the extreme-
ultraviolet (EUV) and x-ray regime where recent ptychographic
methods have been explored[20,21] with the added benefit of ex-
perimental simplicity.

6. Discussion and Outlook

We have shown that a simple arrayed image sensor in combina-
tion with Fourier analysis allows for deep-subpixel sensing of pe-
riodic interference patterns. This is possible by exploiting alias-
ing, and the absolute spatial frequencies as well as phase spec-
trum can be obtained by rotation of the sensor, even if it is square.
In a proof-of-principle experiment, we have demonstrated

wavelength sensing with picometer resolution, potentially much
simpler than Fizeau- or Fabry-Perot-based interferometers. Our
method can also quite easily be applied to all wavelength ranges
where arrayed image detectors are available, for instance, to
metrology challenges in EUV lithography.
Our approach is quite general, it can be applied to other wave

systems in nature, ranging from electromagnetic and acoustic
waves to matter waves. We emphasize that the remarkable accu-
racy can be further improved by enlarging the interference re-
gion, using the fringe-lock,[4] and improvements on rotational
accuracy.
A promising extension and initial motivation of the study

is applying our methods to the observation and characteriza-
tion of bright superchiral fields.[2] Additionally, combining our
technique with concepts from quantum metrology could be

Laser Photonics Rev. 2023, 17, 2200994 2200994 (6 of 7) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

 18638899, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lpor.202200994 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [21/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

interesting: For instance, in the case that interfering light fields
are not coherent states of light but N00N states, an N-fold-
enhanced resolution as compared with a classical interference
lithography is possible,[22–24] using an image sensor sensitive to
multiphoton absorption or with single photon resolution. This is
reminiscent of recent schemes with pixel super-resolution quan-
tum imaging, which have been achieved by measuring the joint
probability distribution of the spatial resolution of spatially entan-
gled photons.[25] Light fields with high-spatial frequency features
appear also in other fields, such as by surface plasmon interfer-
ence for nanolithography, at the interface between metals and di-
electrics the wavelength of surface plasma waves can be down to
the nanometer scale, while their frequencies remain in the op-
tical range, going beyond the free-space diffraction limit of the
light.[26–28]
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